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On the Algebra of Loguec.

By C. S. PEIrcE.

CHAPTER 1. — SYLLOGISTIC.

§ 1. Derivation of Logic.

In order to gain a clear understanding of the origin of the various signs used
in logical algebra and the reasons of the fundamental formule, we ought to
begin by considering how logic itself arises.

Thinkiiig, as cerebratlon, is no doubt subject to the general laws of nervous
action. ‘

- -

_ When a group of nerves are stimulated, the ganglions with which the group

is most intimately connected on the whole are thrown into an actixe state,

which in turn usually occasions movements of the body.  The stimulation con- -
tinuing, the irritation spreads from ganglion to ganglion . (usually increasing
meantime). Soon, too, the parts first excited begin to show fatigue; and thus for
a double reason the bodily activity is of a changmg kind. When the stimulus
is withdrawn, the excitement quickly subsides, ; '

It results from these facts that when & nerve is affected, the reflex actmn,
if it is not at first of the sort to remove the irritation, will change its char-
acter again and again until the irritation is removed; and then the action will
cease. ~ : ' A o

Now, all vital processes tend to become easier on repetition. Along whatever
path a nervous discharge has once taken place, in that path a new discharge is
the more likely to take place. (

Accordingly, when an irritation of the nerves: is. 1‘epeated all the various
actions which have taken place on previous similar occasions are the more likely
to take place now, and those are most likely to take place which have most
frequently taken place on those previous occasions. Now, the various actions
which did not remove the irritation may have previously sometimes been per-
formed and sometimes not; but the action which removes the irritation must
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have always been performed, bec'mse the action must have everv time continued
until it was performed. Hence, a strong habit of responding to the aiven irrita-
tion in this particular way must quickly be pstablished.

A habit so acquired may be transmltted by inheritance.

One of the most important of our habits is that one by virtue of which certain
classes of stimuli throw us at first, at least, into a purely cerebral activity.

Very often it is not an outward sensation but only a fancy which starts the

train of thought. In other words, the irritation instead of being peripheral is

visceral. In such a case the activity has for the most part the same character;
an inward action removes the inward excitation. A fancied conjuncture leads us
to fancy an appropriate line of action. It is found that such events, though no
external action takes place, strongly contribute to the formation of habits of
really acting in the fancied way when the fancied occasion really arises.

A cerebrdl habit of the highest kind, which will determine what we do in

fancy as w ell as what we’do in action, is called a belif. The representation {o
ourselves that we have a specified habit of this kind is called a judgment. A
belief-habit in its development begins by being vague, special, and meagre; it
becomes more predise, general, and full, without limit. The process of this (k-
velopment, so far as it takes place in the imagination, is called tkough?. A judg-
ment is formed; and under the influence of a belief-habit this gives rise to a new
judgment, indicating an addition to belief. Such a process-is called an uference ;
the antecedent judgment is called the premise; the consequent judgment, the
conclusion ; the habit of thought, which determined the passage from the one to
the othér (when formulated as a proposition), the leading prineiple.

At the same time that this process of inference, or the spontaneous develop-
ment of belief, is continually going on within us, fresh peripheral excitations are
also contlnually meatlno' new belief-habits.  Thus, belief is partly determined hy

old ‘beliefs and partly by new experience. Is there any law about the mode of

the peuphuml excitations? The logician maintains that there i is, namely, that they
are all adapted to an end, that of carrying belicf, in the long run, toward certain
predestinate conclusiqns which are the samne for all men. This is the faith of the
logician.  This is the matter of fact, upon which all maxims of reasoning repose.
In virtue of this fact, what is to be helieved at last is independent of what has
been helieved hitherto, and therefore has the character of realily.
_given habit, considered as determining an inference, is of such a sort as to tend
toward the final result, it is correct; otherwise not.
divisible into the valid and the invalid;
existence.

Thus, inferences become
and thus logic takes its reason of

Hence, if a
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§ 9. Syllogism and Dialogism.

The gel‘l.e'ral type of inference is

.

P
C,

where .-. is the sign of illation.

The passage from the premise (or set of premises) P to the conclusion C
takes place aceording to a habit or rule active within us. All the inferences
which that habit would determine when once the proper premises were admit-
ted, form a class. The habit is logically good provided it would never (Qr in the
case of a probable inference, seldom) lead from a true premise to a false con-
clusion ; otherwise it is logically bad. That is, every possible case of the opera-
tion of a good habit would either be one in which the premise was false or one
in which the conclusion would be true ; whereas, if ‘a habit of inference is bad,
there is a possible case in which the premise would be true, while the .conclusion
was false.  When we speak of a possible case, we conceive that from the general
description of cases we have struck out all those kinds which we know how to
describe in general terms but which we know never will occur; ‘those that then
remain, embracing all whose non-occurrence we are ‘not certain of, together with
all those whose non-occurrence we cannot explain on any general principle, are
called possible. - ' ' '

A habit of inference may be formulated in a ploposmon which shall ‘state

that every proposition ¢, related in a given general way to any true ploposmon P

is true. Such a proposition is called the leading principle of the class of infer-’

ences whose validity it implies. When the inference is first drawn, the leading
principle is not present to the minid, but the habit it formulates is active in_such
a way that, upon contemphtmw the believed premise, by a sort of perception the
conclusion is judged to be true.* ~ Afterwards, when the inference is subjected to
Jogical criticism, we make a new inference, of ‘which one premise is that leading
principle of the former inference, according to which propositions related ta one
another in a certain way are fit to be premise and conclusion of a valid inference,
while another premise is a fact of observation, namely, that the given -relation
does subsist between the premise and conclusion of the inference under criticism;
whence it is concluded that the inference was valid.

Logic supposes inferences not only to be drawn, but also to be subJected £
criticism ; and therefore we not only require the form P .-. C to éxpress an argu-

# Though the leading principle itself is not present to the mind, we are gcnemlly conscious of infurring
on some general.principle.
3
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ment, but also a form, P, —".C,, to express the truth of its leadi';ig'principle.
Here P, denotes any one of the class of premises, and C, the coﬁequnding con-
clusion. ‘The symbol —is |the copula, and, signifies primarily that every state
of things ¥’ which a proposjtion of the class P, is true is a state of things in
which the corresponding pr positions of the class C; are true. But logic also
supposes some inferences to be in'vnlid, and must have a form for denying the
leading premise. This we shall write P, =< C\, « dash over any symbol signifying
n our notation the negative of that symbol.* : ~ :
Thus, the form P, < implies ,
either, 1, that it is impossible that a premise of the class P, should he true,
or, 2, that every state of things in which P, is true is a state of things in which
* the corresponding C, is true. ' ’
The form P, - C, implies :
both, 1, that a premise of the class P, is possible,
and, 2, that among the possible cases of the truth of a P, there is one in which
the corresponding C, is not true.
This acceptation of the copula differs from that of other systems of
in a manner which will be explained below in treating of the negative,
In the form of inference P ... ' the leading principle is not expressed ; and
the inference might be justified on several separate principles. One of these,
however, P, — (,, is the formulation of the habit which, in point of fact, haé
governed the inferences. This principle contains all that is necessary besides the
premise P to justify the conclusion.’ (It will generally assert more than is neces-
sary.)  We may, therefore, construct a new argument which shall have for its
Rremises the two propositions P and P, — C, taken together, and for its conclu-
sion, C. This argument, no doubt, has, liké e\féry other, its leadine principle
because the inference is governed by some habit; but yet the substl;ncc of thc:
leading pri.n.ciple must already be contained implicitly in the premises, hecause
the Proposmon P, < Cy contains by hypothesis all that is requisite to justify
'the nference of C from P. Such a leading principle, which confains no fact not
implied or observable in the premises, is termed a Iogical principle, and the
ment it governs is termed a complete, in contr '
ment, or enfhymeme. S ' '
The above will be made clear b

meme, o :

syllogistic

argu-
adistinction to an wcomplele, argu-

y an example. Let us begin with the enthy-

. Enoch was a man,
+.". Enoch died.

* Thig <
Th\ls dash \V&S-Q:_Qd by Bosle, but not over other than class-signs,

A
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The leading principle of this is, “ All men die” Stating it, we get-the ’complﬂe‘t,e.

argument, . _ _—
All men die, . -
Enoch was a man; : ',

. . . Enoth wasg to die.

The leading principle of this is nofa nqzc st not rei ipsius. Stating this as a

" premise, we have the argymnent,
Nota notae est nota rei ipsius, /

Mortality is & mark of humanity, which is a mark of Enoch; -
.*. Mortality is a mark of Enoch.

But this very same principle of the nola nofae i3 again active in the ;imwing of

this.last inference, so that the last state of the argument is no more complete "

than the last but one. . o '
There is another way of rendering an argument complete, namely, instead
of adding’the leading principle ; — C; conjunctively to the premise P, to form

-+ a new argument, we might add its denial disjunctively to the conclusion ; thus,

- | P
’ .*. Either C or szC,.

A logical principle is said to be an emply or merely formal proposition, because
it can add nothing to the premises of the argument it governs, although it is rele-
VRt so that it implies no fact except-su%ch as is presupposed in all discourse, as

- we'have seen in § 1 that certain facts are implied.  We may here distinguish be-
tween logical and extralogical validity ; the former being that of a complete, th:a latter
that of an incomplete argument. The term logical leading prif®iple we may take to
mean the principle which must be supposed true in order to sustain the logical
validity of any argument. Such a principle states that among all the states of
things which can be supposed without cenflict with logical principles, those in -
which the premise of the argument would be true would also be cases of the truth
of the conclusion. Nothing more than this would be relevant, to the logical lading
principle, which is, therefore, perfectly determinate and net vague, as we have
seen an extralogical leading principle to be.

& A compléte argument, with only one premise, is called an fnumediate inference. .

Ezample : All crows are black birds; therefore, all crows are birds. If from
the premise of such an argument everything redundant is omitted, the state
of things expressed in the premise is the same as the state of things expressed-
in the conclusion, and only the form of expression 18 changed. Now, the .
logician does not undertake to enumerate all the ways of expressing facts:

?
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he supposes the facts-to be already expressed in certain standard or canonical

forms. But the equivalence between different ones of his own standard forms is

o of the highest importance to him, and thus certain immediate inferences play the

o great part in formal logic. Some of these will not be reciprocal inferences or
’ logical equitions, but the most important of them will have that character.

If one fact has such a relation tq a different’one that, if’ the former be true,
the latter is necessarily or prolﬁzibly true, this'relation constitutes a determinate
fact; and ﬁllex'efog'e, since the leading principle of a complete argm{lent involves

1o matter of fact (beyond those employed in all discdurse), it follows that every
complete and material (in opposition to a merely Jormal) argument must have at
least two premises. ' .

A

- From the dectrine of the leading principle it appears that if we have a valid
N an%})omplete argument from more than one premise, we may suppress all premises
but bne and still have a valid but incomplete argument. Fhis argument is justi-
. fied by the suppressed premises ; hence, from these premises alone we may infer
that the conclusion would follow from the remaining premises. In this way,
| . then, the original argument : ' . ‘
R ’\ a’ e PQRST \
18 broken up into two, namely, 1st, ' :
C - PQRS : )
. T "'< C /’\ /
( and, 2d, T-<C
‘ , T
oG

By repeatlng this process, any argument may be broken up into arguments of two
~premised each. A complete argument-having two premises is called a syllogism.*

‘An z}rgllﬁlent may also be broken up in a different way by substituting for
the second constituent above, the form ' |

T 0
.. Either C or not T.

-

In thl.s way, any argument may be resolved into arguments, each of which has
one premise and two. alternative conclusions.

\
WO, ¢ Such an argument, when complete,
+ may be called a dialogisin. '

‘ e K . . . . .. \ . LE . . 3 -~ Al
' The gepu.d doctrine of this section’is contained in my paper, On the Classification of Arguments, 1867

~
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§ 3. Forms.of Propositions.

In place of the ‘two expressions A < B and B < A taken together we
may write A = B;* in place of the two expressions A < B and B <A taken
together we may write A << B or B > A;-and in place of the two expressions

De Morgan, in the remarkable memoir with which he opened his discussion
of the syllogism (1840, p. 38Q), has pointed out that we often carry on reasoning
under an implied restriction as to what we shall consider as possible, which re-
striction, applying to the whole of what is sald, need not be expressed. The
total of all that we consider possible is called the wniverse of disconrse, and may
be very limited. One mode of liimiting our universe is by considering only

" what actually occurs, so that everything which does not occur is regarded as

. ¢

impossible. -

The forms A — B, or A implies B, and A —<Z B, or A does not imply B,
embrace both hypothetical and categorical propositions. Thus, to say that all
men arc mortal is the same as to say that if any man possesses any character
whatever then a mortal possesses that character. To say, “if A, then B is
obviously the same as to say that from A, B follows, logically or extralogically.
By thus identifying the relation expressed by the copula with that of illation,

* There i3 a difference of opinion among Iogicf:ms as to whether —< or = is the simpler relation. But
in my paper’on the Logic of Relatives, T have strictly demonstrated that the preference must be given to —< in
this respect. The term simpler has an exact meaning in logicy it means that whose logical depth is smaller ;
that is, if one conception implies another, but not the reverse, then the latter is said to be the simpler. Now
to say that A = B implies that A —< B, but not conversely. Krgo, ete. Bt is to no purpose to reply that

A —< B implies A = (A that is B); it would be equally relevant to say that A —< B implies A =A. Con-
sider an analogous case.  Logical scquence is a simpler conception than causal sequence, because every causal
sequence is 2 logical sequence but not every logical sequence s aj causal sequence; and it is no reply.to this
to say that a logical seqence between two facts implies a causal sequence between some two facts whether the
same or different. The idea that =is a very simple relation is probably due to the fact that the discovery
of such a relation teaches us that instead of two objects we have only ene, so that it simplifies our coneeption
of the universe. On this account the existence of such a relation is an important fact to learn ; in fact, it has
the sum of the importances. of the two facts of which it is compounded. It frequently happens that'it is more
convenient to treat the propositions A —< B und B—< A together in their form A = B; but it also frequently
happens that it is more convenient to treat them separately, Even in geometry we can see that to eay that
two figures A and B are equal -is to say that when they are properly put together A will cover Band B will .
cover A ; and it is generplly necessary to examine these facts separately. -So, in ctnnpnrﬁng the numbers of two
Jots of objeets, we set them over against one another, each to each, and observe that for every one of the lot
A there is one of the Iot B, and for every one of the Iot B there is one of the lot A.

In logic, our great object is to analyze all the operations of reason and reduce them to their ultimate
elements ; and to make a calculus of reasoning is a subsidiary object. .Accordingly, it is more philosophical to
use the copula —<, apart from all cbnsiderations of convenience. Besides, this copula is intimafély related
to our natural logical and metaphysical ideas; and it is one of the chief purposes of logic to show what
validity those ideas have.. Moreover, it will-be seen further on that the inore analytical copula does in point
of fact give rise to the easiest method of solving problems of logic, =
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_ we identify the proposition’ w1th the mf‘erence and the term with the propoeltxon
This identification, by means of which all that is found true of term, plopomtnoﬁ
or inference is at once known to be true of all three, is a most important engine
“of reasoning, which we have gained by beginning with a conbldemtlon of the
genesis of logic*

Of the two forms A —< B and A ~ B, no-doubt the former is the more
primitive, in the sense that it is involved in the idea of reasoning, while the.
latter is only required in the criticism of reasoning. The two kinds of propo-
sition are essentially different, and every attempt to reduce the latter to a special

¢ case of the formér must fail. Boole attempts to express ‘some men are not
‘mortal,” in the form ¢whatever men have a certain unknown character » are not
mortal” But the propositions are not identical, for the latter does not imply

| that some men have that character »; and, accordingly, from Boole’s proposition
.. © we may lemtunfttely infer that ¢ wlmtever mortals have the unknown character ¢
' are not men’ ; yet we. cannot reason from ‘some men are not mortal’ to ¢ some

* mortals are not men.’f On the other hand, we can rise to a more general form

" under which A <7 B and A—< B are both included. - For "this purpose we
write A— B in the form A — B, where A is some-A and B is #ot-B. This more

general form is equivocal in so far as it is left undetermined whether the propo- -
sition would be true if the sub3ect were impossible. 'When the subject is general
‘'this is the case, but when the subject is particular (i. e.. is subject to the modifi-
cation some) it is not. The general form supposes merely inclusion of the subject
under the predicate. The short curved mark over the letter in the subject shows

""that somie part of the term denoted by that letter is the sub_]ect and that that iy
N asserted to be in possible existence.

sitions are here taken and those which are traditional; namely, it is usually

understood that affirmative propositions imply the existence of their subjects, |

while%negative ones do not. Accordingly, it is said that there is an immediate

_inference from A to'T and from Eto O. But in the sense assumed in this - .
paper, universal proposxtlons do not, whlle par- '
ticular propositions do, imply the existence of their
subjects. 'The following figure illustrates the pre-
cise sense here assigned to the four forms A, E, I, 0.

In the quadrant marked 1 there dre lines

which are all vertical; in the quadrant marked 2
some- lines are vertical and some not; in quadrant
3 there are lines none of which are vertical; and -
in quadrant 4 there are no lines. Now, taking Zne
as subject and verfical as predicate;

A is true of quadlants 1 and 4 and false of 2 and 3.
E is true of quadrants 3 and 4 and false of 1 and 2.
1. is true of quadrants 1-and 2 and false of 3 and 4.
O is true of quadrants 2 and 3 and false of 1 and 4.

Hence, A and O precisely deny each other, and so.do Eand I. But any other
pair of profiositions may be elther both true or both f'xlse or one true while the

-~ other is false.

(‘ De Morgan (On the Syllogism, No. I, 1846, p 381) has enlarged the system
of propositional forms by applying ‘the sign of negation ‘which first appears in
A = B to the subject and predicate. He thus gets

- The modification of the subject by the curved mark md ' L -
ST Of the predicate b ’ i ies o '
T the straight mark gives the old set of propositional forms, viz.: ! y i—é:g gvery;;\;ls B;} B j: %S SP(?Cle: (;.f 1133 .

R , _ _ , . ‘Some A is not B. ‘ is exient of B.
Bl A e I?very @ is b. Universal affirmative. A—<B. NoAisB. = A is external of B.
AESTE - A }; ;:2? IS\o _ a8 b Universal negative. A—<B. Some A is B. " Ais partient of B

. ome_a 1s b. P; ar affir A B . .
S 0. @¢—<b Some a is not b. Piﬁiﬁ:ﬁ ::1 l nzd?lve. A —B." Everything is either A or B. A is gomplement of B.
: There s howover.  differenco ot ; g ative A~ B. There is something besides A and B. A is coinadequate of B.
’ ) ween the senses in which these propo- A B o i ’
& propo - A —<B. Aincludes all B. I A is genus of B.
A —< B A does not inelude all B. A is deficient of B.

# In consequence of the identification in quLstmn in S—< P, I spoak of S
cedent, or premise, and of P as predicale, conscquent, ot conclusion.
u: S
y 1 I“:(ll““)’ unsuccessful is Mr, Jeyons’s attempt to overcome the (hﬁunllv by emitting particular propo-
siions, ‘because we can always substitute for it [some] more definite expressionadf we like! The same reasor
€ Rl 501

might be alleged Inx ney lutm ¢ the consider
ation of a0f,  But in fact : i
10 citnply s ) the form A2 < Bis 1(11‘1111'1:4 to enable us

indifferently as subject, ante-"

De Morgzm 8 table of the relatlons of these proposmons must be modified to
- conform to the meanings here attached to —< and to <. -

“'Weé might confine ourselves to the two propositiongl forms s —< P and
S — P. If we once go beyond this and adopt the form S—<P we must, for

¢

“
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the sake of completeness, adopt the whole of De Morrran’sbsyetem -But this
system, as we shall see in the next section, is itself incomplete, and requires to
complete it the admission of particularity in the predicate. This has a\l\md\
been attempted by Hamilton, with an incompetence which ought to he extraor-
dinary. I shall allude to this matter further on, but I shall not attempt to say
how many forms of propositions there would be in the completed system.*

§ 4. The Algebra o, ike Copula., » _ f

From the identity of the relation expressed by the copula- w1th that of :

illation, springs an algebra. In the first place, this gives us
the prmclple of identity, Wh%fh is thus seen to express that what we have
hitherto believed we continue to believe,in the absence of any reason to the
contrary In the next place, this identification shows that thc two - inferences
x :
y  Cad g (2)
- i a Ce2 y—<z
are of the same validity. Hence we have , ‘.
o< (<~ )}'={y<(.w<z)!-,’r (3)
(<D< <),

ooy (4)

Fr(;m (1) we have

whence by (2‘)’

is a valid inference.

By (4), if 2 and & —< y are true ¥ is true; and if y and y <z are true zis

true. Hence, the 1nference 13 valid

X ’.l:—<J Y-z

By the principle of (2) thls is the same as to say that
: ey y<z ory

s a valid inference. Thxs is the canonical form of the syllogism, Barbara. The

~ # In this connection see De Morgan, On the Syllogism, No. V., 1862, )

T Mr. Hugh McColl (Caleulus of Equivalent Statements, Second Puper, 1878, p. 183) makes use of the sign

of inclusion several times in the same proposition. He docs not, however, glv any of the formulw of thls
gection. ’ . 7

n

Prircr: On the Algebra of Logic.v , 2b

statement of its validity has beeh called the dictum de omni, the ngla notae, ete.;
but it is best regardcd after De Morgan,* as a statement that the. relation signified
by the copula is a téansitive one.t It may also be considered as implying that
in place of the subject of a proposition of the form A — B, any subject of that
subject may be substituted, and that in place of its predicate any predicate of
that predicate-may be substituted.} The same principle may be algebraically
conceived, as a rule for the elimination of y from the two proposmons x—y
and y—2z§ ‘ ‘ -

It is needless to remark that any letters may be substituted for 2, 3, 2z; and
~ that, therefore, Z, §, Z, some or all, may be substituted. . Nevertheless, after
 these purely extrinsic changes have been made, the arcument is no longer called
Barbara, but is said to be some other universal mood of the first figure. There
are evidently eight such moods.

From () we have, by (2), these two forms of valid immediate inference :

« S-—< P
" (@< 8) < (8- P) (6)

0% \ .\’ | S_<P | ' _

and

= <) <E< ™

The latter may be termed the inference of confraposition.’
From the transmvenesq of the copula, the following inference is valid :

-

(8 < M) —< (S < P) | N

S <<,

C s <) <La,

“

. But, by (6), from (M ~< P) we can mfer the first prermse immediately ; hence

the mference 18 valid

5 L ‘M<<P . |
« S-<P)y<z - - (8)
(S<M)—<w- R

»

* On the Syllogum, No. 1, 1850, P- 104 : -

t That the vahdxty of syllogism is not deducible from the ‘principles of 1deut1ty, contmdxctmn and
excluded middle, is capable of strict demonstration. The trausitiveness of the copula is, however, lmphed in
the identification of the copula-relation with illation, because illation is obviously transitive.

% The conception of substitution (already involved in the medieval doctrine of descent), as well as tbe‘

. nvord was familiar to logicians before the publication of Mr. Jevons's Substitution of Simalars. This book *

argues, however, not only that’ 1ference is substitution, but that it and induction in purtlculur consist in the
substitution of similars. This docmne is allied to Mill’s theory of induction, : .

§ This must have been in Boole's mind from the first. De Morgan (On the S; Jllogwm, No. II. /1850, P 83)

" goes tod far in saying that © what is called elimination in algebra is called inférence in logic,” if he meam, as.

he seems to do, that all mfereuce is chmmatxon I x
<.t 4 . . - .
-\ . ~
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. This may 'be”cal}ed the’ minor fndirect syllogism. ~ The following is an example :4

" All men are mortal, ‘

. B If Enoch and Elijah were mortal, the Bible errs;”
R ' s If Enoch and Elijah were men, the Bible errs.

Aoam we may start with this sylloglsm in Barbara L g

| \ . (M_<P)_<(S-<P), Ce )
[ (8 <)< . |
I s (M —CP) et ,
- ‘But by the prmmple of contraposition (7), the ﬁrst premise 1mmedntely fol]ows '
from (S —< M) so that we have the mference valid

. N (&<H<M' e )
' ' . s (M —<P) <.
‘ ' This may be called the mq;or indirect syllogism.
“ Erample: Al patmarchs ake men,

- If all patriarchs are mortal, the Blble errs ; B
If aﬁ men are mortal, the Bible errs. ’

In the. same way it mlght be shown that (6) _]ustlﬁes the s}yllomsm

. M <P, - .
. e (10)
And (7) Justlﬁes the inference

7 -

L e <P); N 041
; el <P T
But these are only slight modifications of Barbara ' i )

In ‘the. form (10), may denote & limited universe comprehendmg some

e cases of S. Then we have the syllocrlsm _ A

~

B ‘A | ‘: _-\ - . /’\ | s . ' ‘ S_ 2 M' 4 . 7 ~ ' ‘ (12)
:.';\3"; ’\';s - v""‘~ : . . ) ., . . S _< P - | | | b . .‘ . |

R ' L Thls is”called Dam. A line wmight, of course, be drawn over the S So, in* |
o ""- ‘ o the form (11) ¢ may denote a: llmlted uniyerse comprehendmtr someM Then
ST T T we h'we the sy]loglsm ‘ v S

T > :
| N . . - v
{1 T N
A' - / 3 N e ’

-
4'“.
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' S —< M, - :

. . | ~ ”M“Zi- R G T:)
. ~S=XZP L ,

Here a line mlo'ht be drawa over the P. ‘But the forms (12) and (13) are

deduced from (10) and (11) only by prlnmples of interpretation which require
demonstration. .

On the other h'md if in the minor indirect syllogism (8), we put “what dOGb
not occur” for @, we have by definition

(E<P) <) = (8 ZP)

M-<P, ;

L ’SZ@y, (14
which is the syllogism Baroko. If a line is drmwn over P, the syllogism 1s called
Festino ; 'and by other negations eight essentially identical -forms ate obtained,
whlch are called mlnor-partlcular moods of the sécond figure* 1In the same
way the major 1nd1rect syllonrlsm (9) affords the form

N _ , S <M, ' S
- 8 <P; (1)
. LM=ZP |
This form is called Bocardo. If P.is negatived, it is called’ Del?a7lz§s. - Other
A negations give the ‘eight major-particular moods of the third figure.
~ We have seen. that S—< P is of the form (S —<P) —x. Put A for

S —~Z P, and we find that A is of the form A —< . Then the ptinciple of.
contraposition (7) gives the 1mmedmte Jinference S

'S—<P S - '(16)‘

|

and we then have

4 - .P<8 ¥
Applying this to the universal moods of the first hO‘ure Justlﬁes sm moods.
These are two in the second figure,
~ 7
<7y 2=y z=<3Z (Oamestres)
| i< <y e E<7;
two in the third figure, =~ ’ T
' <z gz sz
y<z G-I o E<% .
* De Mo‘rgan,‘ Syllal;ua, 18;50, P 18.
“h
. 2 :
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Ci ¢

and-two others which are said to be in-the fourth figure,

But the negative has two other properties not yet taken into account. These are
‘ ) N i - 1
r <% . ‘ (1N

or  is not not-X, which is called the principle of contradiciion ; and

, < P<wz . | ~(18) -

or what is not not-X is x, which is called the principle of excluded middle.
By:(17) and (16) we have the immediate inference |

~.*. which is-called the conversion of E. By (18) and (16) we have

S | S<p 4 (20)

By (17), (18), and (16), we have . o

S—<P - B SR 1))

- Each of, the. inferences (19); "(20), (21), justifies six universal syllogisms;

-namely, two in each of the figures, second, third, and fourth. ' The-result is that

"' each of these figures has eight universal ‘moqas; two depending only on the

4

principle that A is of the form A —< «, two depending also on the principle of-

o gont’radic’tipn,’ two on the . principle of excluded -middle, and two on all three
principles ‘conjoined. . ' 2
| The same formulae (16),‘: (19), (20), (21), 'a’p'pliéd to the minor-particular
moods of the se<‘:ond figure, Wm give eight minor-particular moods of the first
figure ; .and applied to the. major-particular moods of the third figure, will give
B . [w]

-

’ eigh§ major-particular moodg of the first figure.*

The principle of contradiction inlthe form Z]\.Qma,y.be further transformed

thus: — ' | -\ |
o If (P .. Cyis valid, then (C .. P) is valid: - (22)
A%)plying‘ this to the 'minor-particular moods of the first ﬁwhfe '
mmtzppartipu_lar moods of the third figure ; and to 1l

~

will give eight

b Ax:istot}e and De 'Morgan bave particular conclasions. fron
rendered illogical by the Significations which I attach to ~< and =

. [N -

"

4applying it to the major-particu-

! two universal premises. These are all -

el

with

also, we have
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lar fnoods of the first figure will.give eight major-particular moods of the ;sebon&/( .
figure. A .. B ‘ - v ‘ T

It is very noticeable that the corresponding formula, -

It (P .. O) is valid, then (C.-.P)ds valid, = = (23)

has no application in the existing syllogistic, because there are no syllogisms
having a particular premise and universal conclusion. In the same way, in the

* Aristotelian system an' affirmative. conclusion cannot bé drawn:from negative - -
_ premises, the reason being that negation is only applied to the predicate. *Soin S

De Morgan’s system the subject only is made particular, not'phe predicate.

-~ In-erder.to-develop-a-system “of -propositions. in«-Whiclf the-predicate shall.. .......:. ..

be modified in the same way in which the subject is modiﬁea in particular
propositions, we should consider that to say S-—<CP is the same as to,say
(S =< x) =< (P =< =), whatever x may be. That -

3 B<P << <@=<a
follows at once from Bokardo-(15) by means of X2). Moreover, since A . may be
put in the form A —< =, it follows that A may be put in the form A <, so

that by the principles of contradiction and excluded middle, A may be put in the
form A = 2. On the other hand, to say S —P is the same as to say (S —< %)

»

< (P =< ), whatever © miay be; for «
A

(5= B) < 8 <8) < (B =)}

is the princtple of Ferison, a valid syllogism of the third figure; and if for & we "7

put S, we have ’ |
. \

(<8 <@, |

which is the same as to say that P =< Sis true if the principle of contradiction
is true. So that it follows that P —< 8 if' S — P from the prineiple of contra-
diction. Comparing ~ o S S :, A
TSP o B <P -
SR o F<H<@®Z), i

il

o we se-e.tha,t they diﬂ'ér by o modification of the, subject. Dénoting this by a S

short curve over the subject, we may write 1S ~ P for S << P. We'see then
that while for A we may write A — x, where z is anything whatever, so. for X
we may write A <% If we attach a similar modification to the predicate

S “<15 or (S "<i) “<(P < %)
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- which is the same as to say that you can find an 8 which is any P you please
‘We thus have

o (S<P)<(F<é> @
a formula of contmposltlon, similar to (16). T
It is obvious that A
i (§<P><<F<S>, . (25)
- _for, negatmg both proposmons, this becomés, by (16) B
(P<S)<(S<P),

 which i i8 (19) The mference Justlﬁed by (25) is called the converswn of I, From
(25) we infer

| Wlnch may be celled the prmcxple of particularity. This is obviously true, be-
“cause - the modlﬁcatlon of particularity only consists in changing (A —< ) to
(A —< &), which is the same as negating the copula and predicate, and a repe-
 tition of this will evxdently glve the first expression again. For the same reason
we have ‘

- K <% (27)
which may be called the prmc1ple of individuality. Thls gives e
- (8 <F) < (P<¥), | (28)
zmd (26) and (27) together give
<P <8 @)

Tt is doubtful Whether the proposition S — P ought to be interpreted as

- sides Sand P. I here leave this branch of the subject in an unfinished state.
~ Corresponding | to the formule which we have obtained by the prmcxple (2)
are an equal number obtamed by the following principle :

(2') The mferenee L '

z
.. Either y or 2
has the same validity as L
o z—y .
From (1) we have ‘
(@ —<y)<(z <),

" "2 M - B
) E1ther:c—<(S-—<P)orS—<M. .
The major indirect dmloglsm is _ : - o ’
e L (S M) o \ -
| Either ¢ < (S =< P)or M < P. ' ' ~
We have also . . :
w0 =Pz
1 .. Either (S < M) 0r(M<P)—<:n
an
w . S<P=<e
| . ~ .+, Either (M~ P) or (S - M) <=

.v_slgmfymg that S and P are one sole individual, or that there is something be-
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whence, by (2), #

(4) ) r .
: .. Either (z < y) or 4. ; )
This gives.
T
.. Eitherz <y or y <z or 2
Then, by (2), o /
). | . < |

ey or y-< 2

which is the canonical form of dialogism. The minor indirect dialogism is

We have A of the form & — A. - And we have the inferences
SZP S <P SP S
S PS8 P_—<S. P

CHAPTER II, — THE LOGIC OF NON-BELATIVE TERMS

§1. The Im‘ernal Multzplzcatwn and the Addition.of Logw

5

We heve seen that the inference

« and Yy .
G & ' o <~
8 of the seme vahdlty with the mference g
., E_lt,her;y or 2,




- also uses a sign equivalent to my —<,
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and the inference - - i,

Eithe_ry orz - . ,
with the inference ) v : ' -
' - ramd 7 . -

o . ’ ]

ey

(The possible) — Either  or g,

% which is § ~ (The impossible).
To. express this algebraically, we need, in the first place, symbols for the two

terms of second intention, the possible and the impossible. Let o> and 0 be the
terms; then we have the definitions

z < o 0 <z | (D

>

In like manner,
is equivalent to

‘ahd to

whatever £ may be.*

- We need also two operations which may be called non-relative addition and
multiplication. They are defined as follows

* The symbol 0 is used by Boole; the symbol o replaces his 1, according to a suggestion in my Logic of
Relatives, 1870. ' - -

-1 These forms of definition are original.
matical Analysis of Logie, 1847). Booles agdditi
- was cornmon to the two terms added w.

The algebra of non-relative terms was given by Boole (Mathe-

as taken twice over in the sum. The operations in the text were given
mplements of one another, and with appropriate symbols

a8 , by De Morgan (On the Syllogism, No. I1L,, 1858,

- P 185).  For addition, sum, parts, he uses aggregation, aggregate, aggregants; for muitiplication, product,
factors, he uses composition, 'cdmpbund, components.  Mr. Jevons (Formal Logic, 1864) — 1T regret that 1 can
only speak of this work fro

m having read it many years ago, and therefore canriot be sure of doing it full
. . ‘ e . .
" justice — improved the ‘algebra of Boole by substituting

- De Morgan’s aggregation for Boole’s addition. The
Ppresent writer, not having seen either De Morgan’s or Je

same change (On an Improvement in Boole's Caleulus of Logic, 1867), and showed the perfect balance existing
* between the two operations. In another paper, published in 1870, I introduced thevsign of inclusion into
the algebra. : :

N .
In 1872, Robert Grassmann, brother of the author of the’ Ausdehnungslehre, published a work entitled ¢ Die

- Formenlehre oder Mathematik,” the second book of which gives an algebra of logic identical with that of Jevons,
The‘very notation is reproduced, except that the universe is denoted by T instead of U, and a term is negatived
by drawing a line over it, s by Boole, instead of by taking a type from the other case, as Jevons does.

In his third book, he has other matter which he might have derived
from my paper of 1870, Grassmann’s treatment of the sulject presents inequalities of strength ; and most of
his ‘results had been anticipated. Professor Schrider, of Karlsruhe, in the spring of 1877, produced his

: Operationskreis des Logikkalluls, 1le had seen the works of Boole and Grassmann, but not those of De Morgan,
Jevons, and me. He gives a fine development of the algebra, adopting the addition of J evons, and he exhibits
the balance between - and X by printing the theorems in parallel columns, thus imitating a practice of the
geometricians.  Schriider gives an original, interesting, and commodious method of ‘working with the algebra,

Later in the same year, Mr, Hugh MecColl, apparently having known nothing of logical algebra except from a
pers on & Caleulus of Equivalent Statements,

- jejune account of Boole’s work in Bain's Logic, published several pr
_the basis of which s nothing but the Boolian algebra, with Jevons’s addition and a sign of inclusion.  Mr..
1is algebra to the transformation of definite integrals,

Grassmann

McColl adds an exceedingly ingenious application of t]

on was not the same as that in the text, for with him whatever -

vons's writings on the subject, again recommended the -
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Ifa <zand b <x, . ' Ifez < aand x <0, (2)
then a + b —< =; 1 thene—<Taxb;
a;xd conversely, - and conyersely,
if a+b <, - if 2 <7 a X, . (3)
then ¢ <z and b < =. then * < @ and © < b.

From- these definitions we at once deduce the following forinulz‘g:-——
a—<a+b a X b—<a (Peirce, 1870)*
A ! b b
' b—<a+bd o aXb<b.
These are prbved by substituting @+ b.and a X b for  in (3). o
B Crx=ctw zX =g (Jevons, 1864).  (5)
By Vsubstituth(lg x for a and b in (2), we. get

et —< z <z Xx;
4), - = A
a?d’bY(), < rte x X &< 2. ,
C a+b=b+a aXb=0bX a (Boole, Jevons). (6)
These formuls are examples of the commutative principle. From (4) and (2),
'lb-+a—<a+b axXb-—<bXua
and interchanging @ and b we get the reciprocal inclusion implied in (6).
D. (a+bd)+e=at(b+c) aX(bXc)=(aXb)Xe (Boole, J(_evons). (7)
These are cases of the associative principle. B (4), c~<b+cand bXe —b<+ c;
also b+ e~ a+(b+c) and a X (bX ¢) < bX ¢; so that e~ a+ (| ;)
and a,>< (b X c)—<c. In the same way, b —<a+ (b +c)and a X (b X C)f' y
and, by (4), a—C a+(b+¢) and a X (b X ¢) < a.” Hence, by (2), a+b—<

(4)

a+(b+ec)and a X (b Xe¢) < aXb «And,againby'(Z),(a+b)+c—<q1;i-~
(b+¢) and a X (b X ¢)—< (a X b) X c. In a similar way we should prove t e 

converse propositions to these and so establish (7).

‘E. (a+b)xe=(aXe)+(bXe) (aXb)te=(ate)X (d+e)t (8)
These: are cases of the distributive principle. Theﬂy are easily proﬁred‘by (4)and _

(2), but the proof is too tedious to give.

B (a+d)Fe=(ato)+(btc) (axB)Xe=(aXe)X(bXc) (9

‘ tives (§ 4); gi . o otk ‘Ally obvious, I do not find anyw N
L. . 4)ygives @ X b —< a." The other formulw, equ b T @ |
:’ éﬁwﬁg:?ﬁ{:ev: Sive)n %ly Boole for his addition, was retained by Jevons in changing t}le addition. ThY"
seoond was it given by me (1867, - N

6

I




L Butby (9
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‘ These are other cascs of the distributive principle. They are provéd by (5),
. (6) and "N These formule, Whmh have Intherto escaped notice, are not with-
" out interest. Lo

G a+(a><b)=a : a><(a+b)—"-?a (Grassmann,Schroder)_.~ (10) .
" By, a<at(@xd) © ax(atb) <o |

Again, by (4), (axb)—<a and @~ a+b; hence, by (2)
R at(@xd)<a s a-<aX(a+b) |
: O | ‘(a+b«<a) b—<aXxb). (11)

- This proposition is a_transformation of Schrider’s two proposxtmns 21, (p. 25)
. one of which was given by Grassmann. By (8) : ‘ .

, @+b«<®~<@~<a)_' @«<axw~\w~<1
Hence, since . b—=<h, s a—<a :
we have, by (2),
(@< )< b ax) (b<a><b)<(a+&<a>
| (a—<b)><(m<y)<<a+x<b+m(Pme 170
| @«<mx@~<w~<mxx~<bxﬁf ’
Readily proved from (2) qyxd (4):

B A (a—<b+a)X (aXa—b)=(a—<b). PR

- This i is a generalization of a theorem by Grassmann. TIn stating it, he errone- o

‘ oust unites the first two propositions by + instead of X. By (12), (5), and (8)

(a—<b+a,)—< {a—<(a><b)+(a><m)}
(@xe< D)< [(a+1) X (5+5) < b}

a—Cat+b . axb-<b.

- "v",_l‘Hence, by (2), it is doubly proved that

(a——<b+m)x(a>< m—<b)-—<(a—<b)

I ‘The demonstration of the converse is obvious.

“'We have 1mmed1ately, from (2) and (3),

R @b <= = X (Ce) (- X )= (e <)X (e B) (14)

L (<) =3 {(p<a)X(g-<B)] whereptg=c
(aXb-)=2{(@a<p)X(b<g)} wherec=pxgq. =

kS ‘The propositions (15) are new. By (12)

(P~ X (g ~<B)} < (e~ a+D) wherop+g=t
{la<<p)X (<9} <(a >< b-<c) wheree=pXq.

(12)

s valvvid_. Or
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And, since these are true for any set of values of p and ¢, we have by (2)

3 {(p—C @) X (—< b) } < (¢ ~< a+b), where p+g=c.
2 {(a—<p) X (b—< g)} < (a X b~ ), where c=p X g.
By (4) and (8), we have

(c—<a+b)—<{(aXc)+(b><c)=c}
(aXb—<c)—<{(c+a)X.(c+b)=c}.i

a>}<'c=p' b Xe=ygq, where p+g¢=c¢
atc=p b+c=gq,  -where pXg=qg,

(e~ a+b) < (p~< a) X (g—<b), where p-+g=c
(ax b—<c)—<(a—= p) X (b—<¢q), where c=p X g,
whence, by (4)
(e~ a+b) < = { (p—<< @)X (g~ b) } where p+g=c
(6Xb—<6)~< 3§ (a—< p)X (b—< q) } where c=p X ¢.
A formula analogous to (15) will be found below, (35).
From (1) and (2) and (4) we have

e+ 0=qx - z=x X co. (16)

Hence, putting

we have

From (1) and (4), . :
rto=ow 0=2gX0. ey
The definition of the negative has as we have seen three clauses: first, that @
is of the form a <z ; second, @ < @; third, @ —< a.

From the first we have that if
¢

a
b
b

is valid, then
’ c
oo a

| (c*a<b)’—<(cX5<d’).
Also, that if ‘ ‘

" . , b
" .. Eithercora
is valid, then : -
a
Elther ¢ or 6
(b~<c+ay<xa«<c+6)

is valid ; or

B Combmmg (18) and (19), we have -

" (ax b<c+d>-<<a>< d-<c+5)'-f"'
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By the prmmples of contradiction and excluded middle, this gives
(aXd-<c-{*5)—<(a><b—<c+d) (21)
(aXb—<c+d)=(aX(f—<c+5) ‘ - (22)

_ embodies the essence of the negative. \
If in (22) we put, first,a=d b=c=0, and thena=d=w b~—c, we
. have from the formula of identity

aXa=0 a+a=oco. - (23)

| l‘f,Th\ls the.,’formula

N W_e.haVe _ ‘
O p=(pxa)t(px3) —(p+w)><(p+fb) (24)
by the distgibutive principle and (23). If we write
Ci=pt{axz)  j=pt(bxa)  k=pX(ctz) I=pX(d+d),
we equa.ll have L o
p=(Xm)+(xE  p=(1+z)X (k+3) (25)
Now p may be a function of x, and such values may perhaps be -assigned -to
) a, b, ¢, d, that i, j, k, [, shall be free from x. It is obvious that if the function
‘results from any complication of the operations + and X, this is the case.
Supposmg, then, 4, j, &, [, to be constant, we ha%é, putting ,successwely, 1, and

-0, for .
<j>oo=i= k

p0=5=1

| r=(pooXa)+(J0XE) do=(0+a)X (hoo+E).  (26)
"The first of these formul® was given by Boole for his addition. I sho;\{ed
. (1867) that both hold for the modified addition. . These formule §ge real
“analogues of mathematical developments; but practlcally they are not con-
_vement. Their connection suggests the general formula

(a+2z) X (b+%) = (aX )+ (bXx) -(@n
8 formula of frequent utility.

The distributive principle and (3) apphed to (26) give

'Hence” X pe—gr . dr—<doot 40. (@)
=0 (X pe=0) (dr=co) < (0 +dem=c).  (29)

Boole gave the former, and I (1867) the latter. These formul® are not con-
" venient for elimination.

The follow ing formulw (proba,bly given by De Morgan) are of great impor-

g0 that

-

4

‘whence by (2)

Lﬁom (14)

“Peirce: On the Algebra of Logic.

v . aXb=a+b . aT=‘><B.
By (23) |

(a X b) X (@Xb) <0 oo—<(a+b)+(a+b)
whence by (22) and the associative prmmple

bx(axb)<a  a—<b¥@Fb)

axb—<a+bdb = axb—<a+b
a—<<axXb - atd<a
o< aXxXb a+ b - b,

By (4) and (22)

W atb<aFy aFv—<axh
~ The application of (22) gives from (11) ’
0= axh)=(a+1=Z0);

(e =0+ <EZHFEZy) g
(axa=bxy) <(e=<b)+@=<Ty) A

@=L b+a)+@xas=Tb); (39

from (12)
from' (13)

(@D Zo)=(@Z o)+ (L axb) < (e a)+(eTb); (34)
from (15) . |
(¢ << a+b)= _a)+(q§b)}wherep+q=c
(aXb-<e¢)=I{(«<p)+( —<g)}wherep Xg=c;

from (22) :
(e % b\—_Q-i- d):‘,(a‘x I eks) N (36) ,,

§ ‘2. The Resolulion of Prokav in Non-reiztz've Logic.

Four dlfferent algebralc methods of solving problems in the logic of non-A
relative terms have already been proposed by /Boole, Jevons, Schroder, and
McColl ‘T propose here a fifth method which perhaps is slmpler and certainly

(35)

i

" is more natural than any of the others. It involves the following processes :;

First Process. EXpleSS all the premises with the copulas —< and —<,lre-'v
membermcr that A =B is the same as: A —< B and B <TA. = -

Second Proccss. Sepa,rate every predxcate into’ as many . factors and- every"
sub3ect into as many ‘aggregant terms as is posauble w:thout increasing the -
number of dlfferent letters used in-any subpct or predtcatq

,,,
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An expressxon mlght be separated mto such factors or aggregants (let us term.

‘, 'them prime factors and ultimate aggregants) by one or other of these formulee:
go=(poX =)+ ($0.X5) |
¢z = ($p o+ T) X (¢0 + ).
. But the easiest method is this. To .separate an expression into its

: { ultimate ag aogregants} take any { product} of all the different letter; of the
: prime factors m .

expression, each taken either positively or negatively (that is, with a dash over"‘

it). By means of the fundamental formule . :
' XXY<Y<Y+2Z,

‘examine whether the {product} taken is a { subject } of every { factor }

L - sum predicate '

ultimote aggregant
prime factor

' of the given expression. If so, it is a {

} of that expression ;

otherwise not. Proceed in this way until as Iﬁany {ultimate aggregzmts} have

prime factors
“been found as the’ expresswn possesses. This number is found in the case of a

{E;?fu:; ;fog;ucl::} of letters, as follows. Ls{txm be the number of d'ﬁ”orenl

letters in the expression (a letter and its negative not being considered dlﬂ‘erent) ;-

| " let n be the total number of letters whether the same or different, and let p be

o terms prime factors  § s

- 2™+ n—mp — p. |

| For example, let it be required to separate x + (y X 2) into its prime factors.
Here m = 3, n=38, p=2. Hence the number of factors is three. Trying
m+y+z,wehave .

- z—<x+y+z oy X<zt yto

' so » that this i is a factor. Trymg z + y -+ z we h‘tve

- e<etyti z—z+y+3

80 that this is also a factor. Iti 1s, also, obv1ous that & + 7 =z is the third factor.
Accordmgly,

a:+(y X z)'—(a:-l—y-l-z) X (x+y+2)X (m+g7+z).
Agam, let us develop the expression '
e (d+b+c)><(a+5+c)><(a+b+c)
Here m=3n=9 p=3; so that the number of ultunate aﬂgreoa,nts i ﬁve.

aggregant |

.'thfe rlumber of {factors} . Then the number of { ultimate aggregants | ; I
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Of the eight possible products of three letters then, only three are excluded
namely : (a XbXE),(@Xbxc)and (@axXbXsc). We have, then,
(a+b+c)><(a+5+c)><(a+b+c)"' .
(axb><c)+(a><b><c)+(a><6><c)+(a><b><c)+(deXc)
Third Process. Separate all complex propositions into mmple ones ‘by means
of the followmg formule from the definitions of + and X : -
X+Y-<2)=(X~<2) X (Y-<2)
(X<Y¥XxZ)=X<Y)x (X< 12)
YR )=x=Z 0+ (X< 2)
XY x2)=XZ N+ (X 7)
In. practice, the first three operations will generally be performed off- hand in .
writing down the premises. :
Fourth Process. 1f we have given two proposmons, one of one of the forms

a—<b+9c e XE-b,

and the other of one of the forms

c<d+i - exz—<d,
we may, by the transitiveness of the copula, eliminate x, and so ol)tain
) aXe -< b+ d.

Fifth Process. 'We may transpose any term from subject to predlcate or: the
reverse, by changing it from positive to negative or the reverse, and at the same

time its mode of connection from addition to multiplication or the reverse. Tlius.,.“., R

- (wxy<z)—-(w—<y+z) ,
We may, in this way, obtain all the subjects and predicates of any letter or we
may bring all the letters into the subject, leavmg the predlcate 0, or all into tl:re

predlcate, leaving the subject o.

Szxtlz Process.  Any number of propositior_ls having a common{ subject }

predicate

~ are, taken together, eqmva,lent to thexr} {product_} .

sum .
. Asan example of this method, we may consider a well knowri problem gwen

by Boole. The data are - B o |

sz—<vX(wa+y><w)
7X@ Xw—<(yX2)+ (7 X37)
(a:Xy)-I—(vXa,Xy) (z>_{_w)+(zx‘w)‘.-‘
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The quaemta. are : first, to find those predlcates of x whxch mvolve\only Y, 2,
and w;_second, to find any relatlons which may be implied between y, 2 w;
third, to find the predicates of y; fourth, to find any relation which may be im-
plied between g, 2, and 1. By the first three processes, mentally performed we
' resolve the prelmses as follows: the first into’

IXZ<v 3
FXEy+w

5 X 2~ §+ B

? X wx'w—<y+§‘ )
. ,,wa<3/+z,
Xy —< z+w

Xy—<z+w
vaXy—{z-{—w.

the second into. |

Voos
i

: the third 4int0 .

We must first ehmmate v, about which we want to know nothmg We have,
on the one hand, the proposmons Do S

s XX §j—<z+w

, : - o X 2 X § <7+ W;
and on the other, the proposmons :

Xz,
XagXwy-—<y+z
XeXw-<g+z-
X®—< vty

o oz Xw-<v + .

" The conclusions from these prbpositions are ‘obtained by taking one from
“each set, multiplying their, subjects, adding their predicates, and omlttmg v.
The. result will befefmerely empty proposition if the same letter in the same
quality as to being poqxtwe or negative be found in the subJect and in ’che predi-
cate, or if it be found twice, ‘with opposite qumhtxes either in the subJect or in"the
predicate. Thus, it will be Yseless to combine the proposition » X & X 7 §-<z+w:
with-any which contains &, ¥, z, or w, in the subject. But all of the second set
do this, so that nothing can be concluded from this proposition. So. 1t w1]l be

N

N

VI V¥ S QW

. N y - ¢ .
. v i s,
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useless to combine v X ¢ X § <2+ % Wlth any which contains Z, ¥, Z, @ in
the subject, or z in the predicate. *This excludes every proposition of the second .

set except & X @ X w —<Cy + %, which, combined with the proposition under
dlSCUSSlOn, glves

v | . ,me——<‘/+§‘+QB
or : 2 X w-—y+% .
which is therefore to be used in place of all the premiises contammg v.
One of the othet propositions, namely, & X Z —< 7 + % is obviously con-

tained in another, namely: Z X w — a. ReJectlng it, our premlses are reduced
to six, namely: - -

. TXz-<y + w
Xy —< 2
2
z
x
The second, third, and sixth of these give the predicates of x. Their product is

z —< (5 + = +w) X (3 (J+7+w)X(J+z+zo)
:c—<yXz><'w+y><z><w+y><z><w+y><7><w+y><z><

or

* m—<z><w+z><w+g/><z><w. _
To find whether any relation between ¥, 2, and w can be obtained by the elimi-
nation of x, we find the subjects of 2 by combining the first, fourth, and fifth
premises. Thus we find

szXw+sz+z><w—<w.

It is obvious that the conclusion from the last two proposmom is a merely identi-
cal proposntmn and therefore mo mdependent relatlon is implied between y, 2,

and 0.

To find the predlcates of y we combine the second and third proposmons

This gives .
' y—<(-+z+w)><(m+z+w)

or - y—<x><7><w+ac><z><w+a,

Two relations between , % and w are given in the premlses, namely
2 X B~ and 7 X w <« To find whether any other is implied, we elimi-

nate y between the above prOposmon and the first and sixth premises, Thxs gives

a,Xz—<w><z><w+w+a;
e X< axX2X®D+T+2
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The ﬁrst conclusmn is empty The second is eqmvalent tox X w <53 Wthh is

a thlrd relation between z, 2, and 20.
.. Everything 1mphed in the premises in regard to the relatlons of @, 9,2 w
' may be summed up in the propdsition

S oo-—<m+sz+sz><Jw.

B

CrarTER III.—TaE LoGIic OF RELATIVES.,

N

_ §1L Tndividual and. szple Terms.
' Just as we had to begin the study of Logical Addition and Multiplication by

consxdermg o and 0, terms which might have been introduced under the Algebra
- of the Copulu, being defined in terms of the copula only, without the use of + or
X, but whlch had not been there introduced, because they had o application
there, 0. we have to begin the study of relatives by considering the doetrine of
~ individuals and snnples,——u doctrine which makes use only of the conceptions of
nou-relutlve loglc, but which ‘is wholly without use in that part of the subject,
‘while it is the' very foundation of the conception of a relative, and -the basrs of
the method of workmg with the algebra of relatives.

The .germ of the correct theory of individuals and simples is to be found in

Ka.nt s Critic s the Pure Reason, Appendiz o &he Transcendental Didlectic, where he
Iays it down as a regulutlve principle, that, if

T a-<b b—<a,
then 1t is always posmble to'find such a term x, that

S a<lz. . x—<b

e x—<a , b—<:c.
Kant’s dlstmctron of regulatlve and constitutive principles is unsound but this
. law of contmuzt ;.28 he callsiit, must be accepted as a fact. The proof of it, which
T have given elsewhere, depends on the continuity of space, time, and the in-
tensltles of the 1qualities ‘which enter into the definition of any term. If, for
mstance, ‘we say that Europe, Asia, Africa and North America are continents,
but not all the continents, there remains over only South America. But we may
dlstmmush between South Amemca as it now exists and South Amerlou in former

: '.\ geologlcal tlmes, we: may, therefore, take « as including Europe, Asm, Afnca,
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‘North Amerlqu, and South Amenca as it ex1sts now, and every zisa contment
b?.lt not, «every continent is ..

Just as in mathematics we speak of infinitesimals and mﬁmtes, which are
ﬁctxtrous limits of continuous fuantity,”and every statement 1nvolvmg thest
expressmns has its interpretation in the doctrine of hmrtss 80 in locrlc we may

-define an mdwzduaZ A as such a term that

A0,
then 0 e =<0
And in the same way, we may define the simpl, a, as such a term that
| B | 2 a,

then 1-<au.

The individual and the sumple, as here defined, are ideal hmlts and every
statement about either is to be interpreted by the doctrine of limits.

Every term may be conceived as a limitless logical sum of individuals,.or ‘as
a lmntless loo'xq:al produot of simples; thus,
| -e=A A A+ A +A5+etc.

a=A, X A, X A; X Ay X A X ete.

but such that if

but such that if ‘ -

Tt will be seen that a simple is the negative of an individual.
b Tk |

- § 2. Relatives.

A relative is o term whose definition describes what sort of a system of objects - |
that is whose first member (which is termed the relafe) is denoted by the term ; .

~and names for the other members of the system (which are termed the correlates)

are usually appended to limit the denotation still further. ‘In these systems the
order of the members is essﬁtlul so that (A, B, C) and (A, C, B) are different
systems. As an example of a relative, take ¢buyer of — for-——-from “we may,

. append to tlns three correlates, thus, ‘buyer of every horse of a certnm descnp!
_tion in the market for a good pru.e-from its owner.”

A relative of only one correlate, so that the system’ it supposes is pair, may -

be called.a, dual relative ; a relative of more than one. correlate ‘may be called
- plirdd.- A n(m-relamve term may be called a term of singular refevence. -

Every relatlve, hke every term of smgulur reference, i8 general- 1ts defini-
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e - i: . b,
- tion describes a gystem in general terms; and, as general, it may be conceived
either as 4 100'10'11 sum of mdmdual relatives, or as a logical product of simple
relatxves. An individual rehtlve refers to a system a}l the members of which
are mdmdual - The expressmns » '

(£:B)  (A:B:0)

may denote mdlv1dual relatlves. Taking ‘dual individual relatives, for instance,
"~ we may arrange them all in 2l infinite block, thus,

A:A  A: B A:C A:D  A:E ete
"B:A - B:B_. B:C B:D B:E ete
C:A C:B ©€:C C:D C:E et

- D:A D:iB D:C D:D D:E et
E:A E:B ' E:C E:D E:E ete
ete. . ete. ete. ete. ete. )

In the same way, triple individual relatives may be arranged in a cube, and so
forth. The logical sum of all the relatives in this infinite block will be the rela-
tive umverse, o , where :

o . r —< w0,

| whate’ver dualvrelative ¢ may be. It is needless to distinguish t /&ual universe,

the triple universe, etc., because, by adding a perfectly indefinit¢ additional mem-
ber to the system, a dua]. ralitive may be converted into a”tiple relative, etc.
_ Thus, for bver of a woiman, we may write bver of @ woman coexising with anything.
In the same way, a term of single reference is equivalent to a %latlve with an

‘mdeﬁplte correlate ; thus, woman is equlvalent to woman ooextslz g wzﬂz an ylhing.
Thus, we shall have :

A=A:A+A:B+A: C+A D+A: F+‘

.‘etc :
A:B=A:B:A4+A:B: B+A B:C+A: B1D+etc

n, it follows that
But while in non-

From the definition of a simple term given in the last sccti
- every simple relative is the negative of an individual ter
relative logic negation only divides. the universe Into ta¢o parts, in relative logic
tlle same operation divides the universe into p’u‘ts, where n is the number of
obJects in the system which the relative su poses; thus, '

oo——A+A
wo=A:B+A:B+AYB+A:B

Vi

- #-In my Logic of Relatives, 1870, I have used this cxpression to designate what T now eall dual relatives,
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°°=(A'B'C)+(K‘B'C)+(A~I—3-C)+(A-B-6)
- +H(A:B:C)+(A:B: C)+ZA B:C)+(A:B:C)." R
Here,wehave :

‘ A=A:B+A: B; A= A:B+A:B; _. _ _
¢ KA:B=A:B:C+A:B‘:C; ,A:E:=A:B:C+A:l§:6§ .
A:B=X:B:C+%:B:C; A:B=K:B:C+A:B:C

v

It will be seen that a term which is individual when con51dered as nfold is not .
so when considered as more than n-fold ; but an #-fold term when made (m n)
fold, is individual as to n members of -the system, and indefinite as to m members. -

Instead of considering the system of a relative as consisting of non-relative
individuals, we may conceive of it as cons1stmg of rela.tlve mdmduals Thus,
since

‘ A=A:A+A:B+A: C+A: D + ete,

we have

A:B=(A:A):B+(A:B):B+(A:C):B+(A:D): B+ ete.

But . :
B=B:A+B:B+B:C+'B:D+etc.;

so that

A:B=A:rB:A)+A: (B B)+A (B: C)+A (B D)+etc
Here we have evidently
(A:C):B=A:(B:C)
In the same way we find o ' : ’ ; o
| (A:D):(B:C)=(A:C): (B:D) - ‘
=A:[(B:D):C]=A:[B:(C:D)]
=[A:(C:D)]:B=[(A:D):C]:B.

§ 3. Relatives connected by Transposition of Relate and Correlate.
Connected with every dual relative, as

t=3(A:B)=I(a:B),

.

is another which is called its converse,

k=E(BiA)= H(B a),
in which the relate and correlate are transposed. The converse, k, is ltsen a
relatwe, being

k=Z2[(A:B):(B: A)],
that is, it is the first of any pair which embraces two mdmdual dual relatlves,v )
each. of which is the converse of the other. . The converse of the converse - is
the relation itself, thus '
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: k-k-l =1,
or say o kk=1. '
" We have also - S
M=k
kY =2k \
EIl = IIE.

In the case of triple relatives there.are five transpositions possible. Thus, if
b=Z[(A:B): C]=Z[A:(C:B)],

Ih=% v,aB‘:A):C]=E[B:(C:A)]
Jb=3TA:(B:C)]=Z2[(A:C): B]
Kb=Z[C:(A:B)]=Z2[(C:B):A]
Lb=3[(C:A):B]=3[C: (B: A)]
Mb=Z[B:(A:Q)]= Z[(B:0):A]
IM=ML=1
I=JJ=KK=1
IJ=JK=KI=1L
JI=KI=IK=M
 IL=MI=J=KM=IK
- JL=MI=K=IM=1LI
"KL=MK=I=JM=LJ.

If we write a:b to express the operation of putting A in place of B in the
original relative

we may write

Here we have

._b=2[(A_;'B);C]=E[A:(C‘:B)],

Idﬁa'ib“f-b:a-i-c:c
J=a:a+b:c+ec:b
K=a:¢c+b:b+c:a
L=a:b4+b:¢c+c:a .
M=a:c+b:a+c:b
1=a:’a+b:l\2‘+c ¢

: I+J+K=1+L+M,
which does not imply ‘
- (I+J+K)Z—-(1+L+M)l

then we have

Then we have

In a snmlar ‘way the n—fold relative will have (n!—1) tmnsposxtlon functlons. '

LY %

.
By

.
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§ 4. C’lasszﬁcatwn qf Relatwes. _
Indmdual relatlves are of one or other of the two forms _ " :

S AA A S

‘and simple relatives are negatives of one or other of these two forns.

The forms of creneml relatives are of infinite varxety, but the followmg may
be particularly noticed. ) . -

Relatives may be divided into those all whose mdmdual awgregants are of
the form A:A and' those which contain individuals of the form A:B. The
former may be called concurrents, ‘the latter opponents. Concurrents express a
mere agreement among objects. Such, for instance, is the relative ‘man that

and a similar relative may be formed from any term of singular reference.
We may denote such a relative by the symbol for the term of singular reference
with & comma after it; thus (m,) will denote ‘man that is —’ if (m) denotes
‘man’ In the same way a comma affixed to an n-fold relative will convert it
into an (n+ 1)-fold relative. . Thus, (I) being ‘lover of —, " (4) will be ‘lover
that is — of —. , . ‘F

The negative ¢ of a concurrent relative will be one each of whose sxmple com-
ponents is of the form A: A, and the negative of an opponent relamve w111 be
one which has components of the form A : B.

We may also divide relatives into those which tontain individual aggregehts
of the form A.: A and those which contain only aggregants of ‘the form A : B:

_ The former may be called seif-relatives, the latter alio-relatives. We a]so have neg-
“atives of self-relatives and negatives of alio-relatives.

9

These differént claskes have the followmg relations. Eizery neoative ‘of a

xeoncurrent and every alio-relative is both an opponent ‘and the’ negative of a

self-relative. Every concurrent and every negatlve of an alio-relative is both
o self-relative and the negative of an opponent. There is only one relative
which is both a concurrent and the negative of an alio- relative; this is 1dent1ca,1
with— There is only one relative which is at once an aho-relatlve and the
negative of a.concurrent; this is ‘the negative of the last, namely, ¢ other

3

than —’ The following pairs of classes are mutually excluswe, and divide all |

" ;relatlves between them : .

Alio-relatives and seflf—relativee,

‘Concurrents and opponents, .
- Negatives of alio-relatives and negatwes of self-relatives,
Negatives of concurrents_and negatives of oppounents.
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_¢ ‘No relative can be at once elther an alio-relative or the negatlve of a con-

current, and at the same time elther a concurrent or the negatrve of an aho-
: We may append to the symbol. of any relatlve a semlcolon to convert it
into an alio-relative of a higher order. Thus (7;) will denote a ¢ lover of — thet
_‘ls not—- A s

~This completes the classrﬁcatlon of dual relatives founded on the dlﬁ'erence
of the fundamental forms A:A and A:B. Similar considerations applied to
trrple relatives would give rise to a highly comphcated development, inasmuch
as here we have no less than five fundamental forms of individuals, namely,

C(A:A):A (A:A):B (AB)A(BA)A(AB)

_'The number of individual forms for the (n + 2)fold relative is-

| 2+(2~——1) 3+2,{(3"<—1)—-2( ‘—1)}.4+§‘i{(4"—1)—‘3(3"—1)

+3(2"——1)} 5+41{(5—1)—4(4“—1)-%—6(3“-—1)—4(‘)“—-1)}
1(6 ~1)— 5(5«—1)+10(4n—~1) 10 (3 -—1)+5(2"—1)}.7+etc.

S ’If tlns number be called Jn, we have

Theform of calculation is

Af0=f(n—1)

=1

T

2 1

5 3 ,

15 10 5 .
52 8. 27 20 15
208 151 114 87T 67 52

where the dragonal lgne is ‘copied number by number from the : vertical lme,
"'as fast as the.latter is ‘computed.

~Relatives may also be classified according to the general amount of filling up
of the above-mentioned block, cube, ete. they present. In the e;i(rst place, we

_have such relatives in whose block, cube, ete. every line in a cerfain direction

in which there is a single individual is completely filled up.  Such relatives may

be called complete in regard fo the relate, or first, second, third, ete. correlate. _
~The dual relatives which are equrvalcnt to- terms of Smoular I‘eference are com-': -
- plete as to their correlate. e R

-
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A relative may be mcomplete with reference to \c/ertam correlate or to its-

relate, and yet eyery individual of the universe ‘may in some way enter into-that

correlate or relate. Such a relative may be called unlimited in- reference to the
correlate or relate in question. Thus, the relative

A:A+A:B+C:C+C: D+E E+E:F+6G: G+G H+etc

is unlimited as to its correlate. The negative of an unlimited relative will be
unlimited unless the relative has as an integrant a relative which is complete
with regard to every other relate and correlate than that Wlth reference  to
which the given relative is unlimited.

A totally unlimited relative is one which is unlimited in reference to. the
relate and all the correlates. A totally unlimited relative in which each letter
enters only once mto the relate and once into the correlate is termed a substi-
tution. - o o

Certain classes of relatives are characterized by-the occurrence or non-
occurrence of certain individual aggregants related in a definite way to others

‘which occur. A set of individual dual relatives each of which has for its’ relate

the correlate of the last, the last of all being considered as preceding the first,

~ of ‘all, may be called a eycle. If there are n 1nd1v1duuls in the cycle it may be
~called a cycle of the »™ order. For 1nstance,

A:B BC C:D DE EA

may be called the cycle of the fifth order. Now, if o certain relative be such .
that of any cycle of the n™ order of which it contains any m terms; it also con- -
tains the remaining (n—m) terms, it may be called a cyclic relative of the

2™ order and m™ degree. If, on the other hand, of any cycle of the n order of
whlch it contains m terms the remarmng (n— m) are wanting, the relatlve may
be called an anticyclic relative of the #** order and m® degree.

A cyclic relative of the first order and first degree contains all individual -
components of the form A:A. A cyclic relative. of the second order and
first degree is called an equiparant i in opposition to & disquiparant. ’

A Iughly important class of relatives is that of fransitives ; that is to say, those
which for every two individual terms of the, forms (A: B) and (B: C) also
possess a term of the form (A:C).

\

§ 5. The Composition of Relatives.

Suppose two relatives either individ:ual or simple, 'and'_hcv_inglthe relate or
correlate of the first identical with the relate or correlate of the second or of
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its necratlve. This -pair of relatives Wlll then be of one or other of sixteen
forms V1z.. . o
C(K:B)(B:0) "(AB) (B:C) (A:B) (B:0) |
(A:B) (C:B) (A:B) (C:B) (A:B) (C:B) (
- (B:A) (B:C) (B:4) (B:C)  (B:4) (B:C) (B:A) (B:0)
(-B A) (C'B) (B:4) (C-B) (B:A) (C-B) (B:A) (C:B).
Now we may conceive an- operatlon upon -any one “of these sixteen pairs of
- relatives of‘ such a nature that it will produce one or other of the four forms

(A C), (A=C C), (C A), (C A). Thus, we shall have sixty-four operations
in gl

We may symbohze them as follows: Let
| A B () B:C=A:0;

B) (B
B) (C:

A:B
A:

that 18, Jet. (]”) signify such an operation that this formula necessanly holds. .

“:The three lines in the sign of this operation are to refer respectively to the first
- relative operated upon, the second relative operated upon, and to the result.
: v.;When either of these lines is replaced by a hyphen (-), let the operation sig-

- nified besuch that the negative of the correspondmcr relatlve must be substituted
“in the above formula. Thus, |

) KB () B:C=A:C.

In the same way,. let a semicircle (v) signify thn.t the converse of the correspond-
" ing rela.tWe is to be taken. The hyphen and the semicircle may be used
tOgether If then, we write the symbol of a relative with a semicircle or curve
-:-',over 1t to denote the converse of that relatwe, we shall have, for example,

o KB()B:C=A:C.
Then any combmatlon of the rel'mves a and e, in this order, is eqmvalent

to others formed from this by making any of the following changes:

Fzrst Puttmg a straight or curved mark over « and changing the ﬁrst
: .ma.rk of the sign of operation in the corresponding way ; that is,

for &, from | to  or from ~ to v or conversely,
for a, from | to — or from u to v or conversely,
for d, from | to « or from ~ to » or conversely. .

‘ Second Making similar ‘simultaneous modlﬁcatlons of e and of the second
_mark. ' .
 Third. Changing the third mark from | to - or from v to » or conversely,
: mld mmultaneouely wrltmg the mark of ne«ratxon over the whole expression.

For operations, in whose symbols the {

 remain only eight. For these eight the f'ollowmg formule hold

~
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Fourth. Changing the third mark from | to v or from - to « or conversely, |
and mterchangmg a and ¢ and also the first and second marks, < - - - o

e-have thus far defined the effect of the' sixty-four operations when certain
members of the individual relatives operated . upon are identical. - When these

~ members are not identical, we may suppose either that the operatlon H| pro-

duces either the first or second relatlve or 0. We cannot suppose - that it

'vproduces.oo for a reason which will appea,r further on. Let us elect the formula

A.B‘(II{)C.De-O.

The other excluded operations will be ;includedv in a certain manner, as we
shall see below. From this formula, by means of the rules of equivalence, it

»

will follow that all operations in whose symbol there is no hyphen in the third

place will also give 0 in like circumstances, while all others will give 0 or .
We have thus far only defined the effect of the sixty- four operations upon

md1v1dua1 or simple terms. - To extend the definitions to other cases, let us

suppose first that the rules of eqmvalence are generally vahd and second, that

' Ifa—<bandc—<dthena(”|) —<b({]])d
(a —<b) X (e~ d) < {a(|l|)0—<b(ll|)dl

Then, this rule will hold good in’ all operations in whose symbole the first and

sécond places agree with the third in respect to having or not having hyphens.

first -
second

or

}fmerk} disagreesfwith the third'_.

| :in"this reepect we mlrst write { d§ } -instead of { < }m thls rule. B

e~<.d

Thus, the sixty-four operations are divisible' into four classes accordmg to whlch o
~ one of the four riles so produced they follow. - : POEH

It now appears that only the hyphens and not the curved marks are- of -
significance in reference to the rule which an operation follows - Let us
accordingly reject all operatlons whose symbols contain curved marks Mld there }’
A:B (||) B:C=A:C  A:B (H-—) B: C-‘*

KB () B:C=A:¢ KB () B:C=
A:B () B:C=A:C  A:B(--)B:C=

- K:B(--)B:C=A:C  AB(-—-)B:C
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A:B (Hl) C D“O A‘:vB (II-) C:D=w
A:B(-[NC:D=0 - K:B(-]-)C:iD=w

et et R

A:B (]-) C:D=0  A;B (--) 0iD=uw

,. -\,-'£,\' . i .

A:B(--)T:D=0 X AB(---)0D=w ,' B
(<)X<d<fa (I) o= () 4> A
B (a—<b)><(c—<d)—<{a(---)c—<b(—---—)d}.. B
. <X (e<d)—<{a (-]]) e=<b (-] @} ' e
<X (< <{a () o<b (--)d} . N
(@)X (@< )< fa (|=]) e—<b (=) d} ‘
@<Hx@<)<ja (-]) o<b(-]) @)
(w<oww<e<m«4n<wemo S
- e X (@)= {a (|]-) e=<b (1]-). ). S

As 1t i8 mconvement to consider so many as eight distinct operations, we
:m'ly reJect one-half ‘of these so as to retain one under each of the four rules.
o We may re_]ect al those whose symbols contain an odd num
"[;--_"f;'bemg megative). We then reta,m four,
o 'names and symbols 2

ber of hyphens (as
to which we may assign the following'

-

(] ]) = qe ;Re&dz've or e:dernal multiplication

a (|==)e= “e Regressive involution.
AR ‘a (=1~ e=«&  Progrossive involution.
e (-——|) e = ace Transaddition* .

¥

We huve then tbe fol]owmg table of equivalents, negatives, and converses: } -
e =aee | @ =% W =¢.d | =1
@ =% | ae=aq.g | % =%5 o= Foli »
% =& | gg=gee | @ =¥y €4 =%.¢ R
.' 'aoe—-('ze» ) @ =% ol =¢d " b4 =¥&

e '_ . The ﬁmt three of these Were studxed by De Morgan (On the S yllogism, No. IV.) ; the last is new, Tbe .

above names for the first three (except the adjectwe mtenw,l suggested by Gmssmmm’s Operatxon) are gm.n in -
.. my Logic of Relatives.

0t A similar table is
* -the fourth operation.

gwen by De Morg&n of course it lacks the symmetry of this, because he hnd not

*

 together with all contained.in /(A : B) QED. S S IR

lates are not A Thls proposxtlon is ‘proved hke the last.
F T R A7B'=(A:B)I+A.
This is ev1dent from the second prop031t10n, because -

e . thlS pnper.
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.

I I denote ‘lover’ and's ¢ servant,” then

Is_denotes. whmtever 18 Jover of a serva,nt of g i D e
& whatever is lover of every servant of - ' .

Is whatever is in every way (in which it loves at a]l) lover ofa servant
l-s whatever is not a non-lover only of a servant of — .

* or whatever is not a lover of everything but servants of —
or whatever is some way a non-lover of %ome thmg besides servants of —

§6 Meﬂzods in the Algebra of Relatwes

v

The universal method in this algebra, is the method of Ttmits-—For certain c
letters are to be substituted an infinite sum of individuals or product of simples; . .
whereupon certain transformations become poss1ble which could not otherwise L
be effected. '

The following theorems are lndlspensable for the application of this method

Ist. N W8 =](A:B)+%B.

Since B is equivalent to the relative term. whlch comprises all individual
relatives whose relates are not B, so £B may be convemently used, as it is here;
to express the aggregate of all individual relatlves whose correlate is B To
prove this proposition, we observe that |

z“*-z( B)

‘Now /(A :B) contains only individual relatives whose correlate is B, and .of
these it contains those which are not included in [{A:B). Hence the nega-

tive of I(A:B) contains all individual relatives whose correla,tes are not B,

2d. . AM=(A:BU+A .

Here Ai is used to denote the aggregate of all md1v1dual relatives Whose re-

A B=wm]

C4th CATB=I(A:B)+iB. » |
“}:’Another method of workmg with the algebra is by means of nega,tlons This >

becomes quite. mdlspensable When the operatlons are deﬁned by negatlons, as m. T




b’ AP to Zb When l tmd b are. totally unhmxted relatxves.

PR RPN

Z—-E‘(L. M) b Z(BJ C)
Then, by the rules of the last sectlon, S

_<LMb . lb__<lB0
whence, by the second and thn‘d proposmons above,
‘ i ~’rf~_!b-<(L‘ M)b+T,  P<i(B;: C)+LB.
. But_by the ﬁrst rule of the Jast section .
" | (L‘.M‘)b—<lb l(B.CJ)—<Zb

CB<B+L  P-<B+IE,

‘There wﬂli be; "_ropos«utxonil1 like these for all the dlﬂ‘erent values of i and ] |

. M\ﬂtlplymg ,__’}gether all those of the several sets, we have
lb "< lb + H.Lg lb ‘—<lb+ ijBjﬁ.
II L. ZiL‘ 11 kBJ 2 chJ )
‘and smce the relahves are unhnuted L ; ;
, .n 0 szJ-o i
| ‘b—<\lb S |
“In ‘the same- way 1t is easy to show that 1f the nega.tlves of [ and b are totally

‘unlimited, N
i lb—-<lo ‘b—<lo

§7 lee G’eneral Formulte for Relatwes.

The 'prmclpal formul:e of this algebra may be. dmded 1cto} dzstnbulwn fonnulw |

;;and association Sornivle. The dlstmbumon formulee are those which give the equiv-
_'a.‘lent of a relative compounded thh a'sum’ or product of two relatives i in such
terms as t0. separate the latter two relatives. -The association formulz are those

,whmh give the eqmvulent of a relatwe A compounded with a compound of B
: 'end'-C in terms of a compound of A and B compounded Wlth C |
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1. DISTRIBUTION FORMULZE.

1. AFFIRMATIVE.

i. Simple Formulce.

(a+b)‘c=ac+bc'
(@X by =a X b
atbe =0 Xb

(@ X b)oe=(asc)+ (boc)

a(b‘+c)=ab+.ac
B =g X
“bXec) = X<
as(bXc)= (aob)+(aoc)

o ' ii. Developments.

(aXb)c=ﬁp{a(cXp)+b(cXﬁ)}
(aHbF=3, [@xex bt
exbe=3, {«(c+p)X c+5)} -
(at+b)ec=TIL{as(c+p)+be(c+p)}

- a(ch) II {(aXp)b+(aXp)c}

@x0 =3, {(@+pp X (7Y}
i(b+c)= E {“’“’bX“’“’c} _
ao(b—}-c) II i(a-l-p) b+(a+p)oc§

2. NEGATIVE:

i. Simple Forhz_ulté.

X'
i
"

aoc X boc

CED)
7T =F 4

'a(bxc) =3 4 %
ao(ch) qobXaoc

| ii. Developments.

(aXb)c—-—E §a(c><p)><b(c><p)§
(a+b) “‘II 3a°""+b°x1’f

ST ETR

a(ch)*E f(aXp)bX(aXp)cg
@7 =TI, 3(a+1>)"+(a+p)¥
a(b+c)_n {apr.J‘_uxiacg

(a+b)°0— 2 {a°(C+P) X be (°+P?§

'ao(b+ c) E {(a+p) bX(a-{-p)ocj
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I ASSOCIATION FORMULZ.

S szple Formule.

bc>=a(bc) = (ab)e = (@y .>a<7f>l=°(bé) @y = (T)e

PEIRCE: On the A.lgeb‘ra of Logic. -

third letter the exterior operation. By jundzbn—marks will be meant, in case the
3 parenth,esis{ follows }the-thi.rd letter, the { firs }ma_rkof the symbol of the

precedes second:

interior operation and the { sef;: Oréd} mark of the symbol of the exterior opera-

tion. Usmu these terms, we may say that the exterior junction-mark and the

i} . , — = A third mark of the interior operation may always be changed together. When
‘ “"(b oc) = qto9 = eedg = (“°b)°0 Al = ao() = (a)ec = e they are the same there is a simple association formula. This formula consists
ao(bc) =gk = (ab)c = (a")c a(%) = (). = - ([{]} Joc in the possxblhty of s1multaneously interchanging the Jupctlommarks, the third
‘ = marks, and the exteriority or interiority of the two operations. When the ex-
bo ——a boc) = h)o ——("b)c S a®) =qe 0) = (aob)c = (o) L . ' . ’ e . o
c) ( ) ( ) ‘ : ( .(a Je=( : ) terior junction-mark and the third mark of the interior operation are unlike,
N R i Dev elopm ents. S there is a developmental association formula. The genetal term of this formula,

is obtained by making the same interchanges as in the simple formulae, and then
changing a to A when after these mterchanges ab or °b oceurs in pm‘enthems, -
ch'mgmg ¢ to a when @ or" aeb oceurs, in. pmrenthesm, changmg e'to E when '
de or d°: occurs in porenthesis, and changing e to € when ‘e or-doe occurs in
parenthesis. When the third mark in the symbol of the exterior operation is
affirmative the aeVelopment is o summation ; when thlS mark is negatlve there
~ is a continued product C - LT

'~ In the first column of f'ormulse, the second mark in the s1gn of the interior
- operation is a line in ths 1'and » hyphen in Class 8. In the second column,

the first mark in the sxgna of the interior operation is a hyphen in Class 2 and

lige in Class 4.

(A and E are. 1nd1v1dual aggregantq, and a and ¢ simple componentq of
j_and e, The summations and products are relative to all such aggregants and

-components _The formul are of four classes; and for any relative ¢ either
Sooall formulm of Clasg 1 or.all of Class 2, and .also either all’ of Class 3 or all of
Class 4 thd good. o .

.;-" L ouassy "::}.' - o CLAss : |

-.a(bc)*“(bc)*H{(Ab)c}—ﬂt'*b)( (cod)e=(cody = T {co( )| =TI{d)
‘f};}"_';;:',,,'Eﬁ-ao(bc) zg(aob):—— {(aob)cgv - Eg = (codd)od’= £|¢"} = E{co(T6) )
o) = @ = T@)e = TEY (@)= = Mfes(doe)} = T]e™]

(””)’" “(”)* Z{(Aby |=EI®l @ = (e = 2] = o))

o

R CLASS3 S © ¢ cLass4 .- 0,
"V:‘.f,‘»'a(boC)——’q (boc) 2{(‘“"’6} — E{(-E)c} S (cd)e—-'(cd)oe—z{ ((loe)} = Z{¢( dog )" - :
_‘»'~,;_"a(b°(,- —“‘(boc) I{(Ab)oe)=T1{"%} " (cd)e = (cd) = I{e(d®)} = I1}°(d¥)| S
(o) = ale) = ("] = 2{("D)ec) (D= (e =S{(AB)| = Zpe(dW)} -

*v-ao(*Z) ab”""ﬂ{(aob)oc} ng<°°%}_ - (e = e = H*c(de);—-nwe\;

* (To be C’ontinidied.)'

\

NOTE TO PAGE 47. L
(l

The relatxve 0 OUght to be considered as at once a concurrent and an alio- relative, and the relntwe was at
once the negative of a concurrent’and the negam'e of an. a)xo relative. The ‘statements in the text require to

- bemo(hﬁedwthxsextent o \ o L » o .

. The negatwe formulae are denved from the afﬂrmatlve by Cnmply drawing
e or erasing lines, over the whole of each member of every ‘equation.
In order to see the freneral rules whxch theqe formu]w follow, we must im-

:-'chapter. We may term the operation umtm(r the two letters within the pcu'en-‘ R

thesxs tﬁe szcrwr operatxon, and th‘lb which unites the whole parenthems to the




