

02

After Irradiation: Gas Extraction (I)

Tritium collection process

Volumes and masses are measured. (masses of sample & H₂O for rinsing) Pressures and temperatures measured in each zone throughout experiment

Heater

Vac

Pressure
Sensor

V3

V5

Pressure
Sensor

V3

V5

Pressure
Sensor

Vac

Pressure
Sensor

V3

V5

Pressure
Sensor

Vac

Pressure
Sensor

Pressure
S

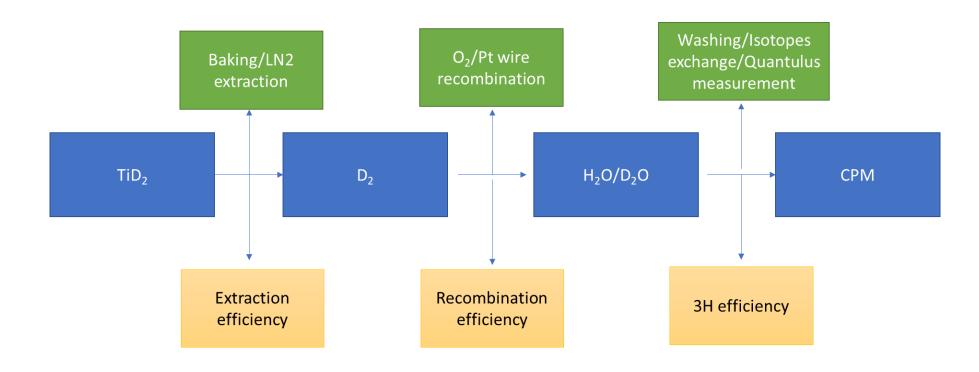
Evacuate manifold and O₂ line Heat TiD₂ chamber past decomposition temperature to liberate D₂ T, & any residual gases

Chill D₂ collection chamber with LN₂ to capture as much non-reacted gas as possible

Close V1 before letting system return to room temperature

Fill O_2 chamber with as much O_2 as D_2 in D_2 chamber, over 1:1 stoichiometric ratio (This ratio has shown best results for quick and complete reaction)

Close V5. Open V4 to let D₂ diffuse and react at catalyst, and then isotope exchange with H₂O. D₂ will form D₂O & the D₂O will diffuse into the much larger added mass of H₂O for ease of collection by rinsing.


Use H_2O to rinse the chamber and then collect H_2O . For samples with T, typically the chamber is rinsed three times until no signal is observed in Quantulus.

Gas Extraction (II)

Collection efficiency of each step

Gas Extraction (III)

Summary of the processing efficiencies

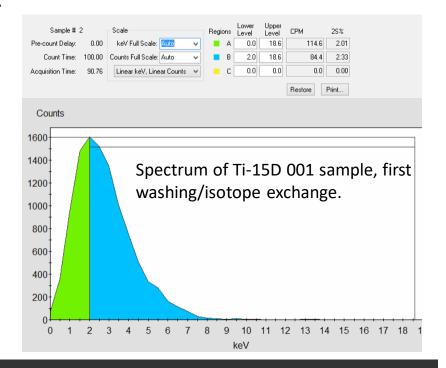
	Sample	Collection Efficiency	Recombination Efficiency	3H Efficiency	Total
H_2	Ti-17P 001 2 min radiation	64%	87%	60%	33%
	Ti-17P 002 4 min radiation	65%	93%	59%	36%
	Ti-17P 003 6 min radiation	63%	94%	60%	36%
D_2	Ti-15D 001 2 min radiation	65%	84%	60%	33%
	Ti-15D 002 4 min radiation	55%	87%	60%	29%
	Ti-15D 003 6 min radiation	61%	91%	60%	30%
D_2	TiD ₂ #1 50h radiation	65%	90%	60%	35%
	TiD ₂ #2 50h radiation	73%	84%	60%	37%
	TiD ₂ #3 50h radiation	38%	89%	60%	20%
	TiD ₂ #4 50h radiation	45%	90%	60%	24%

Quantulus: Quantifying Triton Generation (I)

2009 Quantulus GCT 6220 operation

Allows counting nuclides in sample

For each sample in assay, the instrument:


- Measures activity in a sample vial as Counts Per Minute (CPM).
- Determines quench level via one of the Quench Indicating Parameters (QIPs).
- Determines counting efficiency from a quench curve (plots% Efficiency vs. QIP).
- Calculates DPM, where DPM = CPM / Efficiency.

Ultima Gold is used to calibrate the activity before and after the sample measurements.

Quantulus: Quantifying Triton Generation (II)

For 1 MBq, (1 M DPS)

$$N = \frac{(-dN/dt)}{\lambda} = \frac{10^6/\text{sec}}{\lambda}$$

$$\lambda = \frac{0.693}{t_{1/2}} = \frac{(0.693)}{(12.33yr)(\pi \times 10^7 \sec/yr)} = 1.789x \, 10^{-9} \sec^{-1}$$

$$N = \frac{A}{\lambda} = \frac{(10^6/\text{sec})}{(1.789)(10^{-9}/\text{sec})} = (5.59)(10^{14}) \text{ nuclei}$$

1 DPM \rightarrow 9.3 x 10⁶ nuclei

Conclusion From Experiment: Between $5 - 6 \times 10^{12}$ t in original sample

		`			
	Sample	Quantulus Counts Per Minutes	Total Triton produced (nuclei)		
	Ti-17P 001 2 min radiation	0	0		
H ₂ -	Ti-17P 002 4 min radiation	0	0		
	Ti-17P 003 6 min radiation	0	0		
	Ti-15D 001 2 min radiation	117	3.3 x 10 ⁹		
D_2	Ti-15D 002 4 min radiation	236	7.6 x 10 ⁹		
	Ti-15D 003 6 min radiation	412	11.5x10 ⁹		
	TiD ₂ #1 50h radiation	186879	5.0 x 10 ¹²		
	TiD ₂ #2 50h radiation	208963	5.8 x 10 ¹²		
$D_2 \stackrel{\prec}{=}$	TiD ₂ #3 50h radiation	113843	5.3 x 10 ¹²		
	TiD ₂ #4 50h radiation	146110	5.6 x 10 ¹²		