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Coherent control of collective nuclear quantum states 
via transient magnons
Lars Bocklage1,2*, Jakob Gollwitzer1, Cornelius Strohm1, Christian F. Adolff1,2, Kai Schlage1, 
Ilya Sergeev1, Olaf Leupold1, Hans-Christian Wille1, Guido Meier3,2, Ralf Röhlsberger1,2,4,5,6

Ultrafast and precise control of quantum systems at x-ray energies involves photons with oscillation periods be-
low 1 as. Coherent dynamic control of quantum systems at these energies is one of the major challenges in hard 
x-ray quantum optics. Here, we demonstrate that the phase of a quantum system embedded in a solid can be 
coherently controlled via a quasi-particle with subattosecond accuracy. In particular, we tune the quantum phase 
of a collectively excited nuclear state via transient magnons with a precision of 1 zs and a timing stability below 
50 ys. These small temporal shifts are monitored interferometrically via quantum beats between different 
hyperfine-split levels. The experiment demonstrates zeptosecond interferometry and shows that transient quasi-
particles enable accurate control of quantum systems embedded in condensed matter environments.

INTRODUCTION
Ultraprecise probing and control of processes on their intrinsic time 
scales are essential to reveal fundamental dynamics in nature. The 
control of quantum systems is mostly performed via coherent exci-
tation with photons. Coherent light-matter interaction in the hard 
x-ray regime couples quantum states with electromagnetic waves. 
The latter exhibit oscillation periods on the order of zeptoseconds 
associated with the involved x-ray energies of a few kiloelectron 
volts. Several quantum effects in atoms proceed on these time scales 
including a host of atomic and nuclear transitions and light-matter 
interactions like diffraction, Compton scattering, Raman scattering, 
or resonant x-ray scattering. Although quantum optical concepts 
have been established in the regime of hard x-rays using nuclear 
(1–8) or electronic (9) resonances, the associated zeptosecond time 
scale prevents application of established quantum optical control 
schemes at x-ray energies. Coherent control of high-energy quan-
tum systems has been achieved by coupling to x-ray cavities (2, 3, 9), 
vibration of resonant absorbers (5, 7), magnetic switching (1, 4), or 
strong coupling of nuclear ensembles (6). Precise dynamic control of 
quantum systems at x-ray energies is at the forefront of contempo-
rary research. Consequently, novel control schemes at these ener-
gies are called for to access these time scales and the corresponding 
phase shifts.

A fascinating opportunity to modify intrinsic quantum proper-
ties of solids, like superconductivity, is the excitation of phonons 
(10). The extension of such a scheme to quantum systems embedded 
in a solid-state host is an attractive approach, which could provide 
several ways for quantum control via a variety of possible quasi-particles 
of the vibrational, electronic, or magnetic degrees of freedom in the 
solid. The embedded quantum systems include electronic or nuclear 
levels of atoms in the condensed matter state, nitrogen vacancies in 
diamond (11), and ion-doped solids (12), among others. With such 

an additional opportunity to influence the embedded quantum sys-
tem via quasi-particle excitation, its dynamics may be controlled 
with high precision. Here, we introduce such a novel method for 
coherent quantum phase shifts with subattosecond precision. An en-
semble of 57Fe Mössbauer nuclei embedded in a ferromagnetic film 
is controlled via transient magnons in the time domain. This quasi- 
particle control preserves the coherence of the collectively excited 
nuclear state. Specifically, we use a uniform magnon mode (13) to 
modulate the magnetic hyperfine interactions of the nuclei and to 
control its quantum phase.

Temporal control of quantum phases yields fundamental knowl-
edge about quantum systems (14–19) and is a cornerstone of many 
quantum technologies (17, 20). Nowadays, attosecond electronic pro-
cesses can be captured in atoms (21, 22), molecules (23), or condensed 
matter (24, 25), leading to the basic understanding of quantum phe-
nomena like tunneling (26), ionization of molecules (27), or electron 
scattering (24). To achieve this, small time delays, or the correspond-
ing phases, of the system have to be monitored. Currently, time de-
lays shorter than attoseconds are not accessible with laser sources 
(28–30), and access to the zeptosecond time delays is still a great 
challenge (20). The understanding and control of quantum phases, 
however, yield fundamental concepts like the Berry phase (15) and 
the Aharonov-Bohm effect (19), both based on the geometric phase. 
The manipulation of the spectral response of atomic resonances and 
the study of their ultrafast dynamics are accomplished by the con-
trol of the dynamic phase (16, 18). Scaling these concepts toward 
shorter wavelengths and shorter time scales is indispensable for un-
derstanding and controlling high-energy quantum dynamics in 
general, with potential applications in ultrafast photonic control in 
a variety of fields ranging from precision interferometry to signal 
processing in nanoscale photonic devices.

RESULTS
The concept of quantum phase control with a quasi-particle is based 
on a temporally well-controlled frequency change of atomic or nu-
clear transitions. Here, we have chosen the 14.4-keV nuclear transi-
tion in 57Fe with  = 2.19 × 1019 s−1, corresponding to an oscillation 
period of 287 zs. A level scheme of this transition is shown in Fig. 1A. 
The nuclei are embedded in a ferromagnetic thin film, and the internal 
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magnetic hyperfine field Bhf splits the nuclear dipole transition via 
the Zeeman interaction into a sextet of which only the four circularly 
polarized transitions are excited in this experiment. The four nuclear 
transitions are excited simultaneously with the same probability by 
a 50-ps-long broadband x-ray pulse from a synchrotron. The 5-neV 
linewidth of the 57Fe transition leads to coherence times of hundreds 
of nanoseconds between the transitions such that they form quantum 
beats over the lifetime of the nucleus of 141 ns. During nuclear 
resonant forward scattering of synchrotron radiation, primarily one 
photon at a time interacts with an ensemble of identical nuclei in the 
thin film to form a collectively excited nuclear state. This nuclear ex-
citon (31)—or timed Dicke state (32)—decays superradiantly. 
The control of a collectively excited state is more demanding than 
that of a single quantum system because the coherences between 
each of the participating nuclei have to survive when the system is 
perturbed.

When ferromagnetic magnons are excited resonantly by a radio 
frequency (RF) magnetic field, the hyperfine field at the nuclei is 
reduced (13) (see Fig. 1A). Because of this reduction, the Zeeman 
splitting gets smaller, which leads to an energetic shift of the nuclear 
transitions. In Fig. 1B, the corresponding energy scheme is shown 
with an energetic shift of the transitions due to the Zeeman interac-
tion and the magnon excitation. The energy shift induced by the 
magnon preserves the coherences between the nuclear levels (13). 
With magnons present in the ferromagnetic film, the transitions are 
shifted by ħ of a few nanoelectron volts. Exemplarily, the spec-
trum for a hyperfine field reduction of 3 T is shown. The actual re-

duction in the hyperfine field is set by the strength of the RF field 
driving the magnon. During relaxation, the collectively excited nu-
clei emit a single -ray photon within the lifetime of 141 ns, which 
is in a superposition state of the four allowed dipole transitions each 
oscillating at its own frequency i on the zeptosecond time scale.

When the magnon is excited not continuously but by a short 
nanosecond-long RF burst, the energetic shift in the nuclear dipole 
transition takes place on the time scale of the transient magnon. In 
metallic ferromagnets, the magnon frequencies are in the gigahertz 
range, and their intrinsic magnetic damping times are about 1 ns. In 
this experiment, magnons are in a classical coherent state also known 
as a spin wave. The scheme of excitations is depicted in Fig. 2A. Be-
cause the phase of the nuclear transition dipole oscillation φ(t) de-
pends on its momentary frequency  according to φ(t) = ∫(t ′)dt′, 
any change of this frequency will modify the dynamic quantum 
phase as schematically depicted in Fig. 2B. By changing the frequen-
cy of the nuclear transition dipole moment by  over the time 
span of the magnon excitation tm indicated by the blue bar, a phase 
shift φ = tm is generated. This phase shift remains after the 
magnon is damped out. As seen from Fig. 1B, the energetic shifts are 
different for the inner and outer lines as are the phase shifts. The 
energetic shifts due to the magnon are on the order of a few nano-
electron volts for the 14.4-keV nuclear transition, and the ratio of the 
shifts to the nuclear transition energy spans 12 orders of magnitude. 
To obtain temporal shifts t = φ/ in the oscillation of the nuclear 
transition dipole moment that are in the zeptosecond range, relative 
frequency changes have to be applied over the same ratio, resulting 
in nanosecond transient magnons needed for control. This coincides 
with the intrinsic nanosecond time scale of the magnon.

For an experimental demonstration, we use nuclear resonant for-
ward scattering of x-rays from a ferromagnetic permalloy thin film 
in which 57Fe nuclei are embedded (see Materials and Methods). The 
magnetic hyperfine field Bhf is aligned parallel to the wave vector of 
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Fig. 1. Nuclear-level scheme with magnon excitation. (A) Level scheme of a57Fe 
nucleus with the transition from the ground ∣g⟩ to the excited state ∣e⟩ at 14.4 keV. 
The magnetic hyperfine-field Bhf splits the nuclear transition by the Zeeman effect. 
The four circularly polarized transitions are shown that are excitable in our experi-
mental geometry. A static magnetic field H aligns the magnetization M and the 
hyperfine field in the sample. When a coherent magnon∣m⟩ is excited in the 
magnetic material at its resonance m, the magnetization precesses around 
the external field H. In that case, the hyperfine field is reduced, leading to a shift of 
the nuclear transitions. (B) Energy spectrum of the circularly polarized nuclear tran-
sitions in a permalloy film. Black shows the transitions for a static hyperfine field of 
Bhf = 27.9 T. Blue shows the shifted transitions for a hyperfine field reduced by 3.0 T 
as can be induced by magnons. The frequency difference between the transitions 
with same polarization is .
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Fig. 2. Nuclear dynamics with magnon excitation. (A) An 57Fe nucleus is excited 
by an x-ray pulse and subsequently emits a -ray photon. The emitted photon is in 
a superposition state of the four nuclear dipole transitions oscillating at different 
frequencies, here only shown for two frequencies of same polarization (green and 
gray). An RF burst with delay tp excites the ferromagnetic magnon (blue) and 
leads to a nanosecond shift of the resonance line as shown in Fig. 1. (B) The oscilla-
tion of the nuclear transition dipole moment of a single transition at frequency  
is shown in gray. During the period indicated by the blue bar, the magnon is excit-
ed and the oscillation frequency is shifted by . Afterward, the oscillation fre-
quency is the same as before, but shifted by φ (magenta). This process happens 
for all four transitions although with different phase shifts.
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the incident x-rays in the Faraday geometry in which only the four 
transitions belonging to the m = ±1 transitions can be excited. In 
the scattered radiation, the two equally spaced lines that belong to 
the doublets of the transitions with same polarization interfere, re-
sulting in a quantum beat with a single frequency of  ≈ 50 MHz 
(see Fig. 3). Dynamic quantum phase control is achieved through the 
magnon. Phase shifts in the coupled light-matter state of the nuclear 
ensemble and the scattered single photon are induced when a few- 
cycle RF magnetic field burst, synchronized with the incident x-ray 
pulse, resonantly stimulates the uniform and coherent magnon mode 
of the ferromagnetic film over a time interval tm of a few nanosec-
onds. During that time, the transient magnon shifts the nuclear tran-
sitions as described previously, which results in a phase shift φi and 
a corresponding temporal shift ti of the carrier wave of each of the 
transitions.

The long coherence times between the nuclear transitions and 
the formation of quantum beats allow for an interferometric detec-
tion of phase changes that are much smaller than the oscillation 
period of the transitions. The resolution of the phase change is only 
limited by the temporal resolution of the quantum beat. The zepto-
second temporal shifts ti of the carrier frequencies i are detected 
by analyzing the quantum interference between the two resonances 
of a doublet, e.g., 1 and 4 (see Fig. 3). The temporal quantum beat 
pattern oscillates at the much smaller frequency  = 4 − 1. When 
the nuclear transitions exhibit a phase shift φi and a correspond-
ing temporal shift ti after magnon excitation, the phase shift in the 
quantum beat is  = 4t4 − 1t1 (see Materials and Methods). 
Thus, the oscillation frequency of each transition and its temporal 
shift define the phase shift in the quantum beat (see Fig. 3C). Ac-
cordingly, the interferometric detection transforms zeptosecond 
shifts of the individual nuclear transition dipole moments to nano-
seconds shifts in the quantum beat pattern, which allows detection 
of the magnon-induced zeptosecond temporal shifts.

The energetic shifts of each transition and, hence, their phase shifts 
are exactly known from the Zeeman interaction. The phase shift for 

the specific transition φi is related to the phase shift of the quantum 
beat  via

	​  ​φ​ i​​  = ​  
​m​ e​​ ​g​ e​​ − ​m​ g​​ ​g​ g​​

 ─ ​g​ e​​ − ​g​ g​​  ​ ​	 (1)

where me, mg are the magnetic quantum numbers and ge, gg are the 
g-factors for the respective transitions between the excited state ​∣​3 _ 2​; ​m​ e​​⟩​ 
and ground state ​∣​1 _ 2​; ​m​ g​​⟩​. Thus, we directly determine the nuclear 
phase shifts φi from the interferometrically detected phase shift in 
the quantum beat , invoking only the magnetic quantum num-
bers and g-factors of the nuclear states. The relations for the four 
transitions are φ6,1 = ±0.86  and φ4,3 = ±0.14 . The determi-
nation of the carrier phase shift is of same simplicity as relating a 
temporal delay of a laser pulse to a path difference of a delay line. 
The determination of the quantum phase or temporal shift in each 
transition dipole moment is thus possible directly from the quan-
tum beat phase shift.

Flexible phase control is enabled by the excitation parameters of 
the quasi-particle. This includes the magnon’s driving frequency, its 
excitation strength, and duration tm, all set by the parameters of 
the RF burst. The magnon exhibits a typical Lorentzian response to 
the driving frequency around its resonance. Thus, both the excitation 
frequency and amplitude determine the reduction in the magnetic 
hyperfine field Bhf and the level splitting (13). The relative phase 
shift of the interacting transitions determines the phase shift of the 
quantum beat that is given via (see Materials and Methods)

	​   =  ​φ​ j​​ − ​φ​ i​​  =  (​g​ g​​ − ​g​ e​​ ) ​ ​​ N​​ ─ ​B​ hf​​
 ​ ​B​ hf​​ ​t​ m​​​	 (2)

which shows that the phase shift is controlled by the magnon exci-
tation power and its duration.

Quantum beat patterns with continuous excitation of the mag-
non at 1.98 GHz are shown in Fig. 4. The nuclei decay superradiant-
ly as can be seen from the accelerated decay shown in Fig. 4A. The 
speedup parameter  describes the increased exponential decay of 
the collectively excited nuclear state (see Materials and Methods). 
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Fig. 3. Quantum beat phase shift. (A) Schematic phase relation of dipole radia-
tion emitted from the nucleus at transitions 1 and 4 (same polarization) on the 
zeptosecond time scale. Their interference leads to a quantum beat over nano-
seconds [black in (C)] at the quantum beat frequency  = 4 − 1. (B) Phase relation 
at a later time when a relative zeptosecond phase shift φ is generated (magenta) 
compared with the undisturbed oscillation (gray and green). The red curve in (C) 
shows the quantum beat resulting from a zeptosecond phase shift φ generated 
by the magnon, which is applied over the nanosecond period indicated by the 
blue bar. The zeptosecond phase shift is visible as a temporal shift t in the quan-
tum beat on the nanosecond time scale.
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Fig. 4. Data for continuous magnon excitation. (A) Quantum beat pattern with-
out excitation (black) and excitation powers of 13, 19, and 23 dBm (blue), from 
bottom to top. Graphs are offset for clarity. The corresponding fits to the nuclear 
quantum beats are shown in red and result in hyperfine field reductions of −1.5, 
−2.3, and − 6.5 T, respectively. (B) Electrical RF transmission of the stripline showing 
the ferromagnetic resonance at 1.98 GHz at an external magnetic field of 5 mT, 
which is continuously excited during the measurements shown in (A). (C) Hyper-
fine field distribution in permalloy, as derived from the data without excitation. 
a.u., arbitrary units.
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Comparing the speed up of the superradiant nuclear decay  = 5.5 
with the decay of a single nucleus  = 0 shows that the ensemble of 
excited nuclei indeed form the nuclear exciton (33). The magnon 
excitation does not perturb the superradiant state, and thus, the 
magnon preserves the coherence of the nuclear exciton, which is an 
important prerequisite for coherent quantum phase control of col-
lective quantum states. The reduction in the magnetic hyperfine 
field induced by the magnon sets the energetic shift i of the nu-
clear transitions. From fits of the quantum beats, we determine the 
hyperfine field distribution centered on 27.9 T (Fig. 4C) and its re-
duction induced by the magnon, which is up to −6.5 T at an RF 
power of 23 dBm. For this field reduction, the energetic shift is up 
to a few tens of nanoelectron volts.

Figure  5 shows data obtained during transient magnon exci-
tation. Here, the RF pulse is applied before the x-ray pulse arrives, 
which ensures that the hyperfine field is already reduced when the 
nuclear exciton is created. The RF pulse is turned off 15 ns after the 
x-ray pulse, which defines the magnon duration tm. The compari-
son of the nonexcited quantum beat pattern with the one excited at 
22.3 dBm clearly shows a delay of the quantum beat by t = −3.52 

ns (dotted lines in Fig. 5, A and C). The delay is stable over time, 
while the quantum beat pattern is changed only during the 15 ns the 
magnon is excited, of which only 5 ns is experimentally detectable. 
The measured quantum beats for various excitation powers, and 
thus hyperfine field reductions, display a clear change of the phase 
shift with RF power. From the Fourier transforms of the quantum 
beat pattern (Fig. 5B), it is evident that the beat frequency  centered 
at 55.8 MHz does not change. The change of the quantum beat fre-
quency on the first 5 ns of the time window is too short to be detect-
able in the Fourier transform. The phase of the beat pattern, however, 
is shifted considerably with pumping power (see Fig. 5D) because 
the spin precession angle of the magnon and the associated reduc-
tion in the hyperfine field increase (13). The temporal and phase 
shifts of the quantum beat are plotted in Fig. 5E together with the 
hyperfine field reduction determined from Eq. 2. For comparison, 
the phase shift of the Fourier transform is also shown. The phase and 
zeptosecond temporal shifts of the single transitions are plotted in 
Fig. 5F. Because of the change of the Zeeman splitting by the mag-
non, the frequency of the transitions either increases or decreases. 
This defines the sign of each transition’s phase shift. The smallest 
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Fig. 5. Power dependence of pulsed magnon excitation. (A) Quantum beat pattern without excitation (black) and with a pulsed magnon excitation of 22.3 dBm for a 
duration of 15 ns (red). The blue bar indicates the ontime of the magnon. (C) Color plot of the quantum beat pattern in dependence of the magnon excitation power. 
(B) Amplitude and (D) phase of the Fourier transform of the quantum beat pattern shown in (C). (E) Measured temporal shift and phase shift of the quantum beat and the 
associated hyperfine field reduction. Red dots show the phase shift determined from the Fourier transform. (F) Phase shift and temporal shift of the single transitions, 
labeled as in Fig. 1, for the right circularly (red) and left circularly (black) polarized transitions.
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detectable shift is 1.3 zs. Taking the timing stability of our setup into 
account in the model (see Materials and Methods), we can calculate 
the timing stability of the temporal shift to below 50 ys.

To further verify our model, the dependence of the quantum 
beat on the magnon timing and duration is measured. At constant 
excitation power, the magnitude of the phase shift predicted by our 
model (Eq. 2) depends on the magnon duration only and is inde-
pendent of the moment the magnon is initiated. The dependence 
on the delay tp is shown in Fig. 6 (A and B). In Fig. 6A, the quan-
tum beats for three different delays of the magnon are shown. Here, 
the magnon is excited after the nuclear exciton. The phase shift of 
the quantum beat is constant regardless of the moment in time 
when the magnon alters the level splitting. Before the magnon is 
driven, the nuclei are in the same quantum state as seen from the 
quantum beat patterns that are all identical in the region of the un-
perturbed quantum beat before the pulse arrives. After magnon 
excitation, the nuclei show the same quantum beat pattern for all 
delays. This beat pattern is the same as for the undisturbed quan-
tum beat but incorporates the dynamic quantum phase shift. Thus, 
the nuclear exciton returns to its initial quantum state after the per-
turbation by the magnon but with the imprinted quantum phase. In 
addition, the coherence properties of the nuclear exciton are pre-
served for the transient magnon excitation. This must be the case 
because otherwise incoherent damping of the quantum beats with 
increasing time after excitation would have been observed (34). In 
Fig. 6B, the whole dependence on the magnon delay is shown and 
the linear dependence is clearly visible. In addition, for pulse delays 
less than −10 ns, the magnon does not influence the quantum beat 
as it is already damped out before the nuclear exciton is created.

In Fig. 6 (C and D), the phase dependence on the magnon duration 
tm is shown. Here, the magnon was applied before and during x-ray 
excitation. In this case, the level scheme with smaller Zeeman splitting 
is present. The nuclei pick up a positive phase shift when the magnon 
is turned off. For the longer magnon durations used, it is clear that the 
quantum beat frequency is reduced compared with the undisturbed 
one, best visible for the longest pulse lengths in Fig. 6 (C and D). It is 
observed that the induced phase shift due to magnon excitation in-
creases linearly with magnon duration. At magnon duration of 60 ns, 
a phase change of approximately −2 is visible in the data. Our analyt-
ical theory in the kinematical approximation predicts a phase change 
of −1.7. This is close to the phase change visible in the data but does 
not account for dynamical x-ray scattering effects. These effects dis-
turb the quantum beat at later times and are best visible between 60 
and 100 ns. The hyperfine field distribution does not play a role in the 
observed temporal shift (see Materials and Methods).

DISCUSSION
The experimental data are in perfect accordance with the model and 
demonstrate that the collective nuclear quantum state can be coher-
ently controlled with magnons. A high-energy resonance can be ma-
nipulated on an energy scale that is nine orders of magnitude smaller 
than its kiloelectron volt transition energy, i.e., with magnons of mi-
croelectron volt energy. The magnon is used to tune the nuclear-level 
scheme of the transition on its intrinsic lifetime. Thereby, the tran-
sient magnon allows one to shift the dynamic quantum phase of the 
nuclear dipole transitions and of the single -ray photon emitted 
by the nuclei. This control scheme shifts the quantum phase with 

A

B

C

D10 ns

Fig. 6. Timing dependence of pulsed magnon excitation at 22.3 dBm. (A and B) Quantum beat patterns in dependence of the RF pulse delay between a 10-ns tran-
sient magnon and the nuclear excitation. The lines in (A) indicate the induced temporal shift after magnon excitation. Graphs are offset for clarity. In (B), the dashed lines 
indicate the 10-ns magnon duration and its relative timing to the x-ray pulse at time zero. For positive delays, the magnon is excited after the nuclear exciton. (C and 
D) Quantum beat patterns in dependence of the pulse duration that excites the magnon. In (C), blue bars exemplarily indicate the ontime of the magnon. Graphs are 
offset for clarity. In (D), the magnon is already excited when the nuclear exciton is triggered. The dashed line indicates when the magnon excitation stops.
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zeptosecond precision and a timing stability of 50 ys. So far, the 
study and control of quantum phases and time delays have been lim-
ited to the attosecond time scale so that access to the zeptosecond 
changes were not possible. In our experiment, the quantum phase 
shift is resolvable down to 1 zs, corresponding to one natural unit of 
time ħ/(mec2) = 1.29 zs (35).

Because of the preservation of the coherence of the collective nu-
clear state, our approach can be used to establish efficient coherent 
control schemes, for example, to precisely time the emission of hard 
x-rays, to tune nuclear clock transitions (36), or to advance spectro-
scopic techniques (7). The transient magnon excitation is a sudden 
switch between two different level configurations where the quantum 
information of the states is stored in the phase shift of a single-photon 
state. More advanced schemes may be envisioned such as using double 
pulses or different envelopes to tune the carrier envelope of the phase. 
This carrier envelope phase tuning is important in nonlinear light-matter 
interactions (37) but was not possible at x-ray energies so far.

Although the phase control is demonstrated on a collective quan-
tum state, the quasi-particle control scheme could also be used to 
tune single quantum systems. Other quasi-particles of condensed 
matter, like phonons, plasmons in conductors, excitons in insulators 
or semiconductors, or Cooper pairs in superconductors, are possible 
testbeds for tuning specific interactions of the solid to the embedded 
quantum system. The actual energies of the quasi-particle and its 
excitation process by microwave, terahertz, or light pulses, should 
not be important for these schemes as long as the quasi-particle 
modifies the embedded quantum state during the quasi-particle’s 
excitation time and lifetime. In our case, the magnon excitation time 
is comparable to the lifetime of the nuclear state. However, other 
scenarios are possible with much different lifetimes depending on 
the interaction strength of both constituents. Moreover, because of 
their largely different energies, the magnon oscillation in this exper-
iment is not coherent to the nuclear dipole oscillation nor the x-ray 
pulse, although its excitation time is synchronized to the x-ray pulse. 
For quasi-particles and quantum systems that have similar energies, 
a coherent excitation among them is possible and might bring an 
additional control handle on the quantum system. In general, we 
have demonstrated that zeptosecond single-photon interferometry 
using electromagnetically induced excitations of quasi-particles is a 
promising tool for coherent dynamic control of atomic or nuclear 
quantum states in solid-state environments.

MATERIALS AND METHODS
Sample preparation
Samples are prepared by electron beam lithography, lift-off process-
ing, and sputter deposition. A 10-m-wide gold stripline is prepared 
on a GaAs wafer (13). On top of the stripline, a much wider trilayer 
(Ta 15 nm/Ni80

57Fe20 13 nm/Ta 3 nm) is deposited in which the iron 
is enriched to 95% in the isotope 57Fe. The trilayer is electrically in-
sulated from the gold stripline by a hydrogen silsesquioxane (HSQ) 
film that also flattens the surface of the stripline. All parts of the fer-
romagnetic film that do not overlap the stripline are covered with an 
additional gold layer, such that only the excited part of the ferromag-
netic film contributes to the nuclear reflectivity.

Nuclear resonant scattering
Nuclear resonant scattering has been performed at the Dynamics 
beamline P01 at the synchrotron radiation source PETRA III, DESY, 

Hamburg. The energy of the x-rays is tuned to the 14.4-keV reso-
nance of 57Fe. The nuclei’s number density is 1.8 × 1028 m−3 and such 
that a nuclear exciton is formed when the 14.4-keV nuclear resonance 
of the isotope is excited by an x-ray pulse from the synchrotron. Mea-
surements are performed in Faraday geometry, where the x-ray wave 
vector is parallel to the static in-plane magnetization of the film set by 
the external magnetic field. The x-rays are monochromatized by a 
high-heat load monochromator and a high-resolution monochroma-
tor to a bandwidth of about 1 meV. Two Kirkpatrick-Baez mirrors 
focus the x-rays down to a spot size of 10 m × 5.7 m (horizontal × 
vertical) on the stripline. Measurements are performed in grazing in-
cidence at the critical angle of the trilayer at 0.27°, resulting in a length 
of the x-ray footprint of 1.2 mm on the sample. The synchrotron was 
operated in 40 bunch mode with an x-ray repetition rate of 5.2 MHz. 
A time-gated avalanche photo diode (APD) counts the delayed single 
photons from the nuclear de-excitation in a time-resolved manner to 
measure the nuclear quantum beat. The measured intensity shown is 
the number of counts per time interval divided by the total counts per 
quantum beat pattern. The measurements start 10 ns after nuclear 
excitation due to the electronic downtime of the detector after the 
prompt pulse.

Magnon excitation
A vector network analyzer is used to measure the RF absorption 
and to detect the magnon resonance. It also serves as the source for 
the high-frequency continuous wave (CW) signal with a frequency 
f = 1.98 GHz to excite the magnon resonantly. The magnon reso-
nance frequency is tuned to the excitation frequency f via a static 
magnetic field Hext. The static magnetic field aligns the static mag-
netization along the stripline’s long axis, which coincides with the 
k-vector of the incoming x-rays. The dynamic magnetic Oersted 
field of the stripline is thus perpendicular to the static magnetiza-
tion and excites the ferromagnetic mode (k = 0) of magnons directly 
above the stripline. To perform timing experiments, a pulse gener-
ator with variable pulse duration and delay time tp is triggered by 
the bunch clock of the synchrotron at a frequency of 5.2 MHz. 
The CW signal and the pulses are multiplied in a mixer and subse-
quently amplified. Samples are contacted by RF probes. The stripline 
generates a magnetic Oersted field in the permalloy film with the 
same time structure as the electrical current (13). The resulting 
magnetic field burst is resonant to the ferromagnetic magnon in 
the permalloy film. The time delay tp between the x-ray pulse and 
the burst can be set freely within the x-ray bunch repetition period 
of the synchrotron of 192 ns.

Quantum phase shift
The transition dipole moment of a nucleus after excitation is

	​​ A(t ) = ​A​ 0​​ (t ) exp​(​​ − ​  t ─ 2 ​​ 0​​ ​ − iφ(t ) ​)​​​​	 (S1)

with the phase factor ​φ(t ) = ​∫0​ 
t
 ​​ ​​ ​​(t′) dt′​, where 0 = 4.66 neV is the 

natural linewidth of the resonance connected to the decay rate via 
0 = ħ/0 = 141 ns. For an undisturbed system, we find φ(t) = it, 
where i is the resonance frequency of the i-th transition within the 
sextet of the hyperfine-split nuclear resonance of 57Fe. The phase is 
tuned by a transient temporal change of i(t).

Our magnonic system is assumed to change slowly on the time 
scale of the nuclear dipole transition given by the nuclear period of 
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287 zs. In this case, the system is in an instantaneous eigenstate of 
the Hamiltonian at any point in time. Thus, the transition energy is 
always the eigenvalue of the momentary Hamiltonian

	​​ E​ i​​ + ​E​ i​​  =  ℏ(​​ i​​ + ​​ i​​ ) = ​E​ i​​ − (​m​ e​​ ​g​ e​​ − ​m​ g​​ ​g​ g​​ ) ​​ N​​ ​B​ hf​​(t)​	 (S2)

which gives the energetic shift of the i-th transition Ei = E0 − (mege − 
mggg)NBhf in time due to the magnetic hyperfine field reduction 
Bhf upon magnon excitation. The g-factors for the ground and ex-
cited nuclear states are gg = 0.18124 and ge = −0.102, respectively.

In the case of -polarized synchrotron radiation and no polariza-
tion analysis in the detection process, we obtain for the time-dependent 
(delayed) scattered intensity in reflection geometry (33)

	​ I(t ) ≈ (​∣​​ ~ f ​​ ​​∣​​ 
2
​ + ​∣​​ ~ f ​​ ​​∣​​ 

2
​ ) ​​​ 2​ ​e​​ −t/​​ 0​​​​	 (S3)

with the Fourier transform of the scattering matrix ​​ ~ f ​()​ describing 
nuclear scattering and the speedup parameter  accounting for the 
excitonic nuclear decay. In the Faraday geometry, the scattering matrix 
elements depend on the circular polarized nuclear resonant scatter-
ing functions F−1 and F+1 only, and the transitions 2 and 5 with 
m = 0 cannot be excited. The intensity is given by

	​​  
I(t ) ∼ (2 ​∣​​   F ​​ +1​​∣​​ 2​ + 2 ​∣​​   F ​​ −1​​∣​​ 2​ ) ​​​ 2​ ​e​​ −​ t _ ​​ 0​​​​

​    
​∼ ​(​​ ​ 10 ─ 3 ​ + cos(​φ​ 4​​(t ) − ​φ​ 1​​(t ) ) + cos(​φ​ 6​​(t ) − ​φ​ 3​​(t ) ) ​)​​ ​​​ 2​ ​e​​ −(1+)​ t _ ​​ 0​​​​​

​​	

(S4)

with the phase factors of the specific transition φi. The energy differ-
ence of the two lines belonging to the right-circular (m = −1) and 
left-circular (m = 1) transitions defines the quantum beat frequen-
cy . Without the phase shift, we find φ4(t) − φ1(t) = φ6(t) − φ3(t) = 
(4 − 1)t = t. This means that only one beat frequency is present.

The duration of the magnon excitation is modeled by a Boxcar 
function ∏ts, tm(t) = (t − ts) − (t − ts − tm), where ts is the start 
time of the magnon and tm is its duration. After magnon exci-
tation, t > ts + tm, the phase is φi(t) = it + φi with the phase shift 
φi = itm. The associated temporal shift in the transition dipole 
moment is

	​ ​t​ i​​  = ​  ​φ​ i​​ ─ ​​ i​​  ​  = ​  ​​ i​​ ─ ​​ i​​  ​ ​t​ m​​​	 (S5)

From this model, we find for the relative phases of Eq. S4 after 
magnon excitation

	​ cos(​φ​ 4​​(t ) − ​φ​ 1​​(t ) ) + cos(​φ​ 6​​(t ) − ​φ​ 3​​(t ) ) = 2cos(t + )​	 (S6)

where the measured quantum beat phase shift is given by the rela-
tive phase shift of the transitions = φ4 − φ1 = φ6 − φ3. Then, 
the measured intensity of the quantum beat is

	​​ I(t ) ∼ ​(​​ ​ 5 ─ 3 ​ + cos(t +  ) ​)​​ ​​​ 2​ ​e​​ −(1+)​ t _ ​​ 0​​​​​​	 (S7)

For the determination of the phase shift  in the quantum beat 
and the corresponding delay t, we use Eqs. S2 and S6 as well as 
the undisturbed beat frequency  to obtain Eq. 2 and

	​ ​t​ ​​  = ​   ─ 


 ​  = ​  
​g​ g​​ − ​g​ e​​ ─ ℏ  ​ ​​ N​​ ​B​ hf​​ ​t​ m​​ =  ​ ​B​ hf​​ ─ ​B​ hf​​

  ​ ​t​ m​​​	 (S8)

As the phase shifts depend on the duration of the magnon tm as 
φi = itm and  = tm, the phase shifts found in Eq. 2 have 
the same ratio as the energetic shifts of the quantum beat and the 
individual transitions, leading to ℏ = ℏ(j − j). With Eqs. 2 
and S2, we find ​(​g​ e​​ − ​g​ g​​ ) = (​m​e​ 

j ​ ​g​ e​​ − ​m​g​ j ​ ​g​ g​​ ) − (​m​e​ 
i ​ ​g​ e​​ − ​m​g​ i ​ ​g​ g​​)​, which 

leads to elementary Eq. 1.

Timing stability of the phase shift
An important quantity is the stability of the induced phase and tem-
poral shift. The phase and temporal resolution of the experiment is 
given by the time resolution of the quantum beat, which is limited 
by the APD to about 0.5 ns. The smallest detectable temporal shift 
in each transition is on the order of a zeptosecond. The temporal 
stability, however, is much better. Small uncertainties of material 
parameters, like the dynamic magnetic susceptibility and g-factors 
and so on, do not enter the timing stability as these values are con-
stants. The temporal stability is given by the errors in the magnon 
excitation only. This incorporates the excitation power and the du-
ration distribution of the frequency burst that is applied.

The RF generator has a very precise power output of ~0.05 dB 
(~0.01%) and frequency output precision of ±2 parts per million 
(ppm). The power error can be neglected compared with the pre-
cision of the pulse generator whose signal is mixed with CW from 
the RF generator. The magnon resonance width is 300 MHz, and 
the ppm error on the 2-GHz excitation frequency of the RF gener-
ator can be neglected.

The main errors come from the voltage pulse that is mixed with 
the CW signal to generate the frequency burst. It has a voltage level 
accuracy of ~1.5% and a timing precision of ~2%. Note that these 
values as given by the data sheet do not give the stability itself but the 
reproducibility when changing the setup. Although the stability is ex-
pected to be better, we take these values as the upper error boundary 
for the timing stability.

The temporal shift is given by

	​ ∆​t​ i​​  = ​  ∆​​ i​​ ─ ​​ i​​  ​ ∆​t​ m​​ = −  ​ 
​m​ e​​ ​g​ e​​ − ​m​ g​​ ​g​ g​​

 ─ ​E​ i​​
  ​ ​​ N​​ ∆​B​ hf​​ ∆​t​ m​​​	 (S9)

The magnetic field reduction ∆Bhf depends on the opening angle 
of the magnetization precession angle ϑ as

	​ ∆ ​B​ hf​​ = ​B​ hf​​(cos(ϑ) − 1)​	 (S10)

In a thin film, magnetization dynamics is highly elliptical, and in 
our thin film geometry, the dynamic out-of-plane magnetization 
component is about a factor of 13 smaller than the in-plane compo-
nent ϑ. The factor  = 0.538 accounts for this ellipticity of the mag-
netization precession (13), and the average precession angle is ϑ. 
In total, we arrive at

	​ ∆​t​ i​​  =  −  ​ 
​m​ e​​ ​g​ e​​ − ​m​ g​​ ​g​ g​​

 ─ ​E​ i​​
  ​ ​​ N​​ ​B​ hf​​(cos(ϑ) − 1) ∆​t​ m​​​	 (S11)

In the linear regime of the magnon excitation, which is just 
about satisfied for the small excitation powers where the smallest 
shifts are detected, the magnon opening angle is proportional to the 
magnetic excitation field, which is proportional to the applied volt-
age. Despite the ellipticity and actual precession angles, the effective 
model on how the magnetization precession cone affects the hyperfine 
field is almost linear in this regime (13). Therefore, the inaccuracy 
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of the in-plane precession angle ϑ is to first-order proportional to 
the one of the voltage pulse. Using propagation of uncertainties, we 
obtain for the uncertainty ti of the temporal shift ∆ti

	 ​​t​ i​​  =  ​√ 

_________________________________________________________________

       ​​
(

​​ − ​ 
​m​ e​​ ​g​ e​​ − ​m​ g​​ ​g​ g​​

 ─ 
​E​ i​​

 ​ ​ ​ N​​ ​B​ hf​​(cos(ϑ ) − 1) ​t​ m​​​
)

​​​​ 
2

​ + ​​
(

​​ ​ 
​m​ e​​ ​g​ e​​ − ​m​ g​​ ​g​ g​​

 ─ 
​E​ i​​

 ​ ​ ​ N​​ ​B​ hf​​ sin(ϑ) ∆​t​ m​​ ϑ​
)

​​​​ 
2

​ ​ ​	

(S12)
With the values from the experiment of Bhf = 28 T, ∆tm = 15 ns, 

ϑ = 0.498 rad (a = 14.3°, as calculated from Eq. S10 for the smallest 
detectable phase shift of 1.3 zs), and the appropriate errors tm,  
given above, one arrives at the smallest timing uncertainty for tran-
sitions 3 and 4 of t3,4 = 47 ys. Note that this value is an upper 
boundary, and the real timing uncertainty is expected to be smaller. 
With even more precise pulse generators, this value can be further 
reduced.

Hyperfine field distribution
In permalloy, the hyperfine field distribution ranges from 26 to 
31 T with a peak at about 28 T. The accelerated decay of the nuclear 
exciton cannot be explained by the width of the hyperfine field dis-
tribution, which contributes only marginally to the decay rate. The 
quantum phase shift will be different for various hyperfine field val-
ues due to different reductions Bhf for each hyperfine field value. 
Thus, the transition dipole oscillation frequencies will also differ. 
However, this does not influence the temporal shift measured in the 
quantum beat. From the model of the hyperfine field reduction by 
the magnon (13), we conclude that the influence of the magnon is a 
relative reduction in the hyperfine field that scales with the preces-
sion angle of the magnetization, which is uniform over the sample. 
The ratio Bhf/Bhf in Eq. S8 leads to a temporal shift that is the same 
for every hyperfine field. Thus, the hyperfine field distribution does 
not influence the time delay. The different beat frequencies encoun-
tered for the various hyperfine field values normalize the different 
phase shifts to the same temporal shift in the quantum beat. This is 
the reason why no blurring effects are observed due to the hyperfine 
field distribution in the phase-shifted quantum beats.
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