<u>Demonstration of an Ultra-</u> <u>Stable Thermal Platform</u>

Colin Green¹, Dmitri Sergatskov¹, and R. V. Duncan^{1,2}

¹ University of New Mexico (UNM)
² California Institute of Technology (Caltech)

July 8, 2004 QFS 2004, Trento, Italy

Work supported by NASA, and by a no-cost equipment loan from Sandia National Laboratories

New Ultra-Stable Platform

Concept from QFS 2000 ...

The helium sample is contained within the PdMn thermometric element. Power dissipation is precisely controlled with the rf-biased Josephson junction array (JJA). Stabilize to $\delta T \sim 10^{-11}$ K.

Why Do This?

Improved blackbody standard for cosmology

- On Earth, hold T_{λ} to within a nK
- Weightless, hold \textbf{T}_{λ} to within 50 pK
- Anisotropy stability studies
- Radiant energy studies
- Universe cools at ~ 200 pK / year

Critical Fluctuations Studies

- At ε≈ 10⁻¹⁰ ξ≈ 1 mm
- $\delta t \sim \xi^2 / D_{\psi} \sim 0.1 \text{ s}$
- Fluctuations within thermometry BW

(Work on sputtered PdMn films has progressed nicely, but is not reported here)

New Ultra-Stable Platform

Concept from QFS 2000 ...

The helium sample is contained within the PdMn thermometric element. Power dissipation is precisely controlled with the rf-biased Josephson junction array (JJA). Stabilize to $\delta T \sim 10^{-11}$ K.

1. Paramagnetic Susceptibility Thermometry

Magnetic flux is trapped in a niobium tube

A paramagnetic substance with T > T_c is thermally anchored to the platform

 $M = H \chi(T)$

 $\chi(T) = \Gamma [(T - T_c)/T_c]^{-\gamma}$ so small changes in T create large changes in M, and hence in the flux coupled to the SQUID

Gifford, Web, Wheatley (1971) Lipa and Chui (1981)

<u>Sensitivity of Paramagnetic</u> <u>Susceptibility Thermometry</u>

- Calibrate $\Delta T = \Delta \Phi / s$
- $\phi_o = h/(2e) \approx 2.07 \times 10^{-15} \text{ Wb} (Wb = T m^2 = V/Hz)$

PdMn: Klemme *et al.*, JLTP <u>116</u>, 133 (1999) Nelson, Sergatskov, & Duncan, JLTP <u>127</u> 173 (2002)

Fundamental Noise Sources

SQUID noise

 $\langle (\Delta \Phi_{SQ})^2 \rangle^{1/2} \approx 4 \ \mu \phi_o / \sqrt{Hz}$ with shorted input external circuit creates about three times this noise level so $\Delta \Phi \approx 12 \ \mu \phi_o / \sqrt{Hz}$ and $\delta T_{SQ} \approx 12 \ pK / \sqrt{Hz}$

Heat Fluctuation Noise Across the Link

HRT Time Constant

Method:

- Controlled cell temperature with T1
- Pulsed a heater located on T2
- Cell in superfluid state
- Contact area of only 0.05 cm²

- Rise time ~ 20 ms
- Decay time = 48 ms

Collaboration with Peter Day

Reduce the Heat Fluctuation Noise

The Cryostat

Thermally Driven Electric Current Fluctuations

Thermal current fluctuations: $\delta \Phi = 38 \ \mu \phi_o / (Hz \ K)^{1/2} \ \sqrt{T}$ SQUID circuit noise: $\delta \Phi_{SQ} = 12.5 \ \mu \phi_o / \sqrt{Hz}$

2. RF-biased Josephson Junctions for Heater Control

Standoff vs. Josephson Quantum Number

A New 'Fixed-Point' Standard

Conclusions

- Fundamental noise sources in PST identified and reduced
- Lowest noise ~ 25 pK/ \sqrt{Hz} at 1.6 K
- New rf-biased Josephson junction heater controller developed
- Technology in place now to develop a reference standard more stable than the CMB temperature (< 200 pK/year drift) in a weightless lab, provided that T_{λ} does not vary with the cosmic expansion

PdMn0.9% Thin Film Magnetic Susceptibility Thermometry

See R.C. Nelson *et al.*, JLTP (2002) For thermometry, See Duncan *et al.*, <u>2nd Pan Pacific Basin Workshop</u>, 2001.

New Data, PdMn0.4%, 6.67 µm thick films

 $T_c = 1.17 \pm 0.01 \text{ K}$

 γ = 1.41 ± 0.01

Data by... Ray Nelson Colin Green Dmitri Sergatskov R. V. Duncan

