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CERN, LHC, CMS, and TTU

European council for nuclear research (CERN) hosts the large hadron collider (LHC) facility
where particles are accelerated (in opposite directions) at very high speed (~ speed of light) in
two rings.

The particle beams inside the LHC are made to collide at the particle detectors (CMS, ATLAS,
...) creating a situation similar to the big-bang, the starting point of the universe.

<& #c is one of the CMS detector (experiment)
3 institute. CMS detector is cylindrical in shape
with the diameter of ~15 m and the length of
~29 m.
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CMS HGCal

CMS will replace its current endcap with a high granularity
calorimeter (HGCal) in 2025.

Present CMS endcap calorimeters HGCAL design
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Key Parameters:

TTU shares the responsibility of making ~5000 Si
modules. This activity is currently undergoing at a =
cleanroom facility in Advanced Particle Detector lab at = ~500m?2 of scintillators

Reese Center. = ~27000 Si modules (8”)

m ~600m:Z2 of Si sensors



HGCal silicon module

Module Structure Electronics circuit board (aka hexaboard) w/ HGCROC
\‘ ASIC to read signal from silicon sensor.
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Quality control of bond holes

After the assembly of the hexaboard, following steps
needs to be done:

e wire bonding from hexaboard to silicon,

e encapsulation of the bonds.

Quality control at different steps:
m before wire bonding:

e check for the presence of glue: the presence
of glue may damage the wedge/head of the
wirebond machine, and/or result in bad bond.

m after wirebonding and before pull testing:

e check for the number of wires: all wires, one-
thirds, two-thirds wires, or no wires. Also
check for the broken wires, if any.

m after pull testing:
e check for broken wires.
m after encapsulation.

TwoThirdsWires

# of bond holes (2 mm in diameter, and O(~25um) thick bonds) to QC:
85 holes/modules x (27,000 + spares (modules)) x 3 = 6,885,000 holes + (more in spares.) 5



Use of ML for QC of bond holes

s Manual QC is cumbersome and prone to human errors.
m Started exploring the ML technique to facilitate this task.
e Deep-learning based computer vision: image classification with CNN
e Exercise building our own model
e Implement the transfer learning: originally trained on
e Using Tensorflow and keras. :
m Goal: to have a ML model which can predict the quality (good or bad (w/ what flaws)) of the bond
holes.
m Challenges:
e size of data/images: there are only a few prototype modules built which we can use for this task.
e Currently, we have been augmenting the images (replicas with rotations) to generate large
sample size.
e links between the categories i.e. same image may fall under multiple categories: this will be
addressed with multi-label classification.



Performance of the MobileNet v2

Architecture: Datasets:
m 156 layers, Total parameters: 3,538,984 = Training (~3000), validation (~800), and testing (~450)
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Almost all of the missed predictions turned out to be the subject of multilabel classification. /



Multi-label problem

An image having features that belong to multiple categories such as glue and broken wires, etc.
An example is shown in the images below.

Actual: Glue
['AllWires', 'BrokenWires', 'FooBar’, 'Glue’, 'NoWires', 'OneThirdsWires', "TwoThirdsWires']




Multi-label classification summary

m A dataframe is prepared turning on the state for the labels that is present in the particular image.

m  The network is trained with multilabel setup but using the same transfer learning model.
m Metrics for multilabel performance assessment:
m precision: true positive /(true positive + false positive)
m recall: true positive / (true positive + false negative)
m F-1 score: harmonic mean of precision and recall.
m Dbest (worst): score 1 (0)

Labels precision recall f-1 score
All wires 0.99 096 0.98
Broken wires 0.94 098 0.96
Foobar 0.99 1.00 1.00
Glue 0.99 098 0.99
No wires 1.00 0.87 0.93
One third wires 1.00 1.00 1.00
Two third wires  0.99 1.00 0.99




Quality assessment of components: sensor

QC of silicon sensor

No-scratch vs scratch

Binary classification

Transfer learning: MobileNetV2
Overall: 88.35% correct

False negative: ~9%

False positive: ~3%

Logistic regression / Sigmoid function
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Summary

The quality control of the silicon module assembly using the image classification with CNN is in
progress.
The performance of the transfer learning models in case of both the multi-class and multi-label

classification seems quite promising.
In progress:

m use of segmentation techniques (YOLO algorithm)

= anomaly detection (Autoencoder)
We plan to study the QC of PCB/hexaboard with the segmentation technique: to check if any
components are missing or damaged.
Can we transfer this learning to other projects as well? This is one of the goals of our feasibility
study.
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