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The scientific method has been remarkably successful in advancing modern technology at 
an outstanding rate.  For example, it took only 66 years from the date of the first heavier-
than-air powered aircraft flight (1903) to the first human moon walk (1969).  This was 
achieved by the simple application of the scientific method, applied over and over again.  
This method involves proposing a hypothesis based on the best current understanding of 
the system, and then trying to design a clear experiment with an outcome that is 
predictable based upon the hypothesis.  If the experimental outcomes are not as expected 
based on this hypothesis (which is usually the case), then the hypothesis is refined and 
this process is repeated.  Science is advanced when the hypothesis is defeated and hence 
modified, not when the hypothesis is ‘proven’.  A good scientist is always trying to 
disprove what he/she thinks, since this is the process that leads to discovery and the 
advancement of knowledge.   

It is very important to know how to estimate when known effects, such as thermal and 
quantum effects, become important to the design of a system.  This is done by comparing 
different physical processes to each other in order to determine the cross-over point when 
one dominates over the other.  This is often called scaling, since we are determining the 
dominant process as our adjustable parameters in the system (such as temperature, length, 
dimensions, conductivity, etc.) are changed.  Here (below) is an example of a scaling 
analysis of a tiny capacitor that is designed to be charged by a single electron.  We will 
predict where thermal effects become important at temperature T, which will set the 
maximum size of the capacitor C.  Then we will see that the quantized charge states of 
this capacitor become ‘sharp’ only when this tiny capacitor is adequately isolated from its 
surrounding environment by a sufficiently large electrical resistance.  These devices are 
useful in their own right, but the main thing I want to stress is the method of predicting 
when the scale is correct to observe these effects.  You will often need to do a similar 
analysis when you design new apparatus to observe other effects at the nanoscale in the 
future.   

Consider the simple conceptual drawing in the figure.  A small, perfectly conducting 
sphere of radius r is located above a perfectly conducting ground plane, shown in brown.  
A layer of dielectric with permittivity ε, shown in yellow, is deposited on the conducting 
ground plane to provide support of the sphere at a distance d above the ground plane, as 
shown.  This dielectric isolates the sphere partially from the ground plane by providing 
an electrical resistance R between the sphere and the ground plane.   

We want to charge this capacitor with n electrons, where n is typically equals one, and 
we do not what thermal fluctuations to discharge this capacitor, or to swamp it with more 
thermally fluctuating electrons.  How small must C be?  The charging energy En, where n 
is the number of electrons on the capacitor, is given by:    
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2nE CV=   By definition, /C Q V= , so 2 /(2 )nE Q C= .  We want to charge this 

capacitor with n electrons, where n is usually one, so Q = ne, where e = 1.6 x 10-19 
Coulombs (C).  Hence, 2 2 /(2 )nE n e C= .  First, we want to be sure that this charge on the 
capacitor is not washed out by thermal fluctuations at the ambient temperature T.  This 
requires that nE kT� where Boltzman’s Constant k = 1.38x10-23 J/K. So, from a scaling 
perspective, this capacitor starts to become robust against thermal fluctuations when 

n^2 e^2 /(2C) = kT .  So the capacitance C of this device must be much smaller than n^2 
e^2 / (2kT ) to avoid thermal wash-out.  For n =1 and T = 300K this means that C must 
be much smaller than 3x10-18F (3 aF), so to be safe C must be less than about 0.3 aF.  
This would be an challenging capacitor device to grow in a controlled fashion, as we will 
see later this semester.  Single electron capacitors have been developed and used in 
interesting devices in the past, but they have operated at very low temperatures (often T < 

1 K) in order to make this capacitance larger, and hence this device much easier to build. 
But that is less of an issue now that we have better nano-fabrication techniques. 

Figure:  The model of a single electron capacitor, as described in the text.   

Let’s take a moment to consider how to build a 0.3 aF capacitor:  This is clearly not a
parallel plate capacitor, but from a scaling perspective we can estimate the capacitance 

roughly (to within a factor of three or so) using this simple approximation.  The 
capacitance of the blue sphere relative to the brown ground plane is approximately 

C A≈ =dε ε 2r/ /π d  where ε is the permittivity of the yellow dielectric layer.  The 
permittivity of germanium near room temperature is  ε = 1.4x10-10 F/m, and d is typically 
one micron (10-6 m), but it can be made much smaller.
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Hence, to achieve a 0.3 aF capacitor, r must be about 2x10-8 m (about 20 nm).  It is 
difficult, but certainly feasible, to produce uniform, small spheres (often called ‘quantum 
dots’) at this level.  Many devices use a number of these quantum dots arranged near 
each other and often separated by thin lithographic metal lines, and the uniformity of 
these quantum dots is critical to achieve proper device functionality.  A typical 
metalization process in use today to produce microprocessors uses a metal linewidth of 
about 10 nm (https://www.tel.com/museum/magazine/material/150227_report04_01/), 
and it is difficult to control dimensions below about 3 nm in commercial mass 
production.  Moreover, it is very difficult to eliminate accidental stray capacitances at the 
level of 0.3 aF in a circuit.  But, if T = 3 K, then this capacitance can be as large as 30 aF 
to meet the same criterion discussed above (do you see why?), and such capacitances are 
relatively easy to produce in a controlled manner.  

Being robust against thermal fluctuations is a necessary but not sufficient condition to 
develop single-electronic devices.  It is important that the energy states of this capacitor 
be ‘sharp’, meaning that the charges placed on the capacitor must stay there for a 
sufficient length of time τ so that the energy of these charged states is much less 
uncertain than the energy of this single-electron charged capacitor. This sets a lower 
bound on how small the resistance R may be, since a small value of the resistance 
between the quantum dot and the ground plane will cause the electrons to flow off in an 
unacceptably short time.   The uncertainty of the energy of this singe-electron charged 
state is ∆E, and E1 = e2/(2C) as we saw above.  So we want ∆E/E1 << 1.  We consider the 
scaling situation when ∆E = E1.  The time τ = RC for this simple circuit drawn in the 
figure, and by the Heisenberg Uncertainty Relation: ∆E τ � =where = = 1.06 x10-34 Js is 
Planck’s Constant h divided by 2π.  Planck’s constant is a very important constant, since 
it sets the scale for all quantum processes in nature.  We will see Planck’s constant 
throughout this course on many occasions.  The condition ∆E = E1 then gives, 
substituting in τ = RC,  that R >> h/e^2.   For a properly operating device, we would like 
this resistance to be about ten times larger in order to assure E1 >> ∆E.   

We have just tripped upon another very important combination of the fundamental 
constants, namely h/e2 = 26 kΩ. This value is called the ‘Von Klitzing’ in honor of the 
physicist who discovered the quantum Hall effect.  Typically we need about three Von 
Klitzings, or about a value of R greater than or equal to 75 kΩ, in order to see sharp 
quantum effects in our single-electron capacitor.  Notice that this level of required 
electrical isolation from the surrounding world to see sharp quantum states is independent 
of the size of the capacitance!     

So now we know a lot about how to design a single-electron quantum capacitor.  But why 
would we like to make one?  Well, in such a device the quantum states can be tuned to 
whatever level we desire.  The structure and energies of atomic and molecular quantum 
states are given to us by nature, but now we have a way to custom design the energy 
levels of these states.  Optical transitions occur between two electronic states in atoms 
and molecules, and now an optical transition may occur between the n = 2 and n = 1 state 
of our quantum capacitor as well.  So now we can build custom quantum optical devices.  
We can also string these quantum capacitors along separated by tiny electrical 



lithographically made wires.  The ‘gate potentials’ on these wires can be phased such that 
single electrons hop from quantum dot to quantum dot is an exceptionally well controlled 
way.  This sort of device, called an ‘electron turnstile’ (https://physics.aps.org/articles/
v9/s44) may be used to control electrical currents with an absolutely unprecedented 
accuracy, but that day has yet to come.  Practical devices are burdened by stray charge 
and stray capacitance effects, but as technology advances this short-coming should be 
eliminated soon.

Exercises for the reader:  Hop onto Google or go to the library and read-up on single-
electron transistors, other single-electron devices, and on electron turnstiles.  Now you 
know fundamentally how they work!  The hard part is in controlling your fabrication 
process well enough to build them, and in developing accurate circuits ot characterize 
them. You will learn how ot approach these fabrication and measurement challenges this 
semester.    

Enjoy! 

Rob Duncan      




