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The dc voltage output from a hysteretic Josephson junction which is locked to an ac frequency 
source differs from the ideal Josephson relation if the junction drives a current about a closed 
superc.onducting circuit. The difference in voltage A V from two hysteretic Josephson junctions 
driven in series opposition is proportional to the difference in their driving frequencies Acr, if the 
junctions are each biased to the nth voltage step. It is shown here, however, that AI’ is 
systematically smaller than the voltage difference AV, predicted by the ideal junction relation 
AIt= (&/2e)Ati. If the loop inductance approaches zero, the smallest detectable voltage 
difference A& between two junctions is limited by the intrinsic Josephson inductance. For 
arrays of more than one junction, however, AV, remains proportionai to the loop inductance. 

I. INTRODUCTlON 

Josephson junctions are extremely accurate frequency 
to voltage converters. Since 1972 the ac Josephson effect 
has been used as the method for voltage calibration and 
standardization.’ In 1990, the Josephson junction array 
voltsge standard became the basis for the internationally 
accepted standard volt. The array voltage standard consists 
of between 2076 and 18992 hysteretic Josephson junctions 
in series. 2-6 Each is bathed by the same microwave source. 
When the standard is operating at a constant dc voltage, 
each junction is locked to the microwave frequency at a 
zero-current crossing. 

There has been experimental interest lately in investi- 
gating the accuracy with which the conversion from fre- 
quency to voltage occurs in these devices. In an experiment 
by Kautz and Ll0y4~ two arrays were placed in series 
opposition and biased by the same frequency source, so 
that any discrepancies in frequency or voltage between the 
arrays would produce a dc current which may be det.ected 
in a low-inductance loop. They showed that two arrays, 
each with 3020 junctions, differed in voltage by no more 
than 2 parts in 10i7. Jain et aZ.8 have used two junctions in 
series opposition but at different heights in order to con- 
tirm the absence of the gravitational red shift, and hence 
verified the equivalence principle between photons and 
Cooper-paired electrons. They found a measurement accu- 
racy of 3 parts in 10’“. Such interjunction comparisons 
show the Josephson voltsge standard to be a reliable device 
for detecting very small differences in frequency. In this 
letter we show that while small frequency ditferences may 
be detected in this manner t.o exceptional precision, they 
may not be accurately measured for hysteretic. junctions 
operating near zero-current bias. We show that there is a 
sgsternatic deviation from the ideal Josephson relation for 
hysteretic junctions as a consequence of the current in t.he 
superconducting measurement circuit. We shall quantify 
this deviation for parameters within the standard operating 

regime for Josephson junctions in the Josephson series- 
array voltage standard. 

II. MODEL EXAMPLE 

- If a hysteretic Josephson junction with capacitance C is 
placed in a closed loop with inductance L, it acts as a 
pump, converting microwave energy into a dc current. In 
creating the current, the pump is clearly loaded, for work 
must be performed in building the accompanying magnetic 
field within the superconducting loop. The nature of this 
loading may be understood within the dynamics of the 
standard mechanical model in which the superconducting 
phase difference 4 across the junction is analogous to the 
rotation angle of a physical pendulum. A junction which is 
phase locked to a constant voltage step is analogous to a 
driven pendulum which is locked to a fully rotating cycle. 
A closed superconducting circuit may be identified with a 
torsional spring which prevents the pendulum from rotat- 
ing freely.g If the torsional spring is weak, the pendulum 
will remain effectively locked in a rotating state for many 
cycles. For a stable phase lock in the absence of noise, 
collapse from the rotating cycle will not occur until the 
potential energy stored in the torsional spring is roughly 
equivalent to the kinetic energy of rotation, or until the 
restoring torque of the torsional spring exceeds the maxi- 
mum gravitational torque. The electrical analogy is as fol- 
lows: A Josephson junction which is initially biased to the 
rtth voltage step V= (raW2e)w will remain locked until 
either (i) the potential energy stored in the magnetic field 
( 1/2L ) ( %#42e ) ’ is of the same order as the average energy 
stored in the junction capacitor $(?$~/2e)~, or (ii) the 
current in the circuit exceeds the maximum current for the 
nth step. Here fi is PLanck’s constant divided by 27-r, and 2e 
is the charge of a Cooper pair. In this paper we have ex- 
amined the system before the collapse of the rotating cycle. 
We find that before the rotational collapse, the junction 
appears to be locked to the driving frequency. However, its 
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FIG. 1. The Stewart-McCumber model for two hysteretic Josephson 
junctions in series with an inductor L. The junctions, numbered 1 and 2, 
are subjected to microwave drives 1,(t) and la(t), respectively. Each 
junction has an associated shunt resistance R and capacitance C. 

phase evolves at a slightly lower frequency, and thus it 
delivers an effectively lower voltage. To illustrate this 
point, we consider the case of two identical Josephson 
junctions biased to the same voltage step by slightly differ- 
ent frequency sources. The junctions are placed in series 
opposition in a closed superconducting loop with induc- 
tance L. Within the Stewart-McCumber model,” the junc- 
tions may be modeled by the circuit shown in Fig. 1. The 
phase differences across junction # 1 and junction #2, $t 
and &, respectively, obey the following coupled equations 
of motion for zero current biases: 

2e 
=&yg, cos(qt+61), 

i-l *t(2) --- 
l(2)- w -1. 

We notice in (3) and (4) that the two junctions are cou- 
pled together by a harmonic force which depends on the 
sum of the phases. If both junctions are driven at the same 
frequency in opposite “directions”, the coupling term 
oi(qb, -d2) is zero on average, and is insignificant for typ- 
ical values of ai. However, as we will see below, the effect 
of the coupling may not be neglected when t.he driving 
frequencies are different. &cause we are interested in 
studying the effect of the coupling for small frequency dif- 
ferences, in what follows we will treat the coupling through 
0: perturbatively. 

We begin by treating the zeroth-order (uncoupled) 
system. When ~6 is zero, the junctions are independent, 
and the evolution of the phase 4 for either junction # 1 or 
#2 is determined by the interplay of the frequencies of the 
periodic driving term and the periodic potential A cos(r#~). 
Locking occurs such that on the average, 4tcr, = 
+ ( - )nS2,(,,, where IZ is an integer (or interger fraction, 
but we shall be unconcerned with these cases). When the 
frequencies R, and Rz are slightly diKerent, the difference 
of the phases grows linearly with time such that on the 
average $~t--~~=n(SZi---fl~)t. In the zeroth-order approx- 
imation, one would expect to observe a linearly increasing 
dc current of magnitude 

&+&j~2+-$(92--ch) +$$0 sin(kJ 

(1) where 

The junction shunt resistance is R, the junction critical 
current is 1e, and the driving amplitude for junctions # 1 
and #2 is 1, and IZ, respectively. For simplicity in what 
follows we will take I, and I2 to be equal, and we take the 
phases St and S2 to be zero. Typical junction parameters 
are as follows: R= 10 a, C=20 pF, IO=200 PA., w/2~-==96 
GHz, and It = 20 mA.5 A typical measurement-loop induc- 
tance L is 2 ,uH.~ If we rescale time in multiples of the 
driving period, Eqs. ( 1) and (2) take on the dimensionless 
form: 

However, we note that for nonzero o$ the potential energy 
is no longer purely sinusoidal; the periodic force becomes 
“tilted’” by the harmonic restoring force. To study the ef- 
fect of this tilting to tirst order in w$ we assume solutions 
to (3) and (4) of the form 

&Cd =&) S-q(~), (7) 

42(t) =&o +x2(0, (8) 

where $yc2) (t) is the steady-state zeroth-order locked so- 
lution, and xtc2) (t) is the deviation caused by the coupling 
0;. The junctions are operating in the regime in which 
Mn”4i. In such a case, the evolution of the phase in 
zeroth-order is approximately 

~t+74~-t-d&~t---~2) +A sin(h) +B cos(fht), (3) 

$2+l/qj2-t-w~(&--&) +A sin(h) =B cos(02t), (4) 
where 

y2-& 10-2, &2-- 10-7, 
* LCo2-- 

2e 2e 
A’tiCi3’0 I =I()-‘, B=----- fic.#1(2) = 1% 

and 

&r)=na$-: cos(ag) -/-t),(O), +Q? 

#$(t) ==nR,r--$ cos(ti& +42(O), (10) 

where (p*(O) and $,(O) are initial phases. In writing (9) 
and ( lo), we have also neglected terms of order y/,l/‘n. The 
zeroth-order solutions require that at steady-state the 
damping force be counteracted by the driving force reso- 
nance such that 
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y&1=AJ,(R@)sin =+c$ (0) 
(2 ,l 

1.0 
(119 

~~~~~,=AJ,(B/~h~jsin 
(2 2 I* 

0.8 
~E+c/- (0) (121 

-zj[A&) 
where J,(x) is the ordinary Bessel function of the first kind 
of order it.” On substituting (7) and (8) with (9) and 
( 109 into (3) and (49, and expanding to linear order in .x1 
and x9, we obtain coupled equations for x1 and x2: 

2&il+c& -j-i4 cos[&tj]x, 

=&--W~[~:(t)-&tj ] -Af,(t), (13) 

q-- Ok3 

0.4 

0.2 
0.00 0.02 0.04 0.06 0.08 0.10 

2 
wo 

(14) 
FIG. 2. The fractional voltage deviation 6( A &)/A V, as a function of the 
LC frequency a$, for two opposing junctions connected by a supercon- 

In Eys. (13) and (149, fri2)(t) is the oscillating part of 
ducting loop with inductance 15. The data were obtained from a computer 
simulation of the circuit in Fig. 1, and the smooth curve is the prediction 

sin]#rizl(t)]. In solving (13) and (14) to lowest order in of expression (18). The junction parameters were selected as follows: 

MR’, it is sufficient to replace the parametric term n= 1, R,=l, SIs=O.9995, A=O.i, 8=0.3, and y=O.Ol. We observe that 

A ~os[#~(t)] by its time average: 
the deviation from the idea1 voltage difference increases as the loop in- 
ductance L decreases. 

(A cos[~“(t)])=AJ~,(B/R”)cos Z+9(0) (2 ) 
=f #J;(B/@)-$&$. (15) 

In this approximation, Eqs. ( 13) and ( 14) describe two 
coupled oscillators which are displaced on the average by a 
force with linearly increasing magnitude CL$ 
‘x’ IZ (CL? - $2 t ) t. Consequently the time averages of .ic, and 
J& are nonvanishing. This is important, for it indicates that 
the dc voltage difference between the two junctions will 
show deviations from the ideal voltage difference AP,. We 
obtain t.he deviation in the dc voltage difference, S (A V,), 
after solving ( 13) and ( 14) for the average of the differ- 
ence of the velocities L1 -.k,. We find that 

SAj70) = -AVoxcoo (etil,di) , (16) 

ference approaches zero with the loop inductance. We have 
performed numerical simulations of Eqs. (3) and (4) in 
order to demonstrate the applicability of the perturbative 
solution. As shown in Fig. 2, the numerical results coincide 
with the predictions of Eq. ( 18). 

The same analysis may also be applied to a circuit 
containing two opposing multiple-junction array voltage 
standards. The calculation of the deviation from the ideal 
voltage difference is straightforward, even if the individual 
junctions within the array are nonidentical and biased to 
different voltage steps. It is most illustrative, however, to 
consider a simplification in which (i) the two arrays are 
identical, (ii) there are N identical junctions in each array, 
and (iii) each junction is biased to the nth voltage step (in 
t.he same direction). In this case, the analogue of ( 189 is 

where 
3 2 2 &)=o+ \A”J;;(B/f$,,,) -“iZlz”Q,~2,. 

2co; 

(179 
s(AV,)=-AP’e 

2&N+ JA2J;(B)+t2 
(209 

We choose the posit.ive sign to assure a stable phase lock 
for small 0:. When the difference in frequencies ap- 
proaches zero, ( 16) may be simplified, with the result that 

S(AP<,) = -A 

Equation ( 1 S 9 is the central result of this paper. It is valid 
provided that time is short enough so that ]xlC2) ] < 1, 
which implies that t is less than the time for the current to 
exceed its maximum for the nth voltage step: 

+i 
3 

t< --x 
20&j- &z@TjqG 

@IWlI 2w; (19) 

We see from (139 that the difference in voltage is sup- 
pressed from its ideal value A&. For smaller loop induc- 
tance the suppression increases; the measured voltage dif- 

provided that 

+i 
f<N------ 

el AVol x 

2mi$+ &AJ;(B~+~~ 

2w; 

In (209, the voltage difference AVO= (&?‘2e)Nn(w,-w2). 
We see that as the loop inductance approaches zero the 
percentage of deviation from the ideal voltage difference is 
no longer as large as it was in the case of only two junc- 
tions. While the maximum deviation in the voltage is still 
equal to the voltage difference between two junc.tions, this 
is only l/N times the total voltage difference between the 
two arrays. The N junctions share the burden of building 
the magnetic field associated with the current loop. Each 
junction is affected less, and there is therefore a propor- 
tionally smaller voltage deviation. 
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111. DISCUSSION: EFFECT ON THE MEASURED tic For L less than LiJN the voltage deviation is greatest, and 
CURRENT we observe that 

We have seen that the actual voltage difference will be 
suppressed from the ideal voltage difference in a junction 
intercomparison. This implies also that the average current 
in the loop will be less than ideal. In fact, for two junctions 
driven by slightly different frequencies, the buildup of dc 
current in the measurement loop is given by 

,/ti’J;:(B) -r”n” 

2&+ $&J;(B) -+I.~ 
C22) 

We note that as a function of the inductance, expression 
(22) has two limits. When the inductance is large, so that 
w&$4, we recover expression (5); the dc current induced 
in the measuring loop is inversely proportional to the loop 
inductance L. On the other hand, when the inductance is 
small enough that w&A, the voltage difference AV is pro- 
portional to the loop inductance L, and in the limit in 
which L approaches zero, the current is independent of L 

r=$Ari,tx ~J;‘B’(~)‘&. (23) 

We observe in (23) that the dc current is limited by an 
effective inductance L,: 

Li==2LJX [ $iiqgg] --t (24) 

where L, is the Josephson inductance (W2eI,) - 10 pH. A 
typical dc superconducting quantum interference device 
(SQUID) creates a current noise figure AI - i,/ ,/&, 
which is lo-l3 A/ &. If the bandwidth is approximately 
the reciprocal of the observation time t, then the signal will 
rise above the noise when t is long enough such that 

(25) 

However, t cannot be longer than the time for phase un- 
locking, which is set by (19) in the limit of zero induc- 
tance. C.onsequently, for a given observation time, the de- 
tectable voltage difference is bounded above and below by 
the two limits expressed in (19) and (25), respectively. 
For example, for an observation time of 10 min, a voltage 
difference A V0 between lo-” and lo-‘* V can be detected 
(the lower bound of lo-“” V is pedantic because quantum 
fluctuations limit the sensitivity below about lo-‘* V). 
Such limitations on the accuracy for finite observation 
times are well known. However, the analysis here shows 
that when the Josephson inductance is much greater than 
the loop inductance, the limits are practically independent 
of loop inductance. 

Let us consider now the dc current in the case of two 
arrays with N identical junctions, all identically biased, 
such that the deviation from the ideal voltage is given by 
(20). The loop current will go as 

AVo 
i=L 

2(-N-- 1)&t- JA’Jf$B) -y%z2 

2~&+ /A~J;(B) -# ‘* 
(26) 

A F/,t 
%[N/(N- 1) ]’ (27) 

In this limit the current depends on the loop inductance 
but. not on the Josephson inductance. Within this model, 
therefore, we have shown that it is advantageous to use an 
array of Josephson junctions for the detection of small fre- 
quency and voltage differences; the inductance may be 
made arbitrarily small to improve the detection of small 
voltage differences. In contrast, for only two junctions 
there is practically no improvement in the signal for a loop 
inductance much less than LJ. 

As we have already mentioned, two junctions con- 
nected in series will remain locked until the potential en- 
ergy stored in the loop inductance &[fi(&-&)/2e]’ is of 
the same order as the average energy stored in each junc- 
tion capacitor $C(.fi1$,~~~./2e)~ or until the current in the 
circuit exceeds the maximum current for the nth step, 
whichever occurs first. For L= 1 nH and AP>= lo-*e V, 
the time for energies to match is about 10” s, while the time 
to reach the critical current is ten times larger. The same is 
true for two opposing arrays of N junctions. These times 
are several orders of magnitude longer than typical mea- 
surement times, so it is not likely that systematic phase 
unlocking will occur for these parameters. On the other 
hand, we have neglected the effect of random fluctuations 
in this model, as well as the systematic oscillations of the 
drive terms in ( 13) and ( 14). As the loop inductance is 
made smaller, the effects of these ac sources may be en- 
hanced and lead to phase unlocking. We address here the 
affect of the driving oscillations; the characterization of the 
coupled system in the presence of noise will be studied in a 
forthcoming article. For (9) and ( 10) we have assumed 
phases such that the oscillating terms will cancel at t=O. 
They become important after t on the order of #ii/ 
2eAVe-105 s for AV, of lo-“’ V. In actual junction op- 
eration however, the oscillations need not cancel, in which 
case they may completely inhibit phase locking when the 
loop inductance is small. In order that this not be the case, 
the response to the drive in (13) and (14) must be less 
than 1; 

c&l/I l-2&- \]A*J;(B)-y%z”/ 5 1. (28) 

For B= 10 and A=O.l thii implies that. L > 60 pH, which 
is still greater than Li for these junction parameters. Only 
for B < 2 can the loop inductance be made arbitrarily small 
without immediately causing instabilities. 

In summary, we have quantified the effects of a closed 
current loop on the operation of hysteretic Josephson junc- 
tions at zero current bias. We have analyzed a particular 
situation in which two junctions are placed in series and 
driven in opposition by slightly different frequencies. We 
have shown that the difference in their voltages is smaller 
than that predicted by the ideal Josephson relation for iso- 
lated junctions. The deviation from ideal behavior is im- 
portant in estimating the minimum voltage difference 
which can be detected in a finite observation t.ime. In the 
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absence of noise, we find that the smallest detectable volt- 
age difference between two single hysteretic junctions is 
limited by the intrinsic Josephson inductance. For multiple 
junction arrays, however, the smallest detectable voltage is 
IimitLd by the inductance in the measurement loop. 
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