The 18 mm² Classroom

T. Dallas, J. Berg, & R. Gale T = XAS TECHNANO TECH CENTER

Thesis & Outline

- Implementation and initial outcomes regarding the incorporation of Sandia's SUMMIT V MEMS design, visualization, and fabrication into the MEMS curriculum at Texas Tech University.
- TTU MEMS Curriculum
 SUMMiT V & University Alliance Program
 Results Spring 2005
 Conclusions

MEMS @ TTU

- NSF Combined Research and Curriculum Development Grant (Fall 2000)
 - Lab based Classes in EE/ME/Phys
 - Humidity Sensor
 - Accelerometer
 - PDMS Microfluidics
 - DNA Sensor-on-a-Chip
 - Lecture and Simulation Based
 - Simulation Based
 - Design (SUMMiT V) & Simulation Based
 - Design (SUMMiT V), Simulation, & Testing

University Alliance Program

- Site license for up to 50 seats of SUMMiT[™] design and visualization software for use in the lab or classroom by course participants
 - Sandia Advanced MEMS Design Tools and access to Sandia's remote design rule checker
 - Sandia 2D-3D Visualizer Tools & 3D Geometry Modeler for SUMMiT[™] design
- Instructional materials from all of Sandia's MEMS Short Courses
 - Sandia MEMS Introductory Short Course
 - Sandia MEMS Advanced Design Short Course
 - Sandia MEMS Reliability Short Course
- Training and technical support for the university Superuser.
 - Sandia MEMS Introductory Short Course
 - Sandia MEMS Advanced Design Short Course
- <u>UA members will receive released parts.</u>

source: http://www.sandia.gov/mstc/education/alliance/

MEMS II/III Spring 2005

?? Pertinent Questions ??

- What should we build?
- What can we build?
- What can we design and/or simulate in the time allotted (~3 months)?
- What will the students get out of all of this?

Henry Ford & SUMMIT V

"Any customer can have a car painted any color that he wants so long as it is black." – H. Ford

"You can use any material you want as long as it is polysilicon." - Sandia "You can use any polySi thickness you want as long as poly1 is 1.0 microns, Poly2 is 1.5 microns, etc." - Sandia

A starting place: Prior Art

Students were initially responsible for ...

- Literature search to see what has been published using SUMMiT V.
- Other polysilicon devices.
- New ideas.

The Tools

- AutoCAD
- Sandia plug-ins
 - Design Tools
 - Standard Parts Library
 - 2D Visualizer
 - 3D Visualizer
 - Design Rule Checker
- ANSYS

TTU 18 mm² Module Design Spring 2005

6.34 mm

University Alliance Program Spring 200

TTU Torsion uMirror Array

فلولها

2.82 mm

RA Nano Tech

Non-simulated Designs

smallTime (microClock)

 First student design

 microChain

 Modified and enhanced version of previous work by Sandia

 microAFM

- Prototype XY stage
- Pseudo AFM cantilever arm and tip

µAFM-Tip Assembly

SEM of µAFM & µClock

MEM:

100µm

Fech

µChain

Shad Holt – Session 1 (Wiggins Room): Wednesday 12:00pm

Chain, Sprocket and Guide

Chain Tensioner

SEM of µChain

Torsion µMicromirror Array

Mirror dimensions:

- Pitch: 32 µm
- Size: 25 µm x 25 µm @ poly3
- Spring length: 400 μm

Performance

- Analog translation: 0.36 µm
- Analog rotation: 8°
- Voltage: 50 V

ANSYS Modeling of Mirror

Line Model

Tech

Drive And Auxiliary Electrodes

Top View

Meshed Model

SEM of Mirrors

Outcomes

- Students learned a lot about MEMS design, simulation, and processing
- Won design competition
 - more importantly: design was fabricated and we now are in the process of testing the devices.
- Devices will benefit research journal articles
- Start of recurring process for MEMS class activities
- Generated interest in next class of students

Conclusions

- Students motivated by contest
- Students motivated by tie-in to own research
- Students discover difficulty in design
- Fabricated devices will allow testing/characterization by subsequent classes
- "Curriculum" can be tailored to each students needs and interests.

Acknowledgements

MEMS II/III Students – Spring 2005

- Phillip Beverly, Shad Holt, Meetul Goyal, Erika Washington, Balasaheb Kawade, Vinayak Raja, Ananth Krishnan, Yeong-Jer Chen, Ranjith Podival, Shashikant Shrimali
- Lu Tian and Jongsin Yun (Imaging and Electronics)
- TTU TLTC Grant
- NSF ECS #0326218
- Sandia MESA Group

