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Critical phenomena in microgravity: Past, present, and future
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This review provides an overview of the progress in using the low-gravity environment of space to
explore critical phenomena and test modern theoretical predictions. Gravity-induced variations in the
hydrostatic pressure and the resulting density gradients adversely affect ground-based measurements
near fluid critical points. Performing measurements in a low-gravity environment can significantly
reduce these difficulties. A number of significant experiments have been performed in low-Earth
orbit. Experiments near the lambda transition in liquid helium explored the regime of large
correlation lengths and tested the theoretical predictions to a level of precision that could not be
obtained on Earth. Other studies have validated theoretical predictions for the divergence in the
viscosity as well as the unexpected critical speeding up of the thermal equilibrium process in pure
fluids near the liquid-gas critical point. We describe the scientific content of previously flown
low-gravity investigations of critical phenomena as well as those in the development stage, and
associated ground-based work.
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of an order parameter was introduced by Landau (1937).
This classical or mean-field approach made seemingly
innocuous assumptions that the free energy in the criti-
cal region had an analytic expansion in the order param-
eter and that thermodynamic fluctuations could be ne-
glected. The minimization of this free energy led to an
equation of state and explicit predictions for the critical
exponents that characterize the singular behavior of
thermodynamic properties as the critical point is ap-
proached.

As more precise experimental techniques were devel-
oped, it became apparent that the behavior of real sys-
tems was inconsistent with the predictions of this model.
Guggenheim (1945) demonstrated this difficulty by
showing that the shape of the coexistence curve of a
fluid system is not parabolic as predicted by the theory.
On the theoretical side, Onsager (1944) obtained the ex-
act solution of the two-dimensional (2D) Ising model
which also shows significantly different singular behav-
ior. This solution predicts that the specific heat in zero
magnetic field will diverge logarithmically at the critical
point, in contrast to the prediction of mean-field theory,
which allows only a step discontinuity. In the following
years, experiments (Buckingham and Fairbank, 1961;
Voronel et al., 1964; Moldover and Little, 1965) and nu-
merical calculations (see Fisher, 1964, for a review) led
to the scaling concept (Widom, 1965a, 1965b), which
used a homogeneous functional form for the thermody-
namic potential to define relationships between the criti-
cal exponents associated with various singular quanti-
ties. Also, the concept of universality was introduced,
combining different critical-point systems into discrete
classes having the same singular behavior (Kadanoff,
1966; Griffiths, 1970b; Griffiths and Wheeler, 1970).

A major breakthrough came with the application of
the renormalization-group (RG) technique to the theory
of critical phenomena by Wilson (1971a, 1971b) and co-
workers (Wilson and Fisher, 1972; Wilson and Kogut,
1972). This approach established the theoretical founda-
tion for the scaling and universality concepts using the
ideas of phase-space flows and fixed points. By combin-
ing RG ideas with field theoretic methods, new compu-
tational tools were developed that confirmed earlier re-
sults and led to many further predictions. The RG
approach avoids the analyticity assumption and replaces
it with a model of the growing thermodynamic fluctua-
tion effects as the critical point is approached. The
theory was also extended to describe the behavior of
dynamic properties such as thermal conductivity and vis-
cosity near the critical point (Halperin et al, 1976a,
1976b). Wilson (1971a) also noted that the RG method
could be used to describe corrections to scaling. Wegner
(1972) used this approach to determine the form of the
corrections to the asymptotic scaling law behavior as
one moves away from a critical point. More recently,
detailed theoretical models have been developed to de-
scribe the crossover from the asymptotic behavior close
to a critical point to the mean-field behavior farther
away both in the case of static properties (Bagnuls and
Bervillier, 1985; Dohm, 1985a, 1987; Bagnuls et al., 1987;
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Schloms and Dohm, 1989) and for dynamic properties
(Dohm and Folk, 1980, 1981).

Modern experimental research on static critical phe-
nomena aims to test the RG theory not only in the
asymptotic regime but also in the crossover regime,
where corrections to scaling and background contribu-
tions compete in a complex manner. Near the critical
point, theory predicts that the free energy, which is usu-
ally a function of two independent variables, can be ex-
pressed as a universal scaling function of one scaled vari-
able and a noncritical background. It is important to
note that this simple property of two-scale-factor univer-
sality is valid for isotropic systems like fluids but not for
anisotropic systems with noncubic symmetry (Chen and
Dohm, 2004). Ideally, microgravity experiments aim to
precisely determine critical exponents and critical ampli-
tudes in the asymptotic region to test the most central
theoretical predictions. Once the asymptotic values are
known, the crossover behavior for a given fluid can be
determined and compared with crossover theories.

More recently, the dynamics of phase change in bulk
and finite-size systems have also been explored in well-
controlled experiments near critical points (Weichman et
al.,2003). These results display far more complex behav-
ior than is seen in the static properties, and while the
results do not follow the simple predictions of scaling
and universality, they are expected to obey generaliza-
tions of these concepts.

In more recent times, it has become clear that deter-
mining the limiting asymptotic behavior of various ther-
mophysical properties requires precision measurements
very close to second-order phase transitions where the
ordered phase transforms in a continuous way into the
disordered phase. Measurements in solids close to mag-
netic critical points are adversely affected by impurities
and crystal imperfections, while gravity distorts the local
density and hinders measurements in pure fluids (Vor-
onel and Gitterman, 1965; Levelt Sengers et al., 1977). In
fluids, many ground-based measurements have been per-
formed in samples of small vertical height to minimize
gravity effects. However, if the sample height is too
small, finite-size effects become important as the transi-
tion is approached. Thus, in both solid and fluid systems,
measurements become significantly distorted close to a
critical point. The interpretation of precision measure-
ments farther away from the transition must also take
nonasymptotic corrections into account. These problems
have made it difficult to perform accurate experiments
to test modern theoretical predictions of critical phe-
nomena with high precision.

The effect of gravity near the gas-liquid critical point
was reviewed by Moldover et al. (1979). These authors
concluded that, in space, an improvement in tempera-
ture resolution of three to four orders of magnitude was
achievable before gravity effects again became large, de-
pending on the details of the experiment. Efforts to take
advantage of a low-gravity environment began in the
mid-1980s with sounding rockets that provided a very
short period (~6 min) of reduced gravity. With the de-
velopment of the Space Shuttle in 1981, more ambitious
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reduced-gravity studies could be performed during
flights of two-week duration. More recently, the Russian
MIR Space Station has permitted longer-duration stud-
ies to be performed. Many government agencies have
engaged in cooperative agreements to develop and use
flight facilities because of the continuing need for more
sophisticated and costly apparatus to perform studies in
microgravity (Zappoli et al., 2003). In a few years, the
International Space Station (ISS) should be completed,
allowing further long-duration studies. Many groups
have been planning and developing facilities for future
critical-phenomena studies on the ISS. In recent years,
the U.S. National Aeronautics and Space Administra-
tion (NASA) provided funding for the development
of the Low Temperature Microgravity Physics Facility
(LTMPF) for operation on the ISS. Future investigations
of the *He lambda transition, the *He liquid-gas critical
point, and the *He-*He tricritical point are planned for
this facility to test various predictions of RG theory.

In this review, we focus on the work that has been
performed in microgravity since publication of the re-
view by Moldover et al. (1979). The main thrust of the
present work is the investigation of the asymptotic re-
gion close to the transition where the correlation length
becomes large, and its relationship to the crossover re-
gion. In Sec. II, we give a brief theoretical introduction
to critical-phenomena concepts and describe how grav-
ity can affect measurements close to fluid critical points.
Past, present, and future flight facilities are described in
Sec. I1I, and some special precautions required for per-
forming experimental studies in a microgravity environ-
ment are emphasized. In Secs. IV-VI, we describe flight
experiments that have been designed to investigate vari-
ous aspects of bulk critical phenomena in the liquid-gas
systems, at the “He lambda transition, and near the
SHe-*He tricritical point. For completeness, in Sec. VII
we cover finite-size studies previously performed in a
space environment or planned for future space flights. It
is not the intent of this review to cover all previous
ground-based critical-phenomena studies. Instead, we
provide a limited review of important theoretical and
experimental milestones that are pertinent to studies in
a microgravity environment. More complete guides to
the literature on ground-based critical phenomena can
be found in Stanley (1971), Anisimov (1991), Domb
(1996), and Tobochnik (2001). Many reviews of specific
aspects in this field can be found in the series Phase
Transitions and Critical Phenomena, edited by C. Domb
and M. S. Green (later replaced by J. L. Lebowitz) and
published by Academic Press, London.

II. THEORETICAL BACKGROUND

In this section, we briefly review the theoretical back-
ground relevant to the experiments discussed below. The
modern theory of critical phenomena was developed
based on two main ideas. First, it was assumed that the
asymptotic behavior as a critical point is approached is
independent of the interatomic potential. Second, the
singular behavior in the asymptotic region was assumed
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to be due to the growth of fluctuations in the order pa-
rameter. These ideas led to the development of the scal-
ing laws and the universality concept that were subse-
quently derived rigorously within the RG theory
(Wilson, 1971a, 1971b). This theory also opened up the
possibility of calculating the details of the universal criti-
cal behavior using analytical techniques.

A key feature of a critical phase transition is scale
invariance in the fluctuations of the order parameter,
which implies fractal-like self-similarity between large-
and small-scale fluctuations. Scale invariance also occurs
in many systems that are still not completely under-
stood, such as the Universe at the onset of the “Big
Bang” as currently envisioned by cosmologists (Guth
and Pi, 1982), the clustering of galaxies (Peebles, 1980;
Jones et al., 2004), massless fields in elementary particle
physics (Jackiw, 1972; Meyer-Ortmanns, 1996), the distri-
bution of earthquakes (Gutenberg and Richter, 1954),
and turbulence in fluids and plasmas (Kolmogorov, 1941;
Batchelor, 1970). In each of these examples, there is a
wide range of some relevant scale over which properties
of interest vary as a power law of the scale. The RG
theory is the most successful approach developed thus
far to derive and explore the relations between the char-
acteristics of a system on many different length scales.

Singular behavior near a critical point can occur in
both static and dynamic properties. Static properties
such as heat capacity, compressibility, and thermal ex-
pansion coefficient are determined by single-time corre-
lation functions, while dynamic properties such as ther-
mal conductivity and viscosity are determined by
equilibrium multitime correlation functions, and hence
depend more directly on the equations of motion (Ho-
henberg and Halperin, 1977). Both static and dynamic
critical phenomena affected by gravity will be discussed
in this review.

A. Critical exponents and scaling

Critical phenomena can be described at various levels
of development (Widom, 1965b; Fisher, 1966; Kadanoff,
1966, 1971; Griffiths, 1967). Thermophysical quantities
typically exhibit power-law behavior in the asymptotic
region very close to a critical point, depending on the
thermodynamic path by which it is approached. For ex-
ample, near a liquid-gas critical point the isothermal sus-
ceptibility y; diverges as x7=I"jt"? [where the reduced
temperature (=(T7T-T,)/T.] along a path of constant
critical density (critical isochore, p=p,) above the transi-
tion, and as x;=I|¢f"” along either the liquid or gas
side of the coexistence curve below the transition. I'j are
the leading asymptotic critical amplitudes, with the su-
perscript + defining the single- (+) or two-phase (—) re-
gion. Along the path of constant critical temperature
(critical isotherm, T=T.), the variation of pressure with
density is given by AP=DAp|Ap|®!, where AP=(P
—P.)/P,. is the reduced pressure and Ap=(p—p.)/p, is
the reduced density. Here the quantities vy, y', and & are
critical exponents, which are predicted to be invariant
from system to system.
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Many inequalities among different critical exponents
were derived in the early stages of theoretical develop-
ment of critical phenomena (Rushbrooke, 1963; Grif-
fiths, 1965a, 1965b; Josephson, 1967; Coopersmith,
1968a, 1968b; Buckingham and Gunton, 1969; Fisher,
1969). Early experimental measurements, however, sug-
gested that the inequalities might be equalities. While
there has been no general rigorous proof that any of the
inequalities are actually equalities, proofs for various ex-
actly soluble models do exist and the exponent equali-
ties do follow from the RG fixed-point picture. This
equality conjecture has led to the homogeneous function
approach (or static scaling hypothesis) to define the basic
form of the thermodynamic potential (Widom, 1965a,
1965b; Kadanoff et al., 1967). The static scaling hypoth-
esis asserts that any thermodynamic potential can be
written as a generalized homogeneous function of its ar-
guments (Stanley, 1971). For a given property, the scal-
ing hypothesis predicts that the critical exponents above
and below the transition are equal (y=7v', etc.).

This approach leads to exact relations between critical
exponents, called scaling laws, and to the prediction that
there are only two independent critical exponents. A
well-known example of a scaling law is the Rushbrooke
(1963) relation

a+2B+vy=2, (1)
where « is the constant-volume specific-heat exponent
and B describes the shape of the coexistence curve. This
scaling law allows one to determine the critical exponent
B, for example, once the values of « and 7y are known.
The homogeneity assumption also predicts that mea-
surements of a given quantity along various thermody-
namic paths can be scaled in such a way that all experi-
mental data should overlap onto a single curve.

A further advancement occurred with the develop-
ment of the hyperscaling relations, in which the critical
exponents are predicted to depend in specified ways on
the behavior of spatial correlations in the system and on
the system’s spatial dimensionality d. An example of a
hyperscaling relation, developed by Buckingham and

Gunton (1969), is
d+2-17u
=—". (2)
d-2+7y

The exponent 7 describes the power-law behavior of the
two-point correlation function (a fluctuation-response
relation) at the critical point. Another useful hyperscal-
ing relation, developed by Josephson (1967), is given by

a=2-dv, 3)

where v is the critical exponent for the correlation
length, &t

B. Universality

Early insights about the possible analogy between the
liquid-gas critical point and the Ising model, magnetism,

liquid *He, and order-disorder transitions in binary al-
loys were made by Onsager (1944), Tisza (1948), and Lee
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and Yang (1952). The resulting universality concept
states that all phase transitions can be divided into sev-
eral distinct classes, and within a given class all critical
points have the same asymptotic behavior (Kadanoff,
1971).

The most widely used method of defining universality
classes is the O(n) classification scheme. The three main
factors that determine to which O(n) universality class a
given system belongs are the dimensionality d, the order
parameter symmetry index 7, and the range of the inter-
action potential. The n=1 universality class corresponds
to a scalar order parameter and includes the three-
dimensional Ising model, liquid-gas critical points, and
fluid mixture consolute points. The n=2 class corre-
sponds to a complex two-component order parameter
and includes the superfluid or lambda transition in “He,
easy-plane ferromagnets, and some transitions in smec-
tic liquid crystals (de Gennes and Prost, 1993). However,
within a given universality class, it is necessary to distin-
guish isotropic systems (e.g., fluids) from anisotropic sys-
tems (e.g., magnets) with noncubic symmetry (Chen and
Dohm, 2004). For isotropic systems, two-scale-factor
universality is valid (i.e., only two nonuniversal ampli-
tudes suffice to characterize the asymptotic critical be-
havior of a specific system) (Stauffer et al, 1972; Aha-
rony, 1974; Gerber, 1975; Hohenberg et al., 1976;
Wegner, 1976). This is not the case for anisotropic sys-
tems in which there are, in general, 1+d(d+1)/2 nonuni-
versal amplitudes that need to be known in order to
characterize the asymptotic critical behavior of the bulk
order parameter correlation function. The application of
universality to dissimilar critical points is based on the
isomorphism principle (Anisimov, 1991; Anisimov et al.,
1995a, 1995b), which formulates the conditions for ex-
pressing the theoretical scaling fields through physical
field variables.

This universality approach is a very powerful and uni-
fying concept. In this review, we will discuss the O(1)
and O(2) universality classes, focusing on the liquid-gas
critical point and on the *He lambda transition, respec-
tively.

C. Renormalization-group theory

The RG approach to critical phenomena now pro-
vides the intellectual justification for the observed and
conjectured relationships associated with power laws,
scaling relations, and universality. In fact, the formula-
tion of this theory confirmed the validity of the above
advances in critical phenomena (Wilson, 1971a, 1971b;
Wilson and Fisher, 1972; Wilson and Kogut, 1974; Fisher,
1974). Detailed information on RG theory can be ob-
tained from textbooks and extensive reviews on the sub-
ject and references therein (Fisher, 1974, 1998; Ma, 1976;
Parisi, 1988; Itzykson and DrouHe, 1989; Binney et al.,
1993; Cardy, 1996; Kleinert and Schulte-Frohlinde, 2001;
Zinn-Justin, 2001, 2002; Pelissetto and Vicari, 2002).
Here we give a brief introduction to RG theory to set
the stage for later discussion.
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The RG approach is used to calculate the behavior of
physical quantities via a phenomenological field theory
rather than a microscopic model. One averages over the
microscopic discreteness of the system and defines an
energy functional that can be expanded in terms of the
order field. The most widely accepted form of this en-
ergy functional is the Landau-Ginzburg-Wilson func-
tional (Wilson and Kogut, 1974) and the resulting field
theory is called the ¢* theory, or more loosely the RG
theory. This approximation has been sufficient to pro-
vide precise predictions for critical behavior in many dif-
ferent O(n) systems that are in close agreement with
experiment. Approximate values for the critical expo-
nents have been determined using the ¢* theory by two
approaches. One approach was based on a perturbation
expansion at fixed dimension d=3 (Parisi, 1973) and the
other used the Wilson and Fisher (1972) e=4—d expan-
sion (Vladimirov et al., 1979). Calculations were also
made for the universal asymptotic amplitude ratios
(Watson, 1969; Nicoll and Albright, 1985; Bervillier,
1986) and the equation of state (Avdeeva and Migdal,
1972; Wallace and Zia, 1974; Nicoll and Albright, 1985).
With further perturbative extension of the series expan-
sion for the free energy in the ¢* theory, more accurate
calculations of the critical exponents, asymptotic ampli-
tude ratios, and equation of state have been made
(Guida and Zinn-Justin, 1997, 1998; Jasch and Kleinert,
2001). Campostrini et al. (2001, 2002) have performed
accurate calculations using high-temperature series ex-
pansions. Also, Halperin et al. (1976a, 1976b) developed
a systematic set of energy density functionals and their
associated Langevin equations that describe a wide set
of phenomena in systems spanning a wide variety of uni-
versality classes.

The RG method has also been successfully applied to
the calculation of dynamic critical properties. Halperin
et al. (1972) applied the method to the time-dependent
Ginzburg-Landau model and showed that the RG
method is consistent with earlier mode-coupling theory
and dynamic scaling when the order parameter is con-
served. The method has been developed successfully
and applied to both O(1) and O(2) systems. A detailed
review of the early developments in this field has been
given by Hohenberg and Halperin (1977). These authors
point out that the definition of the universality classes is
affected by dynamical factors other than those consid-
ered above, but for the purposes of this review the
above O(n) classification scheme suffices. A range of dy-
namic models was introduced, with liquid-gas systems
represented by model H and superfluid helium by model
F. For the former class, the primary links to experiment
are through inelastic light scattering and transport coef-
ficients. For the superfluid transition, the behavior of the
thermal conductivity, the second-sound damping coeffi-
cient, and some inelastic light-scattering measurements
are relevant. A major success of the RG approach to
dynamics was predicting the detailed behavior of the
thermal conductivity near the superfluid transition
(Dohm, 1991). Asymptotic dynamic amplitude ratios
have also been calculated (Hohenberg and Halperin,
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1977; Dohm and Folk, 1980, 1981; Dohm, 1991). An-
other aspect of critical-point dynamics is nonlinear be-
havior. This has been studied extensively for the super-
fluid transition. Because of the unique ability of
superfluid helium to support a heat flux with essentially
no temperature gradient, several interesting nonlinear
effects can be studied. These include nonlinear thermal
conductivity, depression of the transition temperature in
a heat flux, enhanced specific heat, and studies of inter-
face phenomena. We refer the reader to Haussmann and
Dohm (1994) and to Weichman et al. (2003) for more
information on nonlinear heat transport effects. In the
sections below, we give more details of the relevant the-
oretical background for the various dynamic critical-
point experiments.

In addition to the predictions for the asymptotic be-
havior very near a critical point, the RG approach has
also been used to make predictions in the crossover re-
gion farther away from a critical point where the corre-
lation length no longer dominates the behavior of the
system.! Three other fruitful areas discussed below are
the application of RG techniques to finite-size systems,
and scaling predictions for critical boiling studies and
critical adsorption. These areas can be viewed as appli-
cations of critical-point theory to other systems of inter-
est.

At present, the validity of the RG theory predictions
for critical-point phenomena is widely accepted. How-
ever, as mentioned earlier, the asymptotic predictions in
the case of fluids cannot be unambiguously confirmed in
Earth-based experiments because of gravity effects. In
solid systems, testing is limited by transition rounding
due to crystal defects and impurities. Thus, without mi-
crogravity measurements, we are in a rather weak posi-
tion when attempting to test the theory by refutation.

D. Gravity effects

In this review, we focus on experiments where a re-
duction of gravity effects on fluids near critical points
has given, or is expected to give, significantly improved
results. In most experiments, the primary effect of grav-
ity is to introduce a vertical pressure gradient (taken
along the z direction) given by

dP

= 4
iz pg, (4)

ISee Chang and Houghton, 1980; Dohm and Folk, 1980, 1981;
Bagnuls and Bervillier, 1984, 1985; Bagnuls et al., 1984; Dohm,
1985a, 1985b, 1991; Albright et al., 1986, 1987; Bagnuls et al.,
1987, 2002; Schloms and Dohm, 1989, 1990; Chen, Abbaci, et
al.,, 1990; Chen, Albright, et al., 1990; Anisimov et al., 1992;
Larin et al., 1998; Agayan et al., 2001; Bagnuls and Bervillier,
2002a, 2002b; Garrabos et al., 2002; Rudnick et al., 2003;
Strosser and Dohm, 2003.
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TABLE I. Critical parameters for selected simple fluids (CO,,
Xe, SFg, and *He).

T.(K)  P.(MPa) p(kgm™) Hyx107 (m)
CO, 30414 7.375 467.8 1.608
Xe  289.74 5.840 1110 0.537
SFg  318.68 3.761 730 0.525
He 3.3155 0.117 412 0.290

where p is the fluid density and g is the acceleration of
gravity. The presence of this gradient is important for
measurements very near the *He lambda point since the
transition temperature is pressure dependent, i.e., T\ (P).
In a constant-density cell of height h, AP=pgh. Thus
there will be a gravity-induced averaging of thermo-
physical measurements very near the transition in a
sample of finite height. In cells at constant temperature,
there will be a region near 7\ where superfluid and nor-
mal fluid “He will coexist (Ahlers, 1968a, 1991, 1999).
For example, even for a superfluid sample of only
0.5 mm in height in 1g, this coexisting region will occur
over a temperature range of 6.4 107 K. To the extent
that local properties can be measured within a cell, of
course, the above limitation does not apply. For ex-
ample, in thermal conductivity measurements this effect
is less restrictive because the thermal gradient stratifies
the column of helium, permitting local measurements
that are not rounded by the pressure gradient across the
entire sample (Day ef al., 1998). But nonlinear effects in
the thermal conductivity depend strongly on gravity,
since the divergence of the correlation length is limited
on Earth by hydrostatic pressure effects across the cor-
related volume, as discussed in Sec. V.D.

In the case of a liquid-gas critical point, where the
isothermal compressibility B; and related isothermal
susceptibility x7 [Br=x7/p*=1/p)(dp/IP);], diverge,
the pressure gradient induced by gravity leads to a den-
sity gradient (dp/dh);=p’gBy that also diverges as the
critical point is approached. This was first pointed out by
Gouy (1892). The first quantitative treatment of the
gravity effect was an analysis of specific-heat measure-
ments in xenon near the liquid-gas critical point (Ed-
wards et al., 1968). This treatment was later extended to
derive t,=(mgh/2kgT,)"P? that is a measure of the
gravity-affected region for a given experiment (Lipa et
al., 1970). Here m is the atomic mass of the fluid and kj
is Boltzmann’s constant.

The magnitude of the gravity effect depends on the
molecular weight and critical parameters of the fluid, the
sample height, the strength of gravity, and the distance
from the liquid-gas critical point (Moldover et al., 1979).
The effect can also be characterized by Hy=P./(p.g),
which represents a gravity scale height in a fluid (Levelt
Sengers, 1975). Table I gives values for H; in the Earth’s
gravitational field (g=981 cms™2) and critical param-
eters for fluids that have been investigated or are
planned for future microgravity studies. The smaller H,
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the larger is the gravity effect. Since many thermophysi-
cal quantities, such as the susceptibility and specific heat,
are dependent on the density near the critical point, this
gravity-induced density gradient causes significant
rounding in the measurements. As an example, a *He
sample of only 0.5 mm in height in 1g will have a density
difference of ~6% across the sample at a temperature
3Xx 107 K above the critical point. Thus, we see that
gravity has a much more pronounced effect near liquid-
gas critical points than for the “He lambda transition.
Given an equation of state, the effects of gravity can be
corrected by integrating the appropriate physical prop-
erty over the height of the sample. Detailed calculations
of the gravity effect have been done by Hohenberg and
Barmatz (1972) and Moldover et al. (1979).

Clearly, smaller sample heights lead to less gravity
rounding, but soon a limit is reached where the height is
so small that finite-size effects begin to appear. Far from
a critical point this would occur at the angstrom level;
however, near a critical point the correlation length &
controlling these effects diverges as &= ¢§yt"", magnifying
the effect enormously. This behavior is intrinsic to all
cooperative transitions, being associated with the phys-
ics of the transition process in an essential way. The
competition between gravity and finite-size effects will
soon limit the resolution of many ground experiments
on bulk fluids.

III. FLIGHT FACILITIES

A. Sounding rockets

Sounding rockets are relatively low cost in compari-
son with satellites, and a payload can usually be devel-
oped in a short time. The flight profile of a sounding
rocket follows a parabolic trajectory with the peak alti-
tude typically ranging from 35 to 300 km. Shortly after
launch, the solid fuel rocket is separated from the pay-
load and falls back to Earth. The science experiment
payload continues into space after the separation and
experiments are begun. A parachute is normally used to
bring the payload gently back to Earth. The payload or
parts of it can often be refurbished and flown again. A
residual acceleration level of 10™*g can be attained for
durations of 5-6 min. Countries including the United
States, Germany, Japan, France, and China have used
sounding rockets for conducting microgravity experi-
ments. The TEXUS (Technologische Experimente unter
Schwerelosigkeit) sounding rocket program of ESA (Eu-
ropean Space Agency) has been used many times to
study fluids near the liquid-gas critical point. Many pio-
neering investigations of temperature equilibration near
the critical point have been performed using this plat-
form (Nitsche et al., 1984; Nitsche and Straub, 1986,
1987; Klein et al., 1991; Guenoun et al., 1993). Phase
separation in critical binary fluids was also studied
(Houessou et al., 1985; Beysens et al., 1988).
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B. Space Shuttle

The Space Shuttle, developed by NASA, went into
service in 1981. Approximately two weeks of micrograv-
ity conditions are available, with the duration of a given
flight mainly limited by the resources required to sup-
port the crew. Numerous critical phenomena experi-
ments have been performed on this platform. The ESA-
developed Spacelab was a reusable, pressurized
laboratory mounted inside the cargo bay of the Shuttle
and was flown on a number of missions between 1983
and 1997. A high-precision thermostat (HPT) was used
to measure the specific heat of SF¢ near its critical point
during the 1985 Spacelab D-1 mission (Straub et al.,
1993). Holographic interferometry measurements on SF;
were also performed during this mission (Klein and
Feuerbacher, 1987) using the Holographic Optics Labo-
ratory (HOLOP). Later, a similar heat-capacity instru-
ment was used to investigate the piston effect and spe-
cific heat of SFy near the critical point during the
Spacelab D-2 mission (Straub et al., 1993, 1995, 1995a;
Haupt and Straub, 1999).

The Critical-Point Facility (CPF) was also built by
ESA for research on critical-point phenomena aboard
the Spacelab. The CPF was capable of supporting ex-
periments of several researchers on any one mission. In-
terchangeable thermostats for controlling the tempera-
ture of an experimental sample were inserted into the
CPF, where they were surrounded by an optical diagnos-
tics system to monitor the phenomena of interest. Many
critical-point experiments were performed using the
CPF during the missions IML-1 and IML-2 including
phase separation and equilibration phenomena in
cyclohexane-methanol mixtures (Perrot et al, 1994),
transport of heat and mass near the critical point (Gar-
rabos et al., 1993), thermal equilibrium dynamics of SFg
(Frohlich et al., 1996; Wilkinson et al., 1998), the density
equilibration time scale (Ikier et al., 1996a), wetting phe-
nomena near the critical point (Ikier et al, 1996b), and
electrostriction effects of SF¢ near the critical point
(Zimmerli et al., 1999a).

NASA has also developed several flight instruments
for use aboard the Space Shuttle to study critical phe-
nomena. These instruments were designed for a single
experiment remotely controlled from the ground. The
“Critical Light Scattering Experiment” in xenon (Zeno),
located in the cargo bay of the Space Shuttle, was devel-
oped to measure the decay rates of density fluctuations
in xenon near the critical point (Gammon, 1987). An
experiment called “Critical Viscosity of Xenon” (CVX)
measured the viscosity near the critical point using a
thermostat also located in the cargo bay (Berg et al.,
1998, 1999a, 1999b). A low-temperature superfluid he-
lium Dewar located in the bay was flown twice to mea-
sure the specific heat of “He near the lambda point in
different sample geometries; the “Lambda Point Experi-
ment” (LPE) (Lipa et al., 1996, 2003) and the “Confined
Helium Experiment” (CHeX) (Lipa et al., 2000).
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C. MIR

Launched in 1987, the Soviet Union’s MIR (Peace)
Space Station orbited the Earth (51.6° inclination,
300-400 km altitude) for over a decade. The French
space agency Centre National D’Etudes Spatiales
(CNES) sponsored the Analyse des Liquides Critiques
dans I’Espace (ALICE) program onboard the MIR plat-
form (Marcout et al., 1995). The ALICE-2 facility was
flown on MIR to study different fluid samples and dif-
ferent heating protocols during the 1996 joint French-
Russian Cassiopée, 1998 Pegase, and 1999 Perseus mis-
sions, and the 1999 joint French-American GMSF
mission. Many successful critical-phenomena experi-
ments were performed near the SFg critical point under
the ALICE program, including studies of piston effects
(Garrabos et al., 1998; Wunenburger et al. 2000, 2002;
Garrabos, Dejoan, et al., 2001; Bartscher and Straub,
2002), boiling phenomena (Garrabos, Lecoutre-Chabot,
et al., 2001), and wetting behavior (Hegseth et al. 2002,
2005).

D. International Space Station

The International Space Station (ISS) orbit has a
nominal 450 km altitude and a 51.6° inclination. The in-
clination was chosen as a compromise to accommodate
all international partners who will be launching from dif-
ferent latitudes. For comparison, early Space Shuttle
flights had a typical inclination of 28.5° and an altitude
of less than 300 km. Because of the higher inclination
and altitude, the ISS encounters a worse particle radia-
tion environment than the Space Shuttle. Over many
years, NASA and its European partners have developed
three main facilities aboard ISS that are suitable for the
study of critical phenomena.

The Low Temperature Microgravity Physics Facility
(LTMPF) was developed by NASA to perform low-
temperature physics experiments aboard the ISS on the
Japanese Experiment Module/External Facility (JEM/
EF). The LTMPF facility design includes a cryogenic
Dewar, telemetry-command systems, data acquisition
electronics, and two separate vacuum spaces for mul-
tiple experiments (Liu et al., 2000; Larson et al., 2003).
The facility would provide a low-temperature environ-
ment for several months with experimental stages ca-
pable of nanokelvin temperature stability. Several ex-
periments on critical phenomena and relativistic physics
have been planned for this facility (Barmatz, 1999; Ahl-
ers, 2000; Duncan, 2000; Larson, 2000; Goodstein, 2002;
Hahn, 2002; Lipa, 2003). The facility and experiments
can be controlled remotely from the Earth.

ESA is building the Fluid Science Lab (FSL), which is
a multiuser internal platform on board the pressurized
Columbus Laboratory dedicated to room-temperature
investigations in microgravity conditions. The facility, to
be launched aboard the Space Shuttle, offers a broad
range of optical diagnostic instruments with a field of
view 80X 80 mm? for use in a central experiment mod-
ule into which experiment containers can be inserted
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and operated. Possible FSL research areas include con-
vection and heat transfer, drops and bubbles, and a va-
riety of experiments near the liquid-gas critical point
(Beysens and Garrabos, 2001).

CNES is developing the Dispositif pour I’Etude de la
Croissance et des Liquides Critiques (DECLIC) facility
to investigate critical phenomena, chemical reactivity in
supercritical water, and directional solidification in
transparent media near room temperature (Cambon et
al., 1997; Beysens and Garrabos, 2001). The facility is
equipped with a phase-contrast microscope, an interfer-
ometer, and a high-speed video camera. The facility,
which will be launched aboard the Space Shuttle, is a
multiuser platform designed for control of the experi-
ment from the ground.

E. Space environment

1. Microgravity

The term microgravity is used to describe the near-
weightless environment of space. While the absolute ac-
celeration can be made very small, a number of residual
effects come into play to varying degrees in different
spacecraft. For example, an orbiting spacecraft will ex-
perience atmospheric drag and solar radiation pressure.
The resulting accelerations mimic the effect of gravity
and cause internal objects to seem to be pushed about
relative to the spacecraft. A rotating spacecraft, such as
the ISS, which rotates once per orbit, can also produce a
centrifugal force. Tidal forces, also called gravity gradi-
ent forces, are present in an orbiting spacecraft due to
small differences in the force of gravity over an ex-
tended object. The small tidal force will slightly distort
the shape of a spherical bubble in orbit and elongate it
along the local vertical with respect to the Earth. In a
low-Earth-orbiting spacecraft, these microgravity effects
can be reduced to the level of 107g at very low frequen-
cies. Within a small region near the center of mass of the
spacecraft, a level of 10”’g can be achieved. Levels of
1078g and below can be achieved at somewhat higher
altitudes where atmospheric drag is reduced. For ex-
treme needs, drag compensation can be used to reduce
the local acceleration to the 107'?g range (Lange, 1964).

2. Vibration environment

The vibration environment of a spacecraft can be di-
vided into three main regimes: quasisteady, vibratory,
and transient. For instance, the ISS definition of quasi-
steady vibrations refers to disturbances at frequencies
below 0.01 Hz. The primary sources of these distur-
bances are atmospheric drag, gravity gradient, and rota-
tional effects. The quasisteady acceleration environment
of ISS is ~1 ug rms averaged over the frequency range
from dc to 0.01 Hz. The vibratory regime covers the fre-
quency range from 0.01 to 300 Hz. Typical disturbance
sources are crew activity, thruster firings, fans, and
pumps. The ISS requirements on the vibratory accelera-
tion limits are defined over a set of frequency intervals.
In the low-frequency regime (f<0.1 Hz), the limit is
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<1.6 ug. In the frequency range 0.1<f<100 Hz, the
limit is below 16X f ug. The acceleration limit is less
than 1600 ug in the frequency range between 100 and
300 Hz. The ISS requirements also specify minimum
time intervals of 30 continuous days of the “microgravity
mode” operation specified above, with a cumulative
time of not less than 180 days per year. The transient
regime covers relatively short-duration disturbances that
are typically caused by identifiable events such as dock-
ing, operation of airlock valves, and routine mainte-
nance. The transient acceleration limits of ISS are an
instantaneous limit of 1000 ug and an integrated im-
pulse limit of 10 ug s per axis over any 10-s interval. It is
important to point out that the ISS vibration level is
much worse than can easily be achieved in a laboratory
on the ground. Extra care has to be taken when one
designs a space experiment with stringent vibration re-
quirements.

3. Particle radiation environment

There are three major sources of charged particles in
the space environment: galactic cosmic rays, solar par-
ticles, and trapped particles in the Van Allen belts. The
galactic cosmic ray flux is approximately isotropic in the
hemisphere away from the Earth, with energies up to
hundreds of GeV. Trapped particles relevant to the ISS
orbit are about 83% protons. The main problems en-
countered are electrostatic charging and errors caused
by single-event phenomena in electronic devices. In the
case of critical-phenomena experiments, typical impacts
of charged particles on experiments are noise in data
acquisition electronics (Berg et al, 1999b) and direct
heating effects in high-resolution specific-heat measure-
ments (Lipa et al., 1996, 2003). In the case of the heating
effect, the placement of extra shielding material near the
instrument may not help because of secondary shower
effects of the charged particles. Low-Earth-orbiting
spacecraft typically pass through a region called the
South Atlantic anomaly (SAA), which contains a large
flux of protons trapped close to the top of the atmo-
sphere due to the tilted, off-center magnetic field of the
Earth. About 50% of the ISS orbits pass through the
SAA. Here the proton dose rates exceed 10
protonscm s~ for approximately 10 min per orbit.
Away from the SAA, the heating effect is due to galactic
cosmic rays. Critical-phenomena experiments near room
temperature are relatively immune from cosmic ray
heating due to the large heat capacity of the experimen-
tal cells. However, care has to be taken with cosmic ray
heating issues in low-temperature critical-phenomena
experiments using ’He and “He (Barmatz, 1999; Ahlers,
2000; Duncan, 2000; Larson, 2000; Goodstein, 2002;
Hahn, 2002; Lipa, 2003). In some circumstances the neu-
tron flux from the atmosphere also needs to be consid-
ered.
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IV. O(1) UNIVERSALITY CLASS—LIQUID-GAS
CRITICAL POINT

The O(1) universality class in three dimensions (d
=3) consists of systems having short-range forces and a
scalar order parameter (n=1) (Kadanoff, 1971, 1976).
This class includes the three-dimensional (3D) Ising
model, liquid-gas critical points, binary fluid mixtures,
uniaxial ferromagnets, polymer-solvent systems, and
protein solutions. Each of these systems is predicted to
have the same critical exponents and critical amplitude
ratios. Long-range van der Waals interactions of fluids
do not change the critical exponents but they do cause a
nonuniversal change of the asymptotic scaling function
of the bulk order parameter correlation function on
length scales > ¢, even arbitrarily close to 7. This effect
has implications for finite-size scaling (Widom, 1964;
Chen and Dohm, 2000, 2002; Dantchev, 2001; Dantchev
and Rudnick, 2001).

The singular behavior theory of dynamic properties
was reviewed by Hohenberg and Halperin (1977). Dy-
namic properties such as the thermal conductivity and
viscosity have been studied extensively on the ground.
However, only viscosity has been studied in microgravity
and the background for those experiments is discussed
in Sec. IV.F. In the remainder of this introduction to the
O(1) universality class, we will emphasize static proper-
ties.

In the case of O(1) systems, substantial difficulties
exist in obtaining details of the asymptotic behavior for
static properties. An exact determination of the
asymptotic region extent cannot be made theoretically
because the leading asymptotic critical amplitudes and
critical temperature are system dependent, and there are
additional correction-to-scaling confluent singularities
that also contain system-dependent amplitudes. Further-
more, most experimental measurements performed on
the ground extend outside the asymptotic region. The
development of the confluent singularity approach to
corrections to asymptotic behavior has alleviated this
problem significantly (Wegner, 1972; George and Rehr,
1984; Le Guillou and Zinn-Justin, 1987; Zinn-Justin and
Fisher, 1996). Taking into account the range of
correction-to-scaling terms leads to the following ex-

pressions for measurements along the critical isochore
and coexistence curve near a liquid-gas critical point:

X = (PlpAxe=T5ld M1+ TH + T5[e2 + -1,

(5)
Cy = (TpJP)CE
= A3|t|_a[1 + ATMA + 14§|l‘|2A + oo ] + Bcr + CBa
(6)
APL,V = PL,V/Pc -1
= + By|t|f(1 + By|t|* + BoJe* + -++), (7)
&' = (kgTJP) ¢
=&l + gl + &l + -1 (8)

Here «, B, v, v, and A are universal critical exponents
that can be estimated (currently to about three or four
decimal places) from theory. The susceptibility expres-
sion applies along the critical isochore (+) above T, and
along the coexistence curve (—) below T, while the
specific-heat and correlation-length expressions apply
both above (+) and below (-) the critical point along the
critical isochore. In the specific-heat expression, B, and
Cp are the critical and analytical background contribu-
tions, respectively. These background terms cannot be
distinguished experimentally. Because of the weak diver-
gence in Cy, a constant analytic background term must
be included even for measurements near the critical
point. The system-dependent leading asymptotic critical
amplitudes are given by I'j, Aj, By, and &, and the first-
order Wegner expansion amplitudes are given by I'{, AT,
B, and &. The complete Wegner expansion includes not
only the series indicated, but additional terms such as
DE|t| and E%,|1|}, where D, and E; are constants and A,
are higher-order exponents related to irrelevant opera-
tors (Wegner, 1972). Since the terms E%;||® involve ex-
tensions beyond the basic ¢* theory, we will not consider
them in this review. Other important paths through the
critical point include the critical isotherm and critical
isobar. In real fluids, other nonasymptotic corrections

TABLE II. Theoretical estimates of the leading asymptotic critical exponents for the O(1) univer-

sality class.

a B y v Reference
1.2385 (15) Chen et al. (1982)*
0.109 (4) 0.3258 (14) 1.2396 (13) 0.62304 (13)  Guida and Zinn-Justin (1998);b
Zinn-Justin (2001)°
0.1109 (15) 0.3262 (4) 1.2366 (15) 0.6297 (5) Hasenbusch (2001)°
0.1091 (24) 0.3257 (5) 1.2403 (8) 0.6303 (8) Jasch and Kleinert (2001)b
0.1096 (5) 0.32653 (10) 1.2373 (2) 0.63012 (16)  Campostrini et al. (2002)*

*High-temperature expansion.
PField theoretical analysis.
“Monte Carlo simulation.
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TABLE III. Theoretical estimates of important universal asymptotic amplitude ratios for O(1) sys-

tems.

AJIAG I/, aA{TS /B Reference

0.523 (9) 4.95 (15) 0.0581 (10) Fisher and Zinn (1998)*

0.527 (37) 4.73 (16) 0.0569 (35) Guida and Zinn-Justin (1998);*
Zinn-Justin (2001)*

0.537 (19) 4.79 (10) 0.0574 (20) Guida and Zinn-Justin (1998);°
Zinn-Justin (2001)°

0.541 (15) 4.758 (29) 0.0593 (8) Bagnuls and Bervillier (2002a)°

0.537 (19) 4.789 (102) 0.0574 (20) Bagnuls and Bervillier (2002b)*

0.535 4.94 0.0580 Schloms and Dohm (1990);*

Zhong et al. (2003)*

g expansion.

“Field theoretical analysis.
“Improved six-loop scheme.
dSeven—loop scheme.

due to liquid-gas asymmetry in the coexistence curve
(Patashinskii and Pokroviskii, 1979) and higher-order
analytic background terms also come into play.

Recent predictions for the asymptotic critical expo-
nents in this class for static properties are given in Table
II. In addition, the RG approach can be used to calcu-
late values for a number of universal asymptotic ampli-
tude ratios. Examples of asymptotic amplitude ratios are
given in Table III. The calculations by Bagnuls and Ber-
viller (2002a, 2002b) used a massive renormalization
scheme while Zhong et al. (2003) used the minimal sub-
traction renormalization scheme of Schloms and Dohm
(1989). The first accurate experimental determination of
the asymptotic amplitude ratio for the specific heat was
made by Lipa et al. (1977), who obtained Aj/A;=0.54
near the critical point of CO,, consistent with theory.
The only direct experimental determination of an
asymptotic critical exponent and amplitude ratio inde-
pendent of confluent singularities is the SF¢ microgravity
experiment of Haupt and Straub (1999), which gave the
results @=0.1105700% and Aj/A;=0.521"00,

Theoretical studies have also provided estimates of
universal correction-to-scaling, crossover exponents, and
amplitude ratios. The leading crossover exponent asso-
ciated with the Wegner expansion is estimated to have
the value A=0.52+0.02 (Zinn-Justin and Fisher, 1996;
Guida and Zinn-Justin, 1998). Table IV gives recent the-

oretical estimates of universal crossover amplitude ra-
tios.

In testing theoretical predictions, experimentalists use
samples of small vertical height to minimize gravity ef-
fects. However, as mentioned in Sec. I1.D, finite-size ef-
fects limit the sample height at which bulk measure-
ments can still be performed. In recent years, finite-size
effects near the liquid-gas critical point have been stud-
ied theoretically (Chen and Dohm, 1999a, 1999b;
Dantchev, 2001; Dantchev and Rudnick, 2001), and fu-
ture experiments on the ground and in space will be
required to test these theoretical predictions. In addi-
tion, experimental studies of the liquid-gas critical point
have been hindered not only by gravity effects but also
by the long equilibration times associated with the sin-
gular approach of the thermal diffusivity to zero.

The dramatic effect of gravity near the *He critical
point is illustrated in Fig. 1, which shows the calculated
variation of density as a function of height for different
levels of the gravitational field. The restricted cubic
model equation of state (Ho and Litster, 1970) was used
for these calculations (Moldover et al., 1979). Reducing
gravity to the 3 X 107%g level expected on the ISS in the
microgravity mode leads to a significant reduction of the
density inhomogeneity in a 4-cm-high sample. The tem-
perature region around the *He critical point, where the
density variation in such a sample will be more than 1%,

TABLE IV. Theoretical values of the first universal crossover amplitude ratios for O(1) systems.

ATIAT r{/ry B /TT Reference

0.99 (19) 0.317 (14) 0.91 (21) Bagnuls and Bervillier (2002a)*
1.36 (47) 0.215 (29) 0.40 (35) Bagnuls and Bervillier (2002b)b
1.07 0.228 0.76 Schloms and Dohm (1990);

Zhong et al. (2003)

mproved six-loop scheme.
bSeven-loop scheme.
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FIG. 1. Density as a function of height in the single-phase
region of *He near the critical temperature. (a) Calculated
density inhomogeneity in a 4-cm-high sample in 1g; (b) calcu-
lated density inhomogeneity in a 3 X 10%¢ environment.

is shown in Fig. 2. It can be seen that in a 3X10%
environment, gravity effects in *He will become impor-
tant only for reduced temperatures t=2.5X 1077 even
for this 4-cm-high sample.

A. Equilibration processes

A detailed understanding of relaxation rates near a
liquid-gas critical point is very important for designing
1
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FIG. 2. Region of temperature and densities near the *He
critical point where the local density varies by more than 1%
over a height of 4 cm. Even for a large 4-cm sample, measure-
ments in a near-microgravity environment can be made much
closer to the transition with minimal gravity effects.
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microgravity experiments where the measurement time
is limited. Far from the critical point, a disturbed fluid
system will equilibrate with a diffusive relaxation time 7
inversely proportional to the thermal diffusivity Dy
=k/pCp, where « is the thermal conductivity and Cp is
the specific heat at constant pressure. Near a liquid-gas
critical point, Cp and « vary approximately as & and &,
respectively; thus 7o« D‘Tlxg. This result implies that a
diverging relaxation time will be observed for a fluid
near the critical point. This conclusion was assumed to
be correct for all experimental situations. However,
more precise ground-based experiments near critical
points performed on a constant-volume sample found a
very fast relaxation time as the critical point was ap-
proached (Dahl and Moldover, 1972; Pittman et al.,
1982). This unexpected behavior was initially assumed to
be due to gravity-induced buoyancy convection. Early
low-gravity, critical-point experiments on TEXUS
sounding rockets (Nitsche et al., 1984; Nitsche and
Straub, 1986) and the Space Shuttle (Klein and Feuer-
bacher, 1987) also observed faster-than-expected relax-
ation times near the critical point.

This unusual relaxation behavior was later understood
when it was recognized that the divergences in the iso-
thermal compressibility and isobaric thermal expansion
near the critical point could lead to a critical
speeding-up phenomenon. For a fixed volume sample, a
sharp change in the boundary temperature leads to a
boundary diffusion layer that acts like a piston to pro-
duce an adiabatic volume change within the sample in-
terior. This adiabatic process came to be known as the
piston effect. It is interesting to note that this effect was
also alluded to by Gitterman and Steinberg (1970) and
by Schmidt er al. (1988). This phenomenon was ex-
plained in more detail by a purely thermodynamic ap-
proach that neglected any initial variations in the pres-
sure on the acoustic time scale (Boukari, Briggs, et al.,
1990a; Boukari, Shaumeyer, ef al., 1990b; Onuki and Fer-
rell, 1990; Onuki et al., 1990), and by a direct simulation
of the nonlinear Navier-Stokes equation using the van
der Waals equation of state (Zappoli et al., 1990). Ana-
lytical 1D solutions of the Navier-Stoke-van der Waals
system were produced later for acoustic (Zappoli, 1992)
and piston-effect time scales (Zappoli and Durand-
Daubin, 1994). Space experiments were performed that
provided a better understanding of the piston effect
(Klein et al., 1991; Guenoun et al., 1993; Straub et al.,
1995a; Frohlich et al, 1996; de Bruijn et al., 1997;
Wunenburger et al., 2000, 2002; Bartscher and Straub,
2002).

Theoretical models were also developed further to de-
scribe the time evolution of temperature and density in-
homogeneities in a microgravity and 1g environment
(Behringer et al., 1990; Zappoli, 1992; Ferrell and Hao,
1993; Boukari et al., 1995; Zhong and Meyer, 1995, 1996;
Straub and Eicher, 1995; Zappoli and Carles, 1995;
Amiroudine et al., 1997; Bailly and Zappoli, 2000; Gar-
rabos, Lecoutre-Chabot, et al., 2001; Nikolayev et al.,
2003). The first controlled temperature equilibration
measurements after a temperature jump were per-
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formed by Boukari, Briggs, ef al. (1990a) and Boukari,
Shoameyer, ef al. (1990b). The first experimental demon-
stration of density relaxation governed by the piston ef-
fect was obtained by Zhong and Meyer (1993). In 1993,
the basic features of the piston effect were also demon-
strated with interferometric measurements of heat trans-
port in supercritical CO, in the ALICE instrument dur-
ing the ANTARES MIR mission (Bonetti et al., 1994;
Garrabos et al., 1998). The late-stage diffusive behavior
was validated on a Space Shuttle experiment performed
in the Critical-Point Facility (Wilkinson et al., 1998). This
experiment used interferometry to measure changes in
density during the late stage of thermal equilibration
near the SFg liquid-gas critical point. The piston effect
can play an important role in the design and successful
completion of liquid-gas critical-point experiments both
on the ground and in space (Berg, 1993; Carles et al.,
2005). It can also influence the onset of convection and
turbulence (Carles, 2000; El Khouri and Carles, 2002;
Furukawa and Onuki, 2002; Amiroudine and Zappoli,
2003). More details regarding the piston effect can be
found in recent reviews by Zappoli (2003) on the hydro-
dynamics of near-critical fluids, and by Meyer and
Zhong (2004) on a comparison of *He and SF, experi-
mental results with numerical calculations.

A few questions still remain regarding the piston ef-
fect. The simplifying assumption of a homogeneous
pressure distribution in the early stages of the piston
effect may fail close to the critical point due to bulk
viscosity effects (Carles, 1998; Carles and Dadzie, 2005).
Also, very near the critical point, the thermal equilibra-
tion time is predicted to become shorter than the typical
acoustic time (sound wave period). This situation has
been analyzed theoretically (Zappoli and Carles, 1996),
but never fully tested experimentally. Also, the bound-
ary layer thickness becomes less than the diverging cor-
relation length near the critical point. The behavior in
this situation is not well understood. Recently, the Japan
Aerospace Exploration Agency has been conducting
ground-based investigations (Miura et al., 2004) in
preparation for a rocket flight experiment (Kobayashi et
al., 2004) to study the elementary process of the piston
effect in the microsecond regime.

B. Specific heat

Specific heat is one of the most fundamental quanti-
ties for determining the thermodynamic behavior of a
real system. Earlier mean-field theories predicted only a
jump in Cy at the critical point (Stanley, 1971). However,
this conclusion was questioned once the behavior of Cy,
in the 2D Ising model was shown to have a logarithmic
divergence as T, was approached (Onsager, 1994). The
first experimental measurements that indicated a diver-
gence in Cy were made by Michels and Strijland (1952).
Later, Bagatskii et al. (1962) made more precise mea-
surements along the critical isochore of argon. Their
measurements were consistent with a logarithmic singu-
larity at the transition. This surprising result was further
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verified in oxygen (Voronel ef al., 1964), in new measure-
ments in argon (Voronel et al., 1965), in nitrogen (Vor-
onel et al., 1966), and in *He and “He (Moldover and
Little, 1965; Moldover, 1969).

In the case of the liquid-gas critical point, the RG
theory predicts that specific heat at constant volume will
have a weak divergence («=0.109), in contrast to the
prediction of a strong divergence in the isothermal sus-
ceptibility (y=1.239) and in the specific heat at constant
pressure. Furthermore, because of this weak divergence
in Cy, analytic background terms cannot be neglected.
In practical ground-based experiments, correction terms
to power-law behavior generally become important for
reduced temperatures |t| =107%, and gravity effects be-
come important for |t| =107, The first experimental evi-
dence that divergent behavior might not be logarithmic
was obtained by Edwards et al. (1968). They found that
after applying gravity corrections the behavior of xenon
was better represented by a small positive exponent
than a logarithmic singularity, especially if a symmetric
logarithmic form (Aj=A;) was imposed. Higher-
precision ground-based specific-heat measurements
were performed on CO, (Lipa et al., 1970). These mea-
surements were also corrected for gravity at |f| =4
%107, A simple power-law analysis of these measure-
ments in the limited asymptotic range 4 X 107 =<|t| =5
%107 gave @=0.125+0.005. Brown and Meyer (1972)
also performed high-precision measurements in *He and
analyzed those data for [¢|=0.1 including a confluent
singular term. They obtained a value of «=0.105+0.015,
which is close to the latest theoretically predicted value.
Moldover (1982) extended the fit of the Lipa et al. (1970)
CO, measurements to |t| =3x 1072 by adding a conflu-
ent singular term and also obtained a=0.105. However,
in general, experimental measurements in the
asymptotic power-law region are very limited and accu-
rate analyses must take into account correction-to-
scaling terms and/or gravity effects (Hocken and Mold-
over, 1976).

From these early studies, it became clear that specific-
heat measurements in microgravity were needed to ob-
tain a wider asymptotic temperature range for a more
accurate test of theoretical predictions (Moldover et al.,
1976). Measurements of the specific heat near the *He
critical point (Zhong et al., 2003) shown in Fig. 3 illus-
trate the effects of gravity close to the transition and
corrections to scaling farther away. These measurements
were carried out on a sample 0.5 mm high. The tempera-
ture changes from heat pulse measurements close to the
transition were obtained using a custom-built high-
resolution thermometer (HRT) while measurements far-
ther away used a germanium resistance thermometer.
The HRT used for these experiments was based on the
same principle as that developed for “He experiments
(Lipa et al., 1981), which are discussed in Sec. V.A The
*He HRT contained a GdCl; paramagnetic salt (Adri-
aans et al., 1991; Welander et al., 2000; Welander and
Hahn, 2001) in contrast to other materials developed for
*He investigations. By using a 1-Hz low-pass filter in the
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FIG. 3. Specific-heat measurements along the critical isochore
in *He including the gravity-affected region. Solid curves cor-
respond to a MSR best fit to measurements in the gravity-free
region (adapted from Zhong et al.,, 2003). The dashed curves
correspond to a CPM best fit extended into the gravity-
affected region (adapted from Zhong and Barmatz, 2004).

superconducting quantum interference device (SQUID)
readout electronics, the temperature resolution was typi-
cally 1 nK near the *He critical point (7.~ 3.31 K). The
best fit of the minimal subtraction renormalization
(MSR) crossover model (Zhong et al, 2003) to the
specific-heat measurements in the gravity-free region
(2x10™*<|t| <2x107?) is shown in Fig. 3 by solid
curves. Also, the optimum parameters obtained from a
fit to the equation-of-state crossover parametric model
(CPM) (Agayan et al, 2001) of the same gravity-free
data (Zhong and Barmatz, 2004) were used to calculate
the behavior of the specific heat in the gravity-affected
region, as shown by dashed curves. This calculation re-
quired integrating the temperature derivative of the en-
tropy over the height of the sample.

The first measurement of Cy, in a low-gravity environ-
ment was performed on SFg using a high precision ther-
mostat (HPT) during the 1985 German Spacelab D1
mission (Nitsche and Straub, 1987). The results of these
heating measurements along the critical isochore
showed only a gentle rise and smooth drop in Cy rather
than the expected sharp peak at 7.. After an extensive
investigation (Straub and Nitsche, 1993), it was con-
cluded that the long relaxation time for the density was
responsible for this result, with the design of the experi-
mental cell (Haupt, 1997) leading to a much longer
diffusion-length scale in microgravity. Even the slowest
microgravity warming ramp rate, starting in the two-
phase region, led to a large density inhomogeneity that
smeared out the sharp divergence expected in the spe-
cific heat. The heating temperature ramp rates starting
from the two-phase region required to eliminate these
relaxation time effects were considered to be impractical
during a space flight. It was decided that a uniform criti-
cal state could be obtained during future microgravity
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measurements by slowly cooling the sample from above
T, into the two-phase region.

A reflight of the SFg specific-heat experiment, re-
named HPT-HYDRA, was performed on the second
German Spacelab D-2 mission in 1993. A scanning ratio
calorimeter (Buckingham et al., 1973; Straub et al., 1993)
was employed to measure Cy, during both heating and
cooling runs through the transition along the critical iso-
chore. Analysis of these heating and cooling runs con-
firmed the presence of the piston effect (Straub et al.,
1995b) in both the one- and two-phase regions. Specific-
heat measurements covered a wide temperature range
3X107%<[t|<1x1072. A range-shrinking analysis was
employed where a data point from above and below T,
was discarded after each fit (Haupt and Straub, 1999).
Analyzing the superposition of several cooling runs us-
ing this approach indicated that a simple power law was
valid only in the range || <1.6X107*. The values ob-
tained for the critical exponent a=0.11057303 and
asymptotic amplitude ratio Aj/A;=0.521700% were
consistent with theoretical predictions. The attempt of
Haupt and Straub to include higher-order correction
terms in the fit was only partially successful.

Recently, these measurements were reanalyzed (Bar-
matz et al., 2004, 2005) using both a simple power law
and the MSR crossover model (Zhong et al., 2003). In
this reanalysis, application of the same range-shrinking
analysis failed to find any significant variation from a
simple power law over the entire experimental data
range (|t| <1x107?) in contrast to the previous Haupt
and Straub analysis. To further test the surprising con-
clusion found in the simple power-law reanalysis, the
SF¢ measurements were analyzed using the MSR cross-
over model. The results of the MSR analysis, shown in
Fig. 4, also confirmed that all data were actually within
the asymptotic region. For this MSR analysis, the critical
exponent a was fixed at the theoretical value (Guida and
Zinn-Justin, 1998) a=0.109. The MSR model has three
system-dependent parameters {u,u,a}. However, only
two of these are independent. In this analysis, the model
parameters {uw,a} were chosen as fitting parameters
(Barmatz et al., 2004, 2005). In Fig. 4(a), the lines repre-
sent the theoretical fit. The difference between experi-
ment and theory is also shown in the upper part of the
figure. Figure 4(b) shows the fit to the scaled specific
heat, which by dividing out the divergent term enhances
the crossover behavior. The horizontal solid lines repre-
sent the asymptotic critical amplitudes obtained from
the fit. Theoretical models predict a universal amplitude
ratio between the Wegner first-order heat capacity and
susceptibility, A7/T'7=0.9. Garrabos (1986) reanalyzed
earlier SF¢ susceptibility measurements (Cannell, 1975)
to obtain I'7=1.14. This result implies A7=1, which is
inconsistent with the value A7=(1.7+0.06)xX10~* ob-
tained from the specific-heat reanalysis. The reason for
this inconsistency in SFg is not yet understood.

The “Microgravity Scaling Theory Experiment”
(MISTE) was developed to perform a set of thermody-
namic measurements to within 107® K of the liquid-gas
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FIG. 4. Fit of the MSR model to the SF¢ microgravity specific-
heat measurements. (a) Comparison of specific-heat measure-
ments of Haupt and Straub (1999) in both the single-phase
region (dark plus symbols) and two-phase region (gray circle
symbols). The difference between experiment and theory is
also shown. (b) Scaled critical part of the specific heat versus
reduced temperature. Horizontal lines represent the
asymptotic critical amplitudes obtained from the fit. Adapted
from Barmatz et al., 2004, 2005.

critical point of *He. An additional experiment called
the “Coexistence Boundary Experiment” (COEX) was
developed to share the MISTE apparatus. These experi-
ments were designed to perform measurements of Cy,
X7 the coexistence curve, and the equation of state in a
single experimental cell of 4 cm height. The MISTE and
COEX experiments were designed to obtain gravity-free
measurements at least two decades in reduced tempera-
ture closer to the critical point (to |f|~1 X 107%) than can
be obtained on the ground. Together they would provide
a rather complete set of thermodynamic measurements
throughout the *He critical region. These microgravity
measurements would allow a more accurate determina-
tion of the leading asymptotic exponents «, B, v, and &
as well as the amplitude ratios Aj/A;, I'j/Ty, and
aAJTy/B}. More accurate values of the leading
asymptotic amplitudes would also permit a stringent test
of recent crossover equation-of-state models. Extensive
ground-based experimental and theoretical studies were
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FIG. 5. Fit of specific-heat ground-based measurements in *He
to the MSR model. The MSR model parameters {u,a} were
obtained from a joint fit of susceptibility, specific-heat, and co-
existence curve measurements. The crossover region is clearly
observed. Solid curves correspond to the best fit. The Wegner
expansion to first order is shown as dashed lines using the
critical amplitudes A; and A, obtained from the fit to the
MSR model. Adapted from Zhong and Barmatz, 2004.

performed in preparation for flight.” Figure 5 shows a fit
of the MISTE ground-based scaled *He specific-heat
data to the MSR crossover model. In this figure, which is
similar to Fig. 4(b) the solid curves and MSR model pa-
rameters {u,a} were obtained from a joint fit of suscep-
tibility, specific-heat, and coexistence curve measure-
ments (Zhong and Barmatz, 2004). The critical
exponents used in this MSR joint fit were fixed at the
theoretical values (Guida and Zinn-Justin, 1998) vy
=1.2396, «=0.109, 8=0.3258, and A=0.504. The horizon-
tal dot-dashed lines represent the asymptotic critical am-
plitudes obtained from the fit. The dashed curves corre-
spond to a fit to Eq. (6) including only the first Wegner
crossover term. These *He measurements clearly show
the crossover region for measurements [t|>1X107*
in contrast to the fit to the SF; measurements shown in
Fig. 4.

C. Susceptibility

One of the most important response functions of a
fluid system is the isothermal susceptibility xr
=p(dp/dP)7. The divergence of this quantity leads to the
strong gravity-induced density gradient seen in ground-
based experiments. The most precise susceptibility mea-
surements have generally been performed using light-
scattering techniques. Susceptibility measurements of

See Cowan et al., 1996; Barmatz et al., 1998, 2001; Barmatz,
Hahn, et al., 2000; Barmatz, Zhong, et al., 2000, 2003; Hahn et
al., 2001; Weilert et al., 2002; Zhong et al., 2003; Rudnick et al.,
2003; Zhong and Barmatz, 2004.
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FIG. 6. Normalized susceptibility measurements in the gravity-
free region near the xenon critical point. Solid curve is the best
fit by Giittinger and Cannell (1981) to a theoretical expression
that includes Wegner crossover terms to the third order assum-
ing y=1.241 and A=0.496.

xenon in the region unaffected by gravity (Giittinger and
Cannell, 1981) are shown in Fig. 6. These precision mea-
surements above the critical point were fitted over the
reduced temperature range 9.6 X 10°=¢=10""! with the
extended crossover expression

xr=PlpDxr=T5 A+ 72+ T34+ T58%),  (9)

which includes Wegner terms to third order. The best fit
of this expression to the data is shown by the solid curve,
which corresponds to y=1.241, I'j=0.0577, T'{=1.29, I';
=1.55, and T';=1.9. Background terms and the correc-
tion term 22 arising from the asymmetric ¢ term of
field theory that are not shown in Eq. (9) may be just as
important as the third-order Wegner term.

In Fig. 7, we show susceptibility measurements of *He
where the effect of gravity can be seen. The solid curves
and MSR model parameters {u,a} were obtained from a
joint fit of susceptibility, specific-heat, and coexistence
curve measurements (Zhong and Barmatz, 2004). The
horizontal dot-dashed lines represent the asymptotic
critical amplitudes obtained from the best fit. The
dashed curves correspond to a fit to Eq. (9) including
only the first Wegner crossover term. The figure also
shows gravity-affected measurements along the coexist-
ence curve in the range |t| <2Xx 107 It is important to
note that earlier susceptibility measurements by Pittman
et al. (1979) are comparable in quality with the measure-
ments shown, and agree with them if a small shift in 7 is
made (Meyer, 2001).

The MISTE experiment was designed to measure the
susceptibility near the critical point of *He in a micro-
gravity environment using two approaches. For |t| =6
%X 107*, a PVT approach was planned where the pressure
and density are measured as fluid is slowly removed
from the sample chamber at constant temperature. The
sample density is determined by measuring the dielectric
constant using a capacitive sensor while the pressure is
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FIG. 7. Fit of susceptibility measurements in *He to the MSR
model. The upper part shows measurements above the transi-
tion, and the lower part shows measurements along the coex-
istence curve. The MSR model parameters {u,a} were ob-
tained from a joint fit of susceptibility, specific-heat, and
coexistence curve measurements. Solid curve is the best fit
while the dashed curve corresponds to a Wegner expansion to
first order. Gravity-affected measurements along the coexist-
ence curve are shown in the range [t|<2X10™. Only the
gravity-free measurements were fitted with the MSR model.
Adapted from Zhong and Barmatz, 2004.

obtained using a capacitive sensor in vacuum where one
of the capacitor plates is attached to a flexible part of the
chamber wall. The susceptibility above the transition is
obtained by differentiating the P-p curve. Below the
transition, the susceptibility along the coexistence curve
is determined from the slope of the P-p curve in the
one-phase region just as the sample enters or leaves the
two-phase region. The shape of the coexistence curve
could also be determined from the discontinuity in the
P-p measurements upon entering or leaving the two-
phase region.

For [t| <4x1073, an electrostriction method of mea-
suring the susceptibility was planned for MISTE. The
electrostriction effect was previously demonstrated in a
microgravity experiment using the Critical-Point Facility
that flew on the Second International Microgravity
Laboratory IML-2 mission. That experiment (Zimmerli
et al., 1999a, 1999b) measured a density change in SFg
consistent with the predictions of the electrostriction ef-
fect. This electrostriction method takes advantage of the
fact that an electric field gradient can produce an
equivalent pressure gradient within a dielectric fluid
(Panofsky and Phillips, 1955). A dc voltage across a ca-
pacitor immersed in the fluid induces an electric field E
and associated pressure (6P E?) within the capacitor
gap. The pressure difference between the inside and out-
side of the capacitor causes fluid to flow into the gap.
Assuming that the ambient density outside the capacitor
does not change when an additional small amount of
fluid enters the gap, the susceptibility can be measured
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to a first approximation using x;*Ap/E?>xAC/E?,
where AC is the capacitance change. This measurement
approach was successfully demonstrated in ground-
based measurements near the *He critical point (Bar-
matz et al., 1998; Barmatz, 1999; Barmatz, Zhong, et al.,
2000).

D. Coexistence curve

Upon cooling a liquid-gas system through the critical
point along the critical isochore, the growth of the order
parameter is determined by the shape of the coexistence
curve, described by Eq. (7). The modern understanding
of critical phenomena, that is, the concept of universality
and scaling, was initiated by the Guggenheim (1945) plot
of coexistence curve measurements. That plot showed
the approximately universal nature of coexistence
curves near the critical point of various fluids using 7/ T,
and p/p, coordinates and demonstrated a significant de-
viation from the shape predicted by classical theory. His-
torically, gravity effects on fluids near the critical point
were also demonstrated by measurements of the coex-
istence curve in different height samples using optical
methods (Lorentzen, 1953) and the PVT method (Hab-
good and Schneider, 1954). There have been numerous
measurements of the coexistence curve in various fluids
performed on the ground to determine the critical expo-
nent B and critical amplitudes. For a general review of
results, see, for example, Sengers (1974), Anisimov
(1991), and Privman et al. (1991). Many of the early ex-
perimental results have been summarized by Heller
(1967). While gravity effects distort the shape of the
coexistence curve near the critical point, ground-based
measurements are consistent with current theoretical
predictions. Perhaps the best result to date is for N,
and Ne (Pestak and Chan, 1984), which gave B
=0.327+0.002. Despite the existence of numerous
ground-based studies, no high-resolution coexistence
curve measurements have yet been attempted under mi-
crogravity conditions.

The COEX experiment was designed to measure the
coexistence curve of *He very near the liquid-gas critical
point. As mentioned earlier, this experiment will share
the MISTE apparatus. Figure 8 shows recent ground-
based results of the *He coexistence curve in prepara-
tion for the COEX flight experiment (Hahn et al., 2004).
The liquid-gas coexistence curve shape of *He near the
critical temperature 7, was measured in the range -5
X103 <T/T,-~1<-1.5X107° using a quasistatic ther-
mogram technique. This technique was chosen because
data can be obtained using the specific-heat measure-
ment cell developed for the MISTE flight experiment.
This ground-based study was performed using two cells
of very different heights (0.5 and 48 mm). Figure 8
shows coexistence curve measurements scaled by the
leading power-law behavior with the critical exponent 8
fixed at 0.3258. In this scaled plot, the horizontal dashed
line corresponds to the asymptotic critical amplitude B,
in Eq. (7). The upward curvature of the measurements
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FIG. 8. Normalized plot of SHe coexistence curve measure-
ments emphasizing the gravity-affected region. The density is
scaled by the leading power-law term |¢|? to expose nonasymp-
totic behavior and gravity effects. This plot includes both
liquid- and gas-side data. The dashed horizontal line corre-
sponds to the predicted asymptotic critical amplitude By. The
solid curve shows a fit of the 0.5-mm gravity-affected measure-
ments to the CPM equation of state model. The gravity-free
measurements are consistent with the earlier measurements of
Pittman ez al. (1979) farther away from the transition. Adapted
from Hahn et al., 2004.

from this horizontal line close to the transition is due to
the effect of gravity. The measured coexistence curves
are also very different for the two cells and clearly show
the effect of gravity. Even in the measurements with the
0.5-mm-high cell, the predicted asymptotic behavior is
not observed in this ground-based experiment. Further-
more, the onset of the gravity effect in these data over-
laps the temperature range where nonasymptotic correc-
tion terms begin to come into play. These recent
measurements are consistent with the earlier data of
Pittman et al. (1979) farther away from the transition.
The overlap of gravity effects and nonasymptotic correc-
tion terms makes it difficult to accurately obtain B, and
B, by fitting data to the Wegner expansion [see Eq. (7)].

The shape of the coexistence curve (Ap vs t) measured
in a finite height sample container in the presence of
gravity can be calculated using an equation-of-state
model. Recently, Agayan et al. (2001) developed the
crossover parametric model (CPM) equation of state for
the critical region of 3D Ising-like systems. The coexist-
ence curve calculated including the gravity effect using
the CPM model is in quantitative agreement with ex-
perimental measurements close to the transition (Hahn
et al., 2004) as shown in Fig. 8 by the solid curve for
0.5-mm measurements. Earlier data sets of the *He co-
existence curve over a wide gravity-free temperature
range, compiled by Luijten and Meyer (2000), have also
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FIG. 9. Fit of coexistence curve measurements in “He to the
MSR model. Data sets of gravity-free measurements farther
away from the critical point, compiled by Luijten and Meyer
(2000), were used in the fit. The MSR model parameters {u,a}
were obtained from a joint fit of susceptibility, specific-heat,
and coexistence curve measurements. The solid line corre-
sponds to the best fit and the dashed curve corresponds to a
Wegner expansion to first order. The dot-dashed straight line
represents the asymptotic prediction from the fit. Adapted
from Zhong and Barmatz, 2004.

been compared to the MSR crossover model (Zhong
et al.,2003; Zhong and Barmatz, 2004). That comparison
is shown in Fig. 9. The fit was limited to the range
6Xx10*=<[t|=2%x102. The solid curves and MSR
model parameters {u,a} were obtained from a joint fit of
susceptibility, specific-heat, and coexistence curve mea-
surements (Zhong and Barmatz, 2004). The dashed
curve corresponds to a Wegner expansion to first order.
A background contribution associated with the order
parameter approaching absolute zero temperature
(Zhong et al., 2003) significantly affects measurements
farther away from T..

E. Correlation length

The correlation length is a direct measurement of the
spatial fluctuation range for the order parameter. Preci-
sion measurements of the correlation length have been
performed on the ground where gravity effects are
small. Figure 10 shows the results of light-scattering
measurements along the critical isochore in SFg above
the critical temperature (Cannell, 1975). Measurements
farther away from the transition, shown by circles, were
obtained using a differential intensity method. Measure-
ments close to the transition, shown by crosses, were
determined from turbidity and compressibility measure-
ments. Measurements unaffected by gravity could be ob-
tained over the wide temperature ranged 4x1076=¢
=3.1X107? because of the narrow optical beam diam-
eter used. Cannell (1975) obtained v=0.621, which com-
pares well with the theoretical value v=0.630 (Guida
and Zinn-Justin, 1998).
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FIG. 10. Long-range correlation length of SF¢ as a function of
temperature on the critical isochore. Circles are the results of
differential intensity measurements, and crosses are values de-
termined from turbidity measurements. The inset compares
the results in the temperature range where both methods could
be used. From Cannell, 1975.

The Zeno microgravity experiment was designed to
measure the temperature dependence of two fundamen-
tal dynamic properties of critical fluctuations: their spa-
tial extent given by the correlation length and their
lifetime given by the decay rate. Light-scattering spec-
troscopy was used to measure these quantities near the
critical point of xenon. The Zeno experiment was flown
twice aboard the Space Shuttle, first during the USMP-2
mission in 1994 (Gammon et al., 1996) and later during
the USMP-3 mission in 1996. Measurements obtained
from both of these microgravity investigations were
compromised by local heating of the sample at the cell
windows induced by the laser beam. This local heating
effect led to a long-lasting density inhomogeneity during
the flight experiments. The equilibration time for these
density inhomogeneities was much longer than observed
on the ground since gravity-induced convection was no
longer present. The resulting long equilibration times
were not anticipated in flight time sequences between
temperature changes and limited the comparison of
measurements to theoretical predictions (Gammon,
1998). These early microgravity studies clearly demon-
strated the importance of designing the experimental ap-
paratus to minimize density inhomogeneities associated
with temperature gradients.

F. Viscosity

The theory of dynamic critical phenomena predicts
that, along the critical isochore in the limit of zero fre-
quency, the viscosity 7 diverges as &7 with the correla-
tion length ¢, diverging as 7%, i.e., ot "7 (Hohenberg
and Halperin, 1977; Sengers, 1985). The viscosity expo-
nent z, is very small and is difficult to determine on the
ground because of a large background contribution. As
with other measurements, gravity limits the uniformity
of a sample near the critical point. The CVX experiment
was performed on the Space Shuttle mission STS-85 in
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1997 to better determine the divergent behavior of the
viscosity. This experiment used a viscometer consisting
of a nickel screen torsion oscillator that vibrated be-
tween two pairs of paddlelike electrodes while immersed
in xenon at the critical density (Berg, 1995; Berg et al.,
1999b). The thermostat designed for CVX (Berg et al.,
1998) could achieve temperature differences within the
sample of less than 0.2 uK (Berg et al., 1998). The tem-
perature program constrained the density to be suffi-
ciently close to equilibrium based on an understanding
of the temperature and density dynamics near the
liquid-vapor critical point including the piston effect
(Berg et al., 1999b). The viscosity was determined from
the ratio of the screen’s motion to the applied force. The
analysis of the CVX measurements required a theoreti-
cal model that included a scaling function for near-
critical viscoelasticity (Bhattacharjee and Ferrell, 1983),
a crossover function (Bhattacharjee et al., 1981), and a
background viscosity (Berg and Moldover, 1990).

The characteristic lifetime 7 of density fluctuations
also diverges as the critical point is approached. This
quantity is given by

= qot ™", (10)

where 7, is the fluctuation decay-time amplitude (Ho-
henberg and Halperin, 1977). This characteristic lifetime
increases much faster than the viscosity as the critical
point is approached. When the viscometer’s oscillation
frequency is higher than the characteristic fluctuation
frequency 1/7, the slow fluctuations remember the pre-
vious oscillations and the fluid exhibits viscoelasticity
(frequency-dependent viscosity, or the ability of a fluid
to stretch as well as flow). This phenomenon was also
studied near the critical point as a function of the vis-
cometer’s oscillation frequency.

Using low frequencies and small amplitudes, the tem-
perature dependence of the viscosity was determined to
t=3x107". Figure 11 shows the results of this experi-
ment (Berg et al., 1999b). The best-fit value of z,
=0.0690+0.0006 obtained from these results is consistent
with the value z,=0.067+0.002 obtained from a two-
loop perturbation expansion calculation (Hao er al,
2005). The results of this viscosity study near the xenon
liquid-gas critical point were recently shown to obey the
predictions of rheological models (Berg, 2004). Vis-
coelastic behavior was observed in the range t<107, as
can be seen in Fig. 12. The CVX experiment resulted in
a few surprises. The viscoelastic response time in xenon
was a factor of 2 slower than predicted (Bhattacharjee
and Ferrell, 1983) and the sample density reached equi-
librium faster than expected, suggesting convection
driven by microgravity and by electric fields. The vis-
coelastic results were recently shown to be consistent
with the Cox-Merz rule, which relates viscoelasticity to
shear thinning (Berg, 2004).

A second flight experiment, CVX-2, was performed
on the Space Shuttle mission STS-107 in 2003. The
CVX-2 experiment used the same apparatus and sample
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FIG. 11. Log-log plot of xenon’s viscosity measured along the
critical isochore near the critical point. The asymptotic line has
the slope vz, =0.0435 deduced from the present microgravity
data. Near 7., the CVX microgravity data depart from the
asymptotic line because of viscoelasticity. The two sets of
ground data depart from the asymptotic line further from 7.
because the xenon stratified in Earth’s gravity. From Berg et
al., 1999b.

as CVX but operated the viscometer at larger ampli-
tudes to study shear thinning, the decrease of viscosity
predicted at large shear rates (Oxtoby, 1975). For pure
fluids composed of small molecules, the relaxation time
7 is too short for shear thinning to be observed except
near the critical point, where microgravity is necessary
to achieve density homogeneity. Attempting to observe
shear thinning far from the critical point would have
required a shear rate so large that the associated viscous
heating would have ruined the temperature and density
homogeneity of the sample.

For the CVX-2 study, the viscometer screen was vi-
brated with amplitudes up to 30 times larger than in
CVX. At these large amplitudes, the shear rate ex-
ceeded the frequency 1/7, causing fluctuations to be-
come distorted and the fluid to show shear thinning. The
tragic disintegration of Space Shuttle Columbia upon re-
entry into the Earth’s atmosphere in 2003 delayed the
recovery of the microgravity data. The CVX-2 data are
currently being analyzed.

G. Two-phase phenomena

The behavior of fluids in the two-phase region below
the critical point is more complicated than in the single-
phase region because of heat and mass transfer between
the liquid and gas phases. Microgravity experiments pro-
vide a unique opportunity to investigate these processes
without the effects of convection and stratification. Near
the critical point, phase separation and the decay of the
resulting density inhomogeneities can be studied over a
longer time period due to critical slowing down. When a
fluid is heated or cooled within the two-phase region
near the critical point, its nonequilibrium behavior is
complicated because the piston effect is different in the
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FIG. 12. Xenon’s viscosity at critical density measured at fre-
quencies from 2 to 12 Hz. The solid curves resulted from fitting
the data in the range 10°°<t<10~* to theory. (a) The real
viscosity Re(7). Near =107, the data depart from the 0 Hz
curve because of viscoelasticity. (b) The ratio Im(7)/Re(7). For
clarity, the ratio data at frequencies above 2 Hz are displaced
downward by integer multiples of 0.005; otherwise they would
coincide at 1>2X 107>, From Berg et al., 1999b.

liquid and gas phases. In addition, boiling can be studied
in the absence of buoyancy, which causes gas bubbles to
rise within a liquid on Earth.

1. Phase separation

Phase separation presents a rich phenomenology in
the case of liquids where hydrodynamic flows occur si-
multaneously with nonequilibrium processes. In particu-
lar, during phase separation the system splits into many
domains characterized by different densities, growth
rates, and coalescence behavior. On Earth these pro-
cesses are affected by gravity, which induces domain
sedimentation and convection. Gravity effects come into
play when the size of the growing domains becomes
comparable to the capillary length /.= \o/pg, where o is
the surface tension. The characteristic evolution time
scale of the domains is identical to the time scale 7, of
the relaxation of order parameter size fluctuations. This
implies that phase separation is very rapid away from
the critical point but slows down dramatically as the
critical point is approached. Thus, near-critical systems
(both pure fluids and binary liquid mixtures) are useful
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in studying the kinetics of phase separation. However,
since /. vanishes at the critical point, gravity effects gov-
ern the domain growth shortly after the onset of separa-
tion. Therefore, buoyancy effects have to be completely
suppressed in order to study the intrinsic kinetics of
phase separation.

For phase separation experiments, it is more advanta-
geous to use pure fluids rather than binary mixtures be-
cause during a thermal quench the piston effect induces
a homogeneous and rapid temperature change in the
entire bulk of a pure sample, whereas a temperature
change propagates diffusively in a binary mixture. In a
pure fluid, phase separation studies near the critical
point are usually performed by applying a temperature
quench from the one-phase region through the coexist-
ence curve into the two-phase region. The coexistence
and spinodal curves are very close near the critical point,
and are in contact at the critical point. The spinodal
curve separates the region of instability from the meta-
stability region closer to the coexistence curve. Near the
critical point, the spinodal curve is not sharply defined,
but is replaced by a narrow crossover region in which
the nucleation time becomes comparable to the time
scale of the experiment. When the final quenched state
is below the spinodal curve, any fluctuation of the order
parameter becomes unstable (Beysens et al., 1988) and
spinodal decomposition occurs. If the final quenched
state is below the coexistence curve but above the spin-
odal curve, the one-phase state is metastable, and only
sufficiently large domains can nucleate and grow. In this
case, phase separation is triggered by nucleation. After
nucleation, further growth of the domains occurs by Os-
twald ripening, evaporation and/or condensation
through species diffusion (Lifshitz and Slyosov, 1961).
Near the critical point, fluctuations broaden the spinodal
curve, making the distinction between the coexistence
and spinodal curves difficult to observe (Dahl and Mold-
over, 1972; Beysens et al., 1988). After penetrating the
coexistence curve, a near-critical system rapidly phase-
separates into domains of droplets and bubbles, and lo-
cal thermodynamic equilibrium is reached where the
volume fractions and compositions of the phases stabi-
lize. Then phase coalescence begins, in which only the
number of domains diminishes. Experiments performed
in low gravity on near-critical systems are designed pri-
marily to observe this phase coalescence.

In preparation for microgravity experiments, ground-
based studies were performed on phase separation in
density-matched binary mixtures using isotopes of car-
bon to minimize the effects of gravity (Houessou et al.,
1985; Guenoun et al., 1987). These studies observed new
microscopic spinodal decomposition patterns and thin
wetting layers. The first low-gravity experiments on
phase separation in liquid binary mixtures and pure flu-
ids were performed during 6-min flights on ESA
TEXUS-11 and 13 sounding rockets (Beysens et al.,
1988). Low-gravity studies of the heat transport process
near the CO, critical point were also performed in 1990
on the TEXUS-25 rocket (Guenoun et al., 1993). In that
study, a sample was quenched into the two-phase region
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FIG. 13. Growth laws of phase-separating fluid close to the
critical point for the reduced coordinate Q,,=2m/L,,, where
L,, is the average spacing between drops. The experimental
points illustrate the growth of the central CO, single bubble
for temperature quenches of 85, 90, and 100 mK with the ex-
ponent close to —0.5 while the Q,,(7) ~ 7> behavior is recov-
ered far from the illuminated area. The fit using the theoretical
—4/9~-0.44 exponent is also shown. Inset (a) shows growth of
interconnected domains when volume fraction ¢>30%
[0,,(7) = 71]; inset (b) shows growth of isolated droplets when

¢<30%. From Beysens, Garrabos, Nikolayev, et al., 2002.

and spinodal decomposition, growth of gas and liquid
domains, and the piston effect were observed (Garrabos
et al., 1992). Nucleation and growth studies in a binary
liquid and in SFg were performed in the CPF facility
during the Space Shuttle mission STS-42 in 1992. A new
kinetic region of phase separation, the 7'/ time regime,
was discovered (Perrot et al., 1994). Thermal quenches
were used to demonstrate that the growth of tightly
packed droplets could be explained over seven decades
in 7 by a single power law. The morphology and kinetics
of phase coalescence near the critical point in the late
stages of growth were analyzed in some detail using the
results from these experiments (Perrot et al., 1999). It
was unambiguously demonstrated that the kinetics of
phase coalescence depends on the volume fraction ¢ of
the minority, nonwetting phase (Perrot et al., 1999). For
¢>0.3, the domains are interconnected and grow rap-
idly from frequent coalescence events activated by hy-
drodynamic interactions (Nikolayev et al., 1996), and the
size of the domains (gas bubbles in the case of pure
fluids) grows linearly with time. For ¢ < 0.3, the domains
are well separated and grow by Brownian-motion-
induced coalescence rather than by Ostwald ripening
(Perrot et al., 1994); their size grows slowly in time as
73, This description is universal in the sense that it is
valid for both binary mixtures and pure fluids. Later, it
was also shown that laser beam heating could accelerate
domain growth in microgravity by thermocapillary mi-
gration (Garrabos, Nikoloyev, et al., 2002a). Figure 13
shows the various growth laws for a phase-separating

Rev. Mod. Phys., Vol. 79, No. 1, January—March 2007

fluid near the critical point for interconnected domains
and isolated droplets.

Another interesting area related to phase separation
and finite-size effects is critical adsorption. Thommes et
al. (1994) studied the excess adsorption of SFg in graph-
ite pores along the critical isochore. For [t|>1072, they
found the power-law behavior predicted by Fisher and
de Gennes (1978), but closer to the transition an unex-
pected decrease in the adsorption was observed. Thom-
mes and Findenegg (1995) later performed similar mea-
surements in microgravity during the EURECA-I free-
flyer mission. A similar result was obtained, implying
that the phenomenon is an intrinsic property of the sys-
tem. These authors have also performed a Monte Carlo
simulation, which indicates that the effect is due to den-
sity depletion in the core region of the pores as T— T...
Results on other substrates have confirmed the existence
of the effect (Thommes et al., 1995).

2. Equilibration

In a microgravity environment, in the absence of any
gravity-induced phase stratification, the distribution of
phases within a sample and the shape of the liquid-gas
interface are determined by the complete wetting of the
liquid, the thermal history of the sample, and the geom-
etry of the experimental cell, since surface tension is
very weak. As a consequence, it is very difficult to pre-
dict the phase distribution within a cell.

As initially pointed out by Brown and Meyer (1972)
and Dahl and Moldover (1972), and later discussed in
more detail by Behringer et al. (1990), thermal equilibra-
tion in the two-phase region near the critical point of
pure fluids is much slower than in the one-phase region.
This phenomenon is commonly known as the interface
bottleneck. Onuki and Ferrell (1990) showed theoreti-
cally that the energy exchange between liquid and gas
(latent heat) becomes more important during a tempera-
ture quench as the critical point is approached, and that
different temperature gradients are expected to form in
the liquid and gas during adiabatic heating. Zhong and
Meyer (1996) observed this interface bottleneck in their
experiments and numerical simulations. On the other
hand, Straub and co-workers did not observe it on the
ground or in space (Straub et al., 1995a). It is speculated
that the temperature sensor dedicated to the gas phase
in the microgravity experiment actually measured the
interface temperature. A possible explanation for the
differences between ground-based studies is that the
sample cells used by Brown and Meyer (1972) and
Zhong and Meyer (1996) were very thin (having a small
Rayleigh number with no convection) and that the liquid
wetting layers efficiently isolated the gas from the ther-
mostat walls, whereas the large spherical cell of Straub
and co-workers supported strong convection that re-
stored rapid thermal equilibration of the two-phase
sample.

An experimental study of the thermal response to a
positive temperature step in the two-phase fluid SFg was
performed in low gravity using the ALICE-2 facility on-
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FIG. 14. Thermal response to a temperature quench in the
two-phase region of SF4. A temperature rise of 100 mK was set
at the cell wall. Evolution of the temperature at the wall
(6Ty), in the gas (87) at the thermistor position Th3, and in
the liquid (5T1L‘2) at the thermistor positions Th1l and Th2, re-
spectively, are shown. Overheating of 23% was observed in the
gas phase at 10 K below the critical temperature (Wunen-
burger et al., 2000). The inset picture is an interferometric cell
image of the sample during the quench with the thermistors
(Th1-Th3) marked by open circles. From Zappoli, 2003.

board the MIR station in 1999. An unusual thermal re-
sponse was observed during the step. The gas tempera-
ture exceeded the temperature of the heated cell walls,
leading to an overshoot of 23% (Wunenburger et al.,
2000). This overheating phenomenon, shown in Fig. 14,
was caused by differences in the liquid and gas in con-
verting the piston effect into a temperature change
(Beysens, Garrabos, Wunenberger, et al. 2002b; Wunen-
burger et al., 2002). This difference led to a more effi-
cient heat transfer in the gas than in the liquid. This
heating effect was accentuated in microgravity where
the vapor bubble was thermally isolated from the cell
walls by the liquid. The thermally isolated gas phase was
initially overheated leading to late-stage heat transfer
from the hot gas phase to the cooler liquid phase as the
system diffusively approached thermal equilibrium.

3. Critical boiling

Microgravity has been used to study the boiling crisis
that occurs in large-flux heat exchangers (e.g., those of
power plants) where the heated walls can be dried by a
layer of gas formed by boiling that thermally isolates the
walls from the fluid. This overall drying leads to a drop
of the heat flux through the walls and ultimately to their
destruction through overheating. The value of using
near-critical two-phase fluids to study the boiling crisis
relies on the fact that a large gas production rate can be
obtained using a small heat flux, since latent heat goes to
zero at the critical point. Also, the mechanical effect on
the interface of the vapor production (vapor recoil
force) due to the momentum variation of the fluid un-
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dergoing phase change at the interface is large com-
pared to surface tension effects. Thus, large shape varia-
tions of a gas plume undergoing rapid heating near the
critical point can be observed. The singular behavior of
both latent heat and surface tension in near-critical pure
fluids can thus be used to mimic the situation occurring
in large-scale heat exchangers with noncritical fluids.
Boiling studies in SFq and CO, were carried out on
several Cassiopée and Pegase French-Russian and
GMSF French-American missions on the MIR Space
Station using the ALICE-2 instrument. Observations of
bubble images for various cell aspect ratios and during
various ramping rates and quenches demonstrated large
liquid contact angles and unexpected wetting of a gas at
a solid surface (Garrabos et al, 1999; Garrabos,
Lecoutre-Chabot, et al., 2001b). It was speculated that
these phenomena may be caused by both a surface-
tension gradient due to a temperature gradient along the
interface and a vapor recoil force due to evaporation
(Hegseth et al. 2002, 2005). This recoil force, which ex-
pands bubbles, could explain the boiling crisis since the
associated area increase of the solid-vapor surface iso-
lates the solid from the liquid and increases the tempera-
ture gradients and consequently the gas production. A
theoretical model was also developed to explain the
growth of gas bubbles after a rapid sample quench from
the one-phase to the two-phase region in pure CO,
(Beysens, Garrabos, Nikolayer, et al., 2002a). Further
studies of critical boiling phenomena are planned for the
ISS using the DECLIC facility (Cambon et al., 2004).

V. 0(2) UNIVERSALITY CLASS—LAMBDA TRANSITION
IN “He

The lambda transition of helium is the primary ex-
ample of the O(2) universality class. While magnetic
critical phenomena in XY ferromagnets also fall within
this class, demagnetization effects and sample unifor-
mity problems limit the approach to the critical point to
t=10* Of primary interest for static phenomena near
the superfluid transition is the behavior of Cp and the
superfluid density p, measured along constant pressure
paths. As for the O(1) universality class, in a quantita-
tive analysis of the temperature dependence of these pa-
rameters it is necessary to deal with nonasymptotic rep-
resentations because data are obtained a finite distance
from the superfluid transition temperature 7),(P). In this
region, the RG theory predicts (Wegner, 1972)

+

A_
Cp="—f*(1 + aglt|* + bele** + ---) + B, (11)
o

where the + and - signs refer to 7> T, and T<T,, re-
spectively, and

ps:p30|t|v(1 +apA\,|t|A+pr|t|2A+ )a T< T}\' (12)

Equation (11) is essentially the same as Eq. (6) shown
for the O(1) case, and Eq. (12) is similar to Eq. (8) due to
the hyperscaling relationship mentioned earlier. The
critical and background contributions to B are typically
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TABLE V. Theoretical estimates of the leading exponents for the O(2) class.

v @ Reference
0.67168 (3) —-0.01504 (9) Williams (1993)

0.6703 (15) -0.011 (4) Guida and Zinn-Justin (1998)
0.671 -0.013 Yukalov and Gluzman (1998)
0.6723 (8) —-0.0169 (24) Hasenbusch and Torok (1999)
0.67098 (20) —-0.01294 (60) Kleinert (1999)

0.6704 (7) -0.0112 (21) Jasch and Kleinert (2001)

0.67155 (27)
9/13 [=0.69231]

—-0.0146 (8)

~1/13[=-0.07692]

Campostrini et al. (2001)
Kaupuzs (2001)

combined for the O(2) case, as for a small and negative,
the critical contribution is very large. Higher-order cor-
rections and other background terms are discussed be-
low. In parallel with the O(1) case, the quantities A*, B,
and pyg as well as the correction amplitudes a, be, a,,
and bps depend on system-dependent parameters of the
statistical distribution of the order parameter, while the
critical exponents v, @ and the confluent singularity ex-
ponent A are independent of these parameters, i.e., uni-
versal. Certain ratios of the nonuniversal amplitudes are
also predicted to be universal (Privman et al., 1991), for
example, A*/A~, ailag, acla,, and P,=(1-A"/A")/«a,
a combination less sensitive to the exact value of @ when
it is small (Barmatz et al., 1975). As before, the complete
Wegner expansion includes not only the series indicated,
but additional terms such as d|¢| and eg,|#|*i, where d
and e(; are constants and the A; are higher-order expo-
nents related to irrelevant operators (Wegner, 1972; Eyal
et al., 1996). Since the terms e,|#/* involve extensions
beyond the basic ¢* theory, we neglect them. Also, over
the temperature range of interest, the term d¢|:| be-
haves like bg[f|** since A=0.529. Thus it can be ne-
glected in most experiments to date.

Using advanced analytical and numerical techniques,
it has been possible to derive estimates for many of the
O(2) universal quantities, in particular, the exponents v
and «. These are linked by the hyperscaling relation in
Eq. (3), which is an integral part of all calculations to
date. In Table V, we list the estimates that have been
published in the past decade or so. It can be seen that
there are a number of precise estimates allowing high-
quality tests of the theory. Most of the estimates have
been obtained with advanced RG techniques using vari-
ous expansion and resummation methods. In general, it
is quite difficult to obtain quantitative estimates of the
uncertainties involved, so the bounds given in this table
should be treated with caution. This point has been em-
phasized by Kleinert and Schulte-Frohlinde (2001) and
by Zinn-Justin (2003). The most recent value of a ob-
tained by standard methods that we are aware of is
0.0146+0.0008 obtained by Campostrini et al. (2001).
Related earlier work by Hasenbusch and Torok (1999)
using Monte Carlo techniques with suppression of cor-
rections to scaling is also listed in this table. Jasch and
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Kleinert (2001) obtained a=0.0112+0.0021 using a fast
convergent resummation algorithm and a seven-loop ex-
pansion series. Some of the results in this table were
obtained by techniques significantly removed from the
more mainstream RG methods. The result of Kaupuzs
(2001) involves a special regrouping of Feynman dia-
grams to obtain an array of exact predictions with inte-
gers then selected to fit Monte Carlo results for finite
XY systems. To avoid conflict with experiment, he ar-
gued that the asymptotic region might be much closer to
the transition than has been appreciated. The possibility
of logarithmic corrections to Eq. (11) has also been pro-
posed, allowing a reasonable fit over a wider range of ¢
(Kaupuzs, 2005). Williams (1993) used vortex ring theory
to derive exponent estimates that are in good agreement
with the results of Campostrini ez al. (2001). Yukalov and
Gluzman (1998) obtained their results from self-similar
approximation theory. This approach has now been
combined with that of Kleinert (1999) and may well lead
to even higher-precision results (Kleinert and Yukalov,
2005). The leading crossover exponent has been esti-
mated by Guida and Zinn-Justin (1998), who obtained
A=0.529+0.009.

The O(2) amplitude ratios can be calculated from
the RG theory with varying degrees of accuracy. The
most recent predictions for the amplitude ratio A*/A~
are based on three- and four-loop RG calculations and
Borel resummations. Strosser and co-workers (Strosser
et al, 1999, 2000; Strosser and Dohm, 2003) ob-
tained A7/A7=1.056+0.004 and P,=4.433+0.077 if «
=-0.0126. Campostrini et al. (2001) obtained A*/A~
=1.062+0.004 based on their value for a. For this case
we estimate P,=4.247+0.5, where the error bar is very
conservative. Kleinert and Van den Bossche (2001) ob-
tained A"/A"=1.04516+0.004 from a three-loop calcu-
lation, assuming «a=-0.01056. This implies P,
=4.28+0.4 where again the error bar is conservative.
Earlier calculations by Bervillier (1986) gave A*/A~
=1.029+0.013 and P,=4.455+0.04, with «@=-0.007.
Schultka and Manousakis (1995a) obtained A*/A~
=1.044+0.038 using Monte Carlo techniques. It is impor-
tant to remember that estimates of A*/A™ are typically
correlated with «, which had a range of values for the
numbers given above. To improve the comparison be-
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TABLE VI. Theoretical estimates of the universal leading specific-heat ratio for the O(2) class. The
normalized ratio refers to the computation of A*/A~ for fixed «=-0.0127. For the case with no P4

entry, the value is not normalized.

Py Normalized A*/A~ Reference
4.433 (77) 1.0563 (40) Strésser et al. (1999, 2000, 2003)
4.247 (500) 1.0539 (40) Campostrini et al. (2001)
4.455 (40) 1.0566 (130) Bervillier (1986)

1.044 (38) Schultka and Manousakis (1995a)
4.28 (40) 1.0544 Kleinert and Van den Bossche (2001)

tween the results, we have recomputed the values of
A*/A™ in Table VI assuming a=-0.0127, the most re-
cent experimental value (Lipa et al., 1996, 2003). Unfor-
tunately there is not always enough information to com-
pute P,. The only estimates we know of for ag/a . are
those of Chang and Houghton (1980), who obtained
~1.17 using an e-expansion approach, and Schloms and
Dohm (1990), who obtained ~1.6 using a field-
theoretical approach.

Universality tests can be performed by measuring the
predicted universal quantities along the lines of transi-
tions obtained by increasing the pressure in the helium
or the concentration of the *He isotope. Both these per-
turbations affect the *He-*He atomic interaction, modi-
fying the statistical distribution function and depressing
the transition temperature. Various measurements of the
specific heat and superfluid density singularities are de-
scribed in the sections below.

In the case of transport properties, the theoretical
situation is more complex due to the existence of slowly
convergent terms, at least in the case of the thermal con-
ductivity. Here, even at the highest experimental resolu-
tion, only an effective exponent is predicted to be ob-
served. Dohm’ flow-parameter model based on two-
loop RG equations (Dohm, 1991) appears to give an
excellent representation of experiment results to date
(Tam and Ahlers, 1985; Dingus et al., 1986; Lipa et al.,
2003), as discussed further below. Isothermal heat trans-
port in superfluid helium, under a heat flux Q, fails sud-
denly at a temperature designated T.(Q), where T.(Q)
<T,. Transport measurements made close to 7.(Q)
have been predicted (Haussmann and Dohm, 1994) and
observed (Day et al., 1998) to become dependent on Q
itself, in what is called the nonlinear region. Slightly be-
low T,.(Q), the superfluid density is predicted to be de-
pressed by the superfluid counterflow velocity, resulting
in a dynamical enhancement in the superfluid heat ca-
pacity just before the isothermal heat transport fails at
T.(Q) (Haussmann and Dohm, 1994; Chui et al., 1996).
Initial measurements of this heat-capacity enhancement
have been made on Earth (Harter et al., 2000), but a
detailed study of this and other nonlinear heat-transport
effects will require a microgravity laboratory. Nonlinear
heat-transport measurements that have been performed
as precursors for future space flights are described be-
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low, along with a brief review of the emerging theory of
nonlinear transport phenomena.

The lambda transition is currently the fluid transition
that is least susceptible to the effects of gravity since the
compressibility is only weakly divergent at the transi-
tion. Nevertheless, due to the availability of high-
resolution thermometry at low temperatures, the gravi-
tational rounding of the transition can easily be seen.
The ultrahigh homogeneity of liquid helium together
with these high-resolution techniques make it possible to
observe effects associated with the divergent correlation
length exceptionally close to the transition temperature.
As discussed in Sec. II.D, on Earth the transition is se-
verely rounded over a temperature interval of about
1.3 uK per centimeter of hydrostatic head in a sample,
due to the slope of the lambda line, (97/dP),. For a
sample of constant cross section, the effect on an equi-
librium property, for example, the specific heat, can be
visualized as a convolution of a gravity-induced tem-
perature window ATj,=pgh(dT/dP), with the gravity-
free function in Eq. (11). This approximation is valid
because, over the relatively small hydrostatic pressure
heads encountered in typical experimental cells, the
pressure dependence of thermodynamic properties can
be neglected. This hydrostatic pressure effect was first
reported by Ahlers (1968a) and has been observed in
numerous experiments. As mentioned in Sec. IL.D,
finite-size effects set a lower limit on the sample height
at which bulk measurements can be performed. In a fi-
nite system, the first-order departure from the bulk spe-
cific heat can be characterized as a surface specific-heat
term that has been measured for lower-dimensional ge-
ometries. Since the magnitude of this effect is propor-
tional to the surface area of a sample, the observed spe-
cific heat per unit volume can be written approximately
as Ceypy=Cp+(A/V)Cyyy, where A/V is the surface area
to volume ratio and Cg; is the surface specific heat per
unit area. In first order, the surface specific heat can be
characterized as a negative constant multiplied by the
thickness of the affected surface layer, on the order of
one correlation length. For precise tests of second-order
phase transition theory, only small departures from bulk
behavior are allowable, so such a model is appropriate.
Figure 15 shows the percent change in the specific heat
due to the surface layer in a spherical cell as a function
of diameter and reduced temperature. It can be seen
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FIG. 15. Comparison of gravity and finite-size effects for the
specific heat near the lambda point. Curves marked 1 mm,
1 cm, and 10 cm show the magnitude of the finite-size correc-
tion to the specific heat as a function of reduced temperature
and spherical calorimeter diameter. Curve marked gravity cut-
off indicates the closest approach possible on Earth before en-
tering the gravitationally induced two-phase region due to the
height of the cell. The horizontal line shows an arbitrary cutoff
set at 1% finite-size correction. The useful region is below this
curve to the right of the gravitational cutoff.

that the perturbation grows rapidly as the transition is
approached. Also shown in the figure by the line marked
“gravity cutoff” is the location of the gravitationally in-
duced two-phase region for each cell diameter on Earth.
Beyond this line, the gravitational perturbation grows
very rapidly. The horizontal line marks a limit on the
maximum finite-size effect tolerable, in this case arbi-
trarily set at 1%. The parameter space then available to
the experimenter is below this line and to the right of
the gravity cutoff. These considerations set the limits on
what is possible at the lambda transition on Earth.
Avoiding these limits is the primary motivation for per-
forming experiments on relatively large samples in the
microgravity environment of Earth orbit.

The possibility of approaching the lambda transition
exceptionally closely in space has a significant implica-
tion for testing the theory of second-order phase transi-
tions. Typically, for O(1) systems, exponents are evalu-
ated over 2-3 decades of temperature extending, say,
from =102 to 10~ or 107>. This means that the extrac-
tion of exponent values is complicated by the existence
of the Wegner series to the extent that only effective
values are obtained. In space, the range might be ex-
tended to t~3X 1077, alleviating the problem to some
degree. When proper allowance for the series is made,
the uncertainties in the exponent estimates increase, di-
minishing the value of the exercise as a test of the basic
theory. At the lambda transition, this problem can be
further alleviated by extending the fitting region much
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closer to the transition. For example, if the inner bound
of the fitting region is =107, one could perform a test
of the theory extending out to t=107°. When compared
to the more typical fitting range above, it can be seen
that the effect of the leading-order term in the Wegner
series is reduced by a factor of about 30. Thus the pres-
ence of the series has much less of an impact on the
exponent values obtained in a fit, resulting in a better
test of the asymptotic predictions. Alternatively, one can
increase the fitting range and fit the series as before but
with less of an impact on the uncertainties of the param-
eter values obtained. Indeed, the experimental uncer-
tainties in the exponent values obtained at the lambda
transition routinely fall below the corresponding theo-
retical uncertainties, even in some ground-based experi-
ments. This in turn provides an incentive for the theory
community to devise yet more sophisticated computa-
tion schemes for estimating exponents and other quan-
tities of experimental interest.

Since the lambda transition provides a unique oppor-
tunity to accurately determine the values of two
asymptotic exponents as opposed to effective exponents,
we examine the issues in more quantitative detail. From
an inspection of Eq. (11) it can be seen that the value
obtained for « is likely to be more reliable the smaller
the value of ¢ at which the curve fitting is done. How-
ever, as mentioned earlier for O(1) systems, technical
difficulties increase in this region, due to both measure-
ment techniques and sample imperfections. On the
other hand, as one includes data further from the tran-
sition, the curve-fitting procedure becomes more diffi-
cult since more terms must be carried in the function to
obtain an accurate representation of the specific heat.
Neglect of these terms leads to systematic bias in the
remaining parameters that are evaluated. The extent to
which it is reasonable to truncate the expansion series in
Eq. (11) depends on the desired degree of fidelity in the
parameter values obtained from the curve-fitting proce-
dure. As noted already for the O(1) universality class
after Eqgs. (5)—(8), the complete Wegner expansion in-
cludes additional terms related to irrelevant operators
that are being neglected. This is well justified for the
superfluid transition where, by symmetry, the subleading
terms of the ¢* theory are of O(¢°) and not of O(¢°).

To get a feel for what is possible, we now consider the
hypothetical case of a specific-heat experiment limited
only by currently available thermometry. In this case it
can be shown by simple numerical modeling that we
have the potential for obtaining a statistical uncertainty
0,~0.0001 for the specific-heat exponent with data in
the range 107 <|t| <1072, so it is of interest to consider
potential sources of systematic error that could lead to
this level of bias. First we consider the effect of neglect-
ing a fourth-order term in Eq. (11), ¢¢|#]**. Assuming for
estimating purposes that c¢,=1 and comparing fits to
model data sets with and without the term, we find the
bias from its neglect is Aa~ 3 X 107*. This shows the im-
portance of an appropriate functional form, especially in
high-precision experiments over very wide temperature
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ranges. Alternatively one can restrict the range of the fit
to reduce the importance of the neglected terms, a
tradeoff that sets the practical outer limit of the curve-
fitting region. For example, if the fit to the model data is
restricted to || <3Xx1073, the bias falls to Aa~6.5
X 107>, less than the statistical uncertainty o,. Also, the
experimental situation is actually slightly more complex
than indicated so far, due to the possibility of regular
background terms in the full representation of Cp. A
more complete representation of the measured specific
heat is Ceypi=Cp+Cp, where

CB:C0+C]t+C2t2+"', (13)

in which the coefficients ¢; are constants. Clearly, the
constant background contribution ¢, can be absorbed
into B in Eq. (11), but the effects of the other terms need
to be considered. From the wide range behavior of the
specific heat (Buckingham and Fairbank, 1961) where
fluctuation effects are small, we obtain ¢;=2 J/mol K.
Thus for t=1072 this term contributes ~0.07% to the
specific heat, a small but detectable amount. To study
this, we again made a set of simulated data in which the
term ¢yt was included in the generating function, but
then ignored in the fitting procedure. We found a bias
Aa~2x107% which is negligible at present. The value
of ¢, is harder to determine, but it would appear to be
similar to ¢;. Even at |t| =1072, such a term contributes
<0.01% to the specific heat and therefore can be ne-
glected. Thus for the present a sufficiently good fitting
function can be obtained by absorbing ¢, into Eq. (11)
and ignoring the other terms. The small price paid for
doing this is that the experimentally determined third-
order coefficients no longer represent quantities of the-
oretical interest, and other coefficients may be slightly
perturbed.

We now consider the effect of the term b} |¢|**. This
has a similar behavior to the term ¢t above, but now the
potential effect is much larger due to the multiplicative
effect of the leading singularity. Assuming b.=0.1, we
find a shift Aa~1X1073 from its neglect, implying that
the term should be carried for high-accuracy curve fit-
ting. On the other hand, reducing the outer limit of the
data to |t|=10"° would reduce this effect to Aa~1.4
%1074, close to the statistical uncertainty o,. This is an
incentive for moving the fitting region closer to the tran-
sition as improved testing of the theory is attempted and
would probably be necessary if further improvements in
measurement precision are made. In a fit to data ob-
tained in microgravity, it was found that b_~0.33 (Lipa
et al., 2003).

Near the transition we need to consider the intrinsic
rounding effects described earlier, which could also per-
turb the exponent value. These perturbations depend on
the details of the experiment. For example, for a micro-
gravity experiment at 10~g steady residual acceleration,
say, with a spherical sample of diameter 3.5 cm, we find
the effect of neglecting the hydrostatic distortion of the
singularity would lead to a bias Aa~ 6 X 107>, The effect
of the surface specific heat on the value obtained for «
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can also be estimated. For the same sample and fitting
over a range 107°<|t| <1072, we obtain a perturbation
Aa=~3.4x107>, using the results of Lipa et al. (2000) to
estimate Cg,;. As one might expect, this perturbation
becomes more important if the fitting range is further
restricted.

A. Specific heat

The specific heat exhibits a weak, nearly logarithmic
singularity at the lambda point. Close to the transition,
RG theory predicts the functional form for Cp given in
Eq. (11). Ground experiments have shown that the ex-
ponent « is slightly negative. Along the lambda lines,
the experimental situation is somewhat complex because
of the differing conditions with the various measure-
ments. A number of experiments are in approximate
agreement, but indicate a possible difference between
the value of « at the saturated vapor pressure (SVP) and
that along the lambda lines of pressure and *He concen-
tration. The measurements up to 1976 have been re-
viewed extensively by Ahlers (1976). Here we touch on
some of these measurements, focusing on the more ac-
curate exponent determinations. Except for the most re-
cent measurement in microgravity, the term b¢|¢** in
Eq. (11) has been neglected in the curve fitting. This is
probably acceptable given the precision of the various
results.

The first indication that the specific-heat divergence at
the lambda point may not be logarithmic was obtained
by Ahlers (1971). Additional measurements of C, along
the lambda line as a function of temperature and pres-
sure supported this conclusion (Ahlers, 1973). To test
universality, Mueller et al. (1976) performed measure-
ments of the expansion coefficient at constant pressure,
which has the same asymptotic behavior as Cp, along the
lambda line as a function of pressure. When the data
were fitted with Eq. (11), the values of a obtained were
consistent with no pressure dependence within a scatter
of about +0.006, and the best-fit exponent was
—0.026+£0.004. These authors also refitted the data of
Ahlers (1971) and obtained a=-0.016+0.002. Gasparini
and Moldover (1975) performed measurements of the
specific heat along the *He-*He lambda line at constant
*He concentration. Gasparini and Gaeta (1978) fitted
those measurements by Eq. (11) with bz=0. Excluding
the measurements for pure “He, they obtained «
=-0.025 (£0.006, our estimate), in very good agreement
with the expansion coefficient result. On the other hand,
their pure “He results gave a=-0.0198+0.0037. When
these results were combined with those along the
lambda line, the optimum exponent was found to be
—0.022. An experiment performed with the aid of high-
resolution thermometry gave a=-0.0127+0.0026 at the
SVP (Lipa and Chui, 1983). While the differences are
not large in absolute terms, the exponent results along
the lambda lines do not appear to be entirely compatible
with the SVP measurements. In Table VII, we have in-
dicated an approximate range of « obtained from the
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TABLE VII. Experimental results for the specific-heat expo-
nent and leading amplitude ratio for the lambda point. Mea-
surements at the vapor pressure are labeled with an asterisk.

@ AYIA- Reference

-0.016 (2)° 1.068 (10) Mueller et al. (1976)

-0.026 (4) 1.11 (2) Mueller et al. (1976)

-0.0198 (37)" 1.081 (16) Gasparini and Gaeta (1978)
-0.022 (4) 1.088 (20)  Gasparini and Gaeta (1978)
-0.023 1.090 Takada and Watanabe (1980)
-0.0127 (26)* 1.05 (2) Lipa and Chui (1983)
-0.0127 (3)" 1.053(2)  Lipa et al. (1996, 2003)

various groups. On a statistical basis there appears to be
a noticeable discrepancy between the vapor pressure
data and that along the lambda lines. The results for
A*/A™ are also listed in this table.

A value of P, can be derived from the data of Lipa
and Chui (1983). From their analysis, which did not con-
strain B*=B", we obtain P,=4.57+0.4, where the uncer-
tainty was estimated by the present authors. We note
that the value of P, and its uncertainty are significantly
affected by the fitting constraint B*=B". This appears to
be a result of the strong correlations between A* and B*
and A~ and B~ in the curve fitting procedure. If this
constraint is added to the analysis of Lipa and Chui, we
obtain P,=3.98+0.02. This result is somewhat outside
the range of theoretical estimates listed in Table VI.

1. Microgravity measurements

By the early 1980s, the resolution obtainable on the
ground was limited by the competition of gravity and
finite-size effects described earlier. In 1992, the
“Lambda Point Experiment” (LPE) was performed on
the Space Shuttle mission STS-52 to measure the specific
heat on the low-temperature side of the transition and
obtain improved information on the form of the diver-
gence (Lipa et al., 1996, 2003). Some measurements were
also made above the transition, but the accuracy was
expected to be lower due to thermal relaxation effects.
The sample consisted of a 3.5-cm-diam sphere of helium
with a small gas bubble to allow measurements at the
SVP. It was isolated from the surroundings by a four-
stage thermal control system enclosed in a liquid-helium
Dewar operating at about 1.75 K. Specific-heat mea-
surements were made to within 10~ K of the transition
temperature. Two significant technology developments
were needed to perform the experiment. The most
significant was the development of reliable high-
resolution thermometry capable of resolving to the limit
imposed by thermodynamic fluctuations. Paramagnetic
salt thermometry with a SQUID readout was developed
to the desired level in the late 1970s (Lipa ef al., 1981). A
noise performance in the 1071 K range was later dem-
onstrated and the noise power spectrum was shown to
be consistent with the fluctuation-dissipation theorem
(Chui et al., 1992). Also important was the development
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FIG. 16. Specific-heat results near the *He lambda transition
obtained in microgravity on a log-linear scale. Filled circles are
below the transition, open circles, above. From Lipa et al.,
2003.

of a thermal isolation system capable of high stability. A
multistage thermal isolation system was developed for
ground specific-heat measurements (Lipa and Chui,
1983; Lipa et al., 1992). This system used the new ther-
mometry on the fourth stage of control and was capable
of controlling heat inputs to a calorimeter to <1072 W.
Details of the experiment and hardware can be found in
Lipa et al. (2003), and references therein.

Specific-heat results from the mission are shown in
Fig. 16 on a semilogarithmic scale. These were fitted
over the whole range measured with the trial function,

A-
Cp=—lf 0 + aglt]* + b |t* + B, T<T,,
o

A+
Cp=—l\t|*+B, T>T,. (14)
o

The simpler form was used above T) because the data
only extended to t~107°, where additional terms would
still be negligible. All parameters were allowed to vary
except for A, which was fixed at the value 0.529 (Guida
and Zinn-Justin, 1998), and T, which was determined
independently. The best-fit values for the parameters be-
low the transition are listed in Table VIII along with the
ratio A*/A~. The corresponding uncertainties are listed
below the values and refer to the standard statistical er-
ror evaluated from the curve-fitting routine.

A number of variations were made in the fitting pro-
cedure to determine the sensitivity of the main results to
the process. Taking into account the systematic effects of
the various constraints, it was estimated that the results
indicate a=-0.0127+0.0003 and A*/A~=1.053+0.002
with a high degree of confidence. These values can be
compared with the theoretical estimates given in Tables
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TABLE VIIIL. Results from curve fitting to the microgravity specific-heat data using Eq. (14) over the
range 5 X 10719<¢< 1072, Statistical uncertainties are given in parentheses beneath values. Units of A

27

and B are J/mol K.

Parameter a A*IA A~ B ac be Py
Best-fit value —-0.01264 1.05251 5.6537 460.19 —-0.0157 0.3311 4.154
Uncertainty (1o) (0.00024) (0.0011) (0.015) (7.3) (0.0015) (0.011) (0.022)

V and VI. It can be seen that the result for « falls be-
tween the estimates by Campostrini et al. (2001) and
Jasch and Kleinert (2001), giving increased confidence in
the overall correctness of the RG approach. If the dis-
crepancy between the two estimates can be resolved, a
very high-quality test of the theory would result. It is
interesting to note that the result falls very close to the
theoretical value of —0.012 94+0.0006 obtained earlier
by Kleinert (1999). The value obtained for the ratio
A"/ A~ can be compared with the calculation of Strosser,
Monnigmann, and Dohm (2000), whose result for P, im-
plies A*/A~=1.056+0.003 if a=-0.0127. The measured
value of P, was 4.154+0.022 where the uncertainty is
the 1o statistical value including the effects of correla-
tions of the parameters. This compares well with the
result of 4.39+0.26. Recently, Strosser and Dohm (2003)
have obtained an improved result P,=4.433+0.077 from
a four-loop analytic calculation, somewhat above the ex-
perimental value.

In Fig. 17, we show the residual deviations of the LPE
flight data and those of earlier experiments at the SVP
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FIG. 17. Deviation plots of specific-heat data below T, ob-
tained in various experiments: (a) Lipa et al. (2003); (b) Lipa
and Chui (1983); (c) Ahlers (1971); (d) Gasparini and Moldover
(1975); (e) Takada and Watanabe (1980); (f) Buckingham and
Fairbank (1961). Reference function in all cases is Eq. (14) with
the parameters listed in Table VIII.
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from Eq. (14) using the parameter values in Table VIIIL.
In general it can be seen that there is good agreement
between the various measurements. The deviations close
to the transition seen in some of the data sets are due to
the effect of gravity. Further developments in high-
resolution thermometry (Qin et al., 1996; Klemme et al.,
1999) demonstrated in the microgravity finite-size
specific-heat experiment CHeX (Lipa et al., 2000) should
in principle allow approximately a factor of 5 decrease in
the uncertainty of the specific-heat exponent relative to
the LPE result.

B. Enhanced specific heat under a heat flux

The theory of static critical phenomena, as discussed
above, predicts that certain aspects of the aggregate be-
havior with critical systems are independent of the de-
tails of the microscopic interactions of the system under
study, and that the resulting emergent behavior depends
mainly on the number of order parameters, the dimen-
sionality of the system, and the range of the forces in-
volved. For dynamic critical phenomena, this is not com-
pletely true since new experimental parameters are
introduced that influence the correlation length and dis-
play specific aspects of the microscopic structure of the
system. This behavior may be studied in a system driven
out of equilibrium in a well-controlled manner, with the
equilibrium state displaying the universal static behav-
ior, permitting the dynamics to be characterized by gen-
eralizations of static concepts and quantities, such as
temperature, correlation length, and specific heat. For-
mally, however, these quantities are not precisely de-
fined in the out-of-equilibrium situation. See Dohm and
Haussmann (1994) and Weichman et al. (2003) for a com-
prehensive overview of dynamic critical phenomena
near the superfluid transition in “He.

Detailed nonequilibrium studies near the superfluid
transition in *He may be performed using a sufficiently
small heat flux to maintain the system below its convec-
tive threshold, exciting only heat diffusion, steady super-
fluid counterflow, or second-sound modes. All other
methods of measuring dynamical properties near this
transition, such as acoustic resonance and sound attenu-
ation studies, particle scattering, and bulk and shear flow
measurements, induce bulk flow, and hence impart far
more momentum to the helium liquid. Generally, this
drives the system farther from equilibrium than does a
small heat flux. In order to simplify the geometry in
ground-based experiments, it is convenient to heat he-
lium with the steady heat flux oriented either directly
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along or against gravity. This makes the problem quasi-
one-dimensional, since in this system the variation of
temperature across the column is in the same direction
as the hydrostatically induced pressure variation in the
superfluid transition temperature. With this pragmatic
restriction in mind, the two possible orientations of the
heat flux are referred to as heat from above (HfA), in
which the top of a cell is heated, and heat from below
(HfB), with the bottom heated.

A dynamical enhancement of the static specific heat
by a heat flux through a column of superfluid helium has
been measured in the HfB geometry (Harter et al.,
2000). The measured enhancement was about a factor of
10 larger than predictions from theory (Haussmann and
Dohm, 1994; Chui et al., 1996). This enhancement results
from the abrupt failure of superfluid counterflow to
transport heat when a critical value of the counterflow
velocity is exceeded, which is a particular microscopic
feature of this system, and hence not universal. These
measurements depend upon the dynamic depression of
the order parameter (the superfluid density, in this case),
which becomes observable only very close to 7.(Q),
where the isothermal heat transport breaks down, and
where this effect is predicted to diverge.

The two-fluid model assumes that only the normal
fluid component transports entropy in the superfluid
phase, so the heat flux through a column of helium is
Q=pSTV,, where S is the entropy per unit mass and V,,
is the normal fluid velocity. If there is no bulk flow, then
pV=p,V,+p,V,=0, where V is the bulk velocity, p, is the
normal fluid density, and V| is the superfluid velocity.
Hence Q=-(pp;/p,)STV,~-8,T\p,V, near the super-
fluid transition, where p= p,. If p, is independent of flow
velocities, then this equation predicts that the magnitude
of heat flux carried by counterflow would increase in-
definitely as V increases. But it has been shown that p,
decreases as V increases over a wide temperature range
(Hess, 1978) and in the range near the superfluid transi-
tion (Duncan et al., 1988; Harter et al., 2000). This effect
can become sufficiently strong that a point is reached
where dQ/dV,=0, which occurs at T,(Q) < T, (Mikeska,
1969). At T.(Q), the near-perfect heat transport through
the superfluid will begin to fail, since any increase in
flow velocities will result in less normal fluid heat trans-
port, destabilizing the counterflow heat transport. Hence
for T>T, Q) the heat will be transported, at least in
part, by some form of diffusion, resulting in a thermal
gradient. Alternatively, if the temperature of the super-
fluid is held constant as the heat flux is increased, then
above some heat flux Q. such that T(Q,) =T.(Q) helium
will suddenly become thermally resistive. This is some-
what like the depression of the superconducting transi-
tion temperature in a metal as the current through the
metal is increased, except in this case superfluid helium
is uncharged, so increase in the superfluid free energy
with increasing O comes only from the kinetic energy
increase within the flow, and not from the magnetic-
field-induced increase in free energy that results from
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the charge flow associated with superconducting elec-
trons.

At T,(Q), the specific heat of superfluid helium is ex-
pected to be singular, based upon model-independent,
thermodynamic arguments (Chui et al, 1996) and RG
modeling (Dohm and Haussmann, 1994). This is a re-
markable prediction that can only be explored near the
superfluid transition of helium, since the steady-state
heat transport of a heat flux Q with no resulting thermal
gradient is possible only within a superfluid. Such a heat
flux would produce a temperature gradient in any other
system, and this temperature gradient would push the
system away from the critical point, and hence out of the
region where such dynamical effects on the specific heat
can be observed. Indeed, for Q>3 uW cm™2, a tempera-
ture gradient with heat applied from below becomes
large enough to be observable with high-resolution ther-
mometry near 7 in the superfluid state. This superfluid
thermal gradient is presumably due to a dissipative in-
teraction between the normal fluid component of coun-
terflow and flow created by a superfluid vortex tangle,
which is generally referred to as a Gorter-Mellink mu-
tual friction gradient (Gorter and Mellink, 1949). Such a
gradient in the critical region near the superfluid transi-
tion has been measured by Baddar et al. (2000). Remark-
ably, much larger superfluid thermal gradient is ob-
served under nominally identical conditions when the
superfluid helium column is heated from above, suggest-
ing that the hydrostatic pressure variation across the cell
may produce a component of the resulting superfluid
temperature gradient that does not reverse when the di-
rection of the heat flux is reversed (Melnikovsky, 2005).
The onset of this mutual friction gradient has been ob-
served experimentally to depress the overall specific
heat of a superfluid column in HfA measurements, thus
masking the specific heat of the superfluid state (Lee et
al., 2004). So enhancement of the specific heat may be
observed only under low heat flux (Q=5 uW cm™)
when heated from below on Earth. Typically, the cell
height is greater than about 2 mm to avoid substantial
finite-size effects in the direction of the heat flux (Ahlers
and Duncan, 1988). Hence the weightless laboratory is
essential to measure these bulk dynamical enhance-
ments free from the perturbations of gravitational
rounding and finite-size effects. It is difficult to predict
the size of the superfluid thermal gradient in the micro-
gravity environment from measurements of the super-
fluid thermal gradient on Earth. If the heat flux across
the cell is not uniform, then the superfluid breakdown
will occur at 7T.(Qmay), Where Qpay is the maximum heat
flux within the cell. Such an abrupt increase in the spe-
cific heat of superfluid helium as 7.(Q) is approached
from the low-temperature side has been measured by
Harter et al. (2000), but their measurements are about a
factor of 10 larger than the theoretically predicted effect
(Dohm and Haussmann, 1994; Haussmann and Dohm,
1996; Chui et al., 1996). The likely level of heat flux non-
uniformity within the experimental cell of Harter et al.
(2000) may have increased the size of the observed
specific-heat enhancement effect by about this factor
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over the result that would have been obtained if the heat
flux Q were uniform across their cell. For this reason, a
new type of cell endplate was developed for measure-
ments in space. It uses layers of high-thermal-
conductivity pure aluminum separated by layers of low-
conductivity aluminum alloy in order to make the
effective radial thermal conductivity much greater than
the longitudinal thermal conductivity of the structure.
This spreads the applied heat out radially over a much
shorter length of the endplate than can be achieved by a
single layer of high-purity aluminum.

In the HfA geometry, liquid helium can form a self-
organized critical (SOC) state between the superfluid
and normal fluid states. The temperature gradient within
this SOC state equals the gradient in the superfluid tran-
sition temperature, even as the heat flux was varied by
about four orders of magnitude experimentally (Moeur
et al., 1997; Lee et al., 2004; Sergatskov et al., 2004). The
temperature of the SOC state Tsoc(Q) self-adjusts so
that the thermal conductivity of the SOC state is given
by ksoc(Tsoc(Q))=0/VT,, assuring that the tempera-
ture gradient equals the gradient in 7, at the applied Q.
This implies that the SOC state exists only on a single
path in the Q vs T plane. The mechanism that permits
this self-organization to occur and the stability of the
resulting SOC state is discussed in detail by Haussmann
(1999b) and by Weichman and Miller (2000). The former
author has predicted that the SOC state heat capacity
will be the same as the equilibrium heat capacity over a
wide temperature range, deviating from this equilibrium
value only within about 100 nK of 7', due to the limit to
the diverging correlation length imposed by the hydro-
static pressure gradient. The SOC state provides a re-
markable opportunity to measure heat transport at a
constant distance from the critical line on Earth, but the
temperature of the measurement, which is Tsoc(Q), is
set by the heat flux on the SOC state, so the temperature
and heat flux cannot be independently varied as they can
be in a microgravity experiment.

It appears that enhancing the specific heat of super-
fluid helium by a uniform heat flux can just barely be
observed on Earth, due to the rounding of the specific
heat by the pressure gradient across the sample. Figure
18 shows the region over which the dynamical specific-
heat enhancement should be observable in a micrograv-
ity environment. An experiment called “Enhanced Heat
Capacity in Superfluid Helium by a Heat Flux” (CQ)
(Goodstein, 2002) was added to the “Critical Dynamics
in Microgravity” (DYNAMX) Flight Experiment dis-
cussed in Sec. V.D, to make these dynamical enhanced
specific-heat measurements in a weightless laboratory.
The CQ experiment is designed to provide measure-
ments unaffected by gravity in the entire region below
the curve marked 1pas(Q), where f(pas(Q)=[T)
—Tpas(Q)]/ Ty and Tpas(Q) are the data reported in
Duncan et al. (1988). The heat-capacity divergence oc-
curs at Tpas(Q) on Earth, but it is predicted to diverge
at T,(Q), which may be observed in orbit. If so, then the
region below the ¢.(Q) curve will be measured in orbit.
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FIG. 18. The QO-t plane. The CQ experiment will yield mea-
surements unaffected by gravity in the entire region below the
curve marked tpas(Q), where tpas(Q)=[Ty— Tpas(Q)]/ Ty and
Tpas(Q) are the data reported in Duncan ef al. (1988). The
heat-capacity divergence occurs at Tpas(Q) on Earth, but it is
predicted to diverge at T.(Q), which may be observed in orbit.
If so, then the region below the 7.(Q) curve will be measured in
orbit. The related ground-based measurements of Harter et al.
(2000) used endplate thermometers, limiting ground-based
measurements to the shaded region below the t4(Q) curve, due
to singular Kapitza resistance effects. The dotted line shows
where the heat-capacity enhancement rises, above 1% accord-
ing to a fit to the data of Harter et al. (2000). From Lee et al.,
2002.

In either case, the experimentally accessible region for
measurement of this dynamical increase in specific heat
is greatly expanded in a weightless laboratory, permit-
ting this to be explored over a much larger parameter
range than on the ground.

C. Superfluid density

The best available technique for measuring the tem-
perature dependence of the bulk superfluid density close
to the lambda point is to measure the velocity of second
sound U,. This is related to p, by

TS? U, \?
=t +0(—2) , (15)
pnCP Ul

where U, is the first-sound velocity. Due to the high
quality factors obtainable in second-sound resonators,
U, can be measured accurately over a wide temperature
range. In experiments to date it has been a reasonable
approximation to neglect the second-order term in Eq.
(15). Note that Eq. (15) also involves the specific heat
Cp, so the two types of bulk static measurements dis-
cussed here are linked. The most extensive set of mea-
surements designed to test the universality predictions
for p, was performed by Greywall and Ahlers (1973).
They used a resonance technique to measure U, from
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the SVP to 29 bars over the temperature range from
about 0.1 to 107* K from the transition. Velocity data
were converted to p, using the specific-heat function of
Ahlers (1973). When the results were fitted with Eq.
(12), Greywall and Ahlers found that the exponent v was
approximately constant, while the Wegner amplitude a,
increased substantially with pressure. Their best-fit re-
sults gave v=0.67+0.01 independent of pressure. Addi-
tional analysis was performed by Singsaas and Ahlers
(1984), extending the range of the data included in the fit
and leading to a new vapor pressure result: v
=0.6717+0.0004. However, the pressure dependence of
v was not reevaluated. Ikushima and Terui (1973) have
also reported second-sound measurements over a wide
range of pressures, but their analysis did not include the
confluent singularity term, limiting its value. Schloms
and Dohm (1987) published a new analysis of the
Greywall-Ahlers data using an improved expression for
the Wegner correction series based on the RG tech-
nique. The number of parameters used in the fit was
reduced by this approach, and it was extremely encour-
aging to see that the general behavior of the corrections
as a function of pressure was well represented. No new
results for the exponent versus pressure were derived
from this analysis, although departures from universality
would show up as differences in the curvatures of the
data and the model, especially close to the transition.
More recent values of v obtained from second-sound
data at the SVP are 0.6708+0.0004 by Swanson et al.
(1992), 0.6705+0.0006 by Goldner et al. (1993), and
0.670 16+0.000 08 by Adriaans et al. (1994). In the latter
case, the error quoted included only the statistical uncer-
tainty from velocity measurements. We also note that
the analyses to date neglect any uncertainty in the
specific-heat exponent when using Eq. (15).

The above results can be combined with the micro-
gravity result for a to perform an improved test of the
Josephson (1967) hyperscaling relation Eq. (3). For ex-
ample, using the result of Goldner et al. (1993) for v we
obtain 3v+a=1.9989+0.0019, where the uncertainties
have been combined in quadrature. The agreement with
the prediction is very good. Somewhat worse agreement
is obtained if we use the result of Adriaans ef al. (1994)
which leads to 3v+a=1.9979+0.0004. We note that in
both these second-sound experiments, plots of measure-
ment deviations from the fits show systematic behavior,
indicating that the error bars quoted may be optimistic.
The result of Swanson et al. (1992), which shows a less
systematic effect in the residuals of the fit, gives 3v+«
=1.9997+0.0012. The level of agreement indicates that
the exponents obtained from the two independent types
of measurement are unlikely to be significantly mislead-
ing. Kaupuzs (2005) has argued that the results of Gold-
ner et al. (1993) fit his model better, but he has not yet
addressed the other two sets of data. Also, it should be
noted that his model of the specific heat will perturb the
conversion of the second-sound data to superfluid den-
sity slightly, affecting the resulting exponent. This effect
has not yet been included.

Rev. Mod. Phys., Vol. 79, No. 1, January—March 2007

0.40

SVP Sme ®e

e0®
T 00.0...0-...00"" 7.27
apsoe ®

000.°;“ - 12.13

5.03

883 © eee cvsoe0e000®

0.30 -

14.43

log(t**p/p,)

0251 g6

0.20 |-

24.81

0.15 s sanul Lo aannl Lol Lol
107 10° 10° 10* 10° 102
1-TT,

FIG. 19. Scaled superfluid density results derived from second-
sound velocity measurements as a function of reduced tem-
perature over a range of pressures from SVP to 25 bars. Filled
circles, high-resolution measurements corrected for gravity
(Nissen et al., 2000; Lipa et al., 2005); open circles, from Grey-
wall and Ahlers (1973).

Second-sound measurements extending closer to the
transition along isobars at pressures up to 25 bars have
been reported (Nissen et al., 2000). The apparatus for
the experiment consisted of a cylindrical sample cham-
ber of about 0.5 cm in diameter and 1.4 cm long at-
tached to a very high-resolution pressure controller and
filled with liquid helium. The sample chamber formed a
second-sound resonator with a quality factor typically
around 500. The detector was a single crystal of para-
magnetic salt, having an extremely high sensitivity, and
the generator was a resistive heater. The minimum de-
tectable signal corresponded to a thermal wave ampli-
tude of ~107'° K. Pressure control was implemented us-
ing a variable-temperature *He tank separated from the
second-sound cell by a flexible diaphragm. A supercon-
ducting pressure gauge (Edwards et al., 1996) attached to
the cell was used to generate a servo error signal, which
controlled the temperature of the tank. A model of the
specific heat as a function of temperature and pressure
developed by Ahlers (1973) was used to extract the su-
perfluid density from measurements. Preliminary results
for this quantity are shown in Fig. 19. They were found
to be consistent with »=0.672+0.003 over the entire
range 0.05<P <25 bars when fitted with Eq. (12) (Lipa
et al., 2005). Improved specific-heat measurements are
being made to reduce uncertainties in the exponent re-
sults. Also shown further from the transition are the re-
sults of Greywall and Ahlers. It can be seen that above
the SVP there are some systematic differences between
the two sets of results. These are still under investiga-
tion.



Barmatz et al.: Critical phenomena in microgravity: Past, ... 31

A concept for a microgravity experiment called the
superfluid universality experiment (SUE) was developed
to perform very high-resolution measurements of the su-
perfluid density using the technology described above
(Lammerzahl et al., 2004). The apparatus would be ca-
pable of making observations within 10~ K from the
transition and of making simultaneous specific-heat
measurements at constant pressure. Observations would
be made at pressures from 0.05 to 29 bars along the
lambda line, resulting in a significantly improved test of
universality.

D. Thermal conductivity

Well above the lambda point, liquid helium is an ex-
cellent thermal insulator, with a thermal conductivity of
about 10°* W cm™! K=, comparable to that of plastics at
low temperatures. In contrast, below the transition, su-
perfluid counterflow creates an effectively infinite ther-
mal conductivity at low heat flux. The thermal conduc-
tivity of “He diverges as the superfluid transition is
approached from above due to critical fluctuations of
the order parameter, matching the radically different ef-
fective thermal conductivities of the two phases. This
divergence of the thermal conductivity was predicted by
Ferrell et al. (1967, 1968a, 1968b) and observed by Ker-
risk and Keller (1967, 1969) and studied systematically
by Ahlers (1968b). Halperin et al. (1974, 1976a, 1976b)
developed a generalization of the ¢* equilibrium model
called “model F” to describe the universal aspects of the
near-critical superfluid dynamics. This theory predicts
that the thermal conductivity of normal liquid “He
should vary as k=R,goVkz&Cp, where g is the dynamic
coupling constant with units of frequency. The factor R,
is the dimensionless renormalization amplitude of the
thermal conductivity, which may be calculated to any
given order in perturbation theory. Although a detailed
calculation of R, is a difficult task, once it has been ob-
tained this theory claims to provide an exact prediction
for the strongly divergent thermal conductivity near 7,
based only on parameters that have been determined
from measurements of static critical properties. A calcu-
lation of R,, renormalized to two-loop order, has been
performed by Dohm and Folk (1981) using field theo-
retic techniques (Dohm, 1991). This prediction was later
tested by Dingus ef al. (1986), by Tam and Ahlers (1986),
and by Lipa et al. (2003), and the agreement between
theory and experiment was found to be very good. Ther-
mal relaxation measurements on the spherical LPE calo-
rimeter implied a similar singular behavior for the ther-
mal conductivity, extending these measurements to ¢
<3X107°. The general agreement with the theory is
good, as displayed in Fig. 20. A comparison with results
further from the transition was recently made by Dohm
(2006). This ability to accurately predict the nonasymp-
totic behavior of heat transport near the lambda point in
*He over at least six decades of reduced temperature
represents one of the great successes in the development
of renormalization-group methods in condensed-matter
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FIG. 20. Thermal conductivity data close to the lambda tran-
sition. The crosses are derived from ground-based data of Lipa
and Li (1996). The filled circles are inferred from the thermal
relaxation time of the LPE calorimeter taken in Earth orbit
(Lipa et al., 2003). These data extend about two orders of mag-
nitude closer to the critical point than Earth-based data, and
gravitational limits to the divergence of the correlation length
have been avoided in this weightless environment. The curve is
from the model of Dohm (1991). From Lipa et al., 2003.

physics. In these measurements, the heat flux was ad-
equately low, and the system was adequately far from
criticality, so that the system was not driven too far from
equilibrium by the heat flux used in the measurements.
This condition is not maintained as one gets very close
to the superfluid transition even with very small values
of the heat flux Q.

1. Nonlinear thermal conductivity

The thermal conductivity measurements discussed
above were taken in the linear regime, meaning that «
(and its reciprocal the thermal resistivity R) did not de-
pend appreciably on the value of Q. Clearly R depends
on temperature in a nonlinear way, but at any given tem-
perature the value of this transport coefficient is essen-
tially independent of Q in the measurements discussed
above. Dohm and Haussmann (1994) extended the
renormalization of model F to the nonlinear regime,
where this coefficient becomes strongly Q dependent.
This regime begins when the temperature drop across a
correlation volume becomes comparable to T-T),
thereby substantially perturbing the critical dynamics
away from local equilibrium (Weichman et al., 1998).

In the static limit, the superfluid transition is continu-
ous, meaning that there exists no discontinuity of the
order parameter at the interface between the normal
phase (He I) and superfluid phase (He II). There is in-
stead a continuous variation of the superfluid order pa-
rameter across this interface, with a spatial taper of the
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FIG. 21. Spatial variation of the order parameter W(z) at the
He I/He II interface in a heat flux. Since this is a continuous
phase transition, W(z) varies smoothly with the spatial coordi-
nate over the interfacial region, which scales with the correla-
tion length &Q). M is the local steady-state mean-field tem-
perature. The dimensionless spatial coordinate z has been
defined by Weichman et al. (1998). From Weichman et al., 1998.

order parameter from its value deep in the superfluid to
zero over a few correlation lengths, as predicted (Weich-
man et al., 1998) and displayed in Fig. 21. Temperature
profiles within the nonlinear region are within the inter-
face between He I and He II. The thickness of this in-
terface is greatly decreased by Earth’s gravity, and it also
decreases rapidly as Q increases. Hence a space-based
measurement with precise stray heat control is necessary
to carefully measure these effects, and to compare with
theory. The measurement of this nonlinear thermal
conductance is a major experimental challenge, since
stray heat leaks to the cell have to be controlled to
within a few picowatts, and temperature measurements
have to be resolved to about 1 part in 10!° of the abso-
lute temperature. The planned microgravity experiment
(DYNAMX) must maintain stray heat control from all
sources to within 20 pW over a 10-min measurement in-
terval. This requires that the mass of the entire cell as-
sembly, including the attached high-resolution thermom-
eters, must be below 30 g in order to avoid unacceptable
stray heat variations from the change in charged particle
heat deposition as a function of the experiment’s posi-
tion in low-Earth orbit (Duncan, 2000). This mandated
the development of a new miniature cryogenic valve
with mass less than 2 g, and a new paramagnetic mate-
rial that utilizes dilute Mn ions in Pd as the thermomet-
ric element to achieve a thermometer mass of less than
3 g (Duncan et al., 2001). This new thermometer design
(Klemme et al., 1999) permitted much better thermal
contact between the thermometric element and the
stage to be measured than was possible in earlier para-
magnetic susceptibility thermometers, resulting in lower
thermal fluctuation noise. This metallic thermometric el-
ement has been sputtered for thin-film applications such
as bolometry (Nelson et al., 2002), and used in applica-
tions where the entire helium cell was constructed from
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FIG. 22. Temperature dependence of the lambda transition as
a function of heat flux. As Q is increased through the helium,
the simple critical point at T (corresponding to the branch cut
in the middle of the figure) evolves into a nonlinear region, as
shown in this dynamic phase diagram. The theoretical bound-
aries of this nonlinear region are displayed as the 7.(Q) and
ta(Q) curves (Haussmann and Dohm, 1991, 1992a). The ex-
perimental determination of this phase boundary is described
in Fig. 23. From Day et al., 1998.

this PdAMn metal (Green et al., 2005). The use of a me-
tallic thermometric element may prove useful in many
future flight experiments.

The first measurements of temperature profiles within
the nonlinear region were reported by Day et al. (1998).
The boundary of the nonlinear region that was deter-
mined from these results, along with the predicted non-
linear regime (Haussmann and Dohm, 1991, 1992a) are
displayed in Fig. 22. These boundaries of the nonlinear
region may be thought of as an extension of the helium
phase diagram, with reduced temperature along the
horizontal axis, and the heat flux through helium along
the vertical. Here the heat flux acts like an effective field
that modifies the nature of this critical transition, but
there is no conclusive experimental evidence that O de-
stroys the critical behavior at 7.(Q), as does the mag-
netic field in magnetic critical phenomena studies, for
example (Stanley, 1971). The heat flux is not the thermo-
dynamic conjugate of the order parameter, so finite Q is
not predicted to destroy the phase transition. The only
true static critical point exists at 7\ in the Q—0 limit
(Haussmann, 1999b), but the nature of the transition at
T.(Q) will not be known until measurements are made
without the masking influence of gravity. Notice that the
distance from the point of inflection in the resistivity
data displayed in Fig. 23 (where the temperature varia-
tion of R goes from concave down, which is indicative of
a critical phase transition, to concave up, which is indica-
tive of rounding) occurs about 15 nK above the highest
temperature where R is zero (to within experimental
resolution). The width of this rounded region does not
increase steadily with Q, as it would if Q destroyed this
phase transition. This implies that something other than
the heat flux rounds the transition at this exceptionally
fine scale. This rounding may be related to gravitational
limits to the divergence of the correlation length, as dis-
cussed below.
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FIG. 23. Thermal resistivity measurements in the nonlinear
region for different values of Q. The lower line is a simple
power-law fit to the data in the linear region. The upper line is
the prediction of Haussmann and Dohm (1991, 1992a) at Q
=160 nW cm™? and 7> T),. The short-dashed line is a plausible
guide for the eye for T<T), where the Haussmann-Dohm
theory makes no prediction. The inset shows the same data
over a wider temperature interval. These data were used to
construct the phase diagram in Fig. 22, where T,,(Q) is defined
as the temperature above which the thermal resistivity is
within 5% of the linear resistivity, and T.(Q) is defined as the
temperature at which no thermal resistance can be measured
to within the experimental resolution. Adapted from Day et
al., 1998.

2. Hysteresis in the superfluid transition in ‘He

There is no predicted latent heat or thermal hysteresis
associated with the superfluid transition in “He under
static conditions, since this is a continuous phase transi-
tion. But when the helium is subjected to out-of-
equilibrium conditions by imposing a heat flux Q
through the fluid, hysteresis is predicted (Onuki, 1983,
1984; Haussmann, 1999a; Weichman and Miller, 2000).
The temperature at which the system is predicted to de-
velop thermal resistance abruptly as the liquid is heated
from the ordered phase, designated 7,.(Q), is predicted
to be higher than the temperature, designated 7..(Q), of
the superfluid phase well away from the interface in mi-
crogravity conditions, where pressure-induced gradients
in T\ have been ignored. Weichman and Miller (2000)
predicted that this interface will form at the heated end-
plate and advance into the cell smoothly, but they also
predicted that the transition may become hysteretic, ex-
hibiting an abrupt interface formation beyond the
heated endplate, when helium is heated at a nonzero
rate. The theories of Onuki (1983, 1984) and of Weich-
man and Miller (2000) are made in the mean-field ap-
proximation, so the effects of fluctuations have not been
estimated systematically. Hence the difference between
T.(Q) and T.(Q) cannot be predicted accurately by
these theories, but future microgravity measurements
may determine this difference. Since this is a fluctuation-
dominated effect, the difference between these two tem-
peratures may depend on the time scale of the measure-
ments.
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No hysteresis in the superfluid transition under a heat
flux has been observed to date. Measurements have
been made by Liu and Ahlers (1994) that would have
detected such hysteresis had it been as small as 3% of
the theoretically predicted value (Onuki, 1983, 1984).

The reason for this lack of observed hysteresis is un-
clear, but three possible explanations have been dis-
cussed. First, it is possible that the critical fluctuations,
which are large for low values of Q near the superfluid
transition, may be so large that they swamp the differ-
ence in free energy of the helium at temperatures be-
tween 7.(Q) and T.(Q). A second hypothesis is based
on the pressure-induced variation in the superfluid tran-
sition temperature on Earth, which creates a chemical
potential variation within the helium near the heated
endplate that would oppose any discontinuous forma-
tion of the interface at that location. If this is the reason
why hysteresis has not been observed at the predicted
level, then such hysteresis in the superfluid transition
under a heat flux may be observed in a microgravity
laboratory. The third hypothesis is that the temperature
variation in liquid helium near the heated endplate,
which exists over the scale of the correlation length due
to the singular Kapitza resistance (Duncan et al., 1987,
Murphy and Meyer, 1996; Kuehn et al., 2002), is large
compared to T.(Q)-T.(Q), and hence always nucleates
the transition to 7..(Q). This hypothesis is compelling,
since Weichman and Miller (2000) had to remove this
singular boundary effect from their simulations in order
to see the hysteresis effect.

3. Dynamical and gravitational effects on the correlation
length

As discussed above, the thermal conductivity diverges
near the superfluid transition due to the onset of local
superfluid order on the scale of the diverging correlation
length as the transition is approached from the high-
temperature side. This divergent correlation length also
determines the width of the He I/He II interface, and it
grows from atomic dimensions far from the superfluid
transition to macroscopic length scales as the transition
is approached (Stanley, 1971). Ideally this correlation
length ¢ should diverge from the high-temperature side
of the transition as £=§&¢ %, where £=3.4X10"%cm
(Singsaas and Ahlers, 1984) and hence can only be lim-
ited by the size of the helium container as 7— T, since
the “He sample is both chemically and physically free of
imperfections. But on Earth the hydrostatic pressure
variation across the sample of “He that is aligned along
the direction of Q establishes a quasi-one-dimensional
system in a cylindrical cell. This creates a hydrostatic
pressure variation across the cell height that limits the
divergence of the correlation length to some maximum
&, in all Earth-based experiments (Ahlers, 1976; Duncan
et al., 1998, 2000). The corresponding variation of the
reduced temperature across this maximum correlation
length is  &t=[&(dTy\/dz)/T\]""**=(15 nK)T}'=6.9
%107, where dT,/dz is the slope of the lambda line
(Ahlers, 1968a), implying §,~100 um. Hence on Earth
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FIG. 24. Ty(Q) and T,(Q) displayed as a function of Q on
linear scales. Notice that a gap T, (Q—0)-T.(Q—0)
=15+2 nK exists in the static limit. This is thought to be a
gravity effect, as discussed in the text. Adapted from Duncan
et al., 2000.

it is impossible to observe critical phenomena within
15 nK of the superfluid transition, since severe gravity
rounding will dominate in this region. This observation
is consistent with the rounding of the thermal resistivity
data displayed in Fig. 23. Although we have adequate
temperature measurement capability to resolve a change
in reduced temperature at the level of ~10726¢, the mi-
crogravity environment is essential to observe the true
critical behavior for t=26r.

The above limit on the divergence of the correlation
length has been observed indirectly on Earth (Duncan et
al., 2000). Figure 24 displays the temperatures 7,,(Q)
and T.(Q), as defined above and displayed in reduced
temperature format in Fig. 22, but on linear scales. We
would have expected that T,,(Q)—T.(Q)— T, in the
limit that Q — 0, but Fig. 24 shows that the actual situa-
tion is not this simple. Instead, a gap of 15+2 nK is ob-
served in Ty (Q)—-T.(Q) as Q — 0, which is interpreted to
be due to the pressure-induced difference in the super-
fluid transition temperature across the Earth-based limit
of the correlation length &, (Haussmann, 1999a). Once
again this result is consistent with the Q-independent
rounding of the thermal resistivity data displayed in Fig.
23, and the prediction for &, discussed above.

The width of the interface is of order &, as discussed
above. A very simple argument may be applied to pre-
dict the nature of this interfacial thickness, and hence of
the correlation length, as the system is driven away from
equilibrium by a heat flux Q. The reduced temperature
variation across the nonlinear region is t,,(Q) =AT,/ T,
50 1u(Q)=(Q&/ ke T+ =(Q/ Q)"+, where Q
~200 W cm™2, x is defined as the effective exponent of
the thermal conductivity in this section only, and 1/(1
+v—x)=0.82. This is in good agreement with experimen-
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tal results if the temperature width of the nonlinear re-
gion is interpreted as twice the experimental measure-
ments of the depression of the superfluid transition
temperature by a heat flux Tphag(Q) of Duncan et al.
(1988), where Qppas=568+200 W cm™ and the expo-
nent 1/(1+v—x)pas=0.81£0.01.

We can now estimate the (Q-dependent correlation
length & Q) and hence the Q dependence of the interfa-
cial thickness, using the value of #(Q) inferred in the
analysis  above:  HH(Q)]=&[(Q/ Q)] =22
X108 ecm[Q/(200 W cm™)]%, Hence the dynamic
correlation length, the interfacial thickness, and the
range of critical fluctuations are all expected to decrease
from their static values as Q%% as the heat flux is in-
creased in the absence of gravity.

It is interesting to note that the static He I/He II in-
terface is stable only under a hydrostatic pressure gradi-
ent, and the width of this static interface &, as discussed
above, goes to infinity as the hydrostatic pressure gradi-
ent goes to zero. So the static interface does not exist in
a weightless laboratory, and the gravitational limit on
the interfacial width becomes the upper bound on
qt(Q)] as Q—0. Weichman et al. (1998) found that the
interface is stabilized robustly perpendicular to Q under
weightless conditions, and they predicted that a surface
second-sound mode must exist at the interface to couple
the bulk second-sound modes in He Il to the diffusive
modes in He I. Such a mode has not been observed on
Earth, but it may become observable in future second-
sound measurements on Earth or in microgravity, such
as those that are part of the planned heat capacity at
constant pressure (CP) flight experiment that is de-
scribed below.

The highly simplified analysis of the nonlinear region
dynamics was presented above in order to provide some
physical insight. This system has been analyzed rigor-
ously by Dohm and Haussmann (1994) using their
renormalization-group treatment of model F. This work
predicts a Q-dependent quasiscaling of the interfacial
thickness that scales as Q"% as was suggested in the
simplified analysis. Furthermore, the analysis of Hauss-
mann and Dohm (1991, 1992a) has provided detailed
predictions for the extent of the nonlinear region, as dis-
played in Fig. 22, and the OQ-dependent thermal profiles
in this region for 7> T,. This theory has led to other
predictions, such as the behavior of the superfluid frac-
tion and the specific heat of He II immediately below
T.(Q) (Haussmann and Dohm, 1992¢, 1994) and of the
variation of 7,.Q) (Haussmann and Dohm, 1992b,
1992c¢). These predictions refer only to the zero-gravity
case, so they may be conclusively tested only in space
experiments. Haussmann (1999a) has succeeded in de-
veloping a theory that includes both these dynamical
effects and the effects of gravity, only for Q
=10"7 W cm™2, where the thermal gradient across the
interface is larger than the pressure-induced variation of
T, across the interface due to Earth’s gravity. In this
limit, however, the interfacial thickness is too narrow to
permit a direct measurement of the critical thermal pro-



Barmatz et al.: Critical phenomena in microgravity: Past, ... 35

file across the interface, thus once again mandating the
on-orbit measurements to test these new theoretical pre-
dictions. Careful experimental tests of these theories will
provide rare insight into our most advanced theories of
the dynamics of continuous phase transitions.

From the extensive ground-based evidence presented
above, it appears that critical phenomena may not be
observed within 15 nK of 7, due to hydrostatic limits
imposed on the diverging correlation length. The
DYNAMX experiment was developed to circumvent
these limits and to test theoretical descriptions of con-
tinuous phase transitions. This flight experiment was de-
signed to accurately measure the nonlinear thermal pro-
files across the He I/He II interface using values of Q
from 10 to 100 nW cm~2 that would allow exploration of
the phenomena discussed above (Duncan, 2000).

4. Universality experiments

Since the system’s dimensionality and order param-
eter symmetry do not depend on position along the
lambda lines, universality predicts that the critical expo-
nents and amplitude ratios will not depend upon pres-
sure. Of course the nonuniversal parameters, such as the
amplitudes themselves, and the corrections to scaling,
may vary with pressure.

A guest experiment called CP was designed to test
universality using the DYNAMX flight hardware (Lipa
et al., 2005). The DYNAMX cell’s static (Q=0) specific
heat will be measured at various elevated pressures and
over a much wider range of temperatures than in CQ to
test the universality predictions while in the weightless
laboratory, and thus with the sample free from the hy-
drostatic pressure rounding that is observed on Earth.
These specific-heat measurements will be used to deter-
mine the critical exponent « and the universal amplitude
ratio A*/A~, and to determine if these universal quanti-
ties are independent of pressure. Second-sound velocity
measurements will also be made at these elevated pres-
sures as a function of reduced temperature. These mea-
surements will be used along with the specific-heat data
to infer the superfluid density as a function of reduced
temperature, as shown in Eq. (15). These data will be
used to derive the critical exponent v, which describes
how the superfluid density varies with reduced tempera-
ture, as discussed earlier. These second-sound measure-
ments can be accomplished by applying a pulse of heat
to one of the endplates while the cell is maintained at a
set-point temperature within the superfluid phase. This
heat pulse will then propagate away from the pulsed
endplate and pass each of the sidewall thermometers,
and be reflected a number of times from the cell ends.
The speed of this second-sound propagation will be in-
ferred from the time of flight required for multiple
passes of the sidewall thermometer probes that are lo-
cated approximately 5, 6, and 7 mm from the most dis-
tant cell endplate. The DYNAMX sidewall thermom-
eters have demonstrated a time constant of about 50 ms
near T\, which is adequate to measure the speed of sec-
ond sound accurately up to a second-sound velocity of
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about 10 cm s~!, permitting measurements of the veloc-
ity for |t| <107>. In addition to the universality measure-
ments, the CP data will provide the first observation of
second-sound propagation in a homogeneous superfluid
free from the bias of a steady pressure gradient created
by Earth’s gravity. This should permit the study of other
nonuniversal phenomena, such as nonlinear second-
sound propagation (Goldner et al., 1993), and possibly a
new second-sound surface mode at the He I/He II inter-
face (Weichman et al., 1998).

VI. TRICRITICAL POINT

As discussed above, some thermophysical properties
of systems near their critical point may be predicted
based upon the number of components n of their order
parameter and the spatial dimension d (Stanley, 1971).
Every physical system falls into a distinct universality
class, which depends primarily on d and »n for the sys-
tem. The O(1) and O(2) classes considered above have
an upper critical dimension d,=4 for all n, so in three
dimensions d<d,,.

Calculation of the static properties when d<d,, re-
quires approximation techniques within the RG calcula-
tions, such as an expansion in e=d, —d in field-theoretic
renormalization-group methods, for example, those em-
ployed near the superfluid transition (Dohm, 1991).
Some (but relatively few) physical systems fall into uni-
versality classes where d =d,,, where mean-field calcula-
tions provide exact predictions for the critical exponents
and amplitude ratios. When d=d,,, corrections to scaling
may be calculated using a RG technique, and they are
logarithmic (Sarbach and Fisher, 1978), and hence very
weak. If the ¢* model discussed above is extended with
higher even-order powers of ¢, and if the coefficients of
these higher-order terms are appropriately tuned, then
special multicritical points are predicted with d,<4. In
particular, the simplest one is the tricritical point with
d,=3, which is realized physically in liquid *He-*He mix-
tures at the point where the lambda line intersects with
the mixture’s phase separation line, as described below.

The term tricritical point was introduced by Griffiths
(1970a) to describe the thermophysics where the lambda
line intersects with two other lines of critical points. For
helium mixtures this occurs where the lambda line meets
the first-order *He-*He mixture phase separation line.
Physically, this point does not appear to be the intersec-
tion of three second-order lines, but in the appropriate
parameter space it actually is such a point. Figure 25
shows a three-dimensional plot, where one axis is tem-
perature and another is the chemical potential differ-
ence Au=pus3—uy, Where py and py are the chemical po-
tentials of the *He and “He, respectively. The third
dimension is », which is the field variable that is conju-
gate to the superfluid order parameter, and is not experi-
mentally accessible. Hence, only the 7-Au plane is ex-
perimentally accessible, and the sheets labeled B and B’
in Fig. 25 exist only at nonzero values of » and terminate
in the dashed lines. The solid line is the continuation of
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FIG. 25. Superfluid phase transition in *He-*He mixtures. The
bifurcation of this phase diagram occurs at the tricritical point.
Adapted from Griffiths, 1970a.

the lambda line in the mixture, which becomes first or-
der below the tricritical point. Hence, the tricritical
point does exist at the intersection of three lines of criti-
cal points, but lines outside of the 7-Au plane cannot be
realized experimentally except right at the tricritical
point, where all three lines intersect. Actual experimen-
tal data that map out the phase diagram near the tricriti-
cal point are displayed in Fig. 26 (Leiderer and Bosch,
1980). The data in Fig. 26 are plotted against the *He
concentration difference from tricritical, which sets the
chemical potential difference as described above. Here
the experimentalists measured small changes in the in-
dex of refraction between the >He-rich phase and
*He-rich phase using a sensitive optical interferometer,
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FIG. 26. Phase diagram of *He-*He mixtures near the tricriti-
cal point as inferred from data by Leiderer and Bosch (1980).
X is the *He concentration, X, is the tricritical point concen-
tration, and 7} is the tricritical point temperature. The triangles
represent data taken at SVP, while the circles represent data
taken at 22.6 bars. Open circles represent data taken by detect-
ing small deflections of a laser beam corresponding to changes
in the index of refraction at the phase separation interface.
The solid circles represent data taken using an interferometer
as described in detail by the authors. Adapted from Leiderer
and Bosch, 1980.
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and extrapolated back to the line where these two
phases first emerged as a function of concentration and
temperature. The intersection of this curve with the
lambda line defines the tricritical point experimentally.
For more information on this, and on the predicted scal-
ing relations near the tricritical point, see Griffiths
(1970a). Sarbach and Fisher (1978) also provide an ex-
cellent theoretical review of the tricritical point.

The *He-*He mixture tricritical point has been stud-
ied experimentally since 1967, as discussed below. It oc-
curs at 7,=0.8698+0.0001 K and at a *He mole fraction
of 62.7+0.1% (Garcia and Chan, 2002). Here, the
second-order line of critical points, corresponding to the
superfluid transition in the homogeneous mixture above
the tricritical point, intersects with the first-order phase
boundary, where the homogeneous *He-*He mixture
splits into two distinct phases of differing *He concen-
trations.

While there are exact predictions for the exponents in
tricritical systems, there exist very little data due to
sample stratification under Earth’s gravity. Measure-
ments of the thermophysical properties of *He-*He mix-
tures in the low-gravity environment of Earth’s orbit
promise to provide the first data set, free from system-
atic errors induced by gravity, of a system within this
universality class. Such an experiment, called “Experi-
ment along Co-existence near Tricriticality” (EXACT),
has been developed for flight aboard the ISS (Larson,
2000).

The intersection of the lambda line with the
*He-*He mixture phase separation curve was mapped by
Graf et al. (1967). Light-scattering measurements identi-
fied this intersection as a tricritical point (Leiderer ef al.,
1974). Many static properties of mixtures have been
measured near the tricritical point, and these have been
reviewed by Ahlers (1976) and by Ryschkewitsch and
Meyer (1979), who also discussed relaxation time mea-
surements. A more comprehensive study of diffusive re-
laxation processes in mixtures, including near the tric-
ritical point, has been reported by Behringer and Meyer
(1982). There have also been extensive experimental
studies of the dynamics near the tricritical point. Acous-
tic attenuation measurements by Roe et al. (1977) have
determined the mass diffusion constant, which tends to
zero near the tricritical point, consistent with predictions
by Siggia and Nelson (1977). The thermal diffusion ratio
and its scaling have been measured in this region as well
(Ruppeiner et al., 1980). Second-sound measurements
have been made by Ahlers and Greywall (1972) near the
tricritical point, and shear viscosity measurements in this
region have been reported by Howald et al. (1992).

The EXACT experiment (Larson, 2000) was designed
to measure second-sound propagation in microgravity to
avoid stratification of the *He-*He mixture under the
Earth’s gravitational acceleration. Measurements of the
second-sound velocity as a function of temperature
would permit a more precise determination of the criti-
cal exponent ¢, which is the critical exponent of the or-
der parameter which corresponds to the superfluid frac-
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tion. Earth-based measurements have been made to ¢
~4x10"* (Leiderer and Bosch, 1980). Measurements
closer to criticality may only be made accurately on orbit
where sample inhomogeneities associated with the
stratification of the *He concentration gradient along
gravity are absent. The EXACT experiment was de-
signed to measure the second-sound velocity as a func-
tion of concentration and temperature in *He-*He mix-
tures near the tricritical point to t~5X107° (Larson et
al., 2000). From these measurements, the superfluid den-
sity could be inferred from the data, and the critical be-
havior of the superfluid density could be determined ex-
perimentally. The EXACT experiment could also
measure the shape of the coexistence curve and the
lambda line as a function of temperature and concentra-
tion (Larson et al., 2000; Nash et al., 2003).

VIL FINITE-SIZE EFFECTS—LAMBDA TRANSITION
IN “He

When ordinary matter is confined by boundaries in
one or more dimensions to the length scale over which
its local properties are correlated, its global properties
are found to change. In metals and insulators the length
scale involved is very small, but in superconductors,
systems near critical points, superfluid *He, and semi-
conductors, the scale can be tens of nanometers or
more. For example, in the semiconducting material
Ga,Al;_,As, the correlation length of the electronic
wave function can be as large as 0.1 um (Dobson, 1995).
With recent advances in nanofabrication techniques, the
behavior of materials at small length scales is becoming
a topic of technological importance. Outside the quan-
tum world, the effects of interest are commonly modeled
using mean-field theories, except near critical points,
where more sophisticated methods are needed. With
these confinement effects typically occurring in very
small systems, it is difficult to separate them experimen-
tally from perturbations due to interactions with the
confinement structure itself. Fortunately, there are some
situations where intrinsic effects are greatly magnified
allowing detailed experimental measurements, free of
artifacts, which can be compared with theoretical mod-
els. The case of most interest here is the lambda transi-
tion of helium, although the general phenomenon is
common to all critical points. As described earlier, in the
field of critical phenomena, the correlation length & de-
scribes the characteristic length scale over which an or-
der parameter can vary. Far from the lambda transition,
& is of the order of angstroms, making boundary effects
difficult to observe, but very close to the transition, & can
be much larger. This allows the confinement behavior of
helium to be examined under nearly ideal conditions. In
addition to the order parameter, other properties such as
the specific heat, the thermal conductivity, and the free
energy (Casimir force) are modified by the finite-size ef-
fect. Near the lambda point, the measurable quantity
related to the order parameter is the superfluid density.
However, no devices have yet been developed to probe

Rev. Mod. Phys., Vol. 79, No. 1, January—March 2007

the variation of p; or any other property near a surface.
Instead, the temperature variation of thermodynamic
properties averaged over a sample contained within a
confining geometry is typically measured.

Early models of finite-size effects near the critical
point were developed by Fisher and co-workers, who
described the scaling approach and emphasized the im-
portance of £ as the relevant length scale. The universal-
ity of finite-size scaling functions was first introduced by
Privman and Fisher (1984). An introduction to the field
has been given by Fisher (1971) and comprehensive re-
views of the concepts by Barber (1983), Binder (1983),
and Privman (1990). Quantitative estimates of the be-
havior near the lambda point have been obtained by RG
and Monte Carlo techniques. This work led to predic-
tions for the departure from the bulk behavior for the
specific heat and the superfluid density in the affected
region. The scaling behavior expected on general
grounds was also verified. The RG theory of finite-size
effects near the lambda transition was reviewed by
Dohm (1993). Quantitative predictions were made by
Schmolke et al. (1990), Sutter and Dohm (1994), and
Schultka and Manousakis (1995a, 1995b), and are dis-
cussed below. More recently, Chen and Dohm (1999b,
2002) have found that the effect of finite cutoffs in lattice
models and field theories cannot always be neglected,
leading to a breakdown of finite-size scaling in the re-
gime L>§¢ where L is the confining dimension. The
same type of nonuniversal and nonscaling finite-size ef-
fect was found to exist in the presence of van der Waals
forces for the case of periodic boundary conditions
(Dantchev and Rudnick, 2001) as well as for the relevant
case of Dirichlet boundary conditions in the region
L>> ¢ (Chen and Dohm, 2002, 2003). Recently, noncubic
anisotropy has been predicted as a new source of non-
universality of finite-size effects (Chen and Dohm, 2004).
Within the O(2) universality class this effect may occur
in anisotropic XY lattice models, but not in liquid “He,
which is intrinsically isotropic.

It is important to note that the finite-size behavior
described here is within the context of second-order
transitions. This means that interesting phenomena,
such as the detailed behavior over a wide temperature
range of a two-dimensional system obtained by thinning
down the related three-dimensional system, are not
completely accessible. We can only observe this behav-
ior in the small range of temperatures where ¢ is suffi-
ciently large to produce a dominant effect, unperturbed
by the substrate. Also, the models used are typically
only applicable in the asymptotic region close to the
transition where fluctuation effects dominate the behav-
ior. Thus only certain aspects of the full finite-size phe-
nomenon can be studied with critical point experiments.
Other types of measurements can of course access other
aspects, such as the details of the Kosterlitz-Thouless
transition in 2D systems (Kosterlitz and Thouless, 1973).

Early experimental results have been reviewed by
Gasparini and Rhee (1992). These authors concluded
that the expected scaling behavior for the specific heat
and superfluid density did not occur. However, more re-
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cent work has shown improved behavior at least for the
specific heat with planar confinement. We concentrate
on this work in the following section, since some of the
results were obtained in microgravity.

A. Finite-size specific heat

Detailed theoretical predictions for finite-size behav-
ior in the case of the lambda transition are not yet fully
developed, due to computational difficulties below the
transition. Nevertheless, significant progress has been
made. Schmolke ef al. (1990) predicted the effect of con-
finement in terms of a geometry-dependent function
fi(x) calculated using RG techniques. In this model, the
heat capacity C can be written in the form

C(t,L) - C(ty, ) = L"f;(x), (16)

where ty=(&/L)"" and x=¢L"" (not to be confused with
the exponent x, used elsewhere). Here we follow the
convention that L is the parallel-plate separation or the
pore diameter measured in angstroms (although we oth-
erwise quote sizes in microns), thus x has the dimension
(angstrom)"”. In order to simplify the calculations,
Schmolke et al. (1990) calculated the curve f(x) sepa-
rately above and below T).

Further from the transition, a bulk-plus-surface model
can be introduced, which treats the first-order confine-
ment effect as a simple surface effect, with the full con-
finement leading to deviations as 7, is approached.
Above the transition, the predictions of Schmolke et al.

(1990) can be written in terms of a function f,(x) defined
by

C(t,L) - C(t, ) = — LY"f(x). (17)

The surface term dominates the behavior of f, for x
>100, which corresponds to the region far from the
transition. Similar behavior is expected below the tran-
sition, but so far no detailed prediction appears to exist.
Knowledge of the surface specific-heat term allows a
straightforward estimate of the free-energy departure
from bulk in the region where it is small. In principle, it
should be the same for all geometries where the ap-
proximation holds, to the extent that the boundary con-
dition on helium is constant. Krech and Dietrich (1992)
have performed calculations based on the & expansion,
but the results appear to be rather unstable at d=3 (Sut-
ter and Dohm, 1994). Through the transition region the
most detailed prediction is based on Monte Carlo calcu-
lations by Schultka and Manousakis (1995b). Their re-
sults also showed the importance of realistic boundary
conditions on the detailed shape of the curve. Ferrell
and Bhattacharjee (2000) developed an approximate
model that is useful above the specific-heat maximum.
In the late 1970s, Chen and Gasparini (1978) reported
specific-heat measurements of helium films and cylin-
ders near the lambda point that indicated an unexpected
scaling behavior with &/ L. They concluded that the op-
timum value of the exponent characterizing the scaling
of their data was close to 0.56, rather than 0.67 expected
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from theoretical arguments based on the divergence of
¢. This observation was a serious problem for the devel-
opment of confinement theory in general. The possibil-
ity was raised that fractal surface effects may be respon-
sible for the difficulties, but a strong case was not made
(Gasparini and Mhlanga, 1986). Additional analysis of
the film data cast some doubt on the original conclusion
and showed that the peak locations were consistent with
the theoretical scaling exponent (Wacker and Dohm,
1994). In general, most of these early results now appear
to be either of low accuracy, in rough agreement with
traditional scaling, or too far removed from the critical
region to be useful for detailed analysis. More recent
submicron planar geometry results are in good agree-
ment with scaling above the bulk superfluid transition,
but some difficulties remain at the transition and below
(Mehta and Gasparini, 1997; Kimball et al., 2000). We
note that below the bulk transition the experimental dif-
ficulties increase due to the presence of superfluid in the
upper parts of the cells used, and the resulting nonlinear
dynamics of the measurement technique. Data from
most samples below the finite-size peak were abandoned
because of the problems encountered (Mehta et al,
1999). However, the general shape of the peak agrees
quite well with Monte Carlo calculations (Schultka and
Manousakis, 1995b, 1998) for both planar and pore sys-
tems with Dirichlet boundary conditions (Lipa et al.,
2001). This gives us hope that the remaining problems
are of an experimental nature and will ultimately be re-
solved in favor of finite-size scaling. We will revisit some
of the submicron measurements below.

1. Microgravity measurements

We now briefly describe the microgravity experiment
called CHeX that was designed to give new, high-
precision specific-heat data for helium confined to a 2D
planar geometry with a characteristic length scale of
57 pm (Lipa et al., 2000). On this scale, surface effects
related to van der Waals forces and fractal geometry
should be completely negligible, allowing a very clean
measurement of the intrinsic behavior as helium crosses
over from bulk to the 2D state. The results should there-
fore provide a high-quality reference curve against
which other experiments can be compared. In addition,
the results allow comparisons with theory well within
the asymptotic region where the theoretical models ap-
ply, and significantly extend the range of the length scale
available for scaling tests. The CHeX experiment was
performed on the Space Shuttle mission STS-87 to re-
duce the effect of gravity on helium, which masks the
finite-size effect, and the measurement technique was
between equilibrium states, avoiding problems with dy-
namic methods.

To perform measurements on helium with ¢ in the
range of tens of microns it is necessary to work at a
reduced temperature t~ 1078, A high-quality experiment
spanning such a small temperature interval clearly puts
severe demands on thermometry. The paramagnetic salt
thermometry described earlier was used in the experi-
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FIG. 27. Finite-size specific-heat measurements close to the
lambda transition with a 57 um confining geometry obtained
in microgravity (Lipa et al., 2000), e; results of Monte Carlo
simulations (Schultka and Manousakis, 1995b), +; bulk curve
scaled to fit the data far from the transition, - - -; predictions of
Schmolke et al. (1990), —. From Lipa et al., 2000.

ment with modifications to reduce excess noise from the
charged particle flux. This resulted in improved mea-
surements with a thermometer noise only slightly ex-
ceeding the value measured on the ground (Qin et al.,
1996). The calorimeter was designed to serve two main
purposes: to maintain 60% of the sample in a confined
state, and to provide the thermal coupling between he-
lium and the thermometers. Helium was confined in the
gaps between uniformly etched (100) silicon wafers
nominally 110 um thick and 3.8 cm in diameter. One
side of each wafer was etched to a depth of 57 um, leav-
ing 30 small spacers in a gridlike pattern.

The specific-heat data close to the transition are
shown in Fig. 27. Also shown for comparison are the
results of Monte Carlo simulations (Schultka and Man-
ousakis, 1995b) and the predictions of Schmolke et al.
(1990). It appears that the models are fairly representa-
tive of the measurements, but the effect of confinement
is somewhat underestimated, with the experimental
curve generally showing greater deviations from the
bulk. A similar effect is visible in the submicron data
(Kimball et al., 2000). Ahlers (1999) has compared some
preliminary 57 um data with the 0.2113 um data of
Mehta et al. (1999) in the inner region and demonstrated
quite impressive agreement with scaling. This compari-
son is reproduced in Fig. 28. The upper solid curves in
the figure are the bulk specific heat from Eq. (11) and
the lower curves are a smoothed model of the 57 um
data scaled according to Eq. (16) with exponents v
=0.6705 and a=-0.0127. It can be seen that at this level
of testing there is no reason to seriously doubt proper
scaling behavior over a very wide range of length scales.
In addition, the f, plot based on Eq. (17) above T\ does
not show any significant problems that exceed possible
experimental error. This can be seen in Fig. 29, where
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FIG. 28. Comparison of finite-size specific-heat results for L
=57 um obtained in microgravity (Lipa er al., 2000) (top
panel), with the measurements by Mehta and Gasparini (1997)
for L=0.211 um (lower panel). In each case, the upper curve is
the bulk specific heat. The smooth curve through the micro-
gravity data was used to estimate the specific heat for L
=0.211 pm, using finite-size scaling and a correlation-length
exponent v=0.6705, and yielded the solid curve through the
0.211 wm data. Note that the horizontal scales differ by a fac-
tor of 4000. From Ahlers, 1999.

we plot the 57 um data in this region. For x>100, the
plot shows the surface specific heat above the transition
scaled as in Eq. (11) for comparison with the theoretical
function f, calculated by Schmolke et al. (1990), with no
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FIG. 29. Scaled surface specific-heat results above the transi-
tion obtained with a 57 um plate separation in microgravity.
Solid curve, function f>(x) of Schmolke et al. (1990); broken
curve, extrapolated surface specific-heat contribution. From
Lipa et al., 2000.



40 Barmatz et al.: Critical phenomena in microgravity: Past, ...

4 T — T — T —T
3@&35 g
2t 'g& e : 57 micron i

2 : 0.9869 micron
+ : 0.6918 micron
¢ 1 0.2113 micron
10 |- # : 0.0483 micron -
of £ 1
T 4
6 %‘AAA' -
5k Iy o _
A e
T RSB, ]
3k Sl d
+ W
w2 2t ° ., a, 4
L]
+ ° A
a .o AA
T . ]
& '-.A.A ]
6 . 4
5k 2 4
*
a+ .ﬁ B
3 .. 4
%
2t b o B
A e
0.1 Lol Co il Co ol %,
1 10 100 1000

-X

FIG. 30. Deviations of the confined helium specific heat from
the bulk, scaled to give f>(x) below the transition, for planar
geometry. The 57 um data were obtained in microgravity
(Lipa et al., 2000); 0.9869 um data are from Kimball et al.
(2000); 0.6918, 0.2113, and 0.0483 um data are from Mehta et
al. (1999).

adjustable parameters. Over the range shown, the match
is very good. For x>3000, the scatter in the data be-
comes large. The wide range and high accuracy of the
57 pm data give us an opportunity to obtain an estimate
of the surface specific-heat exponent a,= v+« with rela-
tively low uncertainty. The result obtained in the range
100<x <2000 was a,=0.65+0.2, which compares well
with the predicted value of 0.658. Below T, some re-
sidual problems exist, as mentioned earlier. In Fig. 30,
we plot the parameter f, derived from the 57 um results,
the 0.9869 um results of Kimball et al. (2000), and the
0.6918, 0.2113, and 0.0483 um sets of data recommended
by Mehta et al. (1999). It can be seen even below T) that
there is quite good agreement between the results for
0.2<L <57 pum, which covers a factor of 270 in length
scaling. On the other hand, the 0.0483 um data show a
clear lack of scaling for x<<-10. We note that for this
case the peak of the specific heat falls at t~-1073, be-
yond which finite-size scaling may break down due to
nonasymptotic corrections. However, it is also possible
that there is an as-yet unrecognized experimental arti-
fact in these data, in addition to those found in measure-
ments with other cells (Mehta er al., 1999). Also, the
behavior in the region near x ~—10 corresponding to the
onset of superfluidity on cooling is in some doubt with
the data from thinner films showing a somewhat more
rounded peak than expected [see Fig. 11 of Kimball er
al. (2000)]. Until the anomalous results are confirmed by
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FIG. 31. Deviations of the confined helium specific heat from
the bulk, scaled to give f>(x) above the transition. Open circles,
8 um pores; filled triangles, 0.26 um pores; +, 57 um planar
geometry. Solid curve, model of Schmolke et al. (1990); sloped
straight lines indicate the range of results of Mehta et al
(1999). From Lipa et al., 2001.

other methods, it seems reasonable to put them in the
suggestive but not definitive category. A reasonable con-
clusion appears to be that acceptable scaling holds for
films thicker than 0.2 um but thinner films may show
deviations. The 57 um results appear to be the most use-
ful for comparison with theory below the transition, in-
volving measurements between easily defined equilib-
rium thermodynamic states. A power-law fit to the
57 pm data in Fig. 30 over the range —2000<<x<-100
gave a;=0.64+0.05, again in good agreement with
theory (Lipa et al., 2000).

Ground measurements have also been made on
helium confined to a range of substrates with pore ge-
ometries. The early work of Chen and Gasparini studied
helium in the pores of Nucleopore filters of diameters
0.03-0.2 um. Measurements on 0.26 um Anopore and
8 um microchannel plates were reported by Lipa et al.
(2001). Recently some measurements on 1-um-square
channels have also been reported (Kimball et al., 2004).
The 1 and 8 um substrates provide extremely uniform
confining dimensions for helium with which to observe
finite-size effects. Surprisingly, the 8 um results do not
compare very well with other measurements in the re-
gion of the peak. On the other hand, the Anopore and
1 pwm results are in good agreement with Monte Carlo
predictions (Schultka and Manousakis, 1998).

In the region where deviations from bulk are small, f,
again reduces to a simple surface specific-heat term that
is expected to be the same for 1D and 2D confinement,
after allowance is made for the difference in the surface
area-to-volume ratio for the two cases. The behavior of
f> over the range of interest is shown in Fig. 31 for the
Anopore, 8 um, and 57 um data sets. For comparison,
we also show predictions of Schmolke et al. (1990) for
the 2D confinement case. It can be seen that at large x
the pore data are approximately a factor of 2 higher
than the predicted curve, as expected from the surface
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FIG. 32. Plot of f, versus x below the transition. Open circles,
8 um pores; filled triangles, 0.26 um pores; +, 57 um planar
geometry. Line shows the low-order perturbative result of
Mohr and Dohm (2000). From Lipa et al., 2001.

area-to-volume ratio. The general behavior appears to
be very similar to the predicted curve even in the region
x<<100, where higher-order contributions beyond the
surface term become significant. The two lines in the
region 10<<x <1000 show the approximate limits of the
planar geometry results of Mehta et al. (1999).

The corresponding plot for below the transition is
shown in Fig. 32. Clear differences between the pore and
planar geometry results can be seen near x ~—10. Below
the transition, no detailed prediction is available for the
full range for any dimensionality, but the ratio of the
surface terms on the two sides has been estimated by
renormalization techniques. The low-order perturbation
theory result derived by Mohr and Dohm (2000) for pla-
nar geometry is shown by the line in the figure. The
authors do not consider this result a reliable prediction
and further work in this area is very desirable. On the
other hand, the Monte Carlo results of Manousakis
(1995b, 1998) are in good agreement with the two types
of data shown in Fig. 32, as indicated by Figs. 9 and 10 of
Lipa et al. (2001).

We find that the ratio R, of the surface specific heat on
the two sides of the transition varies somewhat as a
function of x. Over the range 30<|x| <200, we find R
=1.29+0.1 for the 8 um data and 1.42+0.03 for 0.26 um.
Further from the transition R, appears to approach unity
in both cases, but here the uncertainties in the surface
terms rapidly increase, making the ratio measurement
unreliable. These results can be compared with the pre-
diction of Bhattacharyya and Bhattacharjee (2000), who
find R;=2.06 on the basis of approximate RG argu-
ments. It is possible that some of the discrepancies on
the low-temperature side are associated with the longer
correlation length there, as compared to the value a
similar distance above the transition. Hohenberg et al.
(1976) find that the ratio of the correlation lengths below
and above the transition is &,/§;=~2.7 for helium, al-
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FIG. 33. Comparison of finite-size specific-heat data scaled to
give fi(x) for pores: open circles, 8 um; filled triangles,
0.26 wm; X, open triangles, +, 800, 1000, and 2000 A data of
Chen and Gasparini (1978); squares, model of Schultka and
Manousakis (1998, 1995b). From Lipa et al., 2001.

though the definition on the two sides is somewhat dif-
ferent, due to the infinite range of the superfluid corre-
lation function. Since the region x <0 also includes the
finite-size peak, the measurements can be compared
with the results of Schultka and Manousakis (1995b)
converted to f,. The level of agreement was found to be
encouraging in both the pore and planar geometry cases
(Lipa et al., 2001). Additional contributions to the finite-
size effect from edges have been reported (Kimball et
al., 2004), although these are not expected to be signifi-
cant for the range covered here. These authors also re-
port the result R;=1.46+0.1, in reasonable agreement
with the values quoted earlier.

In Fig. 33, we show the results for f; derived from the
experiments on pores. For comparison, we also show the
results of Monte Carlo calculations performed with a
boundary condition simulating a node in the superfluid
density at the walls. It can be seen that there is good
agreement between the Monte Carlo results and Ano-
pore measurements, but only fair agreement for the
other samples. This result is surprising since the 8 um
substrate appears to be much closer to an ideal material
than Anopore. Overall, from Fig. 33 it is hard to claim a
good collapse of the data at small x. It will be interesting
to review these results when more detailed estimates of
the effects described by Chen and Dohm (1999b, 2002,
2003) become available, after extension of their theory
to the region below 7). Additional specific-heat mea-
surements may soon become available for 1 and 2 um
pores (Ahlers, 2006). Other aspects of finite-size scaling
involve the height and location of the peak and the
value of C(t=0) as functions of the confining dimension.
In Fig. 34, we show results for the shift of the specific-
heat maximum relative to the bulk as a function of pore
diameter and compare them with the Chen-Gasparini
data reanalyzed by Wacker and Dohm (1994). It can be
seen that the results fall on two roughly parallel lines. If
we require AT,,=aL'”, then the Anopore and 8 um
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FIG. 34. Shift of finite-size specific-heat peak versus pore size.
Open circles, Chen and Gasparini (1978); filled circles, Lipa et
al. (2001). From Lipa et al., 2001.

data indicate »=0.716. The deviation from the expected
value, v=0.6704, is a reflection of the lack of collapse of
the f; plots in Fig. 33. It can be seen that the results from
the Chen and Gasparini experiment appear to be offset
from those of Lipa et al. (2001) on a roughly parallel
curve consistent with v=0.6704. We note that the pore
sizes in the Chen and Gasparini experiment were not
measured, although an estimate suggests they were
10-20 % smaller than the nominal values quoted (Gas-
parini et al., 1981). To reconcile the two sets of results,
the pores would need to be ~35% larger than assumed,
which seems well outside the expected error. It is pos-
sible that the boundary condition for helium differs for
different substrates, causing an apparent lack of scaling.

In summary, it appears that most current theoretical
predictions for the specific heat in planar and cylindrical
geometries are in approximate agreement with experi-
ment over a wide range of length scales. However, near
the heat-capacity peaks there is some evidence for
rounding that does not scale correctly. More measure-
ments are needed to resolve these lingering issues. Over-
all, the results provide a remarkable degree of confirma-
tion of finite-size scaling for the specific heat near the
lambda point. Interesting finite-size effects on the free
energy (Casimir effect) have also been predicted (Krech
and Dietrich, 1991, 1992) and detected (Garcia and
Chan, 1999, 2002). In this case, van der Waals forces are
predicted to cause nonscaling finite-size effects for L>> ¢
(Chen and Dohm, 2002, 2003).

A flight experiment, CHeX-2, was proposed to mea-
sure the confinement effect in very uniform 50 um
pores, to expand the range of scaling tests and provide
additional information on the surface specific heat in the
asymptotic region. This experiment would reuse some of
the equipment returned from the 57 um experiment de-
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scribed above. Improved thermometry would allow
about a factor of 2 reduction in the noise of the mea-
surements. The main components of the flight calori-
meter for this experiment have been fabricated.

B. Superfluid density

To date, no finite-size superfluid density measure-
ments have been proposed for microgravity, but for
completeness we mention ground experiments in this
area. Data in the critical region have been obtained by a
number of groups. The most useful for the present dis-
cussion are from Rhee et al. (1989) for planar geometry.
Films in the range 0.106-3.9 um were studied using tor-
sion oscillator techniques. Deviations of the superfluid
density from bulk behavior showed two regimes, a
small-departure regime with a weak temperature depen-
dence and a region with a more abrupt falloff, close to
the bulk transition. The latter region was identified as a
crossover region to 2D behavior, dominated by the
Kosterlitz-Thouless transition (Kosterlitz and Thouless,
1973). Data from the former region were analyzed for
scaling behavior and the expected power-law behavior
was not found. The departures from bulk showed the
expected L~! amplitude behavior but the temperature
dependence was stronger than indicated by the variation
of the correlation length. This effect was most noticeable
in the 2.8 and 3.9 um data sets. As yet there appears to
be no explanation for this anomaly. Gasparini and Rhee
(1992) have reviewed the results of this and related ex-
periments in detail. A possibly related lack of scaling has
been reported by Schultka and Manousakis (1997), who
found a lack of L scaling in Monte Carlo computations
of the superfluid density in films.

C. Finite-size thermal conductivity

At present, theoretical methods are not sufficiently
advanced to provide detailed predictions of the finite-
size effect on the thermal conductivity «(¢,L) of helium
near the lambda point. Nevertheless, some useful results
have been obtained. Bhattacharjee (1996) performed an
approximate calculation equivalent to a self-consistent
single-loop model and derived a scaling function for
k(t,L) similar to that suggested by Kahn and Ahlers
(1995). A one-loop calculation of «(¢,L) has been per-
formed by Topler and Dohm (2003) for the region above
and at the transition. These calculations used the
model-F Hamiltonian (Halperin et al., 1976a) with cor-
rections to scaling, and Dirichlet boundary conditions at
the surface. Both the quantities 1—«(f,L)/«(t,) for
é< L and «(0,L) were calculated. Significant progress
has also been made with Monte Carlo calculations of
transport properties. Krech and Landau (1999) studied
the spin dynamics of the XY model (E) for a cubic ge-
ometry with periodic boundary conditions. They ob-
tained a scaling function «(0,L)~ L>%, where z is a dy-
namic exponent (z=1.38). This result appears to be
consistent with the function derived by To6pler and
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Dohm (2003), however, strictly speaking, it belongs to a
separate universality class (Hohenberg and Halperin,
1977). Nho and Manousakis (2001) have determined the
shape of the scaling function «(¢,L) for a barlike geom-
etry with open boundary conditions, but not its absolute
value. A phenomenological approach to the calculation
of the thermal resistivity R(t,L)=«(t,L)"! was devel-
oped by Ferrell and Mukhin (2000, 2001). These authors
calculated dissipation in a superfluid confined to a cylin-
drical geometry by considering the phase slip associated
with the migration of vortices in the superfluid, caused
by the heat current. Their results give the resistivity well
below the bulk 7, where the coherence length is signifi-
cantly smaller than the cylinder radius.

Ahlers (1999) has pointed out that finite-size effects
for transport properties are richer than those for equi-
librium properties because the heat current breaks the
rotational symmetry of the sample. Thus one should ex-
pect different behavior when current flows in different
directions relative to the confinement geometry, imply-
ing that there could be as many as three different uni-
versal scaling functions involved. These correspond to (i)
a parallel-plate geometry with the current in the plane,
(ii) a parallel-plate geometry with the current perpen-
dicular to the plane, and (iii) a cylindrical geometry with
the current along the cylinder axis. For relatively thick
spacings, (ii) is dominated by the boundary resistance
and has been investigated in ground-based experiments
below the bulk 7.

Approximating the thermal conductivity as «(z, )
~ kot™ for t>0, Ahlers (1999) has proposed a scaling
law involving R(¢,L). By analogy to static finite-size scal-
ing, he obtained the dynamic scaling function

F(X) = (LI&)"R(t,L)/R], (18)

where X=(L/&)""t and Ry=«,'. Regardless of the ge-
ometry, we expect the relationship between R(z,L) and
R(t,) to be given by a function of L/¢ only. Ahlers
(1999) also obtained a difference function

G(X) = (LI&)™R(t,L) = R(t, ) V/R,. (19)

Above T, the function G(X) is more sensitive to the
finite-size effect since the bulk resistivity is subtracted,
while below T,, G(X)=F(X). Ahlers (1999) also ob-
tained

R(0,L) = RyF(0)(L/&) ™" (20)

for the resistivity at 7). However, it is not entirely clear
how one would derive the same result from the low-
temperature side, or even how F(X) should be defined.
Based on the static scaling analogy, the functions F(X)
and G(X) are expected to be universal, implying that
(for a given geometry) they do not depend on L and P,
but the uncertainty in the form of their continuation to
negative ¢ implies that some caution is prudent at this
stage. Also, the exponential behavior of R(¢,L) ob-
served below T suggests that the physical phenomena
which dominate the finite-size effects on the two sides of
the transition might be different (Ahlers, 1999). In addi-
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FIG. 35. The scaling function F(X) for pores of 1 wm diameter
(circles) and 2 um diameter (squares) in the transition region
at SVP. From Murphy et al., 2003.

tion, the power-law representation of the thermal con-
ductivity is only approximate, so ideal scaling behavior
cannot be expected with the present level of understand-
ing.

Thermal conductivity measurements of confined he-
lium have been made by Kahn and Ahlers at the SVP.
Their sample was contained in the long, narrow tubes of
a glass microchannel array and thus represents the cylin-
drical geometry with axial heat flow. The tube diameter
L was 2 um. Their results showed that R(¢,L) in the
cylindrical geometry remains finite at 7, and decays ex-
ponentially as T is reduced below 7). Additional results
have been reported by Murphy et al. (2003), who used 1-
and 2-um-diam pores and covered the range of pres-
sures from the SVP up to 28 bars in the latter case.

Data for R in the finite-size-affected region of ¢ are
shown in Fig. 3 of Murphy et al. (2003). Above T,, the
finite-size effect on R was found to extend to quite large
values of ¢. This is characteristic of the surface contribu-
tion to finite-size effects as seen in static properties. Be-
low T,, R(t,L) approaches zero rather more rapidly.
Kahn and Ahlers fit their data for R(¢,L) with <0 to
the exponential function R/Ry=exp(t/t;)) and found ¢,
~1.1X107%. Murphy et al. (2003) reported similar results
for their data sets. They found that both R, and ¢, were
approximately independent of pressure, suggesting that
universality breaks down in this region, with the thermal
conductivity becoming independent of P. However, it
should be remembered that we do not yet know exactly
how universality should manifest itself in this region. In
the region near t=0, the thermal resistivity was found to
scale approximately as in Eq. (20). This agrees qualita-
tively with the prediction of T6pler and Dohm (2003),
although a somewhat different dependence on L was
observed. In the region above T), scaling and universal-
ity were found to apply reasonably well. Figure 35 shows
the function F(X) for the two sizes of pores in the tran-
sition region (Murphy et al., 2003). Differences in the
curves may be due to a breakdown of scaling.
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1. Microgravity experiment

The significance of the results to date would be sub-
stantially enhanced by equivalent results over a much
wider range of confinement sizes. Some measurements
would be worthwhile on smaller systems, but the full
range of behavior seen above the transition would soon
extend beyond the critical region, a problem already en-
countered with the measurement of static properties.
This makes it difficult to compare the results with an
asymptotic theory. Thus one is led to extending the
length scale to relatively large values. However, for L
=15 um the effect of Earth’s gravity perturbs the mea-
surements and experiments are feasible only in micro-
gravity. This problem has been analyzed by Ahlers
(1999), who showed that gravity effects are most serious
in the region just below the transition. The upper limit
on the size is set by the available thermometer resolu-
tion of about 107!° K because as L increases, the phe-
nomena of interest occur progressively closer to the bulk
transition. Scaling the data shown in Fig. 35 to larger
lengths suggests that quantitative measurements for L
up to 100 um should be possible. Residual acceleration
levels of <107*g rms in space are expected to be unim-
portant.

An experiment called BEST (Boundary Effects on the
Superfluid Transition) has been designed to explore the
cases of cylindrical geometry with a pore diameter of
100 wm and rectangular plate geometry with L =50 um
at pressures from the SVP to 29 bars in zero gravity
(Ahlers, 2000; Lammerzahl et al., 2004). The apparatus
will also contain a bulk helium cell for reference
and additional high-resolution measurements. High-
resolution thermometry similar to that described earlier
will be capable of reaching a resolution of 8% 10710
K/Hz!? and measurements will be made using the two-
terminal technique in which the temperature rise across
the cell is monitored as a function of the applied heat
current. The design of the cells is similar to that de-
scribed by Murphy et al. (2003) except for the use of a
thicker sample plate. The apparatus will also have a su-
perconducting pressure gauge (Edwards et al., 1996) to
allow measurements to be performed along isobars.

VIII. SUMMARY

We have presented an overview of the developments
in critical phenomena that have occurred since the re-
view of Moldover et al. (1979) with an emphasis on the
situation in low-gravity conditions. It has become clear
that low gravity can provide significantly improved re-
sults for testing the theory, and some experiments have
demonstrated this. The relevance of performing these
types of experiments has thus been clearly shown. How-
ever, in spite of over 25 years of effort, the scientific
community has only just begun to reap the advantages
of the space environment.

In the O(1) universality class, the divergence of the
constant-volume specific heat in SFq was successfully
measured in the asymptotic region to r=10"° The
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specific-heat exponent and asymptotic critical amplitude
ratio obtained from this measurement agreed with the-
oretical predictions. Also, the viscosity divergence and
the effects of viscoelasticity near the critical point of xe-
non were studied extensively in two microgravity experi-
ments. In addition, the unexpected critical speeding up
of the equilibrium time constant (piston effect) near a
liquid-gas critical point observed on the ground and in
early rocket experiments was studied extensively in sev-
eral microgravity experiments. Many unusual features of
this piston effect were observed and explained in these
microgravity studies with convection suppressed. The
MISTE and COEX experiments are planned to take ad-
vantage of the results obtained from these previous
studies in order to perform simultaneous thermody-
namic measurements throughout the liquid-gas critical
region.

In parallel with the flight experimental activities de-
scribed in this review, there have been many new studies
in ground-based laboratories. Some of these ongoing ex-
periments could lead to future microgravity studies. In
the O(1) class, there have been theoretical studies of
finite-size effects (Chen and Dohm, 1999a, 1999b;
Dantchev, 2001; Dantchev and Rudnick, 2001), but ex-
perimental validation has been very difficult due to the
gravity effect. The interpretation of the Yang-Yang rela-
tion derived many years ago (Yang and Yang, 1964) has
been reconsidered theoretically and experimentally in
recent years (Fisher and Orkoulas, 2000; Orkoulas et al.,
2000); however, both impurity and gravity effects have
significantly hampered experimental studies (Wyczal-
kowska et al., 2002; Anisimov et al., 2004). A sensitive
technique for measuring the bulk viscosity of xenon near
its critical point has recently been developed (Gillis et
al., 2004, 2005), but the gravitational stratification will
interfere with the data analysis very near the transition.
There have also been new attempts to reduce the gravity
effect on the ground by using a steady heat flow tech-
nique that produces a density gradient opposite to that
of gravity. Magnetic levitation techniques employing dia-
magnetic fluid systems have also been used to reduce
gravity effects (Lipa, 2004; Beysens et al., 2005).

In the O(2) universality class, there have been two
successful flight experiments, LPE and CHeX, that mea-
sured the specific heat near the “He lambda point. These
studies were able to make measurements to within ¢
=107 of the transition in a homogeneous sample. The
LPE experiment provided the most accurate determina-
tion of any critical exponent to date and challenged the
theoretical community to improve the quality of existing
theoretical predictions. These experiments have opened
up the possibility of performing studies of other proper-
ties very close to the lambda transition and for measure-
ments with correlation lengths of 50 um or more, re-
gimes inaccessible on the ground.

Further measurements of static properties are of
course possible, allowing improved testing of universal-
ity along the lambda lines. Also, very high-precision
measurements could put improved bounds on models
that invoke logarithmic corrections to standard scaling.



TABLE IX. Summary of important previous microgravity experiments and experiments that were or may be planned for future
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Platform/ Section
Experiment Description Date flown discussed
TEXUS
Nos. 11 and 13 O(1), Mixture, phase separation 1988 III.A and IV.G
No. 25 0(1), CO,, piston effect 1990 III.A and IV.G
FREE FLYER
EURECA-I O(1), SFg, Critical adsorption 1992 V.G
SHUTTLE
D-1/HOLOP 0(1), SFg, thermal equilibrium 1985 IVB
D-1/HPT 0(1), SF¢, Cy, 1985 IVB
LPE 0(2), *He, Cp 1992 VA
IML-1/CPF O(1), SFg, Mixture, nucleation, and growth 1992 III.B and IV.G
D-2/HPT-HYDRA O(1), SF, Piston effect, Cy, 1993 IV.B and IV.G
IML-2/CPF O(1), SFg, Piston effect, electrostriction 1994 III.B, IV.A, and IV.G
USMP-2/ZENO 0(1), Xe, Turbidity 1994 IVE
USMP-3/ZENO-2 0O(1), Xe, Turbidity 1996 IVE
CHeX 0(2), *He, Cp, Finite size (planar) 1997 VILA
CVX O(1), Xe, Viscosity 1997 IV.F
CVX-2 O(1), Xe, Viscosity 2003 IV.F
MIR
ALICE-2 O(1), SF¢, Two-phase fluid, thermal 1999 IV.G
equilibrium
ALICE-2 0(1), SFg & CO,, Critical boiling 1999 V.G
ISS
BEST 0(2), *He, «, Finite size Future VIIL.B
CHeX-2 0Q), *He C p, Finite size (pores) Future VILA
COEX O(1), *He, Coexistence curve Future IVD
CP 0(2), *He, Cp Future VD
CQ 0(2), “He, C1(Q) Future V.B
DYNAMX 0(2), *He, (Q) Future V.D
EXACT O(1)/0(2), Tricritical, *He-*He mixture Future VI
MISTE 0(1), *He, Cy, k7, PVT Future IV.B and C
SUE 0(2), “He, Superfluid density Future Vv.C
DECLIC/ALI/HTI 0(1), CO,, SF¢, and Xe, Critical boiling, Future IV.G and
piston effect, critical fluctuations Summary
FSL O(1), TBD Future Summary

More finite-size measurements in well-defined geom-
etries could also be performed, for example, with cylin-
drical confinement. Recent measurements (Kimball et
al., 2004) showing possible edge and corner confinement
effects in well-defined geometries could also benefit
from the space environment where long correlation
lengths allow the use of larger-scale confining systems. It
is also possible that the properties of boundary layers
could be investigated using first- and second-sound
propagation in narrow channels, and in thermal gradient
measurements across the critical component of the ther-
mal boundary resistance. Beyond static critical and
finite-size phenomena, heat-transport measurements
have been planned near the He I/He II fluid interface as
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part of DYNAMX, and future measurements of critical
viscosity near this interface may be conducted as well.
The BEST experiment would measure finite-size effects
in heat transport in cylindrical and slab geometries near
the superfluid transition. The tricritical point at the in-
tersection of the phase separation and lambda lines in
SHe-*He mixtures represents an interesting system
where the predictions for the critical exponents and am-
plitude ratios are exactly calculable without the use of
sophisticated theoretical techniques to obtain perturba-
tive corrections. The EXACT microgravity experiment
(Larson, 2000) has been designed to obtain specific-heat
and second-sound measurements near the tricritical
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point, thus permitting the critical exponents of the su-
perfluid fraction and the specific heat to be obtained in
this system. Other measurements, such as second-sound
propagation into the interface layer and the possible de-
tection of interface-related second-sound modes (Weich-
man et al., 1998), are best suited for microgravity. Mag-
netic levitation devices have also been developed to
reduce the effect of gravity on liquid helium for studies
of the O(2) universality class, and some data have been
obtained (Liu, Larson, and Israelsson, 2000). At present,
this technique is somewhat limited but it could provide
valuable Earth-based data regarding the experimental
definition of future low-gravity experiments. If suitable
bolometers working at high magnetic fields could be de-
veloped, some progress toward the second-sound-
related experiments mentioned above could be made.
Table IX provides a summary of previous microgravity
flight experiments and those that were or are planned
for future space flights.

There have also been some problems in the critical
phenomena experiments in microgravity to date. Be-
cause of the cost and time involved in preparing these
flight experiments, generally researchers have only had
one flight opportunity to successfully perform their in-
vestigation. Complicated experiments typically encoun-
ter many technical problems during their development,
and extensive ground-based testing is usually performed
before an experiment is flown in space. However, the
effects of the space environment on Earth-orbiting ex-
periments cannot always be anticipated. The research
community is awaiting the day when there will be many
flight opportunities so that experiments can be per-
formed in low gravity and returned to Earth quickly. A
shorter turnaround time would clear the backlog of pro-
posed experiments and permit more reflights if neces-
sary, resulting in an enhanced scientific benefit. In paral-
lel, it is also necessary to reduce the cost of the
experiments, perhaps by reducing the penalty for failure.

As shown in Table IX, worldwide, a substantial num-
ber of microgravity studies have been performed to
date. ESA is developing facilities and experiments for
future flights on the ISS. There are several critical phe-
nomena experiments planned for the DECLIC facility
(Cambon et al., 2004). Initial ISS studies in the ALICE-
Like Insert (ALI) to the DECLIC facility should allow
for direct observation of the boiling crisis and critical
density fluctuations in near-ambient fluids (CO,, SF;,
and Xe). The High Temperature Insert (HTI) is dedi-
cated to the study of the piston effect and the coupling
between hydrodynamics and chemical reactions in the
highly compressible supercritical region of water. The
FSL facility is also planned to be integrated into the
Columbus module that is expected to be installed in the
ISS in the 2007-2008 time frame. While there are no
critical phenomena experiments initially planned for
FSL, this facility is capable of performing these types of
studies in the future.

As to the question of the correctness with the current
paradigm on critical phenomena, it seems fair to say that
the predictions of the RG theory have been reasonably
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well validated. Nevertheless, the theory is based on
some “seemingly innocuous” assumptions that will stand
or fall based on more sophisticated experiments.
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