





SYSTEMATICS OF BATS OF THE FAMILY PHYLLOSTOMIDAE
Basep oN RAG2 DNA SEQUENCES
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Considerable disagreement exists conceming the
phylogenetic relationships within the family
Phyllostomidae (Wetterer et al., 2000). Numerous ef-
forts have been made to partition the 53 genera
(Wetterer et al., 2000) and more than 140 species
(Koopman, 1993) into natural assemblages by using
cranial, dental and skeletal (Miller, 1907; de la Torre,
1961; Walton and Walton, 1968; Slaughter, 1970;
Phillips, 1971; Smith, 1976; Owen, 1982; Lim, 1993;
Freeman, 2000; Wetterer et al., 2000), karyological
(Baker, 1967; Gardner, 1977; Baker, 1979 and cita-
tions therein; Baker et al., 1981; Haiduk and Baker,
1982; Warner, 1983; Tucker, 1986; Tucker and
Bickham, 1986), immunological (Gerber, 1968; Gerber
and Leone, 1971; Straney, 1980; Baker et al., 1981;
Honeycutt, 1981; Honeycutt et al., 1981; Arnold et al.,
1982; Pierson, 1986; Honeycutt and Sarich, 1987;),
soft anatomy (Forman, 1971; McDaniel, 1976;
Griffiths, 1982; Hood and Smith, 1982, 1983; Gimenez,
1993; Gimenez et al., 1996; Wetterer et al., 2000), and
ribosomal DNA restriction-site (Van Den Bussche 1991,
1992) data. A consensus among these diverse data
has been that the vampires are monophyletic, but a
phylogenetic tree or classification consistent with data
from all studies has proven difficult to produce. Asa
result, past efforts to resolve the “true tree” have pro-
duced a morass of alternative hypotheses (which are
reviewed by Wetterer et al., 2000, pp. 7-36).

In his classical work that has served as the
benchmark for phyllostomid systematics, Miller (1907)
recognized 51 genera in 7 subfamilies [Chilonycterinae
(= Mormoopidae), Phyllostominae, Glossophaginae,
Hemiderminae (= Carolliinae), Sturnirinae,
Stenoderminae, Phyllonycterinae]. He included in the
family the species currently recognized as members
of Mormoopidae, but excluded the genera of vampire
bats, placing them in a separate family
(Desmodontidae). Subsequent work by Forman et al.
(1968) documented that the vampire bats were part of
the phyllostomid radiation. Smith (1972) recognized
Mormoopidae (Miller’s subfamily Chilonycterinae) as
distinct from Phyllostomidae.

With the inclusion of the vampire bats and the
exclusion of mormoopids, classifications of
phyllostomids thereafter became stable with respect
to the naturalness or monophyly of the family. How-
ever, the number of genera and subfamilies recognized
has varied considerably. For example, Baker et al.
(1989) recognized 44 genera in three subfamilies
{(Desmodontinae, Vampyrinae, Phyllostominae),
Koopman (1993) recognized 49 genera in eight sub-
families (Phyllostominae, Lonchophyllinae,
Brachyphyllinae, Phyllonycterinae, Glossophaginae,
Carolliinae, Stenodermatinae, Desmodontinae),
McKenna and Bell (1997) recognized 48 genera in four
subfamilies (Desmodontinae, Glossophaginae,
Phyllostominae, Stenodermatinae) and Nowak (1999)
followed Van Den Bussche (1992) in recognizing 52
genera in five subfamilies (Desmodontinae, Macrotinae,
Micronycterinae, Vampyrinae and Phyllostominae).
The latest and most comprehensive effort (Wetterer et
al., 2000) recognized 53 genera in seven subfamilies
(Desmodontinae, Brachyphyllinae, Glossophaginae,
Phyllonycterinae, Phyllostominae, Stenodermatinae,
Carolliinae) in a total evidence synthesis of extensive
new and previously published data; however, this syn-
thesis excluded autosomal G-band chromosomal data
because Wetterer et al. (2000, p. 36) concluded a priori
that primitive and derived character states for these
data had not been developed properly. Their “total
evidence” provided little support, based on bootstrap
and decay analysis, for many clades in their tree. About
70% of the clades collapsed in a tree only 1 step longer
(decay = 1) and 50% of the clades were supported by
bootstrap values < 50%. Some of their most critical
conclusions for monophyly had weak bootstrap (bs)
and decay (d) support (i.e., Phyllostominae, bs = 40,
d =1; Carolliinae, bs = 33, d = 1, Stenodermatinae, bs
=54,d=1). Wetterer et al. (2000) proposed that their
data and hypotheses provide a starting point for new
and productive investigations of phyllostomid relation-
ships and evolution. Therefore, we use their tree (p.
134) and the tree from Baker et al. (1989) as the pri-
mary reference for comparison with our resulting gene
tree.
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A robust tree for Phyllostomidae would provide
substantial information. The morphological variability
of this family of bats provides a unique opportunity to
study the evolution of new genera and new feeding
strategies, and to develop hypotheses concerning the
primitive character states of ancestral stocks for the
lineages that evolved into new feeding niches (Free-
man, 2000; Ferrarezi and Gimenez, 1996; Wetterer et
al., 2000). This study is part of a long-term effort to
provide a phylogenetic tree against which the remark-
able evolutionary radiation of phyllostomids can be
better understood. Our initial efforts at using DNA
sequence data involved the mitochondrial cytochrome-
b gene. The rate of evolution of the cytochrome-b
gene within Phyllostomidae was appropriate for eluci-
dating relationships within genera (Van Den Bussche
and Baker, 1993; Van Den Bussche et al., 1993, 1998;
Baker et al., 1994; Wright et al., 1999). But saturation
of some types of mutations complicate resolution at
higher taxonomic levels. In this paper, we examined
DNA sequence data from the Recombination-Activat-
ing Gene-2 (RAG2) to infer the deep-branching pat-
terns within this complex of bats.

RAG proteins are encoded by two tandemly paired
genes (RAGI and RAG2) that are uninterrupted by
introns (in tetrapods) and located within 8 kb of each
other in the nuclear genome (Fig. 1). Human RAG/
and RAG2 proteins are 1,043 and 527 amino acids,
respectively (Shatz et al., 1989; Oettiger et al., 1990).
These genes apparently arose as a transposon in the
ancestor of jawed vertebrates (gnathostomes), and their
products still retain some transposition activity in vitro
(Agrawal et al., 1998; Hiom et al., 1998; Plasterk,
1998). However, after their insertion into the
gnathostome nuclear genome, the R4G proteins as-
sumed a significant function in the immune system.
The genes are active in lymphocytes where their pro-
tein products catalyze V(D)J recombination, the pro-
cess by which immunoglobulin genes are assembled
(Schatz et al., 1989; Oettinger et al., 1990; McBlane et
al., 1995; Melek et al., 1998; Plasterk, 1998; Akamatsu
and Oettinger, 1998; Mo etal., 1999; Steen etal., 1999;
Swanson and Desiderio, 1999). Because of the im-
munological role played by the R4G2 protein, sequence
variation in the gene should provide an estimate of
phyllostomid evolution that is seemingly largely
uncorrelated with the extensive morphological adapta-
tions within this family.

MATERIALS AND METHODS

Specimens and DNA Preparation.—Tissue
samples were obtained from collections at the Natural
Science Research Laboratory of the Museum of Texas
Tech University, Museum of Southwestern Biology at
the University of New Mexico, National Museum of
Peru, the American Museum of Natural History and
the Royal Ontario Museum (Table 1). Each sample
used in the study is associated with a voucher speci-
men (Ruedas et al., 2000) deposited in a mammal col-
lection at Texas Tech University, American Museum
of Natural History, the Museum of Southwestern Biol-
ogy at the University of New Mexico, Carnegie Mu-
seum of Natural History, Universidad Nacional
Autonoma de Mexico, Muséum National d’Histoire
Naturalle, National Museum of Natural History, Texas
Cooperative Wildlife Collection, Universidad Auténoma
Metropolitana-Iztapalapa, Royal Ontario Museum or
the National Museum of Peru. Total genomic DNA
was isolated following the procedures of Longmire et
al. (1997).

Gene amplification and Sequencing—We am-
plified via the polymerase chain reaction (PCR) a por-
tion of the R4G2 protein coding sequence from total
genomic DNA preparations. A schematic of our primer
positions is shown in Figure 1 and primers are de-
scribed in Table 2. A segment of approximately 1.4
kb was amplified using primer RAG2-F1 or RAG2-
F1B paired with RAG2-R2 (Table 2 and Fig. 1). For
some species two overlapping segments were ampli-
fied using primers RAG2-F1 and RAG2-R1 for one
fragment and primers RAG2-F2 and RAG2-R2 for the
other. Primers RAG2-F1 and RAG2-F1B anneal 122
and 138 bp downstream of the first base of the initia-
tion codon. Primer RAG2-R2 anneals 39 bp upstream
of the stop codon. PCR reaction mixtures contained
200 uM of each dNTP, 1.5 mM MgCl,, 2 ng/ul of
each primer, 5-10 ng/ul of template DNA, and 0.05
units/ul of Promega Taq DNA polymerase, in a 1X
solution of Promega Taq polymerase buffer. Reaction
conditions were as follows: initial denaturation, 2 min
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Figure 1. Diagrammatic representation of the RAG genes, showing primer-annealing sites. The upper diagram shows
the relationship of both RAG genes, with the coding regions represented by black boxes. The lower figure shows the
primer annealing sites in the RAG2 gene. PCR primers are represented by bold arrows. The “RAG2” prefix 1s omitted

from the primer names.

95°C, followed by 35 cycles of (denaturation, 30 sec,
95°C; annealing, 30 sec, 65°C; polymerization, 2 min,
72°C), with a 10 min final extension at 72°C. If this
thermal profile failed to produce an amplification prod-
uct, we reduced the annealing temperature to 60°C,
55°C, or 50°C as needed to produce positive results.
These methods are modified from Bickham et al.
(1996).

We purified PCR products using a QIAquick PCR
purification kit from QIAGEN. Sequencing reactions
were performed using Terminator Cycle Sequencing
Ready Reactions (either dRhodamine or BigDye™)
from ABI, and were purified by ethanol precipitation.
PCR primers also were used for sequencing, along
with intemnal primers (Table 2 and Fig. 1). Both strands
were sequenced and samples were run on an ABI 310
Genetic Analyzer, and final sequences were assembled
using Sequencher™, version 3.1.1 of Gene Codes Cor-
poration,

Data Analysis—DNA sequences were aligned
using Clustal W (Thompson et al., 1994). Sequence
data were treated as unordered, discrete characters
(G, A, T, C) and polarity of character-state changes

was established by designating representatives of
Emballonuridae, Furipteridae, Noctilionidae, and
Mormoopidae as outgroup taxa (see specimens exam-
ined). Phylogenetic analyses were performed using
PAUP*4.04a (Swofford 2000). To evaluate whether
these data contained phylogenetic information, the
Random Tree option of PAUP* was used to evaluate
the distribution of 100,000 random trees using the g -
statistic (Hillis, 1991; Huelsenbeck, 1991; Hillis and
Huelsenbeck, 1992). Parsimony analyses were con-
ducted utilizing equal weights for all characters and
the successive weighting approach (Farris, 1969; Car-
penter, 1994) via the rescale option in PAUP*4.04a.
Because sequences from 66 individuals (64 taxa) were
included, exhaustive and branch and bound searches
for the most parsimonious tree(s) would have required
a prohibitive amount of computing time (Swofford and
Olsen 1990). Therefore, we conducted heuristic
searches with 25 random additions of input taxa and
tree bisection reconnection (TBR) branch swapping
(Swofford and Olsen 1990). Stability or accuracy of
inferred topologies was assessed via bootstrap analy-
sis {(Felsenstein, 1985) of 200 iterations with 25 ran-
dom additions of input taxa and TBR for each itera-
tion.
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Table 2. Sequences of primers used for amplifications and sequencing of RAG2.

All sequences are givento 5" to 3.

RAG2-F1 GGCYGGCCCAARAGATCCTG
RAG2-FlInt GRACAGTCGAGGGAARAGCATGG
RAG2-F1B ATCCTGCCCCACTGGAGTTTIC
RAG2-F2 TITGTTATTGTTGGTGGCTATCAG
RAG2-F2B GTTRTTGTRGTTGGCTATCA
RAG2-F2Int GGAYTCCACTCCCTTTGAAGA
RAG2-R1 AACYTGYTTATTGTCTCCTGGTATGC
RAG2-Rl1Int GGGGCAGGCASTCAGCTAC
RAG2-R2 GRAAGGATTTCTTGGCAGGAGT
RAG2-R2Int GCAGCAWGTAATCCAGTAGC
REsuLTS

A segment of approximately 1.4 kb of the RAG2
gene was sequenced for 64 taxa representing 5
microchiropteran families, and these sequences have
been deposited in GenBank (Accession numbers
AF316430 - AF316495). Sequence alignment resulted
in 1,363 aligned sites, of which 346 (25.4%) were
parsimony-informative. Fifty-nine (17.1%) of the par-
simony informative sites occurred at first positions,
31 (9.0%) at second positions, and 256 (74.0%) at
third positions of codons. The g, -statistic of 100,000
random trees (g, = -0.628) indicated that the distribu-
tion of tree lengths was highly skewed to the left, sug-
gesting a high probability for the correct topology be-
ing the most-parsimonious tree or a tree a few steps

longer (Hillis, 1991; Huelsenbeck, 1991; Hillis and
Huelsenbeck, 1992-—for criticisms of this statistic see
Kallersjo et al., 1992).

Unweighted parsimony analysis resulted in 3,456
equally parsimonious trees of 1,122 steps [consistency
index (CI) = 0.4180; retention index (RI) = 0.6643]
and most clades received moderate to strong boot-
strap support (Fig. 2). Parsimony analysis using the
successive weighting approach resulted in 48 most-
parsimonious trees of 257.44 steps (CI = 0.6261; RI
=(.8323) and most clades received moderate to strong
bootstrap support (Fig. 2b).

DiscussioN

RAG2 is aslowly evolving nuclear gene that pro-
vides a new view into the evolutionary history within
the family Phyllostomidae. R4AG2 is particularly use-
ful in phyllostomids because its function in immuno-
logical response probably is not linked to morphologi-
cal features that often are the diagnostic criteria for
higher-category classifications. The magnitude of mor-
phological adaptation to feeding strategies has resulted
in an array of phenotypes within Phyllostomidae that
are modified sufficiently to mask basal phylogenetic
relationships. For example, all studies agree that the
three genera of vampire bats are monophyletic; how-
ever, no robust sister-taxon hypothesis has been de-
veloped to explain the origin of sanguivory. The situ-

ation with the basal relationship of the vampires to the
rest of the family is extreme but not unique, which
probably accounts for the large number of competing
hypotheses that have been advanced to explain the
deep-branching relationships of phyllostomids. Our
conclusion is that gene trees should be explored as a
means to avoid complications (Griffiths, 1982; Baker
et al., 1989; Wetterer et al., 2000) that have hampered
all previous classifications. Any lineage documented
by shared-derived morphological features (Slaughter,
1970; Griffiths, 1982; Baker et al., 1989; Freeman,
2000; Wetterer et al., 2000) and monophyly within the
gene tree would have considerable support as a natu-
ral assemblage. Therefore, we compare our RAG2
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gene tree to previous trees and classifications, specifi-
cally to those of Baker et al. (1989; Fig. 3) and Wetterer
et al. (2000; Fig. 4) who synthesized diverse data sets
and classifications for the Phyllostomidae.

To test for equivalence between our strict-con-
sensus tree (Fig. 2) and the topologies proposed by
Baker et al. (1989) and Wetterer et al. (2000), we con-
strained the RAG2 trees to document their branching
patterns. We tested these competing topologies using
the Kishino-Hasegawa (1989), Templeton (1983), and
winning-sites (Prager and Wilson, 1988) tests. The
Baker et al. (1989) and Wetterer et al. (2000) con-
strained trees were 66 and 561 steps longer, respec-
tively, than our strict-consensus tree based on an
unweighted analysis (Fig. 2a) and all three tests indi-
cated significant differences between these compet-
ing hypotheses and our resultant phylogeny
(P <0.0001). The higher values (steps longer) in the
comparison of Wetterer et al.’s tree to Baker et al.’s
tree are more of a function of the detail of Wetterer et
al.’s tree rather than a high level of mismatch.

In the classification proposed by Baker et al.
(1989) the position of Macrotus was uncertain and
was placed incertae sedis based in part on the conclu-
sion that the karyotype of Macrotus waterhousi is like
that proposed as primitive for the family. The RAG2
gene tree sets Macrotus as basal for the phyllostomids,
which i1s compatible with the chromosomal conclu-
sions of Patton and Baker (1978). The situation with
Micronycteris is more complex, as the RAG2 gene tree
divides this genus (sensu Koopman, 1993) into two
divergent clades at different places in the tree (Fig. 2).
Some major points of disagreement with the Baker et
al. (1989) classification (Fig. 3) include the diphyly of
Glossophaginae, with Lonchophylla and Lionycteris
representing an independent origin of nectar feeding.
A similar diphyly hypothesis was proposed by
Winkelmann (1971) and Griffiths (1982). Addition-
ally, in the RAG2 data, there is no support for
Vampyrinae as recognized by Baker et al. (1989). Fi-
nally, Baker et al. (1989) recognized the Phyllostomini,
for which monophyly is questioned by the R4G2 data
because Lonchorhina is not associated with that group.

A comparison of the RAG2 gene tree (Fig. 2b)
to the Wetterer et al. (2000) heuristic search tree using
all 150 characters for all 63 taxa (Fig. 4) also reveals
several incongruencies. For example, in the tree pro-

duced by Wetterer et al. (2000), the Micronycterini
consisted of the previously recognized genus
Micronycteris (sensu Koopman, 1993) with the genus
Maucrotus nested as a central taxon (Fig. 4). In our
tree, Macrotus (Fig. 2b) is basal even to the vampire
bats, forming the first clade of the Phyllostomidae.
Micronycteris is further subdivided, with five species
(schmidtorum, minuta, hirsuta, megalotis, and
brachyotis) forming one clade that is the second branch
after Macrotus (Fig. 2b). Three species of
Micronycteris (sensu Koopman, 1993), (sylvestris,
nicefori, and daviesi) are sister to Carollia, and this
group forms a clade that is basal to Stenodermatinae
which together are successively sister to Rhinophylla.
Micronycteris (sensu Koopman) was divided into five
genera by Simmons and Voss (1998) and we follow
that arrangement.

The implications of the RAG2 tree are not trivial
because the karyotype of Macrotus waterhousii was
concluded to be primitive for the family based on a
cladistical analysis of chromosomal data using Noctilio,
Mormoops, and Pteronotus as outgroups (Patton and
Baker, 1978). If indeed the karyotype of Macrotus 1s
primitive for the family, the placement of Macrotus
within Micronycteris (sensu Koopman, 1993) would
be problematic for the chromosomal data in the tree
generated by Wetterer et al. (2000). Wetterer et al.
(2000) addressed this issue by concluding that the
“chromosomal structure of Macrotus may have con-
verged on the state seen in Pteronotus and Noctilio. ..
this possibility affects the interpretation of all chromo-
somal data reported thus far as Macrotus was the primi-
tive reference taxon for most studies.” Further, they
used this explanation of chromosomal data to explain
other areas in their tree that were incongruent with the
chromosomal data (i.e. the potential chromosomal
synapomorphy that unites Glossophaga, Leptonycteris,
Brachyphylla, Erophylla, and Phyllonycteris — Baker
and Bass, 1979; Haiduk and Baker, 1982). In our gene
tree, Brachyphylla, Phyllonycteris, Glossophaga, and
Leptonycteris form a clade that is compatible with the
chromosomal data just as the position of Macrosus to
the remainder of the family is compatible with the pro-
posed primitive character-states for Macrotus
waterhousii. Our data suggest that Phyllostominae 1s
not monophyletic, contrary to Wetterer et al. (2000)
for two reasons. First, Macrotus and Micronycteris
(Micronycteris, Lampronycteris, and possibly
Neonycteris) are basal to the vampires and all other
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Figure 3. Bakeretal.’s consensus tree (1989; redrawn from their Fig. 2) based on morphology, karyology and immunology.

phyllostomid genera. Second, other genera in the
Phyllostominae (sensu Wetterer et al., 2000)
Lonchorhina and Glyphonycteris daviesi, G. sylvestris
and Trinycteris nicefori along with Carollia and the
Stenodermatinae to the exclusion of Vampyrum,
Chrotopterus, Mimon, Phylloderma, Phyllostomus,
Tonatia, Macrophyllum, and Trachops suggest that
Phyllostominae is not monophyletic.

There are several other places where the RAG2
gene tree contradicts that of Wetterer et al. (2000).
Carollia and Rhinophylla (the only two genera in
Carolliinae) do not form a monophyletic group in the
strict-consensus of our most-parsimonious trees.
Lonchophylla and Lionycteris, members of the
Glossophaginae (sensu Wetterer et al., 2000), do not
share a common ancestor with the remainder of their
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glossophagine taxa. The RAG2 gene data strongly
support the common ancestry of Mesophylla and
Vampyressa pusilla to the exclusion of Ectophylia.
Wetterer et al. (2000) concluded, based on essentially
no bootstrap or decay support, that Ectophylla and
Mesophylla were congeneric. RAG2 moderately sup-
ports that Ectophylla and Enchisthenes shared a com-
mon ancestor after diverging from a clade with Artibeus,
Dermanura and the short-faced bats (Fig. 2). This
supports the conclusions of Van Den Bussche et al.
(1993, 1998), Pumo et al. (1996) and Tandler et al.
(1997) that Enchisthenes is not a member of the
Dermanura-clade, a position supported by the analy-
sis of Wetterer et al. (2000).

Although differences exist between our tree and
the topology presented by Wetterer et al. (2000), RAG2
sequence data do support some relationships proposed
by Wettereret al. (2000): 1) topology of Micronycteris
[(sensu Simmons and Voss, 1998): M. hirsuta + M.
megalotis + M. minuta]; 2) monophyly of

Desmodontinae; 3) topology of Anoura + Hylonycteris
+ Choeroniscus + Choeronycteris + Musonycteris; 4)
monophyly of Lonchophylla and Lionycteris; 5) mono-
phyly of stenodermatines; and 6) monophyly of the
short-faced bats (Ametrida, Ardops, Ariteus, Centurio,
Phyllops, Pygoderma, Sphaeronycteris, and
Stenoderma).

Although trees produced from R4G2 DNA se-
quences are significantly different from topologies and
resultant classifications proposed by Baker et al. (1989)
and Wetterer et al. (2000), we feel it is inappropriate to
suggest major taxonomic changes based on the analy-
sis of a single gene tree. Clearly, further studies are
necessary to provide resolution to these contradictory
hypotheses. What is needed now are data from addi-
tional unlinked genes to see if these incongruences
between the RAG2 gene tree and other proposed phy-
logenies simply add to the morass of systematic hy-
potheses or if DNA sequence data will help solve this
complex systematic riddle.
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