The long-nosed bat, formerly known as *Leptonycteris sanborni* Hoffmeister, was ruled by the United States Fish and Wildlife Service to be an endangered species throughout its range in the southwestern United States and in México (Shull, 1988). As background, Shull (1988:25271–25272) gave the following:

These bats are adapted for life in arid country, and are found mainly in desert scrub habitat in the U.S. parts of their range. Farther south they sometimes occur at high elevations on wooded mountains... [They] feed on nectar and pollen, especially of the flowers of paniculate agaves (century plants) and large cacti. An intimate mutual relationship seems to be involved, with the bats depending on the plants for food, and the plants requiring the bats as pollinators. In recent decades, human exploitation of agaves may have contributed substantially to a drastic reduction in populations of *Leptonycteris*, which in turn caused a serious decline in the reproductive rate of certain agaves (Howell 1974, 1976, pers. comm., Howell and Roth 1981).

In a “Summary of factors affecting the species,” Shull (1988) presented essentially five interrelated factors as justification for the ruling: 1) a long-term decline in *Leptonycteris* populations; 2) recent reports of the absence of the species; 3) a decline in pollination of agaves; 4) an earlier U.S. Fish and Wildlife Service study, and 5) concern for death of an ecosystem. The evidence cited in support of each justification is analyzed in the sections to follow. In the summary of this ruling, Shull stated (p. 25271) that numbers of *Leptonycteris* “... have declined in recent years and remaining populations are jeopardized by disturbance of roosting sites, loss of food sources, and direct killing by humans.”
At the time of the Fish and Wildlife Service ruling in September 1988, *Leptonycteris sanborni* generally was recognized as the scientific name of this bat. In October 1988, Arita and Humphrey published the results of a systematic study in which they concluded that *Leptonycteris sanborni* Hoffmeister, 1957, is a junior synonym of *Leptonycteris yerbabuenae* Martínez and Villa-R., 1940, and solidified the use of this somewhat controversial name by the designation of a neotype for it. They also arranged *yerbabuenae* as a subspecies of the earlier-named *Leptonycteris curasoae* Miller, 1900. Thus, under the rules of the International Congress of Zoological Nomenclature, the currently acceptable name for the long-nosed bats of southern Arizona, south-western New Mexico, and much of México is *Leptonycteris curasoae yerbabuenae*. Quoted references to *Leptonycteris sanborni* and to Sanborn's bat in the following text actually refer to this taxon.

Following is a discussion of the factors presented as justification for the ruling of “endangered” by the United States Fish and Wildlife Service.
The relationship of their findings to our results from surveying available records is given in a later section. Locality numbers correspond to those given in the Appendix and shown on the map in Figure 1.

LONG-TERM DECLINE IN POPULATIONS

Shull (1988) reported that Howell (1974, 1976, personal communication) and Howell and Roth (1981) were important sources of information concerning the long-term decline of *Leptonycteris* populations. Following are some statements from these papers, most of which were quoted by Shull in her report.

Howell (1972:180–181) reported that the

... United States populations of *L. nivalis* and *L. sanborni* are severely diminished or non-existent (Easterla, personal communication, 1970). The huge maternity colony in Colossal Cave, Pima Co., Arizona, which provided specimens for much of the taxonomic, physiological, and ecological work on *L. sanborni* no longer gathers in that spot and has not been seen in the last three years. The same species had congregated in a mixed-sex colony in Buckalew [=Buckelew] Cave, Cochise Co., Arizona. This was a colony of up to 1000 bats, but no bats were seen by the author during the last two years, even though bi-monthly summer checks were made.

Howell and Roth (1981:1) reported the decline in nectar-feeding bats in southeastern Arizona as follows:

Data from studies by Hayward and Cockrum (1971) and Easterla (1972) show a steady decrease in nectar-feeding bat populations, at least in the northern part of their range. J. Mierhauer [sic], Head Naturalist of Colossal Cave State Park [sic], Arizona, has watched the *Leptonycteris* populations in that cave decline from approximately 5000 to 5 or 6 bats within the past 5 yrs (personal communication). In the 1950's, Colossal Cave held 10,000-20,000 nectar bats.

The estimate of 10,000 to 20,000 nectar-feeding bats in Colossal Cave appeared first in print in this paper. The source of the estimate is not clear. This estimate was reported by Shull (1988:25272) as “Until the 1950’s a single roosting colony, at Colossal Cave in Pima County, Arizona, contained as many as 20,000 ...” To our knowledge, no earlier source gives an estimate of nectar-feeding bats in Colossal Cave as any more than 5000. We address the question of size of populations in a single roost in the discussion section.

We think that neither the findings of Hayward and Cockrum (1971; cited below) or the conclusions of Howell and Roth (1981) support the statement by Shull (1988:25272) that:

... a deterioration in status was noted some years ago. Hayward and Cockrum (1971) reported that populations of many colonies in Arizona and northwestern Mexico had greatly declined and some had completely disappeared.
Table 1.—Estimates of *Leptonycteris nivalis* in cave at Mount Emory, Big Bend National Park, Texas, on seven different dates (from Easterla, 1972).

<table>
<thead>
<tr>
<th>Year</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1967 (4 July)</td>
<td>10,650</td>
</tr>
<tr>
<td>1968 (29 May)</td>
<td>none</td>
</tr>
<tr>
<td>1968 (1 July)</td>
<td>5,000</td>
</tr>
<tr>
<td>1969 (1 August)</td>
<td>3,900</td>
</tr>
<tr>
<td>1970 (20 June)</td>
<td>none</td>
</tr>
<tr>
<td>1970 (12 August)</td>
<td>none</td>
</tr>
<tr>
<td>1971 (15 July)</td>
<td>8,025</td>
</tr>
</tbody>
</table>

Easterla (1972) was concerned with the population of *Leptonycteris nivalis* in Big Bend National Park, Texas. The dates and his estimates of populations are given in Table 1. Easterla (1972:291) commented:

The 1970 absence of *L. nivalis* at Mt. Emory cave seems amazing, especially since thousands were present the three previous years. Reasons for the absence are unknown. . . . From 1967 to 1969, a decline in the Mt. Emory cave population of *L. nivalis* was recorded. It is not known whether this fluctuation was natural or caused by man. Apparently the *L. sanborni* population in Arizona has been decreasing over the past few years (Robert Baker, Bruce Hayward, Donna Howell, Russell Davis—pers. comm.).

Easterla (1972:291–292) then speculated that the Big Bend population, being on the northern edge of the range of the species, was a “spillover” colony, present only during years of high population or low food supply (or both) in México. He followed this with:

Since the above was written I visited Mt. Emory cave on 15 July 1971. The *L. nivalis* had returned and I estimated a population of 8,025 . . . apparently the bats had just arrived as there were few *Leptonycteris* droppings The return again of *L. nivalis* to Mt. Emory cave probably indicates a high population and/or low food supply in Mexico.

Another possibility is that *L. nivalis* was present at Mt. Emory cave every summer. Perhaps population maxima were similar each summer during the latter part of July and the reported 1967–1969 absence or “decline” only reflects a lack of observations when the population was present.

As discussed by Cockrum (1991), in the northern part of the range, *L. c. yerbabuenae* maternity roosts exist at lower elevations from early May until late June or early July. At that time, maternity colony occupants as well as some males from southern roosts move into transient roosts at higher elevations of southern Arizona and southwestern New Mexico. A given transient roost may be used for only a few days or a few weeks in a given year. If *L. c. yerbabuenae* and *L. nivalis* have
similar seasonal movements, the visits to the cave at Mt. Emery in May 1970 and June 1970 may have been before the arrival of the bats. By the
time of Easterla’s visits in August, the bats may have left the area. In
any case, it seems to us that Easterla’s 1972 paper should not be cited as
documenting a long-term decline of the populations of *Leptonycteris nivalis* and certainly should not be used to imply the decline of popula-
tion of *L. c. yerbahuenae*.

Much of the paper by Hayward and Cockrum (1971) was based on
data collected in a maternity roost at Colossal Cave for a master’s thesis (Beatty, 1955) under Cockrum’s direction; the data from the period
1955–1960 were accumulated by Cockrum, his wife, and sons. Several
years later, Cockrum gave the data to Bruce Hayward who added his
own observations for publication of the 1971 report.

Hayward and Cockrum’s (1971) paper has been cited time and again
as documenting the “long term decline” in *Leptonycteris* populations.
The only part in which population declines were mentioned is one sen-
tence in text (p. 85)—“*Leptonycteris* populations at many of the
colonies reported in this paper have greatly diminished—in fact, some,
such as Colossal Cave, seem to have completely disappeared in the last
five years”; and two sentences in the summary (p. 121)—“Only a few
maternity sites in Arizona (none in New Mexico) are known. In recent
years the numbers have become greatly reduced and the population
studied in this paper is now non-existent.” Although these three senten-
ces do not document a long-term decline, they appear to accurately
reflect the conclusion of the paper: that populations in the few colonies
then known in the Chiricahua Mountain area had declined and the
population at Colossal Cave was “now non-existent.” These findings do
not document a long-term, area-wide decline in the populations of *Lept-
onycteris curasoae yerbahuenae*.

The major factors that contributed to the disappearance of *Leptonyc-
teris* from Colossal Cave were not mentioned in the Hayward and Cock-
rum paper. Colossal Cave long had been a summer roost for various
kinds of bats (Beatty, 1955; Anon., 1988b; and Appendix). In 1905,
some nine to 13 (depending on source of estimate) railroad cars of
guano were removed from the cave. Thus an undisturbed substrate to
examine for skeletal remains and for guano analysis is absent. During
the early 1920s (not the 1950s as in some reports), the cave was opened
to commercial tours and efforts were immediately initiated to drive
the bats from the cave. In the mid-1930s, under the direction of the Na-
tional Park Service, the cave was “improved” as a part of a Civilian
Conservation Corps project and one entrance was enlarged and a series of walkways and steps were constructed.

During the 1940s and 1950s, bat repellent measures were continued. Most were nonlethal attempts to drive the bats elsewhere. Lights, chemicals, ultrasonic devices, fake snakes and owls, and bat "drives" were utilized. In the mid-1950s, Colossal Cave served as a maternity roost for three species—*Myotis velifer*, *Plecotus townsendii*, and *Leptonycteris curasoea yerbabuena*.

By the late 1950s, there was widespread concern, fostered by the U.S. Public Health Service, Communicable Disease Center, that bats were a health hazard in the spread of rabies. Various local and state agencies as well as the economic pressures associated with purchasing public liability insurance caused increased efforts to "move the bats out of Colossal Cave." In 1966, an exhaust fan system was installed to eliminate bat odors from the tour area. This appears to have been the final factor causing *Leptonycteris* and other species to abandon this maternity roost (perhaps because of the air movement, possibly by the partial blockage of entrances to the cave, or related to changes in temperature at the roost site caused by changes in air movement).

The roost in Buckelew Cave and in the mine tunnel north of Paradise, in the Chiricahua Mountains, were transient roosts that were visited by a number of biologists including those from the nearby Southwestern Research Station of the American Museum of Natural History (see Cockrum and Ordway, 1959, and Appendix). Howell (1972:180) reported that Buckelew Cave "was a colony of up to 1000 bats, but no bats were seen by the author during the last two years, even though bi-monthly summer checks were made." Yet in the same paper Howell (1972:5-6) reported that she had taken 166 *Leptonycteris* for use in her studies of nutrition. Most reportedly came from Buckelew Cave and the mine tunnel north of Paradise. Again, in 1975 and 1976, *Leptonycteris* taken from an unspecified roost in the Chiricahua Mountains, were repeatedly handled in the attachment of light tags, confined to the roost throughout the night, and only permitted to exit to feed on the following night (Howell, 1979).

Such visits, collections, and disturbances at the maternity roost in Colossal Cave and at the transient roosts in the Chiricahua Mountain area probably drove the bats to use alternate roosts. Some biologists speculate that the exclusion of the bats from the maternity colony site in Colossal Cave caused, directly or indirectly, their demise. However, some females originally banded in Colossal Cave were recovered in
later years in a small maternity roost on Saguaro National Monument (Appendix, locality 9a).

RECENT REPORTS OF ABSENCE OF SPECIES

Shull (1988:25272) stated that:
A 1974 survey of all localities in the U.S., from which the species had been reported, found only 135 individuals (Howell and Roth 1981). Until the 1950's a single roosting colony, at Colossal Cave in Pima County, Arizona, contained as many as 20,000 L. sanborni, but that colony has now vanished.

Howell and Roth (1981:1) reported:
D. Howell and Dr. S. Humphrey, University of Florida, visited all known United States localities for Leptonycteris sanborni in 1974 and found 135 animals. General habitat destruction coupled with Agave exploitation in northern Mexico (for food and 'home brew' alcoholic beverages) may be instrumental in this bat decline.

Apparently the results of the Howell and Humphrey survey of 1974 never were published. Howell and Roth also wrote (1981:3):
In Arizona during 1976 and 1977, the senior author (D. J. Howell) visited every published United States locality for Leptonycteris sanborni and all caves and mines in the vicinity of those localities.

Howell and Roth failed to give the results of their 1976–1977 survey, but on a later page (1981:4) they recorded the following:
In our survey of known Leptonycteris roosts and nearby caves and crevices that might serve as potential roosts we found no bats in the Chiricahua or Rincon mountain areas; however, a colony of approximately 200 L. sanborni remained in the Patagonia area.

Unfortunately no details were furnished as to when and where the observations were made.

Curiously, Howell (1979:24–25) reported, in a study of flock foraging of Leptonycteris, that she had made her studies in the foothills of the Chiricahua Mountains (no specific locality for the roost site was given) in August and early September of 1975 and 1976, the latter being the year when Leptonycteris reputedly was absent. Although no estimates of the number of bats in the roost(s) were given, and no comments were made as to population declines, bats certainly must have been present in order for her to carry out her studies. That bats were reported by the same author as present for one study but absent in the same year in another report needs clarification.

Other recent reports of the absence of Leptonycteris and an examination of some of the environmental implications of their supposed loss, are given below in the discussion of the U.S. Fish and Wildlife Service status report.
Decline in Pollination of Agaves

Shull (1988:25272–25273) stated that:

Considerable evidence exists for the interdependence of *Leptonycteris* and certain agaves and cacti (a phenomenon known as chiropterophily) and for the simultaneous decline of the bats and agaves (Howell 1974, 1976; pers. comm.; Howell and Roth 1981). Excess harvest, and other factors resulting in elimination of agaves, may have contributed substantially to the drastic decline in long-nosed bat populations. In turn, the drop in bat numbers of the past several decades has coincided with a decline in the reproductive rate of agaves.

Howell and Roth (1981:1) reported that:

The pollination success of *Agave palmeri* is strongly dependent on nectar-feeding bats. In areas with very low or nonexistent bat populations, *Agave* seed set is < 5% of its maximum potential. A 30 year trend of declining seed set [in agaves] parallels a decline in bat numbers during that period. We speculate that habitat destruction and an increase in human use of *Agave* are causal factors.

Concerning “the impact of declining bat populations” (p. 4), they wrote:

... we found no bats in the Chiricahua or Rincon mountain areas; however, a colony of approximately 200 *L. sanborni* remained in the Patagonia area. Fruit set, and the number of mature seeds within each fruit, reflected the presence or absence of pollinators in these areas....

Shull (1988:25273) made the following statement:

... herbarium specimens of *Agave palmeri* from the Rincon Mountains of Arizona indicate pollination success of 80–100 percent in 1938–1941, when the area supported the huge Colossal Cave colony of *L. sanborni*. In 1976, after this colony had practically disappeared, the fecundity of *A. palmeri* was 0–10 percent.

This appears to be based on the paper by Howell and Roth (1981). In this publication, these authors reported (p. 3) that they:

... examined fruit capsules from herbarium specimens [University of Arizona Herbarium] of three chiropterophilous *Agave* species from southern Arizona: *A. palmeri* (*N* = 70); *A. parryi* (*N* = 140); and *A. deserti* (*N* = 30).

And on page four they noted that:

Herbarium specimens of the dry fruiting capsules of paniculate agaves indicate a decline in pollination success over the 30 years that *Leptonycteris*’ populations have been diminishing. *Agave palmeri* pods from Rincon mountain area showed 80% fecundity (*N* = 10 fruits) in 1938, 90–100% fecundity (*N* = 30) in 1940 and 1941, but 0–10% fecundity (*N* = 30) in 1976. The seed set of *Agave deserti* fruits dropped from 80% (*N* = 20) in 1930 to 50% (*N* = 10) in 1957. *Agave parryi* fruits had 90% seed set in 1935 (*N* = 20), 70% in 1940 (*N* = 20), but from my own 1976 counts (*N* = 100) *A. parryi*, with 4% seed set, was faring as poorly as *A. palmeri* in recent years.

Because neither *Agave deserti* nor *Agave parryi* seem to occur in the Rincon Mountains (Gentry, 1982), Cockrum examined material in the University of Arizona Herbarium in an effort to determine the
Table 2.—All pertinent specimens of Agave in the University of Arizona Herbarium (see text for discussion). For each, the species, catalogue number, collection date, locality, distance from Colossal Cave, the number of seed capsules and the percentage of seed set are given.

<table>
<thead>
<tr>
<th>Species</th>
<th>Catalogue Number</th>
<th>Collection Date</th>
<th>Locality</th>
<th>Distance from Colossal Cave</th>
<th>Number of Seed Capsules</th>
<th>Percentage of Seed Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agave palmeri</td>
<td>#92388</td>
<td>3 November 1938</td>
<td>Arizona, Cochise County, “Dragoon to Benson, 4500’” [± 30 mi. ESE Colossal Cave]</td>
<td>6 capsules, ± 60 percent set.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>#40462</td>
<td>15 April 1940</td>
<td>Arizona, Santa Cruz County, “1 mi. E Canelo, Huachuca Mts.” [± 40 mi. SSE Colossal Cave]</td>
<td>22 capsules, 1 capsule with ± 80 percent set; most 40 to 50 percent set, 5> 30 percent set.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>#40460</td>
<td>16 April 1940</td>
<td>Arizona, Cochise County, “midway between Bisbee/Douglas, 3500’” [±70mi. SE Colossal Cave]</td>
<td>21 capsules, 1 with ± 100 percent set, several with varied (10 to 80 percent) set, at least 10 with no set.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agave deserti</td>
<td>#92530</td>
<td>16 November 1930</td>
<td>Arizona, Pinal County, “Table Top Mountain, 30 mi. W Casa Grande” [± 110 mi. NW Colossal Cave]</td>
<td>22 capsules, none open.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agave parryi</td>
<td>#92208</td>
<td>21 July 1938</td>
<td>Arizona, Gila County, “33 mi. NE Globe, 5500 ft.” [± 120 mi. N Colossal Cave]</td>
<td>3 capsules, 1 open, 50 percent set.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>#42115</td>
<td>15 April 1940</td>
<td>Arizona, Santa Cruz County, “Canelo Hills, 5000’” [± 40 mi. SSE Colossal Cave]</td>
<td>4 capsules, ± 30 percent set.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

geographic and seasonal origin of the samples mentioned by Howell and Roth. All material in the herbarium of the species and years indicated by Howell and Roth are recorded in Table 2. Note that no specimens of Agave palmeri taken in the year 1941 were in the collection or in the catalog. The only specimens of this species obtained in 1976 were part of a collection donated to the University of Arizona in 1987, six years after the publication of the Howell and Roth paper.

Obviously none of the herbarium material listed in Table 2 was taken in what would be considered the normal feeding range of the Leptonycteris roosting in Colossal Cave (see Shull report above). Further, at least the 1950 specimen of A. deserti and the 1935 and the June 1940 collection of A. parryi are from areas beyond the known range of the bat. Capsule (=fruit?) counts and estimates of seed-set in Table 2 differ enough from those of Howell and Roth to warrant additional investigation.

Another factor not mentioned by Howell and Roth (1981) is the possible influence of multiannual fluctuations in the amount and seasonal
distribution of rainfall on nectar production and seed-set and seed production in Agave. Rainfall in 1930, 1935, 1940, 1941, and 1957 was well above normal for much of southern Arizona, whereas 1975 and 1976 were exceedingly dry years (Anon., 1930–1976).

UNITED STATES FISH AND WILDLIFE SERVICE STUDY

Shull (1988:25272) gave as another basis for the endangered species ruling:

The recent Service-funded survey covered every previously known site of occurrence in the U.S., but found the species only in one place, a cave . . . that held about 500 individuals . . . and two additional populations of L. sanborni are thought to survive in or near Cochise County, Arizona, one containing perhaps 300 individuals.

These comments are based on the reports of Wilson (1985a, 1985b) of a survey of the status of long-nosed bats begun in the early 1980s.

Wilson (1985b:7–8) wrote:

The initial step was to contact the curators of the forty largest mammal collections in North America and to assemble a list of known specimens and localities. From this list, a three year plan was established to survey for this species and the closely related *Leptonycteris nivalis*. . . . [We] surveyed localities in Texas, Nuevo Leon, Tamaulipas, Coahuila, and San Luis Potosi, from July 6 to August 4, 1983. We visited all known roosts and most sites where either species of *Leptonycteris* had been mist-netted in the Sierra Madre Oriental and surrounding areas (Wilson et al., 1985).

Between 10 May and 15 June 1984, Wilson and others (Wilson, 1985b:8):

surveyed localities in the Distrito Federal, Mexico, Guerrero, Jalisco, Michoacan, Morelos, Sinaloa, Nayarit, and Sonora In addition, we mist-netted almost every night

His survey of "all known U. S. localities for *L. sanborni" was carried out from 10 to 25 July 1985 when (Wilson, 1985b:8):

In addition to visiting every known roost and netting at all sites of previous capture, we interviewed biologists and conservation officials throughout the area to glean recent sightings or capture records not available in the published literature.

Findings from these activities lead Wilson to state (1985b:24–25):

The single known colony remaining in the United States is . . . in Santa Cruz County, Arizona [However] . . . Feeding aggregations occur regularly at bird feeders at Portal in the Chiricahua Mountains and at Ramsey Canyon in the Huachuca Mountains By far the bulk of the range [of the species] lies in Mexico A catastrophe at the only remaining known U.S. roost would devastate the remaining population in this country.

Wilson followed this with a reference to the Howell and Humphrey 1974 report (which, as previously stated, apparently had never been

I recommend that, pursuant to the Endangered Species Act of 1973, as amended, *Leptonycteris nivalis* be listed as Threatened. [The use of nivalis was obviously a lapsus, as indicated by context.]

A critical examination of Wilson's (1985b) report reveals some weaknesses. The results of the survey of museum specimens is not given. No mention is made of the results of the survey of published records. Another is the high degree of probability that not all of the known roosts and collecting sites in New Mexico and Arizona could be visited in the time period given (p. 8) of “from 10 to 25 July, 1985,” especially when his party also simultaneously “interviewed biologists and conservation officials throughout the area.” The sites visited and the dates of the visits are not part of the report.

Even more serious is the obvious lack of understanding of the general chronology of movements of *Leptonycteris* in the area. Not only does Wilson's survey apparently fail to include several important localities, it included visits to places at the wrong time. For example, he reported (1985b:12):

The Chiricahua Mountains in Cochise County used to house several colonies of *L. sanborni* in a variety of mine tunnels and natural caves. Gene Studier and I searched several of these on July 12 and 13, 1985.

The known day roosts in the Chiricahua Mountains involve one cave and a few mines, mostly occupied after mid-July (see Appendix and Cockrum, 1991). Because recoveries of banded individuals in this region indicated that movement between roosts was common (Bat banding records, University of Arizona), we are not certain that each roost should be classified as a colony. We suspect that visits to the same roosts just a month later would have revealed the presence of this species—as has been found at other localities in southern Arizona (Fig. 5 and Appendix).

Concern for Death of an Ecosystem

Shull (1988:25273) gave another justification for ruling *Leptonycteris sanborni* to be an endangered species:

Other agaves, as well as the saguaro and organ pipe cacti, may also be affected, and there is concern for the future of the entire southwestern desert ecosystems.

This statement probably was based on a speculation in Howell and Roth (1981:6) that:
If Agave populations are diminishing, the decline of glossophagine bats may be hastened. The saguaro cactus (Carnegiea gigantea), and Organ Pipe cactus (Stenocereus = Lemaireocereus thurberi), for which the bats (in other months) are also important pollinators (Alcorn et al. 1961, McGregor et al. 1962), may be affected. The decline of such major plants as columnar cacti and agaves in desert areas could result in a decrease in animal diversity.

Wilson (1985b:25) also expressed concern that populations of agave in the region are being reduced.

A more nebulous, but perhaps also more pernicious, threat lies in the continued loss of populations of agaves, which serve as the major food source, at least in the northern parts of the range. Howell and Roth (1981) suggested that the linkage between the bats and the plants is such that a downward spiral could be triggered by a decline in the population of either. Unfortunately, documenting an overall decline in agave populations throughout the range of L. sanborni is a difficult task indeed. However, the potential threat provided seems clear from Howell’s studies.

DISCUSSION

A survey of the available information concerning the distribution and numbers of *Leptonycteris* is necessary to evaluate any recent changes. Here these data are reviewed as to first reports, presence or absence records, and numbers.

First Reports

Only two occurrences of the genus *Leptonycteris* have been reported from the fossil record. Jones (1958) recorded bones as referable to the modern species *Leptonycteris nivalis* Saussure, from late Pleistocene deposits in the San Josecito Cave, San Josecito, Nuevo León. Similarly, Dalquest and Roth (1970) reported a lower jaw of *L. nivalis* from late Pleistocene material from Cueva del Abra, Tamaulipas.

None of the authors of early regional reports (Coues, 1867; Allen, 1895; Mearns, 1907; Bailey, 1932) nor any of those of early checklists of North American mammals (Elliot, 1907; Miller, 1912; Miller, 1923) listed this genus in the states of Arizona, New Mexico, Sonora, or Chihuahua.

The first record for Arizona was of specimens taken at Colossal Cave (Appendix, locality 9b) in 1930. The earliest published records are those of Campbell (1934) of specimens from the Huachuca and Patagonia mountain regions in 1933. The first records for New Mexico were specimens taken in 1958 from two localities in the southwestern part of that state (Jones and Findley, 1963). Miller and Kellogg (1955) listed the northernmost records for the northwest-west region as Carimechi, Chihuahua (Burt and Hooper, 1941), mountains of eastern Sonora (Burt, 1938), and southeastern Arizona (Campbell, 1934). Hall
(1981) provided a map that gave no indication of the seasonal aspect of the occurrence of the species.

Presence or Absence Records

A number of records of *Leptonycteris* are available from museum specimens, from the literature, from banding records in files at the University of Arizona, and from various unpublished field notes. Most are simply indications of the presence or absence of the species at a given time and place. Most of the considerable number of observations and specimens of *Leptonycteris* available from the northwestern part of the range (Fig. 1) are listed in the Appendix. Numbers on the map correspond with those in the Appendix. Figures 2 through 5 are maps that show the distribution of these sites in four time periods: 21 years beginning with 1930—the first record in the region; 21 years beginning with 1952—start of studies in region by Cockrum and students; 11 years beginning with 1974—the year that Howell and Humphrey found only 135 *Leptonycteris* in Arizona through 1985, the year that the U.S. Fish and Wildlife Service survey work was conducted; and four years beginning in 1986. *Leptonycteris* obviously has not disappeared from the area. However, mere presence does not give any indication of population size.

Population Size

Few estimates of population size are available (Appendix). Even when available, few indicate how the censuses were done. When numbers are low, one suspects that actual counts were made. Most larger numbers probably involved some sort of formal or informal estimations. Most are estimates of the number of bats in a day roost (see Cockrum, 1991, for definitions of roost types used here). Probably one of the more commonly used census techniques was to estimate the area covered by roosting bats and the number of bats per unit area. As discussed by Cockrum (1991), *Leptonycteris* normally roosts in the warmest areas available in a roost. In warm roosts, they hang at widely spaced intervals. In cool roosts, they usually hang in dense clusters, often near the entrance, perhaps to take advantage of the warmer, outside air. Obviously, both cluster size and density must be considered in estimating populations. Some estimates have been based, at least in part, on flight counts. Such counts are difficult, at best, in part because other species often occur in the same day roost.

As discussed by Cockrum (1991), the largest numbers of *Leptonycteris* in Arizona have been recorded at maternity colonies. Roosts larger than those we report apparently occur in central and southern México.
Prior to the 1988–1989 surveys of Petryszyn (unpublished data), only two or three maternity roosts were known in the United States. The one that formerly occurred at Colossal Cave may have contained as many as 5000 bats (Appendix, locality 9b). A maternity roost at Old Mammon Mine (Appendix, locality 3a) was probably larger than the one at Colossal Cave. Hoffmeister (1959:15) reported that on 20 July 1957:

Some of the adult females were pregnant; others had associated young that were capable of flight. There were at least 300 *Leptonycteris* in one cluster.

He also noted that on 24 June 1958:

... there was an immense colony of between one and two thousand newborn and nursing *Leptonycteris* just inside the mine entrance....

Perhaps 200 to 300 females have continued to utilized a rock crevice on the Saguaro National Monument (Appendix, locality 9a) as a maternity roost.
Population estimates available for roosts in Arizona, New Mexico, and Sonora are listed in Table 3. Estimates, made at various dates between 1950 and 1988, range from 13 to 10,000. The highest were obtained in the 1960s when Cockrum and students made efforts to visit roosts at appropriate times, and in the late 1980s when Petryszyn made his visits. Few counts were made in the period from 1970 to 1988, and these visits to roosts often occurred when bats were not likely to be present.

Furthermore, often in considerable numbers, nectar-feeding bats have been observed at hummingbird feeders in southern Arizona (see Appendix, localities 10b, 12e, and 13e, and Wilson, 1985b). Observations and photographs of bats at these feeders indicate that most were Leptonycteris. Some were Choeronycteris mexicana, which occurs in much of the same region (Hall, 1981; Hoffmeister, 1986). Choeronycteris in southern Arizona apparently does not congregate in large groups, and does not occur in the lower elevations utilized by Leptonycteris in May.
and June. However, it does occur at elevations above 4000 feet in relatively low numbers from May through October (Cockrum and Ordway, 1959; Hoffmeister, 1986).

Use of hummingbird feeders by *Leptonycteris* appears to conflict with speculations concerning the importance of color and scent in attracting nectar-feeding bats to chiropterophilous flowers. As summarized by Howell (1976:53):

The characteristics of chiropterophilous flowers reflects their dependence upon bats for reproduction. Such flowers open at night and are white or light in color. They have a peculiar musky, or “batty,” odor. On moonlit nights, bat-pollinated flowers stand out almost as if they were fluorescent. The odor, which may be noticeable only after dark, often forms an aura that surrounds the tree. The odoriferous substance has been found to contain butyric acid; since bat body musk also contains butyric acid, it has been hypothesized that the odor that attracts bats to bats also attracts bats to flowers.
This obviously does not apply to the essentially colorless, odorless hummingbird food being dispensed from generally bright red plastic "flowers" on feeders.

Some observers have recorded the amount of sugar solution taken by these bats in a given night from hummingbird feeders. If some crude assumptions are made (hummingbird food has the same weight to volume ratio as water, bats fed only at the feeders being monitored and not at plants or at other hummingbird feeders in their feeding range, and Carpenter's (1969) calculated feeding rate of 20 cubic centimeters per night is somewhat accurate) estimates of the minimum numbers of bats visiting feeders can be calculated.

The Spofford (personal communication) Chiricahua Mountain findings (Appendix, locality 12e) of bats using up to two gallons per night translates into approximately 375 bats; the 307 ounces per night at Mile Hi in the Huachuca Mountains reported by Wilson (1985b) would result in an estimate of about 435 bats. Carroll Peabody (personal com-
Table 3.—Estimates of numbers of *Leptonycteris curasoae yerbabuenae* in various roosts (see text for discussion and appendix for details of localities). Abbreviations are: M, maternity colony; R, night roost; T, transient roost; ?, not known.

<table>
<thead>
<tr>
<th>Date</th>
<th>Site no.</th>
<th>Locality</th>
<th>Roost type</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950 August</td>
<td>13d.</td>
<td>Bldg., Cochise Co., Arizona</td>
<td>R</td>
<td>100</td>
</tr>
<tr>
<td>1954 May 8</td>
<td>9b.</td>
<td>Cave, Pima Co., Arizona</td>
<td>M</td>
<td>10</td>
</tr>
<tr>
<td>June 7</td>
<td>9b.</td>
<td>Cave, Pima Co., Arizona</td>
<td>M</td>
<td>133+</td>
</tr>
<tr>
<td>July 14</td>
<td>12a.</td>
<td>Cave, Cochise Co., Arizona</td>
<td>T</td>
<td>1000+</td>
</tr>
<tr>
<td>July 21</td>
<td>9b.</td>
<td>Cave, Pima Co., Arizona</td>
<td>M</td>
<td>50+</td>
</tr>
<tr>
<td>1955 August 14</td>
<td>12d.</td>
<td>Mine, Cochise Co., Arizona</td>
<td>T</td>
<td>150</td>
</tr>
<tr>
<td>August 16</td>
<td>12a.</td>
<td>Cave, Cochise Co., Arizona</td>
<td>T</td>
<td>1500+</td>
</tr>
<tr>
<td>1956 May 26</td>
<td>9b.</td>
<td>Cave, Pima Co., Arizona</td>
<td>M</td>
<td>300+</td>
</tr>
<tr>
<td>May 27</td>
<td>9b.</td>
<td>Cave, Pima Co., Arizona</td>
<td>M</td>
<td>700+</td>
</tr>
<tr>
<td>May 28</td>
<td>9b.</td>
<td>Cave, Pima Co., Arizona</td>
<td>M</td>
<td>1000+</td>
</tr>
<tr>
<td>1958 April 11</td>
<td>22.</td>
<td>Cave, Sonora</td>
<td>M/T</td>
<td>100+</td>
</tr>
<tr>
<td>July 8</td>
<td>9b.</td>
<td>Cave, Pima Co., Arizona</td>
<td>M</td>
<td>102+</td>
</tr>
<tr>
<td>August 5</td>
<td>12d.</td>
<td>Mine, Cochise Co., Arizona</td>
<td>T</td>
<td>35±</td>
</tr>
<tr>
<td>August 31</td>
<td>12d.</td>
<td>Mine, Cochise Co., Arizona</td>
<td>T</td>
<td>200±</td>
</tr>
<tr>
<td>September 2</td>
<td>12a.</td>
<td>Cave, Cochise Co., Arizona</td>
<td>T</td>
<td>500-600</td>
</tr>
<tr>
<td>September 13</td>
<td>12d.</td>
<td>Mine, Cochise Co., Arizona</td>
<td>T</td>
<td>6</td>
</tr>
<tr>
<td>November 30</td>
<td>22.</td>
<td>Cave, Sonora</td>
<td>T</td>
<td>5</td>
</tr>
<tr>
<td>1959 March 29</td>
<td>27b.</td>
<td>Mine, Sonora</td>
<td>?</td>
<td>1000±</td>
</tr>
<tr>
<td>April 18</td>
<td>22.</td>
<td>Cave, Sonora</td>
<td>T</td>
<td>100</td>
</tr>
<tr>
<td>November 6</td>
<td>22.</td>
<td>Cave, Sonora</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>1960 April 8</td>
<td>22.</td>
<td>Cave, Sonora</td>
<td>T</td>
<td>200</td>
</tr>
<tr>
<td>May 11</td>
<td>9a.</td>
<td>Crevice, Pima Co., Arizona</td>
<td>M</td>
<td>35±</td>
</tr>
<tr>
<td>May 23</td>
<td>9b.</td>
<td>Cave, Pima Co., Arizona</td>
<td>M</td>
<td>1000+</td>
</tr>
<tr>
<td>June 6</td>
<td>9b.</td>
<td>Cave, Pima Co., Arizona</td>
<td>M</td>
<td>1000+</td>
</tr>
<tr>
<td>July 18</td>
<td>22.</td>
<td>Cave, Sonora</td>
<td>?</td>
<td>30</td>
</tr>
<tr>
<td>August 29</td>
<td>14.</td>
<td>Cave, Santa Cruz Co., Arizona</td>
<td>T</td>
<td>"many"</td>
</tr>
<tr>
<td>1962 May 26</td>
<td>22.</td>
<td>Cave, Sonora</td>
<td>M</td>
<td>6000</td>
</tr>
<tr>
<td>1963 April 26</td>
<td>22.</td>
<td>Cave, Sonora</td>
<td>?</td>
<td>100</td>
</tr>
<tr>
<td>May 20</td>
<td>22.</td>
<td>Cave, Sonora</td>
<td>M</td>
<td>20</td>
</tr>
<tr>
<td>June 28</td>
<td>18.</td>
<td>Mine, Sonora</td>
<td>M</td>
<td>5000</td>
</tr>
<tr>
<td>August 30</td>
<td>18.</td>
<td>Mine, Sonora</td>
<td>M</td>
<td>10,000</td>
</tr>
<tr>
<td>Feb 29</td>
<td>27a.</td>
<td>Mine, Sonora</td>
<td>?</td>
<td>50</td>
</tr>
<tr>
<td>April 16</td>
<td>27a.</td>
<td>Mine, Sonora</td>
<td>?</td>
<td>100</td>
</tr>
<tr>
<td>May 22</td>
<td>9b.</td>
<td>Cave, Pima Co., Arizona</td>
<td>M</td>
<td>300</td>
</tr>
<tr>
<td>May 31</td>
<td>27a.</td>
<td>Mine, Sonora</td>
<td>?</td>
<td>100</td>
</tr>
<tr>
<td>June 29</td>
<td>27a.</td>
<td>Mine, Sonora</td>
<td>M</td>
<td>1000</td>
</tr>
<tr>
<td>August 7</td>
<td>27a.</td>
<td>Mine, Sonora</td>
<td>?</td>
<td>100</td>
</tr>
<tr>
<td>November 24</td>
<td>27a.</td>
<td>Mine, Sonora</td>
<td>?</td>
<td>present</td>
</tr>
</tbody>
</table>
Table 3.—Continued.

<table>
<thead>
<tr>
<th>Date</th>
<th>Site no.</th>
<th>Locality</th>
<th>Roost type</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1966 May 12</td>
<td>9a.</td>
<td>Crevice, Pima Co., Arizona</td>
<td>M</td>
<td>211+</td>
</tr>
<tr>
<td>June 21</td>
<td>22.</td>
<td>Cave, Sonora</td>
<td>M</td>
<td>5000</td>
</tr>
<tr>
<td>1980 April 13</td>
<td>22.</td>
<td>Cave, Sonora</td>
<td>M</td>
<td>1000±</td>
</tr>
<tr>
<td>1983 August</td>
<td>27b.</td>
<td>Mine, Sonora</td>
<td>?</td>
<td>1000+</td>
</tr>
<tr>
<td>1985 July 10-25</td>
<td>15c.</td>
<td>Cave, Santa Cruz Co., Arizona</td>
<td>T</td>
<td>500</td>
</tr>
<tr>
<td>May 13</td>
<td>22.</td>
<td>Cave, Sonora</td>
<td>M</td>
<td>50-1000</td>
</tr>
<tr>
<td>August 5</td>
<td>12d.</td>
<td>Mine, Cochise Co., Arizona</td>
<td>T</td>
<td>13</td>
</tr>
<tr>
<td>September 1</td>
<td>12c.</td>
<td>Mine, Cochise Co., Arizona</td>
<td>T</td>
<td>3000</td>
</tr>
<tr>
<td>September 9</td>
<td>14.</td>
<td>Cave, Santa Cruz Co., Arizona</td>
<td>T</td>
<td>500</td>
</tr>
<tr>
<td>September 24</td>
<td>14.</td>
<td>Cave, Santa Cruz Co., Arizona</td>
<td>T</td>
<td>50</td>
</tr>
<tr>
<td>September 9</td>
<td>14.</td>
<td>Cave, Santa Cruz Co., Arizona</td>
<td>T</td>
<td>170</td>
</tr>
<tr>
<td>September 10</td>
<td>14.</td>
<td>Cave, Santa Cruz Co., Arizona</td>
<td>T</td>
<td>150</td>
</tr>
<tr>
<td>September 17</td>
<td>15c.</td>
<td>Cave, Santa Cruz Co., Arizona</td>
<td>T</td>
<td>300</td>
</tr>
<tr>
<td>1989 April 29</td>
<td>8f.</td>
<td>Mine, Pima Co., Arizona</td>
<td>M</td>
<td>3000±</td>
</tr>
<tr>
<td>May 22</td>
<td>6c.</td>
<td>Mine, Pima Co., Arizona</td>
<td>M</td>
<td>3000±</td>
</tr>
<tr>
<td>May 22</td>
<td>8f.</td>
<td>Mine, Pima Co., Arizona</td>
<td>M</td>
<td>7000-9000</td>
</tr>
<tr>
<td>June 10</td>
<td>8f.</td>
<td>Mine, Pima Co., Arizona</td>
<td>M</td>
<td>12,000</td>
</tr>
<tr>
<td>June 18</td>
<td>3a.</td>
<td>Mine, Pinal Co., Arizona</td>
<td>M</td>
<td>3000-5000</td>
</tr>
<tr>
<td>June 24</td>
<td>8f.</td>
<td>Mine, Pinal Co., Arizona</td>
<td>M</td>
<td>11,000</td>
</tr>
<tr>
<td>July 6</td>
<td>3a.</td>
<td>Mine, Pinal Co., Arizona</td>
<td>M</td>
<td>6000</td>
</tr>
<tr>
<td>July 15</td>
<td>15d.</td>
<td>Cave, Santa Cruz Co., Arizona</td>
<td>T</td>
<td>1000-2000</td>
</tr>
<tr>
<td>July 31</td>
<td>3a.</td>
<td>Mine, Pinal Co., Arizona</td>
<td>M</td>
<td>500±</td>
</tr>
<tr>
<td>August 20</td>
<td>15d.</td>
<td>Cave, Santa Cruz Co., Arizona</td>
<td>T</td>
<td>14,000</td>
</tr>
<tr>
<td>August 30</td>
<td>15d.</td>
<td>Cave, Santa Cruz Co., Arizona</td>
<td>T</td>
<td>6000-8000</td>
</tr>
</tbody>
</table>

munication), the former owner of Mile Hi (Appendix, locality 13e) reported that between 1971 and 1982 about 660 ounces was consumed by 10:30 PM each night during a period of six to seven weeks from early August to mid-September, giving an estimate of about 924 bats. Peabody also took hummingbird feeders on short trips to Pinery Canyon, on the west slope of the Chiricahua Mountains, and reported that nectar-feeding bats emptied feeders there from the first night the feeders were present. Numbers of feeders and dates were not available. Nectar-feeding bats also have been present in numbers at feeders in the Santa Rita Mountains since prior to 1974, taking as much as 336 ounces...
before 1:00 AM each night from August until early October (Appendix, locality 10b).

Reports of nectar-feeding bats at hummingbird feeders indicate presence of the bats during each of the past few years. The usage by bats of hummingbird food from feeders appears to have been relatively constant, suggesting little in the way of multiannual fluctuations in bat populations. The above estimates of numbers of *Leptonycteris* in roosts in the northwestern part of their range strongly suggest that the total population in a given roost in this area probably rarely exceeded 5000. Certainly the maximum population of *Leptonycteris* in Colossal Cave probably never has been much more than 5000 at any time since 1952—a major contrast to the 20,000 reported by Shull (1988) and others. The presence of large maternity roosts on the Organ Pipe Cactus National Monument (Table 3 and Appendix, locality 8f), Cabeza Prieta Wildlife Refuge (Table 3 and Appendix, locality 6c), and Slate Mountain (Table
3 and Appendix, locality 3a); the known active roosts in various caves and mine tunnels in Santa Cruz and Cochise counties (Appendix, localities 12c and 15e); and the continued utilization of hummingbird feeders—all combine to strongly suggest that *Leptonycteris* was not reduced in Arizona to 500 individuals as assumed by Shull (1988) and certainly shows that the current population greatly exceeds the 1985 estimate.

Little evidence exists to document a "long-term decline" in *Leptonycteris* populations of Arizona, New Mexico, and Sonora. The various recent reports of disappearance appear to be, at least in part, the result of not looking in the right places at the right times.

Although *Leptonycteris* is an important pollinator of paniculate agaves and various columnar cacti in this part of the range of the species, its absence certainly does not prevent these plants from reproducing. Figure 6 shows the distribution of paniculate agaves; Figure 7 shows the distribution of saguaros with the range of *Leptonycteris* superimposed. Note the extensive areas of both paniculate agaves and
saguaro that are outside areas where nectar-feeding bats of either species ever have been recorded. This suggests that even if *Leptonycteris* were to be eliminated, “concern for the future of the entire southwestern desert ecosystems” (Shull, 1988) is an overstatement. Unfortunately the popular press has taken some of the above material out of context and has been reporting that lack of long-nosed bats for pollination is causing a reduction of Saguaro cactus populations, and the degradation of the Sonoran Desert ecosystem.

Conclusions

It appears that limited parts of the available data were used when the Fish and Wildlife Service ruled that the long-nosed bat, *Leptonycteris curasoae yerbabuenae*, was endangered. The data used appear to be a combination of over-optimistic estimates of past population sizes and overly pessimistic estimates of current numbers, both poorly documented. No place can we find support of the statement that the population in Colossal Cave was in the 20,000 range. Certainly the earliest records available to us—in the 1950s—were much nearer 5000. Even the highest of past estimates placed the maximum in a maternity roost in Arizona at about 14,000, and this was in 1989 after *Leptonycteris* had been ruled endangered.

Analysis of the limited records of occurrence and population size and composition suggests that most observers have not understood the seasonal cycle of movements within the northern part of the range. This has resulted in reports of disappearances of populations that are rarely, if ever, present at the time that the observer visited the roost.

The questionable hypothesis that various agaves and columnar cacti are dependent upon nectar-feeding bats for adequate pollination to insure species survival apparently also influenced the ruling of Endangered Species status for *Leptonycteris curasoae yerbabuenae*. The fact that much of the range of the saguaro and that of several agaves are in areas where no nectar-feeding bats have been recorded in historic times seems not to have been noticed by the United States Fish and Wildlife decision makers.

Certainly *Leptonycteris* no longer occurs at the Colossal Cave maternity roost. Certainly additional observations by trained bat biologists aware of the life habits of this species are necessary. But it appears probable that current populations in the northwestern part of the range of the species are little, if any, decreased from those of a quarter century ago. It even has been suggested that populations have increased in the
past century because of more suitable roosts being available as the result of mining activity in the area.

ACKNOWLEDGMENTS

Many of the banding data and field observations reported here were the results of activities of a number of former students and assistants of Cockrum. Editorial comments and critical reviews of the manuscript were provided by David Dalton, Virginia Dalton, and Ronnie Sidner. Especially useful were the editorial efforts of Thomas Huels and J. Knox Jones, Jr. To all, named and unnamed, our thanks for making this report possible.

LITERATURE CITED

COCKRUM AND PETRYSZYN—ENDANGERED *LEPTONYCTERIS*?

APPENDIX

This appendix lists all of the records of occurrence of *Leptonycteris* that we have been able to find for the northwestern portion of its range in southern Arizona, southwestern New Mexico, Sonora, and Chihuahua. The records are of four types:

(A) Specimens examined by Cockrum followed by citations to literature in which the same specimens were reported. Abbreviations include: KU (University of Kansas, Lawrence), LACM (Los Angeles County Museum), MSB (Museum of Southwestern Biology, University of New Mexico, Albuquerque), MV (Museum of Vertebrate Zoology, University of California, Berkeley), TCWC (Texas Cooperative Wildlife Collections, Texas A & M University, College Station), UA (University of Arizona, Tucson), UI (University of Illinois, Urbana), UM (University of Michigan, Ann Arbor), USNM (National Museum of Natural History), USBS (United States Biological Survey).

(B) Literature. References to published reports of specimens and observations.

(C) Banding records and associated notes. These are the notes and records compiled by Cockrum and students and currently housed in Cockrum’s office at the University of Arizona.

(D) Notes, personal communications, and other records from the sources indicated.

Arizona

Maricopa County

Pinal County

3a. (B). Old Mammon Mine, W base Slate Mountains, approx. 27 mi. SW Casa Grande [± 1800 ft.], unspecified date [20 July 1957 from field notes], "Some of the adult females were pregnant; others had associated young that were capable of flight There were at least 300 *Leptonycteris* in one cluster . . . there was an immense colony of between one and two thousand newborn and nursing *Leptonycteris* just inside the mine entrance On this day, young 'Leptos' were of two sizes, one almost entirely hairless and a larger size that was nearly fully-haired," Hoffmeister (1959:15). (= 27 mi. SW Casa Grande, 6, UI,
COCKRUM AND PETRYSZYN—ENDANGERED _LEPTONYCTERIS?_ 27

Hoffmeister (1986:66).] (D). Old Mammon Mine, W base Slate Mountains, about 27 mi. SW Casa Grande ±1800 ft. 18 June 1989, 3000 to 5000 in evening flight (9 netted: 2 lactating 99, 6 post-lactating 99, 1 juvenile), Petryszyn notes. 6 July 1989, 6000± in evening flight (examined and released adult 99 and juveniles of both sexes), Petryszyn notes. 31 July 1989, 500+ (examined and released 2 adult 99, numerous juveniles), V. Dalton notes.
3b. (B). 28 mi. SW Casa Grande, 8, UI, “maternity colonies are known in Arizona at two places in the Slate Mountains, 27 and 28 miles SW Casa Grande [mine shafts],” Hoffmeister (1986:66).

Graham County

4b. (B). Muleshoe Preserve [= 22 mi. NW Willcox on Greenlee-Cochise county line, ±5000 ft.], “small colony,” date not given [personal communication—“5 to 7 seen a couple of times in September, 1988”], Howell (1988:9).

Pima County

6c. (D). Mine adit, Growler Mountains, Cabeza Prieta National Wildlife Refuge [= 6b?]. 22 May 1989, 3000± (all examined were gravid 99 or 99 with young), Petryszyn notes.

Petapction

7b. (D). Cowboy Mine, Agua Dulce Mountains. 5 June 1989, Ten dead (1 adult, 9 young), Petryszyn notes.
8e. (D). South entrance of Copper Mountain Mine [Organ Pipe Cactus National Monument, 1 June 1977, 10 netted (OPCNM records); 27 July 1979, used as a day roost, Cockrum (1981:2) and Cockrum and Petryszyn (1986:8).

8f. (D). Mine tunnel, NE corner Organ Pipe Cactus National Monument [=? 8e]. 29 April 1989, 3000+ (many pregnant), Petryszyn notes. 22 May 1989, 7000 to 9000 (both pregnant females and females with young), Petryszyn notes. 10 June 1989, 12000± (more than 2000 nonvolant young), Petryszyn notes. 24 June 1989, 7000 to 11000 in evening flight, Petryszyn notes.

8g. (A). Bull Pasture Springs, Organ Pipe Cactus National Monument [mist net], 23 April 1982, 1 gravid 9, UA (Cockrum and Petryszyn, 1986:8).

10a. (A). 2 mi. E Helvetia, 5200 ft., T. 18 S, R. 16 E, sec. 19, 28 May 1976, 1 9, UA. 10b. (D). Hummingbird feeders, Madera Canyon Lodge, Santa Rita Mountains. Every summer (August to early October), starting before the Collisters arrived in 1974, bats have fed from hummingbird feeders. In 1988, there were 14 one-quart hummingbird feeders.
feeders in place. Bats usually emptied the feeders, taking about 336 ounces by 1:00 AM. (Mrs. Lyle Collister, personal communication).

10c. (D). Mist net, Empire Ranch, 14 mi. N Sonoita. 30 August 1989, 1 adult and 1 juvenile, Petryszyn notes.

Cochise County

12c. (D). Abandoned mine shaft, Whitetail Canyon. 1 September 1986, 3000± seen by A. Morgan, Petryszyn notes.

12e. (B). Rancho-Aguila [the Spofford home on Cave Creek], Portal. 1971: Hummingbird feeders installed at Rancho-Aguila. 1979: “In late summer and early fall, our feeders are used by two species of Mexican nectar-eating bats. That is one reason why some of our neighbors take in their feeders at night.” 1982: August-September, 1.5 to 2 gallons sugar water taken each night by bats, then about 1 gallon per night until they left in mid-October. Photographs taken nights of 7, 10, 20, and 24 September were of both Choeronycteris and Leptonycteris, but primarily the latter (Spofford, 1985:5–7). (D). 1979: First noticed nectar feeding bats at the hummingbird feeders (Spofford, 1982 letter). 1985: 8 August, “A few Leptos and Choeros have been showing up so our sugar supply is going down rapidly!” (Spofford, 1985, letter). 1988: Bats are still feeding at the hummingbird feeders. Some are present in June and July [a time that the Spoffords are not in residence but others keep the feeders filled] with most being present in August and September. Other people in the Portal area maintain hummingbird feeders. Some lower their feeders so that the bats cannot reach them but others let the feeders stay in place.
overnight. Often the feeders are empty the next morning. (Telephone conversation, 28 December 1988, with Sally Spofford).

13f. (D). Hummingbird feeders, Mile Hi Ranch, Ramsey Canyon, Huachuca Mountains. 1956. Carroll Peabody began feeding hummingbirds at this locality. From the first, some bats utilized the feeders. Between 1971 and 1982, beginning in late July or early August and ending "Labor Day to September 15," nectar feeding bats emptied 55 to 60 hummingbird feeders by 10:30 PM if the feeders were not lowered to ground and covered with cloth. Peabody estimated that 12± ounces were taken from each feeder [= 660 oz. each night] (Peabody, personal communication). [= Mile Hi Ramsey Canyon Preserve of The Nature Conservancy, "For several years" prior to 1982 (Spofford, 1982 letter).]

13g. (D). Star of Texas Mine, Coronado National Monument, Huachuca Mountains, 14 August 1966, 1 doe, T. Hansen notes.

Santa Cruz County

15b. (B). Patagonia, several miles west in old tunnel directly over road, 25 August 1933, 1, Campbell (1934:241).

15d. (D). Bat cave, 5275 ft. [probably the same as 15c]. 17 September 1988, 300±, personal communication, W. D. Peachey. = Shallow cave in Patagonia area, 15 July 1989, 1000 to 2000 (more than 50 percent juveniles); 20 August 1989, 14,000± (many juveniles); 30 August 1989, 6000 to 8000 (many juveniles), Petryszyn notes.

15e. (D). Stable, Circle Z Ranch, 4.5 mi. SW Patagonia, 1988, mummy hanging "for a few months," R. Sidner notes.

New Mexico

Hidalgo County

Sonora

April 1986, 2000±, J. Brown notes; 13 April 1980, 1000± (pregnant 99), Petryszyn notes; 13 May 1986, 500 to 1000—all appeared to be gravid females,” Petryszyn notes.

25b. (D). Mist net, El Trigo, ca. 4 mi. NE Quiriego, 380 m. [= ± 65 km. E Ciudad Obregón], 12 April 1986, 4 (1 6, 3 99), R. Sidner notes.

27c. (D). Mist nets, small arroyos near La Aduana. 31 July 1960, 1 6, 2 99, A. L. Gardner notes.

27e. (A). 2 mi. S Aduana, 2600 ft., 18 May 1948, 22 66, KU.

27g. (B). Chinobampio, collected between 1929 and 1934, Burt (1938:21).

27h. (B). “Mexico, Sonoran Desert, on the Gulf of California.” Locality not further specified. “Tuttle [M. D. Tuttle] found only a hundred bats where several thousand had been reported in the 1960’s,” Anon (1988a:4). Not plotted.

Chihuahua
