Quantum Oscillations and
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Classical/Semiclassical Transport
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Density of States
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Not all Fermi surfaces are spheres and circles! These are just textbook examples!






Electron Experiencing Lorentz Force
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samples, carriers can form a cyclotron
Seeger, Semiconductor Physics (2004) orbit



What happens if you solve guantum

mechanically?
What are you solving?
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E, = ha)c (n + E) Same as Harmonic Oscillator!



Density of States
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Onsager Relation
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Oscillation with 1/B and Frequency is proportional to the Fermi surface size



This is pretty cool but is it useful?
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This is pretty cool but is it useful 2 ?




It Fermi Surface is Cylindrical or 2D
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Reality: Disorder and Temperature Broadening
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Some Interesting Questions

* Roughly Speaking, when does the Quantum Oscillations Start? Can
one estimate what quality of the sample is needed to see quantum
oscillations at 9T?

* By eyeballing the oscillations, can one estimate the Frequency?

* From the frequency, what is the carrier density? (Assume the Fermi
surface is a sphere)

* Does this agree with the Hall effect data? (Thickness = 200 nm)



Ballistic Transport

* What happens if the electrons do not scatter in the channel? Is there
no voltage drop?
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 How should we understand current and voltage (Ohm’s law)?
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Two-dimensional Electron Gas (2DEG)

* What is a 2DEG?
* Electrons are confined so that it has no z- degree of freedom.

 How do you realize 2DEG systems?
* By confinement: Designing a quantum well



2DEG under Magnetic Field?
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Hall effect (Rxy) is not a straight line.
There are plateaus

h/e?=25.812807 kOhm

Rxx don’t look like cosines: drops to zero



What happens in 2D?

hw,




What happens in 2D?

Sample boundary



What happens in 2D? Classical Picture
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h ballistic regime)



What if we apply bias Voltage with leads?
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What if we apply bias Voltage with leads?
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How do you make 2DEGsS?

e Quantum Well Structure



Delta-doped GaAs/AlGaAs Hetrostructures with a 2DEG

GaAs/AlGaAs
Heterostruture
20-nm GaAs
200-nm AlGaAs

A E O EEEOEOEOESSO..-.-.- - si o-doping
80-nm AlGaAs

2700-nm GaAs

Semi-insulating
GaAs (001) substrate
/\/\/\/\

Thin film grown by Loren Pfeiffer at Princeton University
We used three different samples that have different doping density

Doping density = 1.5x10%? (cm)
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Remote Modulation Doping

* Carriers are separated from impurities.

* Forms a 2DEG.

r —

* Mobility is governed by the potential of
donors!




Remote Modulation Doping

Lattice-matched Heterostructure
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Type 1 alighnment



Remote Modulation Doping

2DEG Formation

n-doped AlGaAs Undoped GaAs




Remote Modulation Doping

Adding Spacer Undoped-AlGaAs




How to actually calcultate?
Self Consistent Method

p(x) = (Np —n)e

Creates voltage that

VE = —g bends the

l conduction band

Ec(x)

I

ne(x)

Schrodinger
Equation to -
calculate the

Quantum Well




https://www3.nd.edu/~gsnider/
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Department of Electrical Engineering
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Tel: (574) 631-4148
FAX: (574) 631-4393
e-mail: snider.7@ND.edu

* Nanodevices Group Website This is the group website that actually gets maintained!

‘Welcome to Greg Snider's WWW HomePage! You will find here information about my research and teaching interestes. as well as about my educational background. Just click the corresponding item below.
My apologies for "Missing Links", but things are still under construction.

s Education and Background

s QCA Data
+ Research and Publications
s Teaching and Courses

+ Notre Dame Nanofabrication Facility

1D Poisson 1s a program for calculating energy band diagrams for semiconductor structures. It 15 a FreeWare program that I've written which solves the one-dimensional Poisson and Schrodinger equations self-consistently. The program 1s quite user friendly. and runs on a Macintosh, Linux or PC.
These are the current versions of the program that have a number of nice new features. Click on one of the links below to download an archive containing a version of the program. The Windows and Linux versions have all the same features and use the same files as the Mac version. All currently
run as terminal applications.

Download Mac OSX {Umiversal) 1D Poisson (zip file) (Mac version beta 811)
Download PC 1D Poisson (zip file) (PC version beta §1)

Download PC 1D Poisson (zip file) (PC version beta 8k command line)
Please contact me 1f you would like a Linux version.

.
.
.
.
This page is maimained by Gregory Snider.

Numerical Solver is available for free!



Hall Bar Fabrication

20-nm GaAs Cap

200-nm AlGaAs

Si-delta doping
20-nm GaAs Cap

200-nm AlGaAs

80-nm AlGaAs

Si-delta doping Photolithography
80-nm AlGaAs And
Etch 2700-nm GaAs

2700-nm GaAs
Semi-insulating

As (001) substrate

Semi-insulating
GaAs (001) substrate

Active Region of
Hall Voltage

Width

Etch away the unwanted region so that only the Hall bar pattern forms a 2DEG
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Interesting Questions

e WhereisN=17

 What is the carrier density of this 2DEG?

 What doesn’t look right in this data?



Remote Modulation Doping

Adding Spacer Undoped-AlGaAs




Parallel Conduction

Q)

GaAs

AlGaAs

GaAs

Si 6-doping

2DEG

« Additional conduction channel is introduced to the system if
the doping density is too large
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Quantum Hall Effect: Ancestor of Topological Insulators

What is topological? Topology of the wave function Hilbert Space
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3D Topological Insulators

Band in Lattice

Individual Atoms

(a) £ A
— <\_/ \ / Trivial Insulator
_____________________ E F ---------............EF

(b) E c

A

/ Topological
>\ e Insulator

Rl RWithout magnetic field

(protected by Time Reversal
Symmetry)

Driven by strong spin-orbit coupling.

Band Inversion

41



Theory
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Topological Insulators in Three Dimensions
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