Energy Resolution and Timing Performance Studies of a W-CeF₃ Sampling Calorimeter prototype with a Wavelength-Shifting Fiber Readout

Francesca Nessi-Tedaldi ETH Zürich on behalf of the W-CeF₃ R&D group

N. Akchurin^j, R. Becker^a, B. Betev^a, L. Bianchini^a, L. Brianza^b, V. Candelise^{e,h}, F. Cavallari^c, N. Chiodini^{b,i},
I. Dafinei^c, G. Della Ricca^{e,h}, D. del Re^{c,g}, M. Diemoz^c, G. D'Imperio^{c,g}, G. Dissertori^a, L. Djambazov^a, M. Donegà^a,
M. Droege^a, M. Fasoli^{b,i}, J. Faulkner^j, S. Gelli^{c,g}, A. Ghezzi^b, P. Govoni^b, C. Haller^a, U. Horisberger^a, Th. Klijnsma^a,
W. Lustermann^a, A. Marini^a, A. Martelli^{b,f}, D. Meister^a, F. Micheli^a, P. Meridiani^c, V. Monti^d, F. Nessi-Tedaldi^a,
M. Nuccetelli^c, G. Organtini^{c,g}, F. Pandolfi^a, R. Paramatti^{c,g}, N. Pastrone^d, F. Pellegrino^c, M. Peruzzi^a,
S. Pigazzini^{b,f}, M. Quittnat^a, S. Rahatlou^{c,g}, C. Rovelli^c, F. Santanastasio^{c,g}, M. Schönenberger^a, L. Soffi^{c,g},
T. Tabarelli de Fatis^{b,f}, P. Trapani^d, F. Vazzoler^{e,h}, A. Vedda^{b,i}

a) ETH Zürich
INFN: b) Sez. Milano-Bicocca, c) Sez. Roma, d) Sez. Torino, e) Sez. Trieste
f) Università di Milano-Bicocca
g) Università di Roma "La Sapienza"
h) Università di Trieste
i) Dip. Scienza dei Materiali, Università di Milano-Bicocca

Int. Conf. on Technology and Instrumentation in Particle Physics 2017

Beijing, May 25th, 2017

Original motivation: HL-LHC radiation environment in CMS

- + HL-LHC (~2025): a harsh environment for electromagnetic calorimetry (ECAL)
 - γ dose rate up to 50 Gy/h, dose up to ~1 MGy (at η = 3)
 - Hadron fluences up to $\sim 4x10^{14}$ cm⁻² (average energy a few GeV)
 - Neutron fluences up to ~5x10¹⁵ cm⁻² (average energy 1 MeV)
 - Radiation-induced transparency losses in PbWO₄ resulting in an energy resolution degradation
 - Upgrade for HL-LHC: complete replacement of ECAL endcaps + partial ECAL barrel upgrade Hadron fluence [cm⁻²], 14 TeV pp, 100 fb⁻¹

Strategy: a simple geometry

F. N.-T. et al., CALOR 2014, JoP Conf. Ser. 587 (2015) 012039

- Use an inorganic scintillator that is adequately radiation-tolerant
- Build a sampling calorimeter
- Extract the light by WLS fibers running along depolished chamfers
 - minimising the machining and construction complexity, thus saving on costs
 - minimising the light path, thus reduces radiation damage effects
 - optimising the Molière radius, thus cell size, for pile-up mitigation
- Two setups:
 - **Single-channel prototype** → energy resolution, uniformity
 - 5 x 3 channel matrix \rightarrow angular dependence

ETH Zürich

CeF₃ crystal scintillator

[%] Iransmittance

Density [g/cm ³]	6.16	
Refractive index	1.62	
Peak luminescence [nm]	340	← UV
Decay time [ns]	~30	← fast
dLY/dT [%/ºC]	0.14	

Ionising radiation:

- Can be made to recover
- Studied in the '90 for CMS¹⁾
- Studies performed on new crystals • from Tokuyama, Japan²⁾

Hadron fluences:

- Can be made to recover **no build-up** ullet
- Proven on 20 y old crystal³⁾ •

1) E. Auffray (CERN) et al., NIM A 383 (1996) 367-390 2) F. N.-T. et al., SCINT 2015, Berkeley (USA)

3) G. Dissertori et al., NIM A 622 (2010) 41-48

Single-channel prototype

- ★ Dimensions chosen within CMS ECAL PbWO₄ crystals envelope
 - (10 mm CeF₃ + 3 mm W) x 15 layers = $19.5 \text{ cm} = 25 \text{ X}_0$
 - depolished chamfers, 3 mm wide, accomodate 1 mm \varnothing fibers
 - Effective $R_M = 23 \text{ mm}$, transverse dimensions $24 \text{ mm} \times 24 \text{ mm}$, SF = 38%
 - For the tests in beam, surrounded by BGO crystals for shower containment
 - Kuraray 3HF-SC (1500) plastic fibers as WLS
 - Each WLS fiber read out independently by a PMT
 - Energy resolution and uniformity studies

R. Becker et al., NIM A 804 (2015) 79 - 83

Beam Energy [GeV]

W/CeF₃ channel Response Uniformity

- Response vs impact point can be studied through precise electron tracking. Although Light Collection effects are not corrected for, we observe:
 - Uniform response across central part
 of the channel
 - Lateral non-uniformities dominated by shower non-containment
- Data/simulation in good agreement (within 5%)
- Agreement on non-central region can be improved:
 - Light collection being included in the simulation

R. Becker et al., NIM A 804 (2015) 79 - 83

WLS: Ce-doped quartz fibres

- Ce-doped photoluminescent quartz (Ce:SiO₂) is a good WLS candidate with CeF₃:
 - Ce:SiO₂ core (where light is produced) + cladding for light transport
- Ce:SiO₂ fibres developed for application to dosimetry¹):
 - Radiation hardness anticipated up to fluences >10¹⁵ cm⁻²
 - Absorption spectrum matches CeF₃ emission
 - Suitable as a WLS with CeF3
 - Fast time response (30 ns), green emission
 - Development of rad-hard Ce:SiO₂ in progress

1) A. Vedda, N. Chiodini, M. Fasoli et al., Appl. Phys. Lett., Vol. 85 (2004) 6356 and priv. comm. (U. Milano Bicocca)

Tests with Ce:SiO₂ fibres

+ CERN SPS H4 beam, June 2015

- ★ A bundle of SiO₂:Ce fibres in each of 3 corners:
 - 1 bundle from U. Milano-Bicocca¹⁾
 - 2 bundles from Polymicro/Texas Tech ²⁾
- One Kuraray 3HF plastic fibre as reference

WLS efficiency is lower wrt Kuraray fibres:

- bundle of Ce-doped quartz fibres: factor
 ~10 less light than a plastic fibre
- smaller diameter fibres: bundle of 6 SiO₂:Ce fibres in each corner
- 1) A. Vedda, N. Chiodini, M. Fasoli et al., Appl. Phys. Lett., Vol. 85 (2004) 6356 and priv. comm.
- 2) Jordan Damgov, N. Akchurin et al., SCINT2015, Berkeley (USA)

Energy resolution with Ce:SiO₂ WLS fibres

- Central events selection: 3 x 3 mm² of front face
- Slightly different energy resolution for the different bundles of Ce:SiO₂ fibres
- Worse resolution compared to plastic fibres, consistent with ratio of photoluminescent light yields

F. Micheli et al., IEEE NSS 2015, San Diego (USA)

Energy resolution vs. energy

- Resolution with Ce:SiO₂ WLS fibres
- Dominated by the photoluminescent light yield, a factor ~10 lower than for Kuraray plastic fibers
- Higher light-yield fibres would improve the energy resolution

F. Micheli (ETH) et al., IEEE NSS 2015, San Diego (USA)

Signal shape characteristics

- ◆ PMT + Digitiser @ 2.5 GHz (400 ns window) → full waveform acquired
- SiO₂:Ce fibres exhibit:
 - WLS emission time constant typical of Cerium (folded in twice!)
 - a fast, Cherenkov component with a rise time of a few ns (dominated by PMT response time)
 - → applications in timing measurements? Perform dedicated timing studies

F. Micheli (ETH) et al., IEEE NSS 2015, San Diego (USA)

Timing studies with Ce:SiO₂

*** CERN SPS H4 beam, October 2015**

- ★ One "blind" bundle of Ce:SiO₂ fibers: black paper inserted between it and the W-CeF₃ stack
 - No WLS signal, collect just Cherenkov and direct scintillation signal from the fiber
 - Fiber bundle read out with a Hamamatsu
 SiPM
 - Reference time from MicroChannelPlate (MCP) device¹⁾ in front of channel, which has time resolution 20 - 30 ps, negligible

1) L. Brianza et al., Nucl. Instr. Meth. A797 (2015) 216-221

Ce:SiO₂ signal amplitude map

- Data taken with beam centred on blind Ce:SiO₂ fiber bundle, $1 \times 1 \text{ cm}^2$ trigger
- Ce:SiO₂ fibers pulse amplitude map using impact point coordinates from beam hodoscope

★ Amplitude of pulses used to identify event category:

"Fiber" event: beam in fiber region, while signal from Kuraray fiber < threshold

Timing resolution

- The timing resolution depends on amplitude
- The beam energy is irrelevant
- Merge time resolution data for all energies and estimate the resolution for events on fiber and events on channel
- For amplitude > 100 ADC counts, timing resolution
 σt ~ 100 ps

W-CeF₃ prototype matrix

- ◆ 5 x 3 channel matrix built, for ultimate energy and angular resolution studies
- $12x(6 \text{ mm CeF}_3 + 6 \text{ mm W}) \approx 25X_0 (= 144 \text{ mm})$
- High granularity: effective R_M = 17 mm (for pile-up rejection), transverse dimensions 17 mm x 17 mm, SF = 22%

- 3 mm-wide, depolished chamfers as before, to favour scintillation light escape towards WLS, dimensioned to accommodate fibres
- WLS Kuraray 3HF-SC fibres for readout
- 4 fibres signals onto one photodetector but for one inner channel, where they are read out independently
- APD readout, Hamamatsu S8664-55, 5 x 5 mm², as for CMS ECAL barrel

First results

+ CERN SPS H4 beam, June 2016

- Energy resolution studied for central events (4 x 4 mm²)
- Single channel resolution 2% at 100 GeV
- Result scales as expected with the sampling fraction wrt single-channel prototype

- Single-channel stochastic term compatible with 20%/
- Considerable electronic noise would require new readout

Francesca Nessi-Tedaldi

Fibres exposed to 365 nm light

\$\$ \$ \$ \$ \$ \$ \$ \$ \$

Polymicro type IV

2017 Tests with new Ce:SiO₂ fibres

+ CERN SPS H4 beam, June 2017

- ◆ A bundle of SiO₂:Ce fibres in each of 3 corners:
 - 1 bundle from U. Milano-Bicocca¹⁾
 - 2 bundles of type IV fibers from Polymicro/ Texas Tech ²)
- One Kuraray 3HF plastic fibre as reference
 - Polymicro type IV fibers:
 - different Ce-distribution (on a ring)
 - higher WLS efficiency expected through optimised light transport

 A. Vedda, N. Chiodini, M. Fasoli et al., Appl. Phys. Lett., Vol. 85 (2004) 6356 and priv. comm.
 N. Akchurin, this conference

18

Conclusions

- An innovative sampling calorimeter geometry has been built and exposed to particle beams up to 150 GeV
- Materials used (Cerium Fluoride, Ce-doped quartz) potentially suitable for HL-LHC running in response time, radiation hardness, signal amplitudes, granularity
- ◆ For cell dimensions as in present CMS ECAL (24 x 24 mm², R_M=23 mm), and sampling fraction 38%, 5x5 energy resolution: ~10%/√E
- For high-granularity cell dimensions (17 x 17 mm², R_M=17 mm) and sampling fraction 22%, analysis is in progress
- Timing resolution <100 ps (preliminary)
- Further results using new generation Ce:SiO₂ fibers expected on energy resolution

(a) For cosmic muons: pedestal-subtracted ADC spectrum for one fiber signal of the W-CeF₃ tower. Q₁ is the fitted position of the single photoelectron peak, σ_1 is its width.

1) R. Becker, F. N.-T. et al., 2015 JINST 10 P07002

ETH Zürich

Low-energy performance

Frascati Beam Test Facility Bunched electron beam 98 - 491 MeV

- ★ Single channel prototype:
 - Channel surrounded by BGO crystals
 - Kuraray 3HF-SC (1500) fibers
 - Hamamatsu R1450 PMT
 - Fibers read out individually
- ★ Single channel energy resolution dominated by lateral containment
 - Good agreement between data and Monte Carlo
 - No sensitivity to constant term
- Monte Carlo extrapolation to 5 x 5 channel matrix shows that resolution better than 10%/√E is achievable
- R. Becker et al., 2015 JINST 10 P07002

