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Coherent X-ray−optical control of nuclear 
excitons
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Dominik Lentrodt1, Johann Haber2, Hans-Christian Wille2, Stephan Goerttler1, Rudolf Rüffer3, 
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Coherent control of quantum dynamics is key to a multitude of fundamental studies 
and applications1. In the visible or longer-wavelength domains, near-resonant light 
fields have become the primary tool with which to control electron dynamics2. Recently, 
coherent control in the extreme-ultraviolet range was demonstrated3, with a 
few-attosecond temporal resolution of the phase control. At hard-X-ray energies (above 
5–10 kiloelectronvolts), Mössbauer nuclei feature narrow nuclear resonances due to 
their recoilless absorption and emission of light, and spectroscopy of these resonances 
is widely used to study the magnetic, structural and dynamical properties of matter4,5. It 
has been shown that the power and scope of Mössbauer spectroscopy can be greatly 
improved using various control techniques6–16. However, coherent control of atomic 
nuclei using suitably shaped near-resonant X-ray fields remains an open challenge. Here 
we demonstrate such control, and use the tunable phase between two X-ray pulses to 
switch the nuclear exciton dynamics between coherent enhanced excitation and 
coherent enhanced emission. We present a method of shaping single pulses delivered 
by state-of-the-art X-ray facilities into tunable double pulses, and demonstrate a 
temporal stability of the phase control on the few-zeptosecond timescale. Our results 
unlock coherent optical control for nuclei, and pave the way for nuclear Ramsey 
spectroscopy17 and spin-echo-like techniques, which should not only advance nuclear 
quantum optics18, but also help to realize X-ray clocks and frequency standards19. In the 
long term, we envision time-resolved studies of nuclear out-of-equilibrium dynamics, 
which is a long-standing challenge in Mössbauer science20.

Coherent control refers to the control of quantum dynamics by light, 
based on coherence and interference phenomena1,2. In this process, we 
need to be able to shape light pulses, to precisely control their relative 
phases and to detect the induced dynamics. It has previously been 
demonstrated that incoherent light or conversion electrons enable us 
to study the excitation dynamics of nuclei, for example, to reveal polari-
ton propagation21 or radiation trapping22. These works are concerned 
with the nuclear excitation dynamics, but did not consider the control 
thereof or the phases characterizing the nuclear quantum state. Fast 
control of nuclear dynamics was demonstrated, for example, using 
sudden rotations of a static external magnetic field6, which allows for 
selected control operations in sample materials with fast magnetic 
switching capabilities. Another line of research involves rapid mechani-
cal motions of one or more resonant absorbers to control the interfer-
ence between different scattering pathways. This approach has been 
used to study polariton dynamics23, and in particular also to favourably 
shape X-ray pulses in the temporal7–9,24 or spectral domain10. The latter 
works established the possibility of exploiting this shaped X-ray light 
as a tool. Although such pulse-shaping techniques are reminiscent of 
their counterparts in coherent control schemes at lower wavelengths, 

the application of the shaped X-ray pulses for the coherent control 
of nuclear quantum dynamics and their phase stability are yet to be 
demonstrated.

Here, we demonstrate the coherent control of the dynamics of 
Mössbauer nuclei using X-ray light. To achieve this goal, we shape 
double-pulse sequences from given incident X-ray pulses with a tunable 
relative phase using the mechanical motion of a resonant absorber (see 
Fig. 1). In the main part of the experiment, we use the first (excitation) 
pulse of such sequences to induce a nuclear exciton in the target; that 
is, a single excitation coherently distributed over a large ensemble of 
nuclei. Controlling the relative phase of the second (control) pulse then 
enables us to switch the subsequent target dynamics between coherent 
enhanced excitation and coherent enhanced emission of the nuclear 
exciton. Using an event-based time- and energy-resolved detection 
scheme that provides access to full holographic information of the out-
going light, we experimentally access the time-dependent magnitude 
and phase of the spatially averaged transition dipole moment induced 
in the target, and demonstrate the few-zeptosecond temporal stabil-
ity of our phase-control scheme. We note that the coherent enhanced 
emission, reminiscent of stimulated emission, is possible here because 
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of the coherent nature of the exciton, which enhances the coupling to 
the controlling light, whereas the observation of stimulated emission 
of incoherently excited nuclear states remains challenging even at 
present-day X-ray sources.

The double pulses are generated using a split-and-control unit (SCU, 
see Fig. 1), which delays part of the incident X-ray pulse using a reso-
nant absorber. The non-delayed fraction forms the leading excitation 
pulse Eexc(t). The second control pulse Econtrol(t) consists of the delayed 
part. While the overall phase of the double pulses inherits the random 
fluctuations of the incident X-rays, the relative phase between the two 
pulses is stable. The double pulse can be tuned using the mechanical 
motion x(t) of the SCU absorber immediately after the X-ray excita-
tion, imposing an additional translational phase exp[ikx(t)] onto the 
control pulse, where k is the X-ray wavenumber. Sudden displacements, 
linear motion and nonlinear motions of the SCU translate into phase 
shifts, detunings and chirps of the control pulse relative to the excita-
tion pulse, respectively. Since the control pulse is spectrally narrow 
owing to the slow temporal decay of the SCU’s resonant absorber, we 
can selectively choose the nuclear transitions to be addressed and 
controlled in the target. Overall, the synchrotron and SCU together 
thus form a tunable source for phase-controlled X-ray double pulses.

We experimentally realized the coherent control of nuclear dynamics 
via tunable X-ray double-pulses at the Nuclear Resonance Beamline ID18 
at the European Synchrotron Radiation Facility (ESRF) (in Grenoble)25, 
see Fig. 1. The nuclear target was formed by a stainless-steel foil with 
thickness 1 μm, enriched in the Mössbauer isotope 57Fe to 95%, which 
features a nuclear magnetic-dipole transition at energy 14.4 keV with 
a resonance width of ħγ = 4.7 neV and a lifetime of 1/γ = 141 ns. As the 
delay stage in the SCU, we used an α-iron foil with thickness 2 μm, also 
enriched in 57Fe. A weak external magnet was used to align its internal 
hyperfine field, such that only the two Δm = 0 transitions with frequency 
splitting of S ≈ 63γ were driven; see Fig. 1b. From these two transitions, 
the SCU generates a bichromatic control pulse. In addition to the SCU 
movement, we used Doppler shifts to scan the relative detuning δ of 
the resonance frequencies of the target nuclei and the SCU absorber. 
The characterizations of the samples and the experimentally realized 

double-pulse sequences and SCU motions are described in the Methods 
sections ‘Samples’ and ‘Reconstruction of the SCU motion and field’.

To demonstrate the coherent control of the target nuclei, we  
compared two different double-pulse sequences. In both cases, the 
short excitation pulse drives the nuclear ensemble into an excitonic 
state at t = 0 (ref. 26). In the first sequence, the relative phase of the con-
trol and the excitation pulses coincide, such that a coherent enhanced 
excitation of the nuclei due to the control pulse is expected. In the 
second sequence, the control pulse and excitation pulse have opposite 
phases, and the control pulse is expected to drive the exciton back to 
the ground state, corresponding to the coherent enhanced emission 
of the excitonic state.

The radiation emitted in the forward direction by the target nuclei 
provides a direct experimental signature of the induced dynamics, 
because its amplitude is proportional to the spatial average over the 
nuclear magnetic transition dipole response d t δ⟨ (̂ , )⟩. This amplitude 
interferes with the field of the driving double pulse, resulting in a  
total intensity of I t δ E t E t α d t δ( , ) = | ( ) + ( ) + ⟨ (̂ , )⟩|total exc control

2, where α is 
a constant. Recording this intensity as a function of time and relative 
detuning δ allows us to exploit the interference to experimentally access 
the complex spatially averaged nuclear transition dipole moment as 
an observable (see Methods section ‘Target response’).

The recorded time- and energy-resolved intensity spectra for the 
two double-pulse sequences are shown in Fig. 2a, b. As a first result, 
we find that the two pulse sequences lead to substantially different 
spectra, which is most visible at the two SCU absorber resonances 
around δ = 0γ, −63γ. A model-independent fit to the two-dimensional 
spectra allows us to determine the precise motion of the SCU10, and 
thereby the time-dependent field amplitude of the generated double 
pulses (see Methods section ‘Reconstruction of the SCU motion and 
field’), setting the stage for the coherent control of the target nuclei.

To realize the coherent control of the target nuclei, we tuned them in 
resonance with one of the SCU absorber’s spectral lines (relative detun-
ing δ = 0 in Fig. 1b), and measured time-dependent intensities in forward 
direction for the two motions. Results are shown in Fig. 2c, together with 
corresponding theory curves (see Methods section ‘Split-and-control 
unit operation’). By comparing the two intensities, a characteristic 
crossover in the dominating intensity as a function of time is observed, 
which allows for a qualitative analysis of the dipole dynamics27. Ini-
tially, the intensity in the coherent enhanced emission case dominates, 
owing to the rapid emission in forward direction induced by the control 
pulse (blue-shaded area in Fig. 2c). Subsequently, the intensity for the 
coherent enhanced excitation case becomes dominant (orange-shaded 
area), because of the increased excitation of the nuclei. In the Methods 
section ‘Intensity crossover’, we show that this characteristic intensity 
crossover can indeed be linked analytically to the two control cases.

For a quantitative analysis of the nuclear dynamics, we extract the 
spatially averaged magnetic transition dipole moment induced by the 
X-ray double pulse in the target from the experimental data (see Meth-
ods sections ‘Target response’ and ‘Propagation effects in the target’). 
The results in Fig. 3 clearly show the effect of coherent enhanced emis-
sion and coherent enhanced excitation on the dipole dynamics (solid 
lines). Without the control pulse, the dipole moment exponentially 
decays, preserving its phase (black). In the coherent enhanced emission 
case (blue), the control pulse rapidly and non-exponentially drives the 
nuclear excitation back to the ground state characterized by d|⟨ ⟩̂| = 0 
within about 30 ns. Afterwards, the residual control pulse continues 
this dynamics through the ground state and re-excites the nuclei with 
opposite phase, before they exponentially decay after the end of the 
double-pulse sequence. In the coherent enhanced excitation case 
(orange), the control pulse substantially excites the magnitude of the 
dipole moment beyond the reference case without the control pulse. 
The dipole phase is approximately constant, demonstrating that the 
control- and excitation-pulse phases indeed agree. We note that the 
excitation increase starts a few nanoseconds after the initial excitation, 
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Fig. 1 | Schematic setup and samples. a, A short synchrotron (SR) X-ray pulse is 
shaped into a double pulse using a resonant absorber acting as a delay stage, 
which we denote as the split-and-control unit (SCU). A fast displacement Δx of the 
SCU controls the relative phase ϕ between the two pulses corresponding to a 
relative delay Δt, thus forming a tunable X-ray double-pulse source. The 
double-pulses are used to coherently control the dynamics of the target nuclei. An 
exemplary dynamics is visualized via the nuclear magnetic transition dipole 
moment d tˆ( )  on a polar plot. b, Energy-level schemes and spectra of SCU 
absorber and target nuclei. For the coherent control, we tune the single resonance 
of the target nuclei to one of the two resonances of the SCU absorber (δ = 0).
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because of the finite duration of the SCU’s movement of about 15 ns. 
Extended Data Figs. 2 and 3 show corresponding position-dependent 
results from the propagation analysis, which exhibit additional prop-
agation effects, but also show the enhanced excitation- and 
emission-dynamics as in the average dipole moment. The results  
also agree well with corresponding model calculations (see Extended 
Data Fig. 1).

The importance of our event-based detection scheme is also high-
lighted by the comparison of Figs. 2 and 3 (see also Methods section 
‘Event-based detection’). It demonstrates that the time-dependent 
intensity does not directly reflect the desired dynamics of the target 
nuclei, because of the interference between the incident pulse and the 
forward-scattered light21. In particular, the measured intensity in Fig. 2c 
exhibits rapid oscillations. These so-called quantum beats26 appear 
because the detector cannot individually resolve the two spectral 
components of the control pulse generated by the SCU; see Fig. 1b. In 
contrast, the dipole dynamics in Fig. 3 shows only small residual oscil-
lations, because the spectral response of the target nuclei is so narrow 
that they are selectively driven by only one of the SCU’s resonances, 
while the second SCU resonance is far-detuned. We further note that 
owing to this difference, we are not interested in optimizing the outgo-
ing light in any respect, unlike previous works7–10,24. In our experiment, 
the detected light instead acts as an experimental signature with which 
to observe the nuclear dynamics.

Key characteristics of coherent control schemes are their stability and 
reproducibility, which can be characterized via the Allan deviation σϕ(τ) 
(ref. 28). We analyse the phase stability of our coherent control scheme 
via the stability of the SCU motion x0(t), to which we can attribute any 
perturbations, since only relative motions between SCU and absorber 
affect our results (see Methods section ‘Stability and Allan deviation’ 
and Extended Data Fig. 6). We split the total measurement time into 
N non-overlapping intervals of duration τ, and analyse each interval i 
separately. Because of the short duration of each X-ray pulse sequence 
(176 ns), the dominating noise is a linear drift which perturbs the SCU 
motion to x0(t) + Ait, where Ai randomly fluctuates between intervals 
(see Methods section ‘Stability and Allan deviation’). We translate this 
drift into an upper bound on a phase deviation ϕi = kAit2 and the corre-
sponding temporal deviation ξi = Ait2/c, where t2 = 170 ns is the maximum 
range of our data acquisition, k is the X-ray wave number, and c is the 
speed of light. Then, σ τ N ϕ ϕ( ) = [2( − 1)] [∑ ( − ) ]ϕ i

N
i i

−1/2
=1

−1
+1

2 1/2  and the 
corresponding σξ(τ) values characterize the relative root-mean-square 
instability of two measurements τ apart. Results are shown in Fig. 4 as 
a function of τ. As expected, the Allan deviation initially reduces with 
growing τ, since noise is averaged out more effectively owing to the 

increased statistics, thereby increasing the stability between successive 
measurements. At even longer times τ, systematic drifts that are not 
removed by the τ-averaging are expected to increase the Allan deviation 
again, but this regime is not clearly reached within our total measure-
ment time. We find that the stability of our phase control reaches the 
level of approximately 40 mrad, corresponding to a temporal stability 
on the few-zeptosecond timescale, both with and without motion of the 
SCU. This temporal stability exceeds the best reported value achieved 
with extreme-ultraviolet optical interferometers by two orders of mag-
nitude3,29,30. This level of stability is required for the coherent control of 
the induced target dipole moment, since already phase perturbations 
corresponding to temporal variations on the few-zeptosecond timescale 
lead to visible changes in the dipole dynamics; see Extended Data Fig. 4. 
The green curve in Fig. 4 shows the coherent enhanced excitation case, 
including an initialization period of 400 s, in which the SCU motion 
exhibits systematic phase drifts corresponding to the approximately 
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Fig. 2 | Experimental observation of the coherent control. a, b, Time-and 
energy-resolved intensities recorded in the forward direction for two different 
double-pulse sequences corresponding to coherent enhanced emission (a) and 
enhanced excitation (b) of the target nuclei, respectively. The white areas at 
times t ≤ 15 ns reflect the detector dead time after the synchrotron excitation. 
c, Time-dependent intensity at relative detuning δ = 0, normalized to equal 
measurement times. The experimental data (dotted) exhibits the 

characteristic crossover (shaded areas) in the count rate between the two 
control cases at about 45 ns. The rapid oscillations are quantum beats due to 
the interference of light scattered at δ = 0 and δ = −63γ, with time-dependent 
visibility because the magnitude ratio of the two interfering contributions 
varies with time. The outlier dots are due to partial suppression of the time bins 
at the border of the dead time interval. The error bars indicate the photon shot 
noise. Corresponding theory curves are shown as lines.
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decay in the case of enhanced emission (blue) and the enhanced excitation 
(orange) are clearly visible. A theoretical reference calculation without SCU is 
shown as the black line.
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10-zs temporal scale, which demonstrates that our analysis is capa-
ble of detecting such perturbations (see Methods section ‘Systematic 
deviations throughout the initialization phase’). Fluctuations visible 
at intermediate τ are due to the dead times of our detection system 
(see Methods section ‘Detector dead time’). We note that this analysis 
relies crucially on the full holographic capabilities of our detection 
scheme measuring time- and energy-resolved spectra, because the 
time-dependent intensity studied in previous experiments alone is 
incapable of detecting the relevant deviations (see Methods section 
‘Event-based detection’). Further, an event-based detection is required 
for the a posteriori binning of the data into different time intervals τ.

In addition to the phase control reported here, our SCU scheme may 
also induce detunings or frequency chirps between the two pulses. Fur-
thermore, the control pulse could additionally be delayed much longer 
by storing the X-ray pulse in the SCU for a variable time, for example, by 
means of magnetic switching6. Such a split-control-delay-unit would 
additionally be able to set the polarization of the control pulse31. The 
control also generalizes to stronger excitation of the nuclear ensem-
ble, for example, involving X-ray free-electron laser sources32,33, which 
is an important step towards the exploration of nuclear dynamics 
using X-ray-pump/X-ray-probe techniques. Similarly, our approach 
could promote emerging visible-pump/X-ray-probe schemes15,16. The 
focus shift from controlling X-ray light to controlling nuclear matter, 
together with the coherent control capabilities demonstrated here, 
form an indispensable gateway to engineering complex quantum states 
and to exploring time-dependent phenomena with nuclei, as in the 
longer-wavelength domain34–36. In particular, we envision the study of 
nuclear out-of-equilibrium dynamics, which is a long-standing open 
challenge in Mössbauer science20.
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including an initialization time of 400 s in which the SCU motion exhibited 
systematic drifts causing phase deviations corresponding to the approximately 
10-zs scale.
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Methods

Nuclear resonant scattering
The forward transmission of an arbitrary X-ray pulse Ein(t) in an extended 
resonant sample is5,37

E t E t T t( ) = ( ) * ( ), (1)out in

where T is a characteristic transmission function and the asterisk 
denotes a convolution. Neglecting electronic absorption, one can write

T t δ t R t( ) = ( ) + ( ), (2)

where δ(t) is the Dirac delta function and R(t) denotes the response 
function of the nuclear target, that is, the scattered X-rays. This 
response function R(t) is directly related to the spatially averaged 
nuclear magnetic transition dipole moment d t⟨ (̂ )⟩ induced by the X-ray 
light in the target, which forms the primary quantity of interest in this 
work. Realistic transmission functions T(t), which we use to model the 
experimental data, can be computed with software packages such as 
conuss38. The dispersive and absorptive properties of the electronic 
background are spectrally broad and are included as a constant  
factor. For a material featuring a single-line resonance, T(t) can be 
expressed analytically. Omitting the free phase evolution exp(iω0t), 
we have37,39

T t δ t θ t
γD J γD t

γD t
( ) = ( ) − ( )

2
e

( )
. (3)

γ
tM −

2
1 M

M

Here, θ(t) is the Heaviside step function, J1 is the Bessel function of 
the first kind, DM = σ0fnd is the Mössbauer optical thickness of the reso-
nant target, n is the volume density of the resonant nuclei, d the target 
thickness, σ0 the cross-section, f the Lamb−Mössbauer factor, and γ the 
resonance width. For the data shown in Extended Data Fig. 1, we used 
Mössbauer thicknesses DSCU = 20 and DT = 9.2, which optimally mimic 
the experimentally realized setting. For the analytical calculations, we 
generalize equation (3) to write the response functions of our SCU and 
target samples in the coherent control setting as

T t δ t R t

δ t θ t
γD J γD t

γD t

( ) = ( ) + e ( )
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2
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Here, the two resonances in the SCU target are accounted for by the part 
in brackets containing the frequency difference S of the two resonances 
(see Fig. 1c). We note that the ‘approximately equal to’ in equation (4) 
indicates that this formulation assumes that S is sufficiently large to 
treat the response of the two resonances separately, which is well jus-
tified in our SCU sample. The target detuning relative to one of the 
resonances of the SCU is δ.

SCU operation
Excited by a short δ(t)-like X-ray pulse and in the case of no motion, 
the field behind the SCU given in equation (1) reduces to equation (2).

To tune the relative phase between the δ(t) component and the scat-
tered part RSCU(t) in equation (4), a motion x(t) is applied to the SCU. 
This results in the combined field7,10,40

E t E t E t δ t R t( ) = ( ) + ( ) = ( ) + e ( ), (6)ϕ t
SCU exc control

i ( )
SCU

ϕ t k x t x( ) = [ ( ) − (0)], (7)

where k = ω0/c is the wavenumber. In our experiment, we use this double 
pulse to drive a nuclear target. Again, the downstream X-ray intensity 
can be computed using equation (1), where ESCU(t) now takes the role of 
the input field Ein(t) and T(t) corresponds to the transmission function 
of the actual target.

Target response
To describe the dynamics of the target nuclei without having to impose 
a particular model, we write the output field behind that target in terms 
of the input field delivered by the SCU and a scattering component,

E t δ E t α d t δ( , ) = ( ) + ⟨ (̂ , )⟩, (8)out SCU

where α is a constant. To calculate d t δ⟨ (̂ , )⟩, using equation (5), we find 
in Fourier space

E ω δ E ω α d ω δ E ω R ω δ E ω( , ) = ( ) + ⟨ (̂ , )⟩ = ( ) + ( , ) ( ), (9)Tout SCU SCU SCU
∼ ∼ ∼ ∼ ∼

such that

∼ ∼
d ω δ

α
R ω δ E ω⟨ (̂ , )⟩ =

1
( , ) ( ). (10)T SCU

Next, we consider the position-resolved dynamics. At a depth x inside 
the target of length L, we can write the Fourier transforms of TT(t, δ) 
and RT(t, δ) as T ω δ x( , , ) = ea ω δ x

T
( , )∼  and ∼ ∼

R ω δ x T ω δ x( , , ) = ( , , ) − 1T T . a ω δ( , ) 
is the response function for a thin slice of the target, R ω δ a ω δ~ ( , ) = ( , )T

thin . 
For the case of a single target resonance, a(ω, δ) = – i[DM γ /(4L)]/ 
ω δ γ( − + i /2). Using these definitions, the total field at position x in the 

target is E ω T ω δ x( ) ( , , )SCU T
∼ ∼ , and the position-dependent transition 

dipole moment in a thin sample slice at x becomes

∼ ∼ ∼
d ω δ x

α
E ω T ω δ x R ω δ⟨ (̂ , , )⟩ =

1
( ) ( , , ) ( , ). (11)SCU T T

thin

A spatial average of this position-dependent dipole moment over the 
entire target length is straightforward using

∼ ∼
∼ ∼

∼∫T ω δ x
L

T ω δ x x
T ω δ L

a ω δ
R ω δ L

R ω δ
( , , ) =

1
( , , )d =
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Inserting this relation into equation (11), we obtain

d ω δ x
α

E ω R ω δ L d ω δ⟨ (̂ , , )⟩ =
1

( ) ( , , ) = ⟨ (̂ , )⟩. (13)SCU T
∼ ∼

Thus, the quantity d t δ⟨ (̂ , )⟩ defined in equation (8) is equal to the spa-
tial average over the position-dependent nuclear magnetic transition 
dipole moment induced by the X-ray light as obtained from a full 
propagation analysis.

The spatially averaged dipole moment d t δ⟨ (̂ , )⟩ has the crucial advan-
tage that it can be evaluated without requiring knowledge about the 
position-dependent dynamics inside the target, which is not accessible 
in our experiment. From equation (10), we find that measuring the 
complex field amplitude of the double pulse delivered by the SCU, and 
determining the target response function RT(t, δ) using fits to its indi-
vidual response at rest, already allow us to evaluate d t δ⟨ (̂ , )⟩.

Intensity crossover
When comparing the two coherent control SCU operations, differ-
ences are found in the temporal structure of the X-ray field behind the 
target (Fig. 2). In particular, the most prominent qualitative feature for 
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the cases considered here is a crossover of the dominating intensity 
after a certain time. This behaviour can directly be linked to the target 
dynamics induced by the SCU pulse. Behind both targets, the ampli-
tude at the detector follows from equations (4) and (5) with resonant 
target (δ = 0) as

� ������ ������

� �������� ��������

E t δ t R t R t

R R t

( ) = ( ) + e ( ) + ( )

+ e * ( ) ,
(14)

ϕ t

ϕ t

out

SCU pulse 1

i ( )
SCU

SCU pulse 2

T

target response (SCU pulse 1)

i ( )
SCU T

target response (SCU pulse 2)

⏟⏟

where the interpretation of each part is denoted by the underbrace text. 
The first two contributions correspond to the double-pulse equation (6) 
delivered by the SCU unit onto the target. The last two contributions 
are the target response induced by the two parts of the SCU double 
pulse, where the asterisk denotes the convolution. For definiteness, 
in the following, we consider the case DSCU > DT, as in our experiment.

At short times 0 < γt ≪ DSCU
−1  immediately after the excitation at t = 0, 

the field at the detector for the cases of enhanced emission (that is, 
ϕ(t) = 0) and enhanced excitation (that is, ϕ t ϕ( > 0) − (0) = π) evaluate 
to

O⟶
≪

E t
γ

D D t( ) −
4

( + 2 ) + ( ), (15)
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Thus, E t E t| ( )| > | ( )|out
emission 2

out
excitation 2  at early times, that is, the detected 

intensity is initially higher in the enhanced emission case than in the 
enhanced excitation case.

To identify the subsequent intensity crossover, we next consider the 
time evolution of the different contributions to Eout(t). Apart from the 
oscillation due to the two resonances in the SCU response, RT(t) and 
RSCU(t) are both negative immediately after the excitation at t = 0, and 
then decay in magnitude as time progresses until they vanish at their 
respective first zeros of the Bessel functions J1. Since DSCU > DT, the zero 
of the Bessel function in RSCU(t) is reached first, and we denote this time 
as tmin. Up to this point in time, RT(t) remains negative, and RSCU * RT(t) 
is positive, as follows immediately from the definition of the convolu-
tion. Thus, at tmin,

∗� ���� ���� � ������� �������E t R t R R t( ) = ( ) + ( ) , (17)out
emission

min T min

<0

SCU T min

>0

∗� ���� ���� � ������� �������E t R t R R t( ) = ( ) − ( ) . (18)out
excitation

min T min

<0

SCU T min

>0

Therefore, E t E t| ( )| > | ( )|out
excitation

min
2

out
emission

min
2 , that is, the detected 

intensity as a function of time is now higher in the enhanced excitation 
case, thus proving the intensity crossover. Interestingly, at time tmin, 
the output field is equal to the scattered response of the target, because 
the SCU field contribution vanishes.

The intensity crossover observed in the experimental data shown in 
Fig. 2 and in the full theory calculations shown in Fig. 2 and Extended 
Data Fig. 1 is therefore directly linked to the coherent control. At early 
times, the responses of the target and the SCU are in phase for the 
enhanced emission case and thus add up to a higher initial intensity, 
whereas in the enhanced excitation case, the SCU and the target con-
tributions have opposite phase owing to the piezo displacement, and 
therefore destructively interfere to give a lower intensity. Because 
of this relative phase, the target excitation is increased in one case 
(excitation), and decreased in the other case (emission). At later times 
around tmin, the output field coincides with the response of the target, 
and the intensity in the enhanced excitation case is higher than in the 

enhanced emission case. The higher intensity in the enhanced excita-
tion case can thus be directly attributed to a higher absolute value of 
the induced average target dipole moment compared to the enhanced 
emission case.

Propagation effects in the target
In any target of finite thickness, the dynamics of the induced magnetic 
transition dipole moments will vary as a function of position in the 
target, since they are driven not only by the externally applied field, 
but also by the field scattered by the upstream dipoles. To determine 
these propagation effects, we treat the target as a medium of two-level 
atoms, and calculate the propagation of the SCU pulse through the 
target using the Maxwell−Bloch equations in the slowly varying enve-
lope approximation40,41
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where EΩ x t d x t ħ( , ) = − 2 ( , )/  is the Rabi frequency, with E  the slowly 
varying amplitude of the propagating field, d the magnetic dipole 
moment, L the target length, and ρeg(x, t) the density matrix element 
corresponding to the coherence between the ground state |g⟩ and the 
excited state |e⟩ induced by the propagating field. It follows from the 
nuclear dynamics governed by the equations of motion for the density 
operator ρ̂
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Results of this analysis are shown in Extended Data Figs. 2 and 3 
for the parameters relevant to our experiment. Extended Data Fig. 2 
shows that there are indeed propagation effects, that is, the dipole 
dynamics depends on the position in the target because of the light 
scattered by the upstream nuclei. Nevertheless, the coherent control 
acts similarly everywhere inside the target: In the enhanced emission 
case, the excitation due to the first pulse is always rapidly driven back 
to the ground state by the second pulse. In the enhanced excitation 
case, the excitation due to the first pulse is always increased by the 
second pulse. To illustrate this feature in more detail, Extended Data 
Fig. 3 compares the dipole dynamics at the target entry (x = 0), in the 
middle of the target (x = L/2), and at the end of the target (x = L). At 
all positions in the target, the two coherent control cases are clearly 
visible. Finally, the results shown as dashed lines in Fig. 3 are obtained 
by averaging the spatially resolved dipole dynamics in Extended Data 
Fig. 2 over the sample length.

Quantum optical two-level model
In the limit of a thin target, the dynamics in the target can be modelled 
from first principles, using an approach based on a two-level-system 
description for the resonant target. Even though we do not use this 
limit in our data analysis, the calculation provides a clear interpretation 
of the spatially averaged magnetic-dipole moment defined in equa-
tion (8) in terms of the microscopic nuclear transition dipole moments, 
and illustrates how a nuclear two-level quantum system coherently 
controllable via the double pulses from the SCU can be implemented. 
In the thin-sample limit and at weak excitation, the two-level descrip-
tion is known to agree with the nuclear resonant scattering approach 
described above. In the following, we exploit this equivalence to estab-
lish an expression for the target dipole moment. The two-level system 
is formed by one collective ground state g| ⟩ and one collective excited 
state e| ⟩. The driving with an X-ray field Ein(t) is described by the  
Hamiltonian
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where Ω t dE t ħ( ) = − 2 ( )/in , with d being the magnetic dipole moment. 
Additionally, we include spontaneous decay with rate ∼γ  in terms of a 
density operator
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For weak excitation it is sufficient to consider the coherence 
σ e ρ g⟨ ⟩ = ⟨ | ^| ⟩ge  only. In the limit g ρ g⟨ | ^| ⟩ = 1, e ρ e⟨ | ^| ⟩ = 0, we have the equa-
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The field behind the two-level system is composed of the initial field 
and a scattered contribution42

E t E t α d t( ) = ( ) + ⟨ (̂ )⟩, (26)out
TLS

in

where d d σ⟨ ⟩̂ = ⟨ ⟩ge  is the dipole response of the two-level system, and 
α is a constant, also taking into account the extended sample geome-
try43. In particular, for α bħ d= − 2i / 2 and ∼γ γ D= (1 + /4)M  we have
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This result is also obtained within the thin-target limit ≪γt DM
−1 of the 

nuclear resonant scattering theory equations (1) and (2). The analytical 
agreement between the two calculations demonstrates the validity of 
the two-level-system approach. Comparing equation (26) with equa-
tions (1) and (2), we find

∗E t R t α d t( ) ( ) = ⟨ (̂ )⟩, (28)in

which, together with equation (10), illustrates the relation between the 
spatially averaged target dipole moment and the microscopic dipole 
moments, and highlights the correspondence of the response function 
in the nuclear resonant scattering approach with the time-dependent 
nuclear dipole moment in the quantum optical model.

Event-based detection
In our experiment, we make use of an event-based detection system that 
records, among other quantities, the absolute detection time within 
the experimental run, the relative detection time after the excitation, 
and energy information for each photon separately. It thus provides 
access to two-dimensional time- and energy-resolved spectra, which 
contain the full holographic (amplitude and phase) information in its 
interference structures, which furthermore can be split into variable 
measurement intervals throughout the data analysis. This feature is 
crucial in two respects. First, the Allan deviation analysis requires an 
a posteriori splitting of the data into time bins of variable duration 
τ. This splitting is only possible if the arrival time of each photon is 

stored. Second, we will show below that the time-dependent intensity, 
which was used in previous experiments, does not provide access to the 
key observables studied here, namely the complex spatially averaged 
nuclear magnetic transition dipole moment and the stability of the 
coherent control scheme. To better appreciate the difference between 
our event-based detection and the standard time-dependent intensity 
measurement, it is important to note that in order to determine the 
nuclear dynamics, we must solve an inverse problem of extracting the 
nuclear dipole moment from the scattered light. The time-dependent 
intensity measured in previous works does not provide sufficient infor-
mation to solve this inverse problem unambiguously, which is a funda-
mental obstacle in accessing the matter (nuclear) part of the system. 
We note that a phase determination in nuclear resonant scattering has 
previously been suggested using a velocity drive as an interferometer 
and phase shifter44, but this reference neglects the radiative coupling 
between the analyser and the target. The latter leads to the coherent 
control reported here.

To illustrate the necessity of our event-based spectroscopy method, 
we consider the setup used in our experiment, with the three motions 
shown in Extended Data Fig. 4a. Motion 1 corresponds to a rapid jump 
shortly after the arrival of the X-ray pulse by half the resonant wave-
length λ0/2, which leads to the coherent enhanced excitation case. 
Motion 2 is a similar displacement, but in the opposite direction. Motion 
3 modifies motion 1 by an additional linear drift on top of the step-like 
motion. As discussed in the Methods section ‘Stability and Allan devia-
tion’, such linear drifts are the dominant source of noise expected in 
our setup, and the drift shown in Extended Data Fig. 4 corresponds 
to a temporal deviation ξ = 25 zs. Our stability analysis is based on the 
ability to reliably detect drifts of this and smaller magnitude. As shown 
in Extended Data Fig. 4b, c, the three motions induce different dynam-
ics in the target nuclei, and our experiment aims at detecting these 
differences. We note that, somewhat counter-intuitively, motions 1 
and 2 induce dynamics that do not only differ in phase, but also in the 
time-dependent magnitude of the induced dipole moments. The reason 
for this feature is that the two motions include opposite velocities in 
the approximately step-like part of the motion, leading to opposite 
transient Doppler shifts, and thus in turn to different spectra of the 
outgoing double pulses. Thus, the target nuclei experience different 
driving fields. Motion 3 differs from motion 1 by an additional drift, 
which translates into a corresponding additional phase dynamics of 
the induced dipole moments.

Extended Data Fig. 5a shows the theoretical predictions for the 
time-dependent intensity on resonance, which was used as an observ-
able in previous experiments. The corresponding intensity differences 
obtained by subtracting the experimentally accessible intensities from 
each other are shown in Extended Data Fig. 5b. The results for motions 
1 and 2 essentially coincide. Motion 3 only differs slightly, in the depth 
of the beat minima, and is essentially indistinguishable from the other 
motions, in particular if practical limitations on data acquisition are 
taken into account. Thus, we conclude that the time-dependent inten-
sity alone is not capable of distinguishing key motions of relevance to 
our analysis from each other as a matter of principle, and therefore 
cannot distinguish the different nuclear dynamics induced in the  
target nuclei.

The event-based detection technique used in our experiment pro-
vides time- and energy-resolved spectra as shown in Fig. 2a, b. To 
illustrate the advantage of this approach, we show relative intensity 
differences (I2 – I1)/(I1 + I2) of the two-dimensional (2D) spectra obtained 
for motions 1 and 2 in Extended Data Fig. 5c. It can be seen that the two 
motions lead to rich systematic structure with full visibility. Therefore, 
through the 2D spectra we can easily distinguish the two motions, 
whereas the time-dependent intensities on resonance in Extended 
Data Fig. 5a for the two motions provide insufficient information to 
distinguish them. Finally, Extended Data Fig. 5d shows the intensity 
differences of the three motions for sections through the measured 2D 
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spectra at particular Mössbauer drive detunings δ. It can be seen that all 
three motions give rise to substantial intensity differences, which fur-
thermore exhibit characteristic time-dependencies for each detuning 
separately. In our data analysis, we compute two-dimensional theory 
spectra and compare them to the entire recorded two-dimensional 
spectrum at once, thereby including all Mössbauer detunings in a 
single fit. The rich interference structures encode full tomographic 
(amplitude and phase) information on the light scattered by the first 
absorber, and lead to a strong sensitivity of the fit to the slightest devia-
tions in the piezo motion and the nuclear dynamics. These examples 
clearly show that the time-dependent intensity measured in previous 
experiments is incapable of distinguishing motions that are crucial 
to our results, in contrast to the 2D time- and energy-resolved spectra 
recorded in our experiment.

Reconstruction of the SCU motion and field
The reconstruction of the SCU motion was performed based on the 
method in ref. 10. In the experiment, the duration of the periodic 
motional pattern x0(t) of the SCU was chosen as a multiple of the syn-
chrotron bunch clock period, and locked to the bunch clock. In this 
way, stable temporal shifts between the X-ray pulses and the motional 
pattern could be adjusted. The target was mounted on a Doppler 
drive, such that the relative detuning δ between the target resonance 
energy and that of the nuclei in the SCU could be tuned via the velocity 
v of the drive. Using our event-based detection system, we recorded 
two-dimensional time- and velocity-resolved intensities I(t, v) for differ-
ent temporal shifts of the motional pattern. The set of shifts was chosen 
in such a way that the recorded time-dependent intensities span the 
entire motional sequence. Each measurement covers times from 18 ns 
to 170 ns after the excitation with the initial X-ray pulse, and the veloc-
ity was recorded in the range −0.0228 m s–1 to 0.0228 m s–1. Using an 
evolutionary algorithm, we fitted the applied motional sequence to the 
measured data without imposing a particular model for the motion. In 
this step, the experimentally measured and the theoretically expected 
data are compared using a Bayesian log-likelihood method. For this 
method, we maximized the Bayesian likelihood45 under the assump-
tion that the photon counts for each data point in I(t, v) are Poisson 
distributed46. For a given ideal datum ntheo,i with index i, the probability 
of obtaining the experimental count number nexp,i is then

P n n n
n
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The likelihood for the whole experimental dataset including all data 
points i is

∏P P n n(exp|theo) = ( | ). (30)
i

i iexp, theo,

Assuming uniform priors45, P P(exp|theo) ∝ (theo|exp), which allows 
for the determination of the most likely theoretical prediction given 
the experimental data. Thus, we calculate all ntheo,i for each motion 
obtained during the evolutionary algorithm, and maximize P(theo|exp) 
to choose the most likely motion. As a result of this evolutionary algo-
rithm, we obtain the full periodic motion x0(t).

Stability and Allan deviation
The stability of our control scheme is given by the stability of the rela-
tive phase between the excitation and the control pulses experienced 
by the target nuclei. Since the first excitation pulse interacts with the 
target at t ≈ 0, this phase depends on the relative motion of SCU and 
target during the subsequent 176 ns of each experimental run. In con-
trast, drifts or perturbations between different runs do not affect the 
stability. As a result of this relative dependence, in our modelling we 
can equivalently attribute imperfections in the stability of our setup 

either to noise or drifts in the relative phase, or to corresponding per-
turbations in the SCU motion.

To quantify the stability of our coherent control scheme, we use 
the Allan deviation measure28, which is obtained by the analysis illus-
trated in Extended Data Fig. 6. The respective recorded datasets are 
split into non-overlapping samples with equal sampling times τ. For 
example, for τ = 10 s the first sample comprises the data taken in the 
time range 0–10 s, the second sample is formed by the data recorded 
in the time range 10–20 s, and so forth. For all N samples obtained for 
a given sampling time τ, we determine a quantity ϕi characterizing the 
double-pulse sequence in the interval i in terms of a phase deviation 
as explained below, as well as the corresponding temporal deviation 
ξi. From the ϕi, the Allan deviation σϕ(τ) can be computed according to

∑σ τ
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The corresponding Allan deviation σξ(τ) in terms of the temporal devia-
tions ξi is defined analogously. It remains to determine ϕi and ξi from the 
experimental data as a function of τ. However, for short measurement 
intervals τ, the experimental statistics is not sufficient for a full inde-
pendent recovery of the applied double-pulse sequence. Therefore, 
we make use of the direct correspondence of the relative double-pulse 
phase and the SCU motion, and base our analysis on the SCU motion 
x0(t) obtained as the best fit for the entire experimental dataset. In 
the first step, we modify x0(t) using an error model, which depends 
on a model parameter specified below. In the second step, we fit the 
modified motion to the experimental data in each interval i of duration 
τ separately, using the model parameter for the fit. In this fit, we use 
the same Bayesian log-likelihood method as for the recovery of x0(t). 
In the third step, we translate the best fit for the model parameter into 
the desired deviations ϕi and ξi according to the error model.

To derive an error model, we decompose the perturbation δx(t) to the 
motion into frequency components as x t x a ωt ϕδ ( ) = ∑ (0) + sin( + )ω ω ω ω , 
taking into account offsets xω(0) and relative phases ϕω for each  
frequency component ω separately. For ωt < 1, a series expansion  
yields x t x Atδ ( ) ≈ δ (0) + , where x x a ϕδ (0) = ∑ (0) + sin( )ω ω ω ω  and 
A a ω ϕ= ∑ cos( )ω ω ω . Therefore, during each experimental run of 176 ns, 
perturbations at least for all frequencies well below about 2π/
(176 ns) ≈ 10 MHz can together be summarized into a constant offset 
δx(0) not affecting the relative phase between the two pulses, and a 
linear drift motion At randomly varying from run to run. Therefore, we 
use xi(t) = x0(t) + Ai(t) as our main error model, with the free parameter 
Ai characterizing the magnitude of the drift in each interval i. The param-
eter Ai then translates into the desired deviations as ϕi = kAit2 and 
ξi = Ait2/c, where t2 = 170 ns is the maximum time of our data acquisition, 
k is the X-ray wavenumber, and c is the speed of light. With this choice, 
ϕi and ξi quantify upper bounds for the error acquired due to the drift 
with parameter Ai in terms of phase and temporal deviations.

Next to the linear drift motion, we also employed two other noise 
models to analyse the stability of our data. First, a scaling of the 
expected motion by a constant factor, x t s x t( ) = (1 + ) ( )0 . For example, 
in the case of a π phase jump in x0(t), a scaling by s corresponds to a 
phase deviation of sπ, or alternatively a temporal shift sT/2. This model, 
for instance, takes into account fluctuations in the voltage applied to 
the piezo, which to a very good approximation translates into a scaling 
of the displacement. Second, we superimposed the base motion with 
a small step-like displacement, x(t) = x0(t) + dθ(t − 0+). The displacement 
d translates into a phase deviation of kd or a temporal deviation of d/c. 
0+ indicates a time close to zero immediately after the excitation pulse 
has left the target. This model tests for the presence of potential phase 
offsets between the excitation and control pulses.

In our analysis we found that the linear model constitutes the domi-
nant type of error. The Allan deviations for the different noise models 



in the case of coherent enhanced excitation are shown in Extended 
Data Fig. 7. While the linear noise model predicts an optimum temporal 
deviation of σξ(τ) ≈ 1 zs for the given data, the uncertainties obtained 
from the other two models reach well below the zeptosecond scale.

Detector dead time
In all curves shown in Extended Data Fig. 7 as well in the curves in Fig. 4 
we observe unexpected fluctuations in the Allan deviations at sampling 
times between τ ≈ 10 s and τ ≈ 60 s. The cause for this phenomenon 
is a limitation of the employed data acquisition system, which occa-
sionally suffered from dead times of a few tens of seconds, owing to 
overload resulting from a too-high signal rate. As a result, some data 
samples with respective sampling times contain only a few or even no 
counts, which spoils the determination of yi and in turn leads to large 
Allan deviations. This effect can be removed in the data analysis by 
choosing the samples not according to equal measurement times, but 
according to equal counts. In other words, instead of the fluctuating 
count rate in the experiment with its dead times, a constant averaged 
count rate is assumed. As shown in Extended Data Fig. 8, evaluating 
the Allan deviation with this method indeed suppresses the fluctua-
tions at intermediate times, which shows that they originate from the 
detector dead time.

Systematic deviations throughout the initialization phase
In the Allan deviation shown in Fig. 4, it is not fully clear whether 
the experimentally achieved stability has already reached its limit,  
and only an upper bound for possible systematic effects can be given. To 
interpret this result and to verify our analysis, we artificially introduced 
systematic deviations, by recording spectra already during the initial 
time after starting the piezo motion, before the piezo reached stable 
thermal and mechanical conditions. In this initial time, systematic drifts 
in the deviations ϕi and ξi as a function of the measurement time may 
occur. The corresponding results for samples with sampling time 200 s  
are shown in Extended Data Fig. 9 over the full measurement period, 
including the initialization phase. We note that in this plot, temporally 
overlapping samples were analysed, in order to trace the time evolution 
of the deviation with a high temporal resolution. For example, the first 
deviation is calculated from data in the time range 0–200 s, the next 
deviation for the range 1–201 s, and so forth. We find that the deviations 
systematically drift for an initial period of about 400 s. Afterwards, only 
small residual fluctuations are observed over the remaining measure-
ment time. The orange and green curves in Fig. 4 compare the Allan 
deviations with and without this initial phase. It can be seen that the 
initialization leads to a clear systematic trend of the Allan deviation 
as compared to the case without the initial phase: the Allan deviation 
begins to increase again for sampling times exceeding approximately 
100 s, which is the expected behaviour in the case of systematic drifts.

Samples
As resonant nuclear sample we used a single-line stainless-steel foil 
(Fe55Cr25Ni20), with iron enriched to about 95% in 57Fe and with thickness 
1 μm. The X-ray double-pulse sequence was created using an α-iron foil 

with thickness of about 2 μm, also enriched in 57Fe. An external magnet 
was used to align its magnetization and the setup was arranged such 
that only the two Δm = 0 hyperfine transitions of the 14.4-keV resonance 
in 57Fe were driven. To displace the α-iron foil we employed a piezo-
electric transducer consisting of a polyvinylidene fluoride (PVDF) film 
(thickness 28 μm, model DT1-028K, Measurement Specialties, Inc.). 
The piezo was glued on an acrylic glass backing and was driven by an 
arbitrary function generator (model Keysight 81160A-002).

Data availability
The data that support the findings of this study are available from the 
corresponding author upon request.

Code availability
The codes that support the findings of this study are available from 
the corresponding author upon request.
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Extended Data Fig. 1 | Theoretical predictions for the enhanced emission 
and enhanced excitation of the nuclear exciton. Nuclear dynamics under the 
action of different double pulses, calculated with the simplified model 
introduced in the Methods section ‘Nuclear resonant scattering’, which 
neglects one of the SCU resonances such that no quantum beats appear.  
a, b, The magnitude (a) and phase (b) of the spatially averaged nuclear 
magnetic transition dipole moment, respectively. The excitation pulse induces 
a nuclear excitation at t = 0, and the panels show the subsequent dynamics 
induced by the control pulse. The opposite phase between the excitation and 
control pulses leads to enhanced emission, followed by subsequent coherent 
re-excitation (blue). Equal phases induce enhanced excitation (orange). The 
black dashed line indicates the dipole response in the absence of the SCU.  
c, The total intensity emitted in the forward direction. The shaded areas 
indicate a crossover in the dominating intensity.



Extended Data Fig. 2 | Dipole dynamics induced in the target by the 
propagating SCU pulse. Absolute value Abs( d⟨ ˆ⟩) of the target’s magnetic 
transition dipole moments as a function of time t after excitation and depth/
position x in the target of length L. The results are obtained from solving the 

Maxwell−Bloch equation as explained in the Methods section ‘Propagation 
effects in the target’. a−c, The cases without SCU (a), coherent enhanced 
emission (b) and coherent enhanced excitation (c). All panels share the same 
colour scale for Abs( d⟨ ˆ⟩), and the parameters are as in Fig. 3.
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Extended Data Fig. 3 | Dipole dynamics at the target entry, middle, and exit. 
Absolute value Abs( d⟨ ˆ⟩) and phase Arg( d⟨ ˆ⟩) of the target’s magnetic transition 
dipole moments as function of time t after excitation in thin slices at the entry, 
in the middle, and at the exit of the target. The results are obtained from solving 
the Maxwell−Bloch equation as explained in the Methods section ‘Propagation 

effects in the target’. The parameters and the curve styles are as in  
Fig. 3. The three colours indicate the cases without SCU (black), coherent 
enhanced emission pulse sequence (blue) and the coherent 
enhanced excitation sequence (orange).



Extended Data Fig. 4 | Three absorber motions to illustrate the event-based 
detection. a, Three SCU absorber motions used to illustrate the capabilities of 
the event-based detection. b, c, The magnitudes (b) and phases (c) of the 
magnetic transition dipole moments induced in the target nuclei owing to  
the double pulses generated by the respective motions, or in the absence  
of an SCU.
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Extended Data Fig. 5 | Event-based detection and time-dependent 
intensities. a, b, Theoretical predictions for the resonant time-dependent 
intensity using the three motions in Extended Data Fig. 4. a, These intensities 
for the three motions essentially coincide. b, This panel illustrates this further 
with the differences between the time-dependent intensities for the motions 1 
and 2 as well as motions 1 and 3, respectively. c, d, Corresponding theoretical 
predictions for our event-based spectroscopy technique. c, The relative 
difference (I2 – I1)/(I1 + I2) between the 2D spectra of motions 1 and 2, with 

dimensionless values as indicated by the colour scale. The rich interference 
structures and high visibility show that the motions can clearly be 
distinguished. d, Intensity differences corresponding to the results in b, but 
energy-resolved at sections with different detunings δ through the 2D data, 
where δ is defined in Fig. 1. Each detuning δ leads to characteristic strong 
interference patterns, further illustrating that the motions can easily be 
distinguished using the event-based detection.



Extended Data Fig. 6 | Evaluation of the Allan deviation. To evaluate the 
Allan deviation, the full data set is split into N samples of duration τ. Each 
sample comprises a 2D time- and energy-resolved spectrum, to which we fit 
spectra obtained using the SCU motion x0(t) modified via an error model with a 

parameter A. This yields the best-fit parameter Ai for each sample i, which is 
proportional to the phase error ϕi and the corresponding temporal error ξi as 
explained in the methods. From these deviations, the Allan deviation can be 
calculated using equation (31).
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Extended Data Fig. 7 | Comparison of different noise models. Allan deviation 
in the case of coherent enhanced excitation obtained for the three noise 
models we employed. The uncertainty according to the linear noise model 
exceeds that of other models by about a factor of three. Shaded areas indicate 
the standard deviation ranges and diagonal grid lines indicate τ1/  scaling.



Extended Data Fig. 8 | Influence of detector dead time. The orange curve 
shows the Allan deviation for the case of enhanced emission and a linear noise 
model. The fluctuations at intermediate sampling times are due to dead time in 
the data acquisition system. In the purple curve these drops in the count  
rate were artificially avoided by assuming a constant count rate instead. 
Consequently, the fluctuations vanish. Shaded areas indicate the standard 
deviation ranges and diagonal grid lines indicate τ1/  scaling.
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Extended Data Fig. 9 | Systematic deviations throughout the initialization 
phase. The figure shows the deviations ϕi and ξi obtained for sampling times 
τ = 200 s throughout the full measurement period for the case of coherent 
enhanced excitation. We note that in this figure, temporally overlapping 
samples were analysed in order to trace the time evolution of the deviation 
throughout the initial phase of the measurement. The first 400 s or so during 
the initialization period of the measurement time exhibit systematic drifts 
corresponding to the approximately 10-zs scale. Shaded areas indicate the 
standard deviation ranges.
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