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Percolation of binary disk systems: Modeling and theory
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The dispersion and connectivity of particles with a high degree of polydispersity is relevant to problems
involving composite material properties and reaction decomposition prediction and has been the subject of
much study in the literature. This work utilizes Monte Carlo models to predict percolation thresholds for
a two-dimensional systems containing disks of two different radii. Monte Carlo simulations and spanning
probability are used to extend prior models into regions of higher polydispersity than those previously considered.
A correlation to predict the percolation threshold for binary disk systems is proposed based on the extended
dataset presented in this work and compared to previously published correlations. A set of boundary conditions
necessary for a good fit is presented, and a condition for maximizing percolation threshold for binary disk systems
is suggested.
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I. INTRODUCTION

For problems dealing with transport properties and particle
connectivity, percolation theory is an important resource
in predicting composite behavior. Percolation theory is the
branch of statistical mechanics dealing with particle con-
nectivity and dispersion in random media and provides a
tool for linking microstructure and macroscopic material
properties [1]. It is often described in terms of the critical
parameter at which bulk connectivity is established, called the
percolation threshold. Below the percolation threshold, large
connected components do not exist.

Percolation is a well-studied physical phenomena because
of its broad applicability, including physical percolation of
fluids through rock [2–4], as well as resistor networks [5],
disease spread [6], and many problems in material sci-
ence [7,8]. Studies of these phenomena often focus on either
lattice or continuum systems. Lattice percolation is described
by regular or irregular networks, where sites or bonds are
occupied with some probability f , and occupied sites form
connected pathways. In the continuum, any point is available
for occupancy, and the overlap and intersection of objects
results in connected clusters. For either system, the problem
of percolation can be summed up by the question: For a
system of characteristic length L and a set of objects randomly
located, what is the number, N , of objects necessary to create
a connected cluster large enough to span the system? For the
oft-studied infinite system, in which the intensive number
of objects at percolation is also infinite, object occupancy
is often described in terms of density, n = N/L2 in two
dimensions, or n = N/L3 in three dimensions. In spite of the
conceptual simplicity of this question, no exact solutions for
any continuum percolation problems are yet known, although
increasingly precise estimates have been obtained through
extensive numerical simulation.

In 1970, Scher and Zallen demonstrated that for regular
lattices there exists a universal critical area fraction for disks
given by ηc,2 = 0.45 and a critical volume fraction for spheres
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of ηc,3 = 0.16 [9–11]. These quantities are invariant for all
lattices that can be occupied by monodisperse disks or spheres,
independent of specific lattice geometry and dependent only
on the dimension of the system. Later work found percola-
tion thresholds for systems of nonregular lattices [12–15].
Although lattice percolation has been the subject of much
analytical and numerical study, continuum percolation is often
more representative of the behavior of real systems [16–19].

For continuum percolation of monodisperse disks in two
dimensions, it was discovered that the percolation threshold
could be described by a universal total area fraction of
1.128 087 37 [20–22]. Further work showed that concept of
a constant critical total area could be generalized to that of
a universal total excluded area, and it was found that the ex-
cluded area of monodisperse objects is approximately constant
at percolation, theorized to lie between 3.2 and 4.5 for any
system of monodisperse objects in two dimensions [23]. Note
that the total excluded area at percolation for monodisperse
disks (∼4.5) is consistent with the upper bound of the universal
total excluded area range.

Several Monte Carlo methods have been used to predict
percolation thresholds. Gradient percolation is a technique
that simulates disks as centered on points of an underlying,
inhomogeneous Poisson field [24]. The average location of
the edge naturally formed by the percolating measure is used
to compute the percolation threshold. Two techniques have
been used to predict percolation thresholds in this manner:
the gap-traversal method and the frontier-walk method. The
frontier-walk method has been rigorously shown to converge to
the percolation threshold for homogenous systems [25]. Other
types of Monte Carlo methods include the rescaled-particle
algorithm, in which a static particle configuration is rescaled to
determine upper and lower percolation bounds [26] and several
variations of the union-find algorithm [4,27,28], including one
implementation adapted for use in the continuum by Mertens
and Moore [20] based on the work Newman and Ziff [4].

These Monte Carlo simulations have been used to refine
predictions of the percolation threshold of monodisperse
disks [20–22], aligned squares [28,29], and sticks [20,27]
to several decimal places of accuracy. Such simulations are
costly and time consuming [24], but ever evolving computing
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capabilities enable increasingly accurate and convenient sim-
ulations. However, the assumption of object monodispersion
is often not accurate for physical systems [30–34]. This
has driven several studies attempting to account for varying
degrees of polydispersity in order to better transition theory to
application.

Polydisperse systems have been demonstrated to have
different percolation thresholds from monodisprse sys-
tems [31,35]. The problem of overlapping disks of two sizes in
the continuum has been studied by several researchers. Quin-
tanilla utilized extensive gradient Monte Carlo simulations to
examine the percolation thresholds of such systems [24,36],
including a proposed correlation for the percolation threshold
as a function of disk radii ratio, λ, and relative concentration of
the disk of smaller size, f . Based on those results, Balram and
Dhar developed a phenomenological equation for the increase
in the effective size of the larger disks in the presence of smaller
disks [37]. Monte Carlo results have also predicted percolation
thresholds for disks with distributions of radii [38]. The related
problem for spheres of more than one size in three dimensions
has also been examined [39,40]. The range of simulation
results available over λ and f is limited, and few studies report
results for values of λ less than 0.1 or values of f greater
than 0.999. Although many of these works present potential
extrapolation for some parameters, these extrapolations are
often caveated outside of the simulation bounds.

Studies have also attempted to find the minimum or
maximum percolation threshold for a set of conditions,
as this is often physically relevant for problems such as
determining how much additive is appropriate, as in the
addition of carbon nanoparticles to a polymer composite [8], a
maximum infection time for modeling of disease spread [6], or
predicting the maximum set time before concrete becomes load
bearing [41]. It has been proposed that for systems of disks, a
monodispersion minimizes the percolation threshold [42,43].
It remains to be proven which conditions maximize the
percolation threshold.

The objective of the present work is to extend the study
of interpenetrating binary disk dispersions to higher polydis-
persities than considered previously and suggest a prediction
of behavior. From these results, we propose criteria that
will maximize the percolation threshold of such systems.
This is a natural extension of the monodispersion studies
previously reported and provides relevant simulations for
applications that inherently include an additive with a size
distribution.

II. METHODS

In this study, we use the union-find algorithm with open
boundary conditions to determine the percolation threshold
for binary disk dispersions for regions of high polydispersity,
extending the results predicted by Monte Carlo simulation
in the literature. This expanded data set is reported in full
in Appendix. A discussion of the limiting behavior made
evident by these expanded results, and a proposal for a new
phenomenological equation for the prediction of percolation
threshold for binary disk systems, is then put forth. We begin
this discussion first with a definition of terms.

A. Definition of terms

The connectivity of objects can be described in terms of the
filling factor, η which is the total area of all objects in a system
normalized by system size. For a square domain with sides of
length L, the filling factor for a system of N disks of radius R

is given by

η = N
πR2

L2
. (1)

The filling factor is often related to the area fraction, φ, which
is the fraction of the domain covered by objects. The area
fraction can also be thought of as the probability that any point
in a domain is covered by an object. For lattice percolation,
where objects do not overlap, the area fraction and filling
factor are equivalent. However, for continuum percolation, in
the case where interpenetration occurs, the area fraction will be
less than the filling factor due to object overlap. The concepts
of filling factor and area fraction can be directly extended
to problems of three dimensions, where the filling factor is
the total volume of all objects in the system normalized by
system size and the volume fraction is the fraction of the
domain covered by objects (equivalent to area fraction in two
dimensions). In either case, as the domain size approaches
infinity the area fraction is related to the total area by the
differential equation dφ

dη
= 1 − φ which allows the solution

φ = 1 − e−η. (2)

For the special case in which a system of objects has just
achieved percolation, the area fraction is called the critical
area fraction, or percolation threshold, φc. The corresponding
filling fraction is called the critical filling fraction, ηc. For
an infinite system, the probability that a cluster of connected
objects results in connectivity across the domain goes from
zero to one at the percolation threshold. In a finite system, like
those we are able to simulate, the probability that such a cluster
exists goes from zero, at the placement of the first object, to
one as object placement causes the entire domain to be filled.
This transition is continuous and becomes increasingly abrupt
as the system grows in size, approaching an instantaneous
transition for the infinite case.

For an infinitely large, two-dimensional system containing
monodisperse disks (or equivalently for a system of finite
size containing infinitesimally small monodisperse disks),
the percolation threshold is an invariant, approximated by
ηc = 1.128 08. This estimate was obtained independently via
Monte Carlo methods using both gradient percolation [21] and
wrapping probabilities [20].

B. Monte Carlo algorithm

In this work, Monte Carlo simulations are performed
consistent with the spanning probability method used by Li
and Zhang in [27]. In this approach, each simulation consists
of a series of trials in which disks of a finite size are added
to a much larger, finite 2D square. As each disk is placed, the
Monte Carlo algorithm checks for overlap with other disks,
merges connecting disks into clusters, and checks for a cluster
that intersects two opposite sides of the domain. Such a cluster
is called a spanning cluster, and its inception is congruous with
the onset of percolation.
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In each trial, the placement of disks continues until a span-
ning cluster has been found both horizontally and vertically.
When a spanning cluster of each type first appears, the number
of disks in the system is reported. For all system sizes, it
is observed that the number of disks at which a horizontal
spanning cluster appears and the number of disks at which a
vertical spanning cluster appears are only weakly correlated.
This is justified through an examination of results in this study
and is consistent with assumptions made in the literature [20].
In this work, estimation of the monodisperse result consisted
of O(105) trials. Estimates for binary disk systems consisted
of O(103)-O(105) trials for each combination of f and λ,
depending on the desired accuracy. The accuracy achieved
for each data point is reflected in the number of significant
figures reported in the Appendix.

Once both horizontal and vertical percolation has been
achieved, the trial is ended and no more disks are placed. After
performing a simulation consisting of m trials, the spanning
probability RN,L for N disks in a system of size L is easily
found by counting the total number of horizontal and vertical
spanning events that occurred with fewer than N disks and
dividing by 2m. There is an obvious restriction in the resolution
attainable for RN,L calculated in this manner for a given
sample size, m. However, this difficulty may be overcome
by convolving the measured spanning probabilities with the
Poisson distribution with mean λ = η(L2/πR2) [20,27], as
shown in Eq. (3),

RL(η) =
∞∑

n=0

eλλn

n!
Rn,L. (3)

Following the work by Mertens and Moore [20], the
Poisson weights wn ∝ e−λλn

n! are calculated inductively to avoid
numerical difficulties when n is large, as it is for any significant
set of trials.

Calculation of wn in this manner allows for a computation-
ally accurate summation that does not involve summation of
functionally infinite terms:

w�λ�−k =
{

0, k = 0,

�λ�−(k−1)
λ

w�λ�−(k−1), k = 1,2, . . . ,
(4)

w�λ�+k =
{

1, k = 0,
λ

�λ�+k
w�λ�+(k−1), k = 1,2, . . .

(5)

The convolution is then normalized by the quantity
∑

wn.
This technique allows for the computation of the spanning
probability for any value of the filling factor. For the open
boundary conditions considered here, the critical spanning
probability is 0.5 [44]. The critical filling factor for a particular
system size is defined as the filling factor at which the spanning
probability is equal to the critical spanning probability for that
size system. The critical filling factor for the finite system
is expected to converge to that of the infinite system as
(R/L)7/4 [24]. Figure 1 illustrates that our algorithm converges
at the expected rate.

The extrapolated value for the critical filling fraction is
computed using a weighted linear regression as in [20,24].
The reported uncertainty in this prediction is the half-width
of the 95% confidence interval for this prediction. For the

FIG. 1. Convergence of the estimated critical filling factor for
monodisperse disks. Each data point represents a different relative
system size (R/L). The fitted line to the data gives an intercept—
or predicted percolation threshold for an infinite system—of 1.128,
which demonstrates reasonably good agreement with the published
percolation threshold value for monodisperse disks.

monodisperse case, our prediction is (1.1282 ± 1.61) × 10−4,
which is in agreement with but less precise than the previously
published values of 1.128 08 [21], 1.128 085 [36], and
1.128 087 37 [20]. This is to be expected as the present result
was achieved with far fewer simulations as the goal of this
work is not to refine the prediction for monodisperse disks
but rather to explore the behavior of binary dispersions under
extreme dispersiveness.

C. Checking against published results for monodisperse disks

To validate our implementation of the algorithm, this
method is first used to determine the percolation threshold for
monodisperse disks. Disks of size R were added to a square
with side length L until both vertical and horizontal spanning
clusters were observed. The number of disks necessary for
percolation was recorded for each trial, and the resulting
measured spanning probabilities were convolved with the
Poisson distribution. This yielded an estimate of the two-
dimensional percolation threshold for disks of ηc ≈ (1.1282 ±
1.61) × 10−4, which is sufficiently precise for this study. The
critical filling factor calculated for each simulation is shown
in Fig. 1. System sizes below R/L = 0.03 were seen to be
outside the asymptotic regime and therefore too small to yield
useful information about the infinite percolation threshold.

III. RESULTS AND ANALYSIS

A. Presentation of results from Monte Carlo simulations

Having validated implementation of the Monte Carlo
simulation method for the monodisperse case, we move to
our particular case of interest: binary disk dispersions. Here,
we are concerned with the effect of polydispersity on the
percolation threshold for binary dispersions of fully penetrable
disks of different radii. This system was studied previously by
Quintanilla [24,36]. We adopt his notation, using 0 � λ � 1
to denote the ratio of the disk radii and 0 � f < 1 to denote
the number fraction of the smaller disks. The number fraction
is the concentration of small disks normalized by the total
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FIG. 2. Comparison of results generated here with those pub-
lished by Quintanilla. The lines correspond to the points generated
in this work while the x markers denote the corresponding results
published in [24]. Very good agreement is demonstrated.

number of disks and can also be thought of as the probability
that a randomly selected disk is of the smaller size. We first
verify our approach by reproducing Quintanilla’s results.

Figure 2 shows Quintanilla’s published results [24], as
well as the results generated by the algorithm used in this
paper. Very good agreement is demonstrated. All of the data
points from [24] are reproduced and the maximum difference
is 8.331 264 × 10−4 and the differences at each point are
within the uncertainty bounds of our predictions. Although
Quintanilla used a gradient percolation method, it is expected
that both methods should converge to the same percolation
threshold. Successfully reproducing these results provides
confidence in our implementation. In this study, Quintanilla’s
results [24] have been extended for both smaller λ and larger
f through extensive Monte Carlo simulations. Results from
this study are reported in detail in the Appendix. Each value
has an estimated error of �5 in the last decimal place. The
expanded dataset is used to generate Fig. 3—here presented
in terms of 1 − f on a log-log scale—represents nearly five
times the number of data points published by Quintanilla [24].
This expanded coverage is made possible both by the massive
improvements in parallel computing since the publication of
the prior work and by accepting slightly less precise solutions,
particularly in regions far from the peak percolation threshold.
Quintanilla and Ziff later published higher precision data [36]
over roughly the same ranges of f and λ. Our uncertainties
are large enough that there is no value in comparing to these
results separately.

Our results are consistent with the previously proposed as-
sertion that the minimum percolation threshold in two dimen-
sions will be satisfied by monodisperse disks [24,36,39,42,43].
The results in Fig. 3 suggest that the percolation threshold will
be maximized for smaller values of λ and some large value
of f . The value of f for which the percolation threshold is
maximized is dependent on the value of λ. Towards this end, it
is instructive to consider the percolation threshold as a function

FIG. 3. Percolation threshold for binary dispersions of disks,
presented as a contour plot. Each line represents a constant value
of percolation thresholds. The dashed line closely tracks the location
of the maximum percolation threshold.

of the large disk fraction, 1 − f instead of as a function of small
disk fraction, f .

There are certain physical requirements for the limiting
behavior of the percolation threshold for any set of dispersions.
Here we used the simulation results as a tool to demonstrate
the validity of such limits. As noted by Quintanilla [24], in
the case where f = 0 or λ = 1, we expect that the percolation
threshold should be equivalent to φc, as each of these systems
represents the monodisperse case.

The extended Monte Carlo results also suggest several
additional conditions for limiting behavior. Quintanilla [24,36]
noted that the percolation threshold appeared to be maximum
for small λ in the case of (1 − f ) ≈ λ2. We further that
observation by noting that not only does it hold true for
the extended Monte Carlo results, but that consideration of
limits supports this hypothesis. For a given ratio of radii, the
maximum percolation threshold is achieved with a large disk
number fraction of λ2. Note that this hypothesis is distinct from
the hypothesis that the percolation threshold be symmetric, i.e.
φc( f λ2

f λ2+1−f
) = φc( 1−f

f λ2+1−f
) which was proposed in [45] and

disproved in [36].
This is supported empirically by the Monte Carlo results but

may be understood analytically by considering percolation of
the binary disk mixture as two collocated percolating systems:
a system of larger disks and a system of smaller disks. This
ratio may be thought of as the total area of the large disks at
percolation, normalized by the total area of all disks if all disks
were of the smaller size. The total number of disks rather than
the number of small disks is used in the denominator because
there is effectively a small disk at the center of every large
disk. Thus, the ratio is a measure of how close both systems are
to percolation. The percolation threshold will be maximized
when both systems contribute equally to percolation, and the
ratio is unity, as in Eq. (6):

1 − f

λ2
= (1 − f )R2nc

λ2R2f nc

= 1. (6)
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This result is also supported through the consideration of a
pair of limiting cases. For the case in which both (1 − f ) and
λ approach zero, consider total area fraction for monodisperse
disks shown in Eq. (7):

ηc = nc(1 − f )πR2 + ncf λ2πR2. (7)

In this equation, the first term represents the contribution
of the large disks to the total area, and the second term the
contribution of the small disks to the total area. Supposing that
λ2 approaches zero very rapidly compared to (1 − f ) and the
disks of the larger size drive percolation, then bulk percolation
will occur when the disks of the larger size percolate, as in
Eq. (8):

ηc ≈ n(1 − f )πR2. (8)

The total area fraction for the percolating system can be written
as

ηc = ηc

(
1 + f λ2

1 − f

)
. (9)

In the case where λ2 does, in fact, approach zero very
rapidly compared to (1 − f ), the second term goes to zero and
ηc = ηc. However, in the case where λ2 approaches zero at
about the same rate as (1 − f ), the second term will be equal
to unity and ηc = 2ηc.

Similarly, if (1 − f ) approaches zero very rapidly com-
pared to λ2, we may use Eq. (10),

ηc ≈ nf λ2πR2, (10)

and

ηc = ηc

(
1 + f λ2

1 − f

)
. (11)

In the case where (1 − f ) does, in fact, approach zero very
rapidly compared to λ2, the first term goes to zero and ηc = ηc.
However, in the case where λ2 approaches zero at about the
same rate as (1 − f ), the second term will be equal to unity
and ηc = 2ηc.

This result suggests a few additional restrictions on the
maximum percolation threshold: the maximum achievable
critical filling factor for a binary dispersion of disks is double
the critical filling factor for the monodisperse case and it is
achieved only in the limit as f → 1 and λ2 → 0 at equal
rates.

This limit based approach to determining the maximum
percolation threshold raises some interesting questions about

how percolation thresholds are maximized for very polydis-
perse systems, namely: How would the percolation threshold
be limited for systems with three or more sizes of disks? The
approach presented here indicates that for such systems, per-
colation threshold will be maximized when all disks contribute
equally to percolation, and the ratio of their contributions is
unity. Whether increasingly polydisperse systems are limited
in this manner is the subject of future study.

B. Evaluation of previously proposed fits

Several works in the literature have proposed fits to Monte
Carlo data which predict the percolation threshold for binary
disk dispersions. Based on the limiting behaviors discussed
above, a list of criteria for the behavior of any equation
predicting the percolation threshold of binary disk dispersions
is compiled and presented in Table I.

The criteria listed as 1 and 2 were noted by Quintanilla [24]
along with the observational remark that the maximum value
of φc for small values of λ appeared to track well with
(1 − f ) ≈ λ2.

Several correlations have been proposed to fit the percola-
tion threshold surface as a function of λ and f , which can be
evaluated based on the criteria enumerated in Table I.

Dhar [40] used a correlation length argument to derive the
estimate in Eq. (12):

ηc(f,λ) ∝ f λ2 + (1 − f )2

f λ2 + (1 − f )λ3/4
. (12)

When plotted over the range of λ and f considered here,
the Dhar estimate demonstrated poor correlation to Monte
Carlo results. We note that the Dhar correlation yields the
monodisperse result when λ = 1, which satisfies condition 1,
but fails to satisfy the additional six criteria.

Quintanilla [24] proposed an alternate empirical fit to the
Dhar correlation [40] for the range of λ and f considered in
his results. That empirical fit is shown in Eq. (13),

ηc(f,λ) ≈ ηc

a(f λ2 + 1 − f )

a − f
, (13)

where the critical filling factor for monodisperse disks is given
by ηc = ηc(1,λ) = ηc(f,1) ≈ 1.128 087 37, and the parameter
a is given by Eq. (14):

a = 1 + e6.8λ

115
. (14)

TABLE I. Limiting criteria for percolation threshold estimates of bidisperse disks in 2D continuums.

Criteria Percolation threshold λ2 (1 − f ) Notes

1 ηc = ηc =1 All Disks have equivalent radii; the system is monodisperse.
2 ηc = ηc All =1 All disks are of the larger size; the system is monodisperse.
3 ηc = ηc 	=0 =0 All disks are of the smaller size; the system is monodisperse.
4 ηc = ηc =0 	=0 Small disks have no area and do not contribute to the filling

fraction; the system is monodisperse.
5 ηc � ηc � 2ηc All All Percolation threshold binary disks bounded by ηc and 2ηc.
6 Maximized Small = λ2 The maximum value of ηc(·,λ) will occur at (1 − f ) ≈ λ2.
7 → 2ηc → 0 → 0 ηc → 2ηc when (1 − f ) and λ2 approach 0 at equal rates.

012118-5



KELSEY MEEKS, JOHN TENCER, AND MICHELLE L. PANTOYA PHYSICAL REVIEW E 95, 012118 (2017)

It should be noted that Quintanilla [24] advises against using
this correlation outside of the range 0.1 � λ � 0.9 due to its
empirical nature and certain limiting requirements. Quintanilla
generated this empirical fit by optimizing estimates of the
number density of the large disks at the percolation threshold:

ρ ′ = nlarge

L2
= η

πR2

1 − f

f λ2 + 1 − f
. (15)

When evaluated in regards to the proposed criteria, we see
this fit does quite well in meeting criteria 2 and 5, but fails
to satisfy conditions 1, 3, 4, 6, and 7. Although fairly good at
predicting the percolation threshold within the bounds of the
simulated work, the Quintanilla fit requires increasingly large
numbers of small disks to meet the maximum requirements.
The performance of this fit—and several others—with regards
to criteria 6 is shown in Fig. 4. Interestingly, many of these
fits scale well with varying powers of λ. In the case of the
Quintanilla fit, the required number fraction of small disks
for the maximum percolation threshold at high values of λ

is greater than one, as shown in Fig. 4, a clear violation
of physical constraints. Additionally, because this fit does
not satisfy criteria 5, the maximum discrepancy between its
predictions and our numerical data is 0.8126. This is an
unacceptably large error.

Quintanilla later suggested in [36] a fit for binary disk
dispersions of the form

ηc = ηc + a(λ)νb(λ)(1 − ν)c(λ). (16)

Note that Eq. (16) includes a correction to a typo found in [36]
where the “+” sign is missing. Equation (16) is proportional
to the probability density function of the β distribution with
parameters b(λ) and c(λ). Equation (16) trivially satisfies
criteria 2 and 3. Provided a(0) = a(1) = 0, criteria 1 and 4
are satisfied as well. The location of the maximum value of

FIG. 4. Number density of large disks (1 − f ) at the maximum
percolation threshold, as a function of λ. Location of maximum
percolation threshold as predicted by Monte Carlo simulation, the
v-for-f substitution and average excluded area predictions, the
empirical fit proposed by Quintanilla [24], and the correlation
proposed in this work.

ηc(:,λ) is given by

ν ∗ (λ) = b(λ)

b(λ) + c(λ)
. (17)

Because the parameters were fit independently for each value
of λ, the location of the maximum percolation threshold for
this fit matches the experimental data very well. Unfortunately,
the parameters a(λ), b(λ), and c(λ) given in [36] are tabular
and cannot be expanded outside of the range of λ considered
in that work. This makes it impossible to verify criteria 5 or
7 or to look at criteria 6 rigorously, although the minimum
prescribed in criteria 5 is satisfied. Because this fit cannot be
used to extrapolate outside the range of λ used to generate it,
we will not discuss it further.

In Meeks et al. [46], the concept of excluded area was
generalized to polydisperse systems to predict percolation
thresholds, and a new correlation of binary disk percolation
was proposed, given by Eq. (18):

ηc = 2ηc[f λ2 + (1 − f )]

[(λ2 − 2λ + 1)f 2 + (λ2 + 2λ − 3)f + 2]
. (18)

It was noted that this fit—hereafter referred to as the “average
excluded area prediction”—had moderately good agreement
with the simulation results, satisfying criteria 1, 2, and 3.
However, the average excluded area prediction does not
recover condition 4, as in the case where λ = 0, the quantity
ηc is undefined. It performs reasonably well at predicting
maximum percolation thresholds, satisfying conditions 5 and
7, although it consistently overpredicted the location of the
maximum percolation threshold for binary disk systems failing
to satisfy criteria 6. Here we add that for a fixed ratio of
radii, λ the number fraction of large disks corresponding
to the maximum percolation threshold is observed to scale
with λ rather than λ2, as shown in Fig. 4. Because the
average excluded area prediction satisfies criteria 5 but fails
to satisfy criteria 6 the maximum discrepancy between its
predictions and our numerical data approaches the range of
values permitted by criteria 5 of 0.2189. The largest observed
discrepancy was 0.2057. It is expected that this value should
grow with the degree of polydispersity considered.

Meeks et al. [46] suggested a density factor to improve
correlation, which here we refer to as γ , to be inserted in
place of f . It was suggested that a correction factor for
the density of the smaller disks would proportionally bias
their contribution to the percolation threshold in a way that
more accurately predicted the percolation threshold. For the
corrected fit presented there, γ was equal to the small disk area
fraction v, a quantity given by Eq. (19):

γ = v = f λ2

f λ2 + (1 − f )
. (19)

This substitution was enacted such that a corrected correlation
was proposed as Eq. (20):

ηc = 2ηc[vλ2 + (1 − v)]

[(λ2 − 2λ + 1)v2 + (λ2 + 2λ − 3)v + 2]
. (20)

This “v-for-f substitution prediction” performs similarly to
the average excluded area prediction, as it satisfies 1, 2, 3, 5,
and 7 and fails to satisfy condition 4. This modified fit was
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noted to predict percolation threshold far from the peak much
more accurately than the average excluded area prediction.
Although, the v-for-f substitution prediction predicts the
location of the maximum percolation threshold much more
accurately than the average excluded area prediction, it con-
sistently overpredicts this value, as shown in Fig. 4—scaling
with λ3 rather than the previous λ or the desired λ2—and thus
does not fully satisfy condition 6. The maximum observed
discrepancy for this fit was 0.1645 over the range of f and
λ considered but it is expected to approach 0.2189 for larger
values of f and smaller values of λ in the same way as the
average excluded area prediction.

C. Proposal of a new correlation for prediction
of percolation threshold

Given the ability of the Meeks correlation to satisfy nearly
all of the limiting criteria, we naturally ask if additional
adjustments can be made to the structure of that fit which
will allow us to satisfy conditions 4 and 6. Based on the
approach in [46], we propose a correlation with a density
correction factor, γ , as well as a size-correction factor given
by β, which can be inserted into Eq. (18) in place of f

and λ, respectively, leading to a correlation which takes the
form

ηc = 2ηc[γβ2 + (1 − γ )]

[(β2 − 2β + 1)γ 2 + (β2 + 2β − 3)γ + 2]
. (21)

Note that the v-for-f substitution prediction in Eq. (20) takes
exactly this form, with β = λ and γ = v. Here we propose
another fit of this form, with a size-correction factor shown in
Eq. (22),

β = λ2/3, (22)

and a density correction factor shown in Eq. (23):

γ = f λ2

f λ2 + (1 − f )3/2 . (23)

This correlation, since γ and β collapse to f and λ in the
degenerate cases of f = 0 and λ = 1, maintains the same
limiting conditions in those scenarios as Eq. (18). As such,
this correlation satisfies conditions 1, 2, 3, 5, and 7 in exactly
the same way as the v-for-f substitution prediction given by
Eq. (20). The degenerate case of λ = 0 now reduces to the
monodisperse result, satisfying condition 4. We now check
the location of the maxima, shown in Fig. 6, and observe
very good agreement with the simulation results, satisfying
condition 6. The maximum observed discrepancy for this fit
was 0.0723 over the range of f and λ considered, and, unlike
the other fits, this value is not expected to increase for larger
values of f and smaller values of λ since this fit satisfies all of
the limiting criteria.

FIG. 5. Percolation threshold predicted by size-density correla-
tion given by Eqs. (21)–(23). Contour plot for all considered number
fractions and radii ratios. This plot demonstrates a high degree of
similarity to the simulation data presented in Fig. 3

For a given ratio of disk radii, λ, the value of f for which
the percolation threshold is maximized may be determined
from any of these fits quite easily. For the Quintanilla
fit [24], this maximum lies outside of the acceptable range
of f . Specifically, ηc(f ; λ)f = max ηc ⇒ f < 0. Figure 4
shows the differences between the locations of the maximums
predicted by the various fits and simulation data. The proposed
relation that 1 − f = λ2 ⇒ ηc(f,λ) = max

f,λ
ηc agrees very

well with the simulation data.
From Fig. 4 we make a few interesting observations.

Condition 6 proposes that the maximum percolation threshold
for bidisperse disks will occur when 1 − f = λ2 and that the
best predictors of percolation threshold will conform to this
condition. The simulation data and correlation proposed by
Eqs. (21)–(23) adhere to this condition very well. Although
the v-for-f substitution prediction and average excluded area
prediction do not closely scale with λ2, interestingly, they
scale very well with λ3 and λ, respectively. The reason
for this behavior is not yet known; however, it indicates
that the constant excluded volume approach to prediction of
percolation thresholds detailed by [46] has excellent potential
to capture a wide range of behaviors for polydisperse systems.

The performance of the proposed fit can be further
compared to the simulation results. Figure 5 shows a contour
plot of the percolation threshold predicted by Eqs. (21)–(23).
While not a perfect fit, the proposed correlation matches
the simulation data (Fig. 3) quite well over the entire
range of λ and f considered. Taken with its satisfaction
of all of the limiting cases, it is expected that the pro-
posed fit may be used to predict percolation thresholds for
bidisperse systems somewhat beyond the range of values
simulated. The close resemblance between Fig. 5 and Fig. 3
indicates that the correlation proposed by Eqs. (21)–(23)
predicts the behavior of the percolation threshold very well,
even in regions far from the end conditions. By quantitatively
comparing the results from the simulation data detailed in
the Appendix to the percolation thresholds predicted by the
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FIG. 6. The maximum percolation threshold predicted for binary
disk dispersions for both the simulation data and the proposed corre-
lation given by Eqs. (21)–(23). Very good agreement is demonstrated,
and the values predicted by the proposed correlation match the
simulation data to within 2%.

correlation, we note that the values predicted by the proposed
correlation are within 13% of the value found by the simulation
in all regions and are within 3% when λ is greater than 0.1 and
f is less than 0.97. This is consistent with good agreement
in all regions and excellent agreement in regions of lower
polydispersity.

There is a plethora of ways in which the performance of
the correlation proposed by Eqs. (21)–(23) can be compared
to the simulation data enumerated in the Appendix. Although
an exhaustive quantification of the similarity would perhaps
be somewhat tedious, and certainly beyond the scope of this
work, one such comparison is shown in Fig. 6. Figure 6
depicts the behavior maximum predicted percolation threshold
as a function of λ for both the proposed correlation and the
simulation data. Figure 6 shows a quantity of interest for this
work—namely the maximum possible percolation threshold
for a given value of λ—for both the proposed correlation
and the simulation data. The predicted values correspond to
within 2%, demonstrating excellent agreement. Such com-
parisons show quantitatively that the correlation given in
Eqs. (21)–(23) performs quite well in predicting quantities
of particular interest, even in the presence of very high
polydispersity.

IV. CONCLUSIONS

In this work we examined the effect of very high polydis-
persity on the percolation threshold for binary disk systems.
This work confirmed Quintanilla’s binary disk results [24,36]
and expanded the simulation regime to include nearly 5 times
as many data points over a much larger range of disk radii ratio,
λ, and small disk concentration, f . This work proposes that
the maximum percolation threshold for a binary disk system
will be achieved when (1 − f ) ≈ λ2 and that the percolation
threshold for any binary disk dispersion cannot exceed 2ηc. A
set of criteria for fits predicting the percolation threshold for
binary disk dispersions is proposed, and a new fit satisfying
all proposed conditions is put forth.
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APPENDIX

This appendix contains the values of the percolation
threshold predicted by the Monte Carlo simulations. Results
from this study are reported in detail in the Appendix. Each
value has an estimated error of �5 in the last decimal place.
Table II contains the simulation results for low values of f and
low values of λ and covers much of the same range examined
by Quintanilla [24]. Table III shows the simulation results
for low values of f and high values of λ. Table IV shows
the simulation results for the region of highest polydispersity
with high values of f and low values of λ. Table V shows
the simulation results for high values of f and high values
of λ.

TABLE II. Simulation results for low values of f and low values of λ.

Radius ratio (λ)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.10 0.6765 0.6765 0.6766 0.6766 0.6766 0.6766 0.6767 0.6767 0.6767 0.6768
0.20 0.6766 0.6766 0.6766 0.6767 0.6768 0.6768 0.6769 0.6770 0.6771 0.6771
0.30 0.6765 0.6766 0.6766 0.6767 0.6768 0.6769 0.6770 0.6771 0.6773 0.6775
0.40 0.6765 0.6766 0.6766 0.6768 0.6769 0.6771 0.6773 0.6775 0.6778 0.6780
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)

0.50 0.6765 0.6767 0.676 81 0.6770 0.6772 0.6775 0.6777 0.6781 0.6784 0.6788
0.60 0.6766 0.6767 0.6769 0.6771 0.6775 0.6779 0.6784 0.6789 0.6793 0.6799
0.70 0.6768 0.6769 0.6773 0.6778 0.6783 0.6788 0.6795 0.6803 0.6811 0.6819
0.80 0.6767 0.6771 0.6777 0.6785 0.6793 0.6803 0.6815 0.6828 0.6841 0.6854
0.85 0.6768 0.6774 0.6782 0.6793 0.6805 0.6818 0.6836 0.6854 0.6871 0.6891
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TABLE III. Simulation results for low values of f and high values of λ.

Radius ratio (λ)

0.12 0.15 0.2 0.25 0.3 0.35 0.4 0.5 0.6 0.7 0.8 0.9

0.01 0.6766 0.6765 0.6767 0.6767 0.6767 0.6767 0.6768 0.6769 0.6766 0.6765 0.6768 0.6768

0.10 0.6769 0.6770 0.6772 0.6774 0.6776 0.6777 0.6778 0.6777 0.6775 0.6773 0.6769 0.6765

0.15 0.6770 0.6773 0.6777 0.6780 0.6783 0.6785 0.6786 0.6785 0.6781 0.6775 0.6770 0.6766

0.20 0.6773 0.6776 0.6781 0.6786 0.6791 0.6792 0.6794 0.6793 0.6787 0.6780 0.6772 0.6766

0.25 0.6775 0.6780 0.6787 0.6793 0.6798 0.6802 0.6803 0.6801 0.6793 0.6783 0.6774 0.6768

0.30 0.6778 0.6784 0.6792 0.6800 0.6807 0.6811 0.6812 0.6808 0.6799 0.6786 0.6775 0.6766

0.35 0.6782 0.6788 0.6800 0.6809 0.6817 0.6822 0.6823 0.6817 0.6803 0.6788 0.6777 0.6768

0.40 0.6786 0.6794 0.6808 0.6820 0.6828 0.6833 0.6835 0.6827 0.6810 0.6792 0.6777 0.6768

0.45 0.6791 0.6801 0.6817 0.6833 0.6841 0.6846 0.6847 0.6836 0.6816 0.6795 0.6778 0.6769

0.50 0.6795 0.6808 0.6828 0.6845 0.6856 0.6862 0.6861 0.6846 0.6821 0.6799 0.6779 0.6768

0.55 0.6803 0.6817 0.6841 0.6860 0.6873 0.6879 0.6876 0.6856 0.6826 0.6799 0.6781 0.6768

0.60 0.6812 0.6829 0.6857 0.6879 0.6892 0.6896 0.6893 0.6865 0.6830 0.6801 0.6779 0.6769

0.63 0.6817 0.6836 0.6868 0.6892 0.6907 0.6909 0.6903 0.6871 0.6833 0.6801 0.6780 0.6768

0.64 0.6819 0.6839 0.6873 0.6898 0.6911 0.6914 0.6906 0.687 29 0.6834 0.6802 0.6780 0.6768
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0.65 0.6821 0.6843 0.6876 0.6902 0.6917 0.6918 0.6910 0.6875 0.6835 0.6802 0.6779 0.6768

0.67 0.6828 0.6851 0.6886 0.6914 0.6926 0.6928 0.6917 0.6878 0.6835 0.680 14 0.6780 0.6769

0.70 0.6836 0.6862 0.6902 0.6932 0.6944 0.6941 0.6928 0.6883 0.6835 0.6800 0.6779 0.6768

0.73 0.6846 0.6877 0.6921 0.6952 0.6963 0.6958 0.6938 0.6887 0.6836 0.6800 0.6780 0.6769

0.75 0.6855 0.6887 0.6936 0.6967 0.6976 0.6967 0.6946 0.6888 0.6836 0.6799 0.6778 0.6769

0.77 0.6865 0.6901 0.6952 0.6983 0.6990 0.6978 0.6952 0.6890 0.6835 0.6798 0.6778 0.6768

0.80 0.6884 0.6925 0.6981 0.7012 0.7014 0.6994 0.6961 0.6891 0.6833 0.6797 0.6777 0.6767

0.81 0.6891 0.6934 0.6993 0.7023 0.7022 0.6999 0.6964 0.6889 0.6832 0.6796 0.6777 0.6767

0.82 0.6899 0.6944 0.7005 0.7034 0.7030 0.7004 0.6967 0.6889 0.6831 0.6795 0.6775 0.6767

0.83 0.6909 0.6957 0.7018 0.7047 0.7038 0.7009 0.6968 0.6888 0.6830 0.6794 0.6775 0.6767

0.84 0.6916 0.6967 0.7031 0.7057 0.7047 0.7013 0.69696 0.6887 0.6828 0.6794 0.6775 0.6768

0.85 0.6929 0.6981 0.7048 0.7070 0.7054 0.7017 0.6970 0.6885 0.6826 0.6793 0.6775 0.6767

0.86 0.6941 0.6997 0.7064 0.7083 0.7063 0.7021 0.6971 0.6883 0.6825 0.6792 0.6774 0.6767

0.87 0.6955 0.7016 0.7082 0.7097 0.7069 0.7022 0.6969 0.6880 0.6822 0.6789 0.6773 0.6767

0.88 0.6972 0.7034 0.7101 0.7111 0.7077 0.7023 0.6968 0.687 70 0.6820 0.6789 0.6772 0.6767

0.89 0.6990 0.7056 0.7124 0.7125 0.7083 0.7024 0.6965 0.6874 0.6817 0.6787 0.6772 0.6767
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TABLE IV. Simulation results for high values of f and low values of λ.

Radius ratio (λ)

0.01 0.015 0.02 0.025 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.9 0.677 0.6773 0.6780 0.6783 0.6790 0.6808 0.6828 0.6851 0.6876 0.6903 0.6930 0.6958
0.91 0.678 0.678 0.679 0.679 0.680 0.681 0.684 0.686 0.689 0.692 0.695 0.6978
0.92 0.677 0.678 0.6781 0.679 0.6801 0.6820 0.6845 0.6874 0.6905 0.6940 0.697 0.7005
0.95 0.677 0.678 0.679 0.680 0.6819 0.6852 0.6893 0.6940 0.6988 0.7038 0.7087 0.7133
0.96 0.678 0.6785 0.6795 0.6811 0.6831 0.6873 0.6925 0.6983 0.7040 0.7100 0.7155 0.7209
0.97 0.678 0.679 0.6809 0.6831 0.685 0.6909 0.6980 0.7052 0.7124 0.7198 0.7260 0.7315
0.98 0.679 0.681 0.6828 0.686 0.6897 0.698 0.7077 0.7174 0.7271 0.7355 0.7421 0.7466
0.983 0.6918 0.7015 0.713 0.734 0.743 0.749 0.7527
0.985 0.7400 0.748 0.754 0.7556

0.9875 0.748 0.7556 0.7591 0.7586
0.99 0.680 0.684 0.688 0.695 0.702 0.718 0.733 0.7475 0.758 0.7634 0.7638 0.7602
0.991 0.762 0.7666 0.7652 0.758
0.992 0.682 0.692 0.701 0.708 0.726 0.7449 0.759 0.7671 0.7689 0.7652 0.7577
0.993 0.766 0.770 0.769 0.7641 0.754
0.994 0.763 0.773 0.774 0.771 0.761 0.752
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0.995 0.683 0.692 0.702 0.713 0.725 0.751 0.770 0.778 0.7764 0.7678 0.7567 0.7458
0.996 0.780 0.783 0.7741
0.997 0.688 0.715 0.731 0.751 0.779 0.789 0.781 0.7657 0.7512 0.7383 0.7276

0.9975 0.786 0.789 0.777
0.998 0.775 0.795 0.786

0.9985 0.793 0.798 0.776
0.999 0.712 0.744 0.777 0.800 0.807 0.785 0.756 0.735 0.7203 0.710 0.7028 0.6973

0.9991 0.808 0.808 0.781
0.9992 0.792 0.813 0.809 0.774
0.9993 0.723 0.763 0.796 0.813 0.804
0.9994 0.809 0.815 0.797
0.9995 0.739 0.785 0.815 0.810 0.786
0.9996 0.803 0.821 0.799
0.9997 0.771 0.825 0.815 0.782 0.756 0.724 0.707 0.6978 0.692 0.688 0.6849 0.6837
0.9998 0.808 0.831 0.790
0.9999 0.836 0.786 0.743 0.722 0.707 0.6942 0.687 0.684 0.6817 0.680 0.6794 0.6788
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TABLE V. Simulation results for high values of f and high values of λ.

Radius ratio (λ)

0.11 0.12 0.15 0.2 0.25 0.3 0.35 0.4 0.5 0.6 0.7 0.8 0.9

0.9 0.6984 0.7013 0.7083 0.7147 0.7140 0.7087 0.7023 0.6961 0.6869 0.6815 0.6786 0.6772 0.6766
0.91 0.702 0.704 0.711 0.7173 0.7150 0.7090 0.7019 0.6956 0.6864 0.6811 0.6784 0.6771 0.6766
0.92 0.705 0.7068 0.7147 0.7195 0.7162 0.7091 0.7012 0.6948 0.6857 0.6808 0.6782 0.6770 0.6766
0.93 0.707 0.713 0.7185 0.7222 0.7171 0.7085 0.7004 0.6940 0.685 0.6803 0.6781 0.6770 0.6766
0.94 0.7118 0.716 0.7231 0.7248 0.7172 0.7077 0.699 0.6927 0.6841 0.6800 0.6780 0.6769 0.6765
0.95 0.719 0.7214 0.7282 0.7267 0.7167 0.7062 0.6974 0.6912 0.6832 0.6795 0.6777 0.6769 0.6766
0.955 0.724 0.726 0.732 0.7273 0.716 0.705 0.697 0.690 0.6827 0.6792 0.6775 0.6769 0.6765
0.96 0.7256 0.7289 0.7341 0.7277 0.7148 0.7036 0.6952 0.6892 0.6824 0.6790 0.6775 0.6768 0.6765
0.965 0.732 0.734 0.737 0.7272 0.714 0.702 0.694 0.688 0.6818 0.6787 0.6774 0.6767 0.6765
0.97 0.737 0.7386 0.7393 0.7263 0.7115 0.6997 0.6919 0.6868 0.6810 0.6784 0.6773 0.6767 0.6765
0.975 0.741 0.744 0.7410 0.724 0.709 0.697 0.6901 0.685 0.6804 0.6781 0.6771 0.6767 0.6766
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0.977 0.747 0.747 0.7413 0.724 0.707 0.696 0.689 0.685 0.6802 0.6779 0.6771 0.6766 0.6766
0.98 0.7491 0.7489 0.7408 0.7202 0.7045 0.6943 0.6881 0.6841 0.6799 0.6778 0.676 94 0.6766 0.6766
0.983 0.7521 0.7511 0.7392 0.717 0.703 0.692 0.687 0.683 0.6792 0.6776 0.676 86 0.6766 0.6765
0.985 0.7544 0.7517 0.7375 0.715 0.700 0.690 0.686 0.681 0.6791 0.6775 0.6768 0.6765 0.6766
0.9875 0.7559 0.7511 0.735 0.711 0.697 0.6896 0.6856 0.681 0.6789 0.6773 0.6768 0.6765 0.6765
0.99 0.7546 0.7478 0.7282 0.7058 0.6936 0.6868 0.6828 0.6807 0.6782 0.6772 0.6767 0.6765 0.676 49
0.992 0.751 0.743 0.721 0.7010 0.692 0.6849 0.683 0.6798 0.6778 0.6770 0.6767 0.6765 0.6765
0.995 0.737 0.728 0.709 0.692 0.686 0.6820 0.680 0.6786 0.6773 0.6768 0.6766 0.6765 0.6764
0.997 0.720 0.7123 0.6988 0.6878 0.682 0.6799 0.678 0.6779 0.6770 0.6766 0.6765 0.6765 0.6765
0.998 0.708 0.702 0.6917 0.6842 0.681 0.6785 0.678 0.678 0.677 0.6766 0.6765 0.6765 0.6765
0.999 0.6939 0.6902 0.6848 0.6806 0.678 0.6777 0.677 0.6769 0.6767 0.6765 0.6765 0.6764 0.6765
0.9997 0.682 0.681 0.6791 0.6784 0.677 0.6765 0.676 0.677 0.677 0.6765 0.6765 0.6764 0.6765
0.9999 0.678 0.678 0.677 0.6773 0.677 0.6766 0.6765 0.6765 0.6764 0.6764 0.6765 0.6764 0.6765
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