

Superfluid Transition in ⁴He Driven Far From Equilibrium

R.V. Duncan, Texas Tech University

Texas Tech Physics Seminar

April 10, 2014

This work has been sponsored by NASA through the Fundamental Physics Discipline within the Microgravity Project Office of NASA

At UNM: **Robert Duncan** S.T.P. Boyd Dmitri Sergatskov Alex Babkin Mary Jayne Adriaans **Beverly Klemme Bill Moeur** Steve McCready Ray Nelson Colin Green Qunzhang Li Jinyang Liu T.D. McCarson Alexander Churilov

<u>At Caltech</u>: David Goodstein Richard Lee Andrew Chatto

<u>At JPL</u>: Peter Day David Elliott Feng Chuan Liu Talso Chui Ulf Israelsson

Outline

- Introduction
- Nonlinear dynamics of the superfluid transition
 - Singular boundary resistance
 - Breakdown under a heat flux
 - Nonlinear region
 - Correlation length effects
 - Self-organized criticality and a new sound mode
- Experimental
- Future directions

Unique Properties of Liquid Helium

- Only liquid that never freezes under it's own vapor pressure
- Instead, it forms a new phase of longrange quantum order, called a 'superfluid'
- The phase diagram of ⁴He (boson) is radically different from that of ³He (fermion) at very low temperatures

Helium-4 (⁴He)

 $\lambda = h/p$, at 2K, $\lambda = d$ between ⁴He atoms

Pressure dependence of $T_{\underline{\lambda}}$ breaks 'up-down' symmetry and stabilizes an interface on Earth

Non-equilibrium interface stabilizes without gravity! See Weichman *et al.*, Phys. Rev. Lett. <u>80</u> 4923 (1998)

 $|\nabla T_{\lambda}| = 1.3 \ \mu \text{K/cm}$

'Two Fluid' Model of Superfluids and the Landau tie to Quantum Physics

$$\rho = \rho_n + \rho_s$$

$$j = j_n + j_s \ (\rho v = \rho_n v_n + \rho_s v_s)$$

$$\psi = \psi_0 e^{i\varphi}$$

$$\rho_s = m_4 \psi_0^* \psi_0 \text{ and}$$

$$1.0 \qquad 0.8 \qquad 0.6 \qquad 0.4 \qquad 0.4 \qquad 0.2 \qquad 0.5 \qquad 1.0 \qquad 1.5 \qquad 2.0 \qquad 2.5$$

Temperature (K)

 $\mathbf{v}_{s} = (\hbar/m_{4}) \nabla \varphi$

Counterflow: the Flow of Heat Without Resistance!

 $\rho = \rho_n + \rho_s$ $j = \rho v$ $j = j_n + j_s (\rho v = \rho_n v_n + \rho_s v_s)$

 $\begin{array}{ll} j=0 \ (no \ convection, no \ mass \ flow), \quad j_n=\ -j_{s_1} \ Counterflow! \\ So \quad \rho_n v_n=-\rho_s v_s \quad v_n=-\rho_s /\rho_n \ v_s \end{array}$

Q = heat flux = ρ S T v_n = - S T $\rho\rho_s/\rho_n$ v_s

Singular Boundary Resistance

Usually called the 'Kapitza Resistance'

Figures from Ray Nelson's Ph.D. Thesis...

Weak Boundary Resistance Singularity

Duncan, Ahlers, and Steinberg, Phys. Rev. Lett. <u>58</u>, 377 (1987)

Theory: Frank and Dohm, Phys. Rev. Lett. <u>62</u>, 1864 (1989)

Superfluid Near Criticality: Counterflow Breakdown

 $Q = \rho STv_n \text{ If } \rho v = 0 \text{, then } Q = [-\rho \rho_s / \rho_n] \text{ ST } v_s \approx -S_\lambda T_\lambda \rho_s(v_s) v_s$

but ρ_s decreases with increasing v_s , resulting in sudden breakdown when $dQ/dv_s = 0$. This breakdown occurs at temperature $T_c(Q) < T_\lambda$ Invert to obtain $Q_c(T)$.

<u>Correlation length</u> $\xi = \xi_o t^{-\nu}$, where $t = |T - T_{\lambda}|/T_{\lambda}$ with $\xi_o = 2x10^{-8}$ cm and $\nu = 0.671$

<u>Thermal conductivity</u> Diverges due to fluctuations: $\kappa = \kappa_0 t^{-x}$ with $x \approx \frac{1}{2}$

<u>Field-Theory: 'Model F' of Halperin, Hohenberg, and Siggia</u> See Hohenberg and Halperin, Rev. Mod. Phys. <u>49</u>, 435 (1977)

Superfluid Breakdown

Duncan, Ahlers, and Steinberg, Phys. Rev. Lett,. 60, 1522 (1988)

 $[T_{\lambda}-T_{c}(Q)]/T_{\lambda} = (Q/Q_{c})^{y}$

Theory (Dohm, Onuki, etc.) y = 1/2v = 0.744 $Q_c = 7,000 \text{ W/cm}^2$

Experiment: $y = 0.81 \pm 0.01$ $Q_c \approx 600 \text{ W/cm}^2$

Experimental Concept

Science objectives are obtained from the thermal profile data (noise level of < 100 pK/ \sqrt{Hz}), while the heat flux is extremely well controlled to $\delta Q \sim 1 \text{ pW/cm}^2$

National Aeronautics and Space Administration

DYNAMX Sample Cell wall with Thermal Probes, End Caps, and Structural Supports

1 cm

Experimental 'T5' Apparatus

'T5' Critical Thermal Path

National Aeronautics and Space Administration

Mini-High Resolution Thermometer

Demonstrated Drift = 2.9 x 10^{-15} K/s (0.25 nK/day, 0.1 μ K/year).

The Direction of Q is Important :

HfB: 'Heat from Below'

- Correlation length divergence is cut-off on Earth - Nonlinear thermal resistivity near T_{λ}

Theoretical prediction of the nonlinear region [Haussmann and Dohm, *PRL* **67**, 3404 (1991); *Z. Phys. B* **87**, 229 (1992)] with our data [Day *et al.*, *PRL* **81**, 2474 (1998)].

 $T_c(Q)$ and $T_{NL}(Q)$ are expected to extrapolate to T_{λ} as Q goes to zero in microgravity, but not on Earth, as explained by Haussmann.

Gravitational Effect: ξ_g

As the superfluid transition is approached from above, the diverging correlation length eventually reaches its maximum value $\xi_g = 0.1$ mm, at a distance of 14 nK from T_{λ} .

HfA: Heat from Above

- A: Cell is superfluid (hence isothermal), and slowly warming at about 0.1 nK/s
- B: SOC state has formed at the bottom and is passing T3 as it advances up the cell, invading the superfluid phase from below
- C: Cell is completely self-organized
- D: As heat is added the normalfluid invades the SOC from above

(Suggested by A. Onuki and independently by R. Ferrell in Oregon, 1989)

 $\kappa \nabla T = Q$, so $\kappa_{soc} = Q / \nabla T_{\lambda}$ $\kappa_{soc} = \kappa_o \epsilon_{soc}^{-x} = Q / \nabla T_{\lambda}$

 $\varepsilon_{soc} = [Q/(\kappa_o \nabla T_\lambda)]^{-1/x}$

 $T_{\lambda} \epsilon_{soc} = T_{soc}(Q,z) - T_{c}(Q,z)$

 $T_{soc} - T_{c} = T_{\lambda} [Q/(\kappa_{o} \nabla T_{\lambda})]^{-1/x}$

κ_o ≈ 10⁻⁵ W/(cm K), x ≈ 0.48 ∇T_λ ≈ 1.27 μK / cm

 $T_{soc} - T_c = T_{\lambda} [Q / (12.7 \text{ pW/cm}^2)]^{-2.083}$

Moeur *et al.,* Phys. Rev. Lett. <u>78</u>, 2421 (1997)

How does He-II do this?

Synchronous phase slips – each slip creates a sheet of quantized vortices See: Weichman and Miller, JLTP <u>119</u>, 155 (2000):

Diffusive Anisotropic Wave Propagation

"New Propagating Mode Near the Superfluid Transition in 4He", Sergatskov *et. al., Physica* **B 329 – 333**, 208 (2003), and "Experiments in ⁴He Heated From Above, Very Near the Lambda Point", Sergatskov *et. al., J. Low Temp. Phys.* **134**, 517 (2004), and Chatto, Lee, Day, Duncan, and Goodstein, *J. Low Temp. Phys.* (2007)

The basic physics is very simple:

$$C\frac{dT}{dt} = -\vec{\nabla} \cdot \vec{Q}$$
$$\vec{Q} = -\kappa \vec{\nabla} T$$
$$C\frac{dT}{dt} = \vec{\nabla} \kappa \cdot \vec{\nabla} T + \kappa \nabla^2 T$$

Wave speed $v = \nabla \kappa / C$

If C ~ constant then $v = \nabla D$ where $D = \kappa/C$

Wave travels only against Q, so 'Half Sound' Sergatskov *et al.*, JLTP <u>134</u>, 517 (2004) Weichman and Miller, JLTP <u>119</u>, 155 (2000) And now Chatto et al., JLTP (2007)

Wave Speed v(Q)
Following Chatto et al., 2007

$$C\frac{\partial T}{\partial t} = \frac{\partial}{\partial z} \left(\kappa \frac{\partial T}{\partial Z} \right). \qquad \varepsilon = (T - T_{\lambda})/T_{\lambda}$$

$$CT_{\lambda} \frac{\partial \epsilon}{\partial t} = \frac{dT_{\lambda}}{dz} \frac{\partial \kappa}{\partial \epsilon} \frac{\partial \epsilon}{\partial z} + \left(\frac{dT_{\lambda}}{dz} \frac{\partial \kappa}{\partial \epsilon'} + \kappa T_{\lambda} \right) \frac{\partial^{2} \epsilon}{\partial z^{2}}.$$

$$\epsilon(z, t) = \epsilon_{0} + \delta_{0} e^{-Dk^{2}t} e^{ik(z - vt)}$$

$$v = -\frac{1}{CT_{\lambda}} \frac{dT_{\lambda}}{dz} \frac{\partial \kappa}{\partial \epsilon}. \qquad v = -\frac{1}{C} \frac{\partial Q_{\text{SOC}}}{\partial T}$$

New Anisotropic Wave Speed

Chatto, Lee, Duncan, and Goodstein, JLTP, 2007.

How do we measure C_{soc} ?

Heat Capacity on the SOC State

Chatto, Lee, Duncan and Goodstein, *JLTP (2007)* R. Haussmann, Phys. Rev. B <u>60</u>, 12349 (1999).

Summary

The study of the nonlinear dynamics of the superfluid transition is interesting for many fundamental reasons, including:

- model system to study the onset of long range quantum order while driven far from equilibrium
- test of renormalized, field theoretic models of the dynamical properties of the superfluid under phase change
- general applicability to the understanding of phase change in systems far from equilibrium
- ideal system in which to study self-organized criticality
- opportunity to study fluctuations and other thermodynamic properties in an exceptionally well controlled system

Today's science will become tomorrow's superior metrology, as we have seen so many times before

Space flight is the only way to avoid ξ_g

See Barmatz, Hahn, Lipa, and Duncan, "Critical Phenomena Measurements In Microgravity: Past, Present, and Future", Reviews of Modern Physics <u>79</u>, 1 (2007)

Successful CDR in 2003

Cancelled in 2004

All 117 'ClassB' approved hardware drawings are in place.

Low Temperature Microgravity Physics Facility (LTMPF)

Japanese Experiment Module's Exposed Facility

Future Directions

- Could we ever measure the cooling rate of the CMB?
 - CMB cooling rate may be about 200 pK/year
 - To resolve T_{CMB} to within 20 pK will require about a year of averaging
 - Foreground sources are huge (~ 100 nK) compared to this level
 - Pointing accuracy and cosmic radiation limitations are daunting
- Measurement Approach
 - Maintain peak C_V at the superfluid transition ($T_{\lambda} = 2.1768...K$) for years
 - Modulate heat input to the ⁴He cell using a Josephson junction source
 - Synchronously demodulate the cell temperature change ΔT (at 0.005 Hz)
 - Adjust cell cooling with 0.5 pW resolution to maintain minimum ΔT
 - Hold average cell temperature to within one pK of T_λ for years
 - Measure the radiated power into this ultra-stable platform from the relatively unstable CMB, $T_{CMB} T_{\lambda} \sim 0.5$ K
 - Do this for 10+ years as the Pluto Fast Flyby travels away from the Sun

Also... Interested in the Fundamental Measurement Limits of Thermometry?

Statistically, $\delta T/T \sim 1/\sqrt{N}$ Other limits:

Electronic Johnson noise / shot noise... if resistive, but our thermometers are too good to resist! Thermal energy fluctuation limits

Paramagnetic Susceptibility Thermometry

Magnetic flux is trapped in a niobium tube

A paramagnetic substance with T > T_c is thermally anchored to the platform

 $M = H \chi(T)$

 $\chi(T) = \Gamma [(T - T_c)/T_c]^{-\gamma}$ so small changes in T create large changes in M, and hence in the flux coupled to the SQUID

Gifford, Web, Wheatley (1971) Lipa and Chui (1981)

Fundamental Noise Sources

Heat fluctuations in the link
one independent measurement
per time constant τ, τ = RC
(noise)² ~ τ / C
 $\langle (\delta T_Q)^2 \rangle = 4Rk_BT^2$
so $\delta T_Q ~ \sqrt{R}$ and $\delta T_Q ~ T$
See: Day, Hahn, & Chui, JLTP <u>107</u>, 359 (1997)

<u>Thermally induced electrical current fluctuations</u> mutual inductance creates flux noise $\langle (\delta \Phi)^2 \rangle \sim T \ N^2 \sigma \ r^4 / L$ $\delta T_M = \delta \Phi / s, s \approx 1 \ \phi_o / \mu K$ so $\delta T_M \sim \delta \Phi \sim \sqrt{T}$

T_{bath}

SQUID noise

 $\overline{\langle (\Delta \Phi_{SQ})^2 \rangle^{1/2}} \approx 4 \ \mu \phi_0 / \sqrt{Hz}$ with shorted input external circuit creates about three times this noise level so $\Delta \Phi \approx 12 \ \mu \phi_0 / \sqrt{Hz}$ and $\delta T_{SQ} \approx 12 \ pK / \sqrt{Hz}$

New Ultra-Stable Platform

Green, Sergatskov, and Duncan, J. Low Temp. Phys. <u>138</u>, 871 (2005)

Flux Tube Pick-Up Coil Liquid ⁴He 1 1 Heater PdMn

The helium sample is contained within the PdMn thermometric element. Power dissipation is precisely controlled with the rf-biased Josephson junction array (JJA). Stabilized to $\delta T \sim 10^{-11}$ K.

Next Generation Hardware

Heat Fluctuation Noise Across the Link

HRT Time Constant

Method:

- Controlled cell temperature with T1
- Pulsed a heater located on T2
- Cell in superfluid state
- Contact area of only 0.05 cm²

- Rise time ~ 20 ms
- Decay time = 48 ms

Collaboration with Peter Day

Noise: Thermally Driven Current Fluctuations

Thermal current fluctuations: $\delta \Phi = 38 \ \mu \phi_o / (Hz \ K)^{1/2} \ \sqrt{T}$ SQUID circuit noise: $\delta \Phi_{SQ} = 12.5 \ \mu \phi_o / \sqrt{Hz}$

Reduce the Heat Fluctuation Noise

RF-biased Josephson Junctions for Heater Control

RF-biased Josephson Junctions for Heater Control

Standoff vs. Josephson Quantum Number n

A New 'Fixed-Point' Standard

Future Work: Radiometric Comparisons

Three independent BB references

Inner shield maintained at $T_{\lambda}\pm\,50~pK$

Each reference counted up from T_{λ} to 2.7 K using Josephson heater control

Compare to each other with 0.1 nK resolution in a well controlled cryostat

New control theory has been developed

(Discussions with Phil Lubin, UCSB and with George Seidel at Brown)

<u>Conclusions</u>

- Fundamental noise sources in PST identified and reduced
- Lowest noise ~ 25 pK/ \sqrt{Hz} at 1.6 K
- New rf-biased Josephson junction heater controller developed
- Technology in place now to develop a reference standard more stable than the CMB temperature (< 200 pK/year drift) in a weightless lab, provided that T_{λ} does not vary with the cosmic expansion