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71884.] .+ " Professor Oayley on Double Algebra:

. Thursday, April 3rd, 1884, -
Professor HENRICI, F.R.S;, President, in the Chair.

The Rev. A. C. E. Blomfield was admitted into the Society.

The following communications werc made :—

« On Double Algebra,” Professor Cayley, F.R.S.

« On direct investigntion of the Complete Primitive of the Equation
(2,9, z,p,9) =0, with a way ‘of remembering the Auxiliary
System,” Mr. J. W. Russell. IR : _

“On Eleetrical Oscillations and the effccts produced by the motion
of an Blectrificd Sphere,” J. J. Thomson, F.R.S. ' o

“QOn the Homogencous and other forms of Eguation of a Plane
. . ' ‘ : S Section of a Surface,” 3. J. Walker, T.R.S.

o The following presents were reeeived :— :

Cabinet Portruits of Professor’ Cayley aud the Jute ProfessorJ. Clerk Maxwell,

presented by Mr. R. Forsyth Scolf, ’

LONDON MATHBMAUTCAL socipty, [ mmmmeeoveess
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On Double Algebra. DBy Professor CAYLEY.
' [Read April 3rd, 1884.]

VOL. XV. 1. T consider the Double Algebra formed with the extraordinavy
) : ' 500 symbols, or “extraordinaries” @, y, which are such that
@ = ae+by, o, as these cquations may also be written, ]

AN
ay = cx 4 dy, i x Y ; .

————— LS, . .

~ b

e = er +fy, . (o, @) ¢

y* =gy, - e
‘ . B e = @r) (g, 1)
where a, b, ¢, d, ¢, f, g, h ave ordinary symbols, or sgy coefficients ; all®" -
coofficients being commutative and associative tuter se, and with the
extraordinaries a, . .
"The system depends in ‘the first instance on the eight parameters
_ ‘a, bye,dye, fr g s bub we.may, instead of the extraordinaries @, 7,
v ‘ _ consider the new extraordinaries connected' therewith by the Jinear
OL e ' : v 7 yelations £ = v+ Py, n = yu+Cy, where the cocflicients «, f3, v, ¢ may
ONDON : . . « y.-
- : . be determined so as to establish between the cight parameters any
FRANCIS HODGSON, 89 FARRINGDON STREET, E.C. " four rclations ab pleasurc (or, what is the same thing, a, B8,v, §ave "
: : : , - § ".what I call “apoclastic” constants) : and the number of parameters
is thus properly 8—4, =4. o




\

dlﬁeunrf helem frgpft tho imaginaries of Peirce’s Memioir, ¢ me'u'

Assocmt\v Klgebra ™ (1870), reprinted in tho American Mathematical

~ Jowrnal, t. 4 (1 881) PP ‘)7———22(J which, as appenrs by the title, refers

' only to "assdeiativo 1 imaginaries. I recall some definitions and results,

The symbol @ is said to be idempotent if a*=w, nilpotent if 2’=0; and
the systems of assoeiative symbols are expressed as much as may- be
by means of such 1dcmpotenb aud nilpotent, symbols: thus the linear
systems are (@) 2* ==, (3,)2* = 0. "A double system -composed of

independent symbols, that is, symbols «,y cuch hel ongino' to its own

lmem‘ system, and. moreover such that @y = ya =0, is said to be
Im\(,d ”. tlms the nnxod double Q) .sf(‘ms are

._.yi 0

But these Poirco excludes from consulermon,
pure sysbcms, which he finds to be

® .y

(“a) wioal oy o, (l’ﬂ) %

/] 'g/' _0. Y

v“To these, howe{rér, should be added the systelh'
% . L . .

.

((?z) "’

'1884-:] E ProfesSor Cayley on Double A?gcbm.

the relanon of which to Peirce’s system was, as I thers rema,r]\cd
~ pointed out to-me by Mr. C. 8. Paivce: this will be considered in the

sequel, Nos: 13 to 19,
4. Starting now with the general equations

' = az-+ by,

=cr+dy,

ye = ex+fy,

. ¥ = ga-+hy,
we may atlempt to ﬁnd anex Lmordmav) £ =um+;)y (0, coeﬁlcleuts)
such that, &= (K a coefficient). K is notin geueral =0, and, when

it is not = 0, it may without loss of generality be tuken 1o be = 1 we

havethen? P =§ & an {dempotent symbol.  But Kmay be=0; and then
£ =0, £ anilpotent symbol.: To include the two o 1ses, 1 1cffun K it

- being vnderstood that, when I i is not = 0, it may bo tuken to be = 1.

‘ Wohave & = (ax-+by) 4-uf3 (cFe ’U+d+f7/)+ 5" ((/( +hy) .

= {ad*+(c+0) af+ g} o + {ba*+ (d+f) (1/>+I£f' by,
Hence when. this is = K%, that is,
=t )
@ .
F &+ (d+ f) u/)-}-/z[w o
a cnhic equation for the defermination of the ratio «:f5; and, fov‘

any particular value of the ratio, we can’ in genoml determine the
absolute magnitudes, so that

we hiave

IL -.-{au+(c+c)uf‘+ﬂ’ },-—-—; +((l+f)a[)+7l[ },

=
—{-Lg:"

.

» . slnll be.= If‘, however, for the given value of the ratio e have
J |

LN 19’; o o A aa°+(c+c)af3+'g/‘3=0 bl (d+f) af+1f3 = 0
seopos 0. R . ok B

3. In the gcneml theory, where the sy mbols are nob in. the first in-
“stance taken to be associativ e, we may .of course establish Dbetseen the

" coeflicients such relations ag will make the BY mbols associative, and

©the™ question presents itsclf to ﬁhow how in this case the system
reduces itsell to one of Peirce's b) stoms, This T considered in my
‘note “On Associativo. Imaginarics,” Johns Hoplins University Cireular,
" No. 15 (1882), p. 211; 1 thmc obtained as the general form of the
commuhhve 'md assocmtn‘ 5y stem -
' @* = av+by,
'myf': Y = vc.u—i-d‘/,
- 2

(one of these equations, of conrse, unplym(r the ot} 101‘) then the \'ﬂlue.‘
of K is = (. e :

L
‘It follotys that there ave in general Lhree 1dempoteut svmboh

»E, n, ¢, that is, extraordinaries éuch that & =& ="y, =17, The '

cubic equation ;may, however, have two'equal roots, or thrce equal roots,

or it may vanish 1d(‘nt1c.ﬂly, In this last casc, any linear fnn(,tzon
S am+[’\; 18 1n geneml idempotent.  But (as will be consldu-cd in detail
" further on) we may, instead of an 1dempotent symbol or symbols,

havo, & nilpotent symbol or symbols It might be convenient to use

© the term. Potcncb for & symbol which'is in n'onelal idempotent, bnt”:f.

‘thlch may be nilpotent. - ertmn“—&-_——q—’, W' obtam a cubxc

B
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i : : CInth alive ¢ . — — o T
equation Q = (2, y)* = 0, where obwougly the hnear f'qc tors of & are 7. In the commutative case, ¢ = ¢, and = f, we have

the just-mentioned funetions &, », &3 thatis, we have { L { as the linear L - . O =¢p= (ch—=dg) * + (~alk+ i) ay+ (ad—be) s

factors of the cubic function here Sy =0, yf=10, and the values may be taken to be (8. 4.0

O, = g2 (h—c--¢) oy + (e—=d=1) 2y’ + 1y, Snn) = (0 8), so thad LE =8, = yn,; that is, & =4,
each such factor, except in the ease wheve it is nilpotent, being defer- ] ‘ The value of Q is 0= gt (I =2e) @y + (a—24d) ;7'_1/"'+L_',‘
mined so that it shall be idermpotent. The cubie function of course

_ ) _ ' . 8. In the commutative and nssm-im’i\'c case, taking &y, o be the
vanishes identically if ¢ =0, k—c—e =0, a~d- -/ =0, b = Q. ‘ ’

_ three idempotent symbuls, & = &, > =, £ = &, we have

6. Two extraordinarvies & = ax+4fy; n, = ya+cy (u, 3,7, ¢ mcﬂi- : t

cients) may be sueh that E9=0 (this, of course, does not imply yi=0): e Vin 1] ; . .
B H Jus manner we have * SIN ¢ 8

we have in fact | and 1 this maner we have the six equations 7

(I] -—511.), = =&y = y— =0,

Iy = (wet By) (v + ¢n) ‘ e ECr=bn) =0, E({=20) =05 (E=nd) = 00 o ({=l) = 05
= ay2’+adoy -y yrt foyt ’ ¥ FE=0=0, 0 (n—im) =0,
= ay (aw+by)+ac (cx-+dy) 4- By (e 1) -+ 536 (it 1) S .
— (auw+c«a by ) st (ay +dd 13y + 1) 75 : : viz., regarding the right-hand factor as being in cach case expressed

as o lincar function of @, 4, we have apparently six-products of two
and the requived condition is satisficd if

i linear factors, cach = 0 there 1s only one such preduct ¢ = 0, hence,
aay 4+ cac ey +ghc =0, I disregarding coeflicients, each of the six produets must he = &, or it
by +dué + f3y +1pé = 0. S must be identically = 0, viz, this will be the case if the second factor
’ - be = 0. Weshence conclude that two of the symbols™E, 4, £, suppose
£and », must be factors of ¢, viz,, & must be = &y, We have Q = &l ;>
¥ (aat By +3 (ratgf) =0, consequently € == {d, that is, two of the three lincar factors of Q are
y (e fB) 48 (laA-43) = O, ] : the symbols &y, which are such that &y (= 38) = 0. To complete the
and then nuder the form ' theory, ohserve that & must be a Tincar function of &, 4, = i+ by
suppose (@, b coeflicients, neither of them = 0) 5 we thenee have

Writing these equations first under the form

a lay +e0) 4B ey tgi) =0, | R
« by 08+ (fr+18) =0, - O = S, = U, = 4= b
we have (vt ) (da+13) — (ha A4 773) (cie+ gf )) =0, . i that Is, (@*—=a) &4 (U b) 3 == 05 whence a = 1, b =1, and therefore
: (=t henee also 8 =8 and yI=0; (=l =y {—yl =5 T h% A
. o . . ‘ six products conseguently ave &y, Iy, oyl & {0, {0, cach =@ oF
v (ay+ee)(fy +hd)— by +de)(ey + ‘/"‘) =0, : K identically = 0. ’
a qn'uh)o cquation of the determination of y ¢ that is, there ave. : '
two values of the left-hand fuctor &5 and two \'uhws of the v Jght-hmld o
factor n. Bul, of course, these correspoud cach {o each, viz, either
factor being given, the other factor is defermined uniguely.
Writing successively »;- = :'!, and L= T n , we have the guadric : : lir= J——tl;r—-(—“],
. 7 A 14 o . . . g
functions (v, )% ] : alues which give
L= (eh—1y) a*+(—ah—de+bg+-cf) oy -+ (ad—1be) o, : bb = (bt —acd) 2+ (——(ul —ube &*d hal) 2y + (ubd—b c) Yy’
D= (ci—dg) &+ (—ah—cf+ g+ o+ (/-1 oy (1) {est (A=) ey =1},
where the Iincar factors of @ are the two values &, & of {he left- =7
hand faclor &; and the lincav factors of &, ara the two mlucs 7, 1; of
the right-hand factor n : )

a quadric equation for the determination of « t 55 and then

u, In verification of the theorem that for the commulaiive and
associalive system the-cubic function € contains the quadric function

.

¢ as a factor, we may write, as above, Ty

U2 = edr’ (L =be—ad) <y 4 (ob—2bd) my* + U
(dz=ly) {ca* + (d—a) ey =y},
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which gives the theorem in question. And observe furiher that

(de=by)* = & (ae+by) —20d (cx+dy) +1? (Egzm#ﬁ;f_mzy),
= (ad —Uc)(dz—by).

That is, dlSlt”"lldlnf" cocflictents, the fawo ide mpotcnt symbols &, 5 are

the lmcn factors of ex*+ (u——n) wey—0i7, and the third ide mpofent
symbol ¢ is = du—1y. '

10. Introducing cocfiicicuts in order to make the sy mbo s & mn ¢
1dcmp0£ent and writing accordingly - '

= :Zl‘ {c.‘c-}—é (d=a+ %)y}, V= (d—a)*-+4be, so thal

1 \ : " R
1= lertl (@mamyvS) kG 0 (et () ey,

1 g
{= 7 ((Z:u——bj/),

wo have to verify that it is possiblo to determine K, L, P so that
&= £ W=, =0 =y 'The last equation gives

d ¢ - c
rToow T oop
2% — (Z'—a. + \/V,_i_ c?~a-t_5_/_v
P I ' L ’
and we thence have
& (d—a)+2be—a, /\' _2cy/¥
I K
A(d—a)+2etd /¥ _ 200V i
P R A

and we can from the cquation % = ¢ find I; viz, comparing the
coeflicients of «, we have

: , :
-}—)—__ I]) (d a—20dc4 1" fi) ‘](; (ad—=be), that is, P = (ad —le),

B

or tho values of I and I wre

{__l_(d—a) -")/?L——(Z /\'} 92/Y
ad—1be T TR

{d(d—a) +20¢ ol V) + _b\/v
(luf~bc I

which should agree with the values of X and 7, found from the
equations &* == & o’ =, respectively, Comparing the coeflicients of «,
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the first of these equations gives
%——v];l—{cu—{-c(d—a-{— Vet (d—a+t /T)”Cd }
L
= ”-/— { dabe+4be(d—a) +d{(d—a)*+¥}
0T ,* 9] (01 } 7((0__‘1)) V
=5 {(zv 4 {d (D=} +20c) /T, %
that is, , K= 31- VAL I CETR U B VAES
and the equation for I becomes
d(d—a)4+2bc—d, /V —dle )
ald —be (1(1]——(1) +20¢ 4 (7/V
, that is, {d(I =) 20— {(d~a)" | 4be} = —4be (ad —Le),

whichiis vight ; and similarly the equation for I leads {o this same
equation. >

11. We may now establish, on the pmxuplm (tppe'nmfr in No. 5, the
different forms of the system, Usmg 1denr and nil as abbreviations
for idempolent and nilpotent respectively, there are in all 11 cases.

(1) 3idews. Taking two of these to be w and y, the system is

=, wy=cet+dy, yo =iy, v =1.
Hunw Q= (l—c—e) 2’y + (1 -d—f) 2y’ 5o that the third factor is
(l=c—=c)a4(1—=d—f)y. 'This must not reduce itsclf to z or y, for,
if so, there would bo @ twofol d idem 5 viz,, as negative coudltlom
we must have ¢-tc =% (7 +1

And we have

{(l—c—)z+ (1 —d—[)y}

= (1= (c+(T+N)} [(—e=)e+(1—d—P)y),
which must be an idem : viz, we have the further negative condition
(c+o)(d+1) +# 1.

(2) 2idems and 1 nil, -This arises from (1) by assuming therein

(c+e) (d+7)y =1, say d+f= C——%—(

for then, writing 7 = — (c++«) =4y, we have
# = (cte)fe—(cto) {(cte)ut @+ yt 4,
= {l=(ct2)(@+N}y, =03 :

viz, zis anil.  And, if in the cquations instead of the idem % we in-
troduce the nil z, then {he equutions assunie the form

¢ =g, m=[(ote)d—cletds, so=[(oto)~clutfs =0

- with the idem y = (c+¢)w+=:- hence the negative conditions

¢tezt1or 0, implying d+f# 1.
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But the cquations are obtained in a more simple form by taking a for
{the idem and 4 X for the nil; viz.,, we then have &* =2, 2y = ca+-dy,
yo = cr+Jy, yF = 0: we must then have z, =—(cteyot+(A—d—/)y
for an idem; this gives @ == (c+)(d+1)= and we have the
negative (,OIldlLl()XlS cte=0,d+/£0or 1.

(3) 1 idem and 2 nils.  This may be deduced from (2) by writing
thmun d4f =035 for then &, =—(c-+e) w+y isanil. The equations
are @t = ., 2l = u,—{—r?y, yr == cox—dy, 3> = 0: and if, instead of «, we
mtroduce therein = by the equation o == — (o« Yy, the equations be-
come 3 =0, yz=[—etd(c+)]y-—e zy= [—¢~<? (e o)t es,
=0, with thc negative comdition ¢4e 5= 0,

But it 3s move shaple to take v,y as the uils: the equations then
ave ¥ =0, wy=cr4dy. yr=crtfy, =0 We must have
2, = (c4e) zd- (A7) y, an idem: this gives 22 = (e4¢) (d+1)x; and
we have the negative conditions ¢--0 £ 0, d--1 5 0.

(¥) Wecannot have three nils. Forin (3) o make  anil we must
have ede=0 or d+f=0, ud in the two cases respectively
z, = (c+c) a4 (d+[) y hecomes = @ and = y; so that @ or y is a two-
fold nil.  Or, what comes to the same thing, we have

Q=—(c+e) 2’y —(d+f) ay,
and Q has a twolold factor if ¢4-e = 0 or 47 = 0.

(4) A twofold idem and a onefuld idem. Taking » for the tivofold
idem and o for the oncfold idem, @ must reduce itselt to (1 —c--c) iy,
© viz,, we must have d4+f =1, or say f=1—d. The equations are
=, zy = cetdy, yr =cor+ (A —d)y, ¥ =v; und we have the
negative condition c+e 7= 1, for otherwise € would vanish identically.,

(5) A twofold idem and a onefold nil. Taking o for the twofold
idem and ¥ for the onefold nil, then the equations” are o' = a,
ay=ce+dy, yjr=ce+(1—=d)y, ¥ ="0; and we have the negative
condifion c4e= O

(6) A twofuld nil and = onefold idem. Taking these to be & and
y, then d+f =0, and the equations ave «* =0, @y == cet+dy,
ye = ex—dy, y* = y; and we have Ulc negative condition ¢4 ¢ £ 1.

(7) A twofold nil and o oncfold nil 'l.d\m(f these {o he w and 9,
we have Jd+47 =0, and the quALtmnx are =0, my = co-tdy,
yer=ex—dy, y* = 0; with the negative condition ¢+ e -£0,

(8) A threefold idem. Taking this to be 2, then & must reduce
itself to ¢o®, viz,, we must have 7 =c+4e¢, 1 = d4f: and the equa-
tions ave z* =, 2y =ce+dy, ye=ce+ A=y, ¥ =g+ (ct+e)y;
we have the negative condition g 5= 0, for other \\m, Q would vanish
: 1den{1mlly
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(9) A threefold nil. Taking this to bo =, then wo must have
h=cte, 0=da+f; the ecquations are «?=0, ay = cu+dy,
Yy = ex —(I_/, ¥'=gx+(c+c)y; and there is again the negative con-
dition g £ 0.

(10) @ =0 identically : infinity of idems, 1 nil.  Q will vanish
identically if g =0, h =c+e, ¢« = d+f, b=0. If thereis 1idem,
thero will be an infinity of idems, and 1 nil. For, assume an idem .,
2’ = w; and, if possible, let there be no other idem 3 then there will bo
n. 1111 ¥, i =0. We lmo cte=0, :H—f—- 1; and the cquations aro

&, wy = cx+dy, yr =—cz+(1—d) vy, 3 = 0; whencee zytyr=y.

Jakmw a, > arbitrary coeflicicnts, we have

 ax+py) = xtaiy, = a (ax +534);
henee ae-t Sy is an idem, except in the caso « =0, when it is the
original nil y.
I besides the idem @ we have an idem y, then the conditions aro
ct+e=1, d+7=1: the equaiions are

n

at =, wy=cetdy, yr= (1—c) o+ (1—d)y, y* =y;
whencee ay+-yz = x-+y. (101131({(,1111" the combination az+ 3y, we havo
(ax+ ) = detaf (@ +_/) + 7y, = (u -}-p)(rzu—}—[uj)
This is an idem, except in the case a4-f=0, when itisa nil; or, suy
we have the single nil #—y.  We havo thus again an infinity of
idews, 1 nil.
(1) Q=90 idonﬁcnﬂyy; an infinity of nils. Taking the two nils
2 and y, the conditions arc ¢+e =0, (l-{-f 0; the equations aro
2* =0, ay=cotdy, y»=—ce~dy, ' = 0; whence ay+yr = 0,
Cousidering the arbitrary combination (z.;-}-ﬁj, we have
(ax+Py) = af3 (ey+yz), = 0,
viz., az+fy is a nil ; or there are an infinity of nils,
12. The different cases may be grouped together as follows 1—
A, 2idems, (D), (") (1), (10).
]‘qu"btons W=, xy = cotdy, yr = cxtfy, v = y
B. 1idem and 1 nil, (2), (3), (5), (G), (10).
Equations o* =2, ay = cotdy, yo = ex4fy, ' =0.
C. 2 nils, (3), (7), (11).
Equations 2* = 0, zy = cx+dy, yo = ex+fy, * = 0.
D. Threcfold 1dom, (8). ‘
Equations 2? =g, :z_/ =cx+dy, yr = co—(1— d) U

7 = gt (o+0) y.
VOL. XV.—N0. 227, ’ 0




Professor Cayley on Doulle Algibra: [Apiil 8,
'E. Threefold nil, (9). . -
I‘quatlons =0, 2y = cz+dy, yr = ex—dy,
y~—9w4(u+o)w
The several cases of A, I, C respectively ave distinguished by negative

conditions which need not be here repented.

13. T consider, as in my Noto before referred to, the conditions in
order that the system may he associntive. Wo bave the 8 produ{:ts,
vy, 2yt y" 5y, 7y giving vise to cquations 2. 2" = a?..
Yy s Yoy =y .y, which, on puiting therein for a?, : LJ,J(,
#* their values, must be satisfied 1Jcntwall_y We thus obtain in the
first instance 10 relations, but some of these ave repeated, and we have
actually only 12 relations; viz., the relations are

(twice) b(c—e) =0,
b (=) =0,
g (6—e) =10,
(twice) - g(f—A) =0,
twice) by — ed =
{twice) by —¢f =
¢ (=) (1)
d(d—a)+b(c=1)
¢ (e=1) g (f~a)
b (o—1)-h7 (f—u)
w(c—e)—of 4 e =
h(f=dy—¢f +do =
LL Frora the fivst founr eqnadions.ig appears that either b =0,
g="0orche e=e and d=/f [ attend tivst to ihe latior cuse, viz.,
we fave hers the commudative system
Tt =y, wy =yeo=ce +edy, ¥ =ge+hy.
Tn order that this may be associative, we must still have the relalions
by—ed = 0,
(o) g (A=) = 0,
d(d—a)+b(c—h)=0,
ar, as H_xley may be written

b, —¢, d—u | =0.

l‘——d, g, ¢~

These are satisﬁed. by 9=
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cd, 7= & +bec—ad
T b
commutative and associative system of the Nofe,
Fvery systemis of the form A, B, 0, D,or I/; and it can be qho\\n
that the commutative and associative system 18 not of the” fbnn D,
For, it D were commutative, we should have ¢ = ¢, d =L viz, the
ann*mua will I)L F=y oy o= oy = on S, ¥ == g 2ay, that is,

, and we havoe thus tHo

aq, by dyg, h=1,0,¢ % g, 2;

.

and the last of the three velations, viz., d (d—a)+-b (c—1) = 0, would
thus be 4 (§—1) =0, which is not satisfied. Hence the commuta-

tive and %socmtno system can onl) be of one of the forms /A, B, O,
and L,

15, Tirst, if the form be A, B, or (1 ‘thero will be the iwo idcm-or‘-'
nil symbols v and y, that is, we m: ay assumo b =0, g=10; and the
associative conditions then become ed = 0, ¢ (c—h) = 0,d(d—v)=
viz, for the forms A, I, ¢,

Al x, =y,
B, 2t =g, _7/2_2
“1050 ave ul =0, c(c—1) = O d (Ll—l) c=0orl,d=00rl,
Gy d=0, (,__O,J(d-)_0,c=0, d=0o0rl,
y el =0, =0, d=0;c=0, d=0. '
Bat for the form 1\ 1f c=0, a=1, that i Is, ay = ye =y, then, writing
=2y, have of =z, gz = =0, " =y. Andsimilarly, ile =1,
d =0, that is, vy = y2 = &, then, writing = =—uw-ty, we have 2° =g,

= =0, »*=n. Thatis, cach of thcw 15 reduced to the first caso

¢c=0,d=0; that is, 2¥ = 2, ay = ye =0, * = 1.

Yor tho form B, if ¢ =0, d=1, thcn the system.is 2’ = 2,
gy=yr =y, y'= (), aud this cannob be reduced to the first caso
=2y =pr=0, =

For the form €., there is onl) one case, as alove.

Ior the form 1., we bave a = 0, 1 = 0, (c=r,d=0,1in 01J(*1‘ that
the systeinvmay be commutbative), b = 2, viz, ihe crquations must he
=0, ay=yv=cr, 1 =g +2ey. Tho assoelntive couditiong
then give ¢ =035 or, t-hp syslem is 2’ = 0, ay =ye =0, ¥y = ga.

o H ’ . . .
Writing =- instead of #; and for convenience interchanging « and y,
g
tho qulilthH\ are o =y, ay =y =0, =0,

16. 'lhe commutative associative system is thus seen to ho reduciblo

02
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ag follows :—
A, system is 2° = 2, ay = y2 = 0, * = y, first mixed system sco No. 2,
) @ =uw, ay =y =y, y* = 0, Peirce’s system (a,).
ot =, wy=yz =0, y* = 0, second mixed system,
ot =0, ey = yr =0, y* = 0, third mixed system.’
. =y ay = ye=0, ;" =0, Deirce’s system (c.).
Tsaid, at the end of my Note before veferred 1o, that it had heen
« poinicd out to me *that my system [the commutative associative
R T ) . . . )
system], in the general case ad—Tc not =0, isexpressible as a mixture
of two algebras of the forin (), see p. 1205 whereus, if al—le= 0,
it is veducible to the form (e), see p. 122" The accurate conclusion
_is as above, that the commutative associative system is cithera mixed
+ sgitem of one of the three forms, or else a'system (u,), ov (¢).
¥ 17. Considering next the non-commutative associative systems, wo
have here, ante, No. 14, 0 =0, y = 0; and the relations which remain
to be satisfied then are g
ed=0,ef =0, c(c—0)=0,d(d—e) =0,c(c=0) =0, f(f—u) =0,
a(c—e)—+de=0, h(f—d)—cf+dec=0.
,The firsl equation gives o = 0, that is, ¢ = 0 or d == 0; but we may

Aattend exclosively to the case ¢ =0, fov the case d =0 may be

Joduced from this by the tuterchange of &, y. Wo have then of = 0;

1it will be convenieni to separate the cases

Loe=0,e=0,f=0, giving d (d—a) =0, dh=0, .

ILe=0,e=0,/#0, , d(d—a)=0,f—uw=0 f-d)=0,_

HI.e=0,e50,/=0, ,, d{d—a)x0, e—=h=0, (d—n) =0,
d(e=l) =0,

that 15, d—a = 0, e—1L = 0.
18, We have thus five cases

I (). d=0: *=wx, 2y =92 =0, y*=ly: commutativg,
and so included in what precedes.

L@, d=a, h=0: " =ae, ay=uy, yr =0, ¥»=0: or,

writing as we may do a =1, this s &' =2, ay =y, ¢

yo =0, y* = 0; which s Peivee’s system (b,).

IL (o). d=f=ua: 2 =ar, oy =y2 = uy, y* = hy : commuta- -

live, and so included in whatb precedes.

IL (). d=0, f=a, h=0: " =qaz,2y =0, yr =y, ¥ =03

or, writing as we may doa =1, thisisa’ =z, vy = 0,
ye =y, y* = 0; which is the system (d;).
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IIt. (). d=a, e=h: < =ar, Ty = ay, yv=ha, 3/’ =ly; or,
writing as we may do a=1, k=1, this i3 a*=2, ay=y;
p=z; =1y Tntroducing here the mew symbol
2, =a—y, wohave s’ =0, xz =2, 2 = 0, ys =1z, 2y=0.
Thusa, z form the system 2* =, vs =13, =0 = 0, "” =0
(or, what is tho sume thing, ¥, 2 form a system y° =y,
ye =z, 2y =0, 2 = 0); each of theseis I’eirco’s_system
() ‘

The conclusion is tha every non-commutative associative system i3
cither Peiree’s system (0,), or'clso tho omitted system (’]’)'. II(')HQO,
disregarding the mixed systems, every associabive system is either
(uy)y (a), (e, or (dy).

19, Tt may be proper to show that tho systems (b)), 2° = 2, 2y =1
ye =0,y = 0, and (dy), &* =&,y = 0, yo =1, y' =0, or say

: ' e b cd e fygh v
(b._.)lOOlOOOO
(d,) 10000100,

ave really distinct from each other. Observe that they cu:ch 'belong
to tho caso 10, € = 0, an infinity of idems and 1 nil; viz, in each
of them writing z=az+By, 5 an arbitrary cocﬂici'enb, we lmv‘o
& = o B ey +yr) H N = et Py, = 5 we have = an idem, and y 13
the only nil.  And, this being s0, we havo in the first system zy =y,
iz =0, viz, the system is 2’ =z, 2y =y, ¥ = 0., y v—:.O, retaining,
when we write # for ¢, ils oviginal form.  And stmilarly, in thesecond
system, zy = 0, yz =y; viz, tho system is 2f = 7 7Y = ,0’ Yz =Yy
y? = 0, retainivg, when we write therein z for 2, its original form.
The two arc thus distinct systems, in no wise transformablo the ono
iuto the otfior.

On Electrical Oscillations and the effects produced by the motion

of an Eleelrified Sphere. By J. J. Tuonson, M.A., T'cllow
and Assistant Lectarer of Trinity College, Cumbridgo,
(Read ddpril 3rd, 1881.]

Tu this paper two problems avo discussed which, thongh physic:!lly
different, avo yet capable of solution by nlmost the same mathenmatical
treatment. : ‘ K . ) ,

The first problem treats of tho vibrations which take place in the

electrical distribution on the surfaco of o thin spherical shell when the




