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On the "Logic of Number
| ‘B’YC. S. PEIReE.

Nobody can doubt the elementary propositions concerning number: those
that are not at first sight manifestly true are rendered so by the usual demon-
strations. But although we see they are true, we do not so easily see precisely
why they are true; so that & renowned Enghsh logician has entertained a doubt

- a8 to whether they were true in all parts of the universe. The object of this

paper is to show that- they are strictly sylloglstxc consequences from a few
primary propositions. The question of the logical origin of these latter, which I
here regard es definitions, would require s separate discussion. In my proofs I
am obliged to-make use of the logic of relatives, in which the forms of inference
are not, in a narrow sense, reducible to ordinary syllogism. * They are, however,
of that same-nature, bemg merely syllogisms in which the objects spoken of are

© pairs or triplets. - Their validity depends upon no conditions other than those of
~ the validity of snnple syllogism, unless it be that they suppose the existence of

singulars; while syllogism does not.
The selectxon of propositions which I have proved W111 I trust, be sufficient

-~ to show that all others mlght be proved with like methods.

Let r be any relative term, 'so that one thing may be said to be 7 of
another, and the latter +'d by the former. If in a certain system of objects,
whatever is 7 of an » of anything is itself 7 of that thing, then 7 is said to be a
transmve relative in that system. (Such relatives as “lover of everythmg loved
by —" are transitive relatives. ) Ina system in which r is transitive, let the ¢'s

of anything include that thing itself; and also every r of it which is not #’d by

it. Then ¢ may be called a fundamental relative of quantity; its propertles
bemg, first, that it is transitive; second that everything in the system is ¢
of itself, and, third, that nothing is both ¢ of and ¢'d by anything except itself.
The objects of a system having a fundamental relation of quantity are called

quantities; and the system is called a system of quantity.

&
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A syste;ﬁ in which quantities may be ¢'s of or ¢’d by the same quantity
without béing either ¢’s of or ¢'d by each other is called multiple ;* a system in
- which of every two quantities one is a ¢ of the other is termed simple.

Simple Quantity. ”

- In asimple system every quantity is either “as great as” or ““as small as™
every other ; whatever is as great as something as great as a third is itself as

‘great as that third, and no quantity is at once as great as and as small as any-
thing except itself. o : ' :

' A system of simple quantity is either continuous, discrete, or mixed. A .
continuous system is one in which every quantity greater than another is also
greater than some intermediate quantity greater than that other. A discrete
system is one jn which every quantity greater than another is next greater than
some quantity (that is, greater than without being greater than something greater
than). A ‘mixzed system is one in which some quantities greater than others are
next greater than some quantities, while some are continuously greater than
some quantities, ‘ ‘ '

 Discrete Quantity.

A simple system of discrete quantity is either limited, semi-limited, or
- unlimited. A limited system is one which has an absolute maximum and an
‘absolqte minimum quantity; a semi-limited systém has one (generally consid-
ered ;),'miriimum) without the other; an unlimited has neither. '
" A simple, discrete, system, unlimited in the direction of increase or decrement,
is in that direction either infinite or super-infinite. An infinite gystem is one in -
which any quantity greater than z can be reached from x by successive steps to
the next greater (or less) quantity than the one already arrived at. In other
words, an i_nﬁrlife, discrete, simple, system is one in which, if the quantity next
- greater than an attained quantity is itself attained, then any quantity greater than
an attained quantity is attained; and by the class of attained quantities is meant
any class whatever which satisfies these conditions. So that we may say that an
infinite class is one in which if it is true that every quantity next greater than
a quantity of a given class itself belongs to that class, then it is true that every

*For example, in the ordinary algebra of imaginaries two quantities may both result from the addition
of quantities of the form a? 4 b% to the same quantity without either being in this relation to the other:;
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quantity greater than a quantity of that clasg belongs to that class.  Let the clag
:)f numbe.rs 1n question be the numbers of which a certain propositi(;n holds,trues .
I‘hep, an infinite system may be defined as one in which from the fact that g certaiI;
- proposition, if true of any number, is true of the next greater, it may be inferred
that that proposition if true of any number is true of every g;'eater. :

Of a supgr-mﬁmte system this proposition, in its numerous forms, is untrue

Semi-infinite Quantity. ‘. . :

. We now .proceed to study the fundamental propositions of semi
discrete, and simple quantity, which is ordinary number,

v

-infinite,

Definitions.
The minimum number is called one.

By @ + y is meant, in case x = 1, the number next greafer than y; and in
other cases, the number next greater than ' 4 g, where o is the number next
smaller than g, ' A

- Bya x yis meant, in case 2=1, the nuﬁb i
. : =1, ery, andin other cases oy
where o/ is the number next smaller than « . e
It may lf)e remarked that the symbols 4+ and x are triple relatives, their two
correlates being placed one before and the other after the symbols themselves,

waorems.

. The proof in each case will consist in.showing, 1st, that the proposition
18 true of the number one, and 2d, that if true of the number 1 it i true of
the nun.aber 1+ 2, next larger than #:" The different traﬁsformations of each
expression will be ranged under one another in one column, with the indica-
tions of the principles of transformation in another column,

1. To prove the associative principle of addition, that

@) +e=at(+s) -
whatever numbers x,y,and z, may be. First it is true forx=1; for
(1+9)+2 ' : |
=1+ (y+z) by the definition of addition, 2d clause. Second, if true for

®=mn, it is true for x = 1+ n; that is, if (n + y —
S 5 ) :1/)—{-—,4....n+ 7 +2) th
(A+m+p) o=@ +n)+(+2. Tor 2 then
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(L+n)+y) +e - |
=(1+ (rn+y))+z by the definition of addition:
=14 ((n+y) +2) by the definition of addition:
14 (»+(y +2)) by hypothesis:
=1+n)+ (y +2) by the definition of addltxon

9. To prove the commutative principle of addition that

x+./—-7J+m

-whatever numbers x and  may be.  First, it is true for o = landy= 1 being
in that case an explicit identity. Second, if true for x=mn and y =1, it is
true forx=1 + nand y=1. . That is, ifndl=1 +n, then (1 4n)+ 1=
14+(1+n). For 1+n)+1

=14+ 1) by the associative prmmple
=1+ (1 + =) Dby hypothesis.

We have thus proved that, whatever number z may be,z + 1=1% +«, or
thatw + y =y + xfory =1. Itisnow to be shown that if this be .true for
y=n, it is true for y =1 -4 =»; that is, that if z+n=n-+w, then
w+(1+'n)=(1+n)+a:.‘ Now, '

z+ (1 4 n)
= (z + 1) + n by the associative, principle:
= (1 + ) + = as just seen: ’
1 4 (z + n) by the definition of addition:
1 + (n + @) by hypothesis:
(1 4+ n)+ o Dby the definition of addition.

)

Thus the proof is complete.
3. To proye the distributive prmclple first clause. The distributive pun-
ciple consists of two propositions:

Ist, (z+y)z=az+y
24, w(y+z =aytam

For

We now undertake to prove the first of these. First, it is true for w = 1.

1+
2+ yz by the definition of multiplication :
1.z + yz by the definition of multiplication.
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Second, if true for @ =n, it is true for
= w=1 +n'that is, if =
then (L4 1)+ 57 = (L w2 4 om I that i (n+9)z nz+g{z,ﬁ

(P+n) +3)e S
1+ @®+ ) by the definition of addition:
z4+ (n + y)z by the definition of 2&{(
2+ (nz + yz) by hypothesis: '
(z + nz) + yz by the associative principle of addition:
(I +m)z+y2 by the definition of multiplication. .

iplication : |

4. To prove the second proposition of the dxstnbutlve prmclple that

, m(J+z)=:vy+ccz.'
First, it is true for ¢ = 1 ; for
1(y + 2) :
=gy+z by the definition of multiplication:
= ly + 1z by the definition of multiplication

Second, if true for x=1n, it istrue forz=1 + |
= n; that is, 1fn(g/+z =n
then(l+n)(J+z)—(1+n)J+(1+n)z. For ) ./+”Z~

AHn@y+2 |

= (y -IL-z) + 2 (y +72) by the definition of multlpllcatlon-
= (y +2) + (ny + n2) by hypothesis:
= (y + ny) + (= + nz) by the principles of addltlon.
=1+2y+Q+n)e- by the definition of multiplication.

5. To prove the associative principle of multlphcatlon that is, that |
(€y) 2 == (32),
whatever numbers «, y, and z; may be. - First, it is true for ¢ = 1, for

(1y) = -
=y by the definition of/multiplication:
. = 1l.yz by the definition gf multiplication.

Second, if true for x =% n, it is true for @ =1+ n; that is, if (ny) z =

~ then ((1 + ») ¥)z= (1 + ») (yz). TFor

Vor. 1V.
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(A+n)y)» : -
= (y + ny)z by the definition of multiplication:

= yz + (ny) z by the distributive principle:
= yz + n (yz) by hypothesis:
= (1 4+ n) (yz) by the definition of multiplication.
6. To prove the commutative principle of multiplication; that
xy = yx,
whatever numbers » and y may be. In the first place, we prove that it is true
for y = 1. For this purpose, we first show that it is true for y =1, x=1; and
then that if true for y = 1, o = n, it is true fory =1, =1+ n. For
y =1 and & = 1, it is an explicit identity. We have now to show that if
nl = In then (1 4 2) 1 =1 (1 + »). Now,
1421 _
=1+ nl by the definition of multiplication:
=14 1In by hypothesis:
=14n by the definition of multiplication:
=1 (1 4 n) by the definition of multiplication.

Having thus shown the commutative principle to be true for y = 1, we
proceed to prove that if it is true for y = n, it is true for y = 1 4 =n; that is,
if an = nx, thenw (1 4+ n) = (1 4+ n) . For
142
@ -+ nx by the definition of multiplication:

x 4+ an by hypothesis: '

lx + an by the definition of multiplication:
xl + an  as already seen:

(1 4+ n) by the distributive principle.

e

Il

Discrete Simple Quantity Infinite in both directions.

A system of number infinite in both directions has no minimum, but
a certain quantity is called one, and the numbers as great as this constitute
a partial system of semi-infinite number, of which this one is a minimum, The
definitions of addition and multiplication require no change, except that the one
therein is to be understood in the new sense.
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(A+n)y)e= o o
= (y + ny)z by the definition of multiplication:
= yz + (ny) » by the distributive principle:
= yz + n (yz) by hypothesis: o
= (1L + n) (yz) by the definition of multiplication.
6. To prove the commutative principle of multiplication; that

a:y'::: Yx, A

Wha‘t-'ever‘numbers 2 and y may be. In the first place; we prove that it is true

for y = 1. For this purpose, we first show that it is true for y =1, x=1; and
then that if true for y = 1," x=mn, it is true fory =1, =1+~ If‘(>‘r
i =1 and & =1, it is an explicit identity. We have now to show that if
nl=1lnthen 1 + n)1=1(1 + »n). Now,
1+n)1 : L
=14 nl by the definition of multiplication:
=1+ 1n by hypothesis: o
=14 n by the definition of multiplication:
. =1 (1 + ») by the definition of multiplication.

Having thus shown the commutative principle‘ to be true for y = 1, we
' proceed to prove that if it is true for y = n, it is true fof y = 1 + «; that.is,
if an = nz,"then (1 + n) = (1 + n) =. For |
' 1+ 2= ' o

@ + nw by the definition of multiplication:

z + an by hypothesis: :

lx 4 an by the definition of multiplication:

zl 4 an as already seen:

« (1 4+ n) by the distributive principle.

ity Infinite in both directions.

A gyste:, in both directions has no minimum, but
a certain qua: wnd the numbers as great as this constitute

a partial systen. ., number, of which this one is a minimum. The

definitions of addition and multiplication require no change, except that the one
therein is to be understood in the new sense.

~
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To extend the proofs of the principies of addition and multiplication to

unlimited number, it is necessary to show that if true for any number (1 + )
they are also true for the next smaller number n. For this purpose we can
use the same transformations as in the second clauses of the former proof; only
we shall have to make use of the following lemma. :

If o+ y=ua+ 2, then y =2 whatever numbers z, y, and z, may. be.
First this

is true in case @ =1, for then ¥ and z are, both next smaller than the
same number. Therefore, neither is smaller than the other, otherwise it would
not be next smaller to 1 4+ y=1+4z DButin a simple system, of any two
different numbers one is smaller. Hence, y and  are equal. Second, if the
proposition is true for z=mn, it is true forz=1+47%. For if(l+n)+y=
(1 + =)+ 2, then by the definition of addition 1 + (r+y)=1+ (n+2); whence

-it would follow that n+ y=1n + 2, and, by hypothesis, that y=z. Third, if

the proposition is true for =1+, it is true for x=n. Forifnty=n+z -
then 14+ n+y=14n+ z, because the system is simple. The proposition
has thus been proved to be true of 1, of every greater and
number, and therefore to be universally true. —
An inspection of the above proofs of the principles of addition and multi-
plication for semi-infinite number will show that they are readily extended to

of every smaller

‘doubly infinite number by means of the proposition just proved,

The number next smaller than one is called naught, 0.~ This definition in

symbolic form is 14+0=1. To prove that x + 0=z, let o/ be the number
next smaller than . Then, . ' :

.+ =(1+)+0 by the definition of o/
=(1+0)+« by the principles of addition :

=14« | by the definition of naught:
= by the definition of .

'

To prove that «0=0. First, in case x = 1, the proposition holds by the

definition of multiplication. Next, if true for x=n, it is true for x=1 +n.
For ' ' ' e

I4+20
=1.0+4 n.0 by the distributive principle:
=1.040 by hypothesis:
=1.0 by the last theorem :
=0 ' as above.
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Third, the propos1t10n, if true forz = 1 + n is true for « = n. For, cbangmg
the order of the transformations,

1.040=1, 0=0—(1+n)0—~1 0+ n.0.

e lemma, n. 0 = 0, 80 that the proposition is proved.

ThenAb Sr’mt}rbebir}-) ::hlch added to another gives naught is called the negative of
the latter. To prove that every number greater than naught has a negative. .
First, the number next smaller than naught is the negative of one; for, by the
definition of addmon, one plus this number is naught. Second, if any number
n has a pegative, then the number next greater than » has for its negative the
number next smaller than the negative of ». For let m be the number next
smaller than the negative of 2. Then n+ (14 m) = 0.

But n+4 (L4 m)
= (»n 4+ 1) + m by the associative prmmple of addition.
= (1 + n) + m by the commutative principle of addition.

So that (1 4+ ») + m = 0.. Q. E. D. Hence, every number greater than 0

has a negative, and naught is its own negative. -
~To prove that (— z) y = — (xy). We have
0=w+(—=) by the definition of the negative:
0=0=(=+ (—«))y by the last proposition but one:
O=ay+(—a)y by the distributive principle:
—(ay) = (—2)y by the definition of the negatlve.

The negative of the negative of anumber is that number. For, z+ (—=)= 0.
Whence by the definition of the negative & = — (—2).

Limited Discreie Simple Quantity.

Let such a relative term, ¢, that whatever is a ¢ of anything is the only ¢
of that thing, and is a ¢ of that thing only, be called a relative. of simple
correspondence. In the notation of the loglc of relatives,

cc——<1 cc——<1

If every object, s, of a class is in any such relatlon ¢, with a number of a
gemi-infinite discrete simple system, and if, further, every number smaller than

a number ¢'d by an s is itself ¢d by an s, then the numbers ¢'d by the &'s are

S e - '
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said to count them, dnd, the system of correspondence is-called a count. In
logical notatlon, putting g for as great as, and n for a positive integral number,

8—<¢,~n gcs—-<cg

If in any count there is a maximum countmg number, the count is said to be

finite, and that number. is called . the number of the count.. Let [s] denote the
number of a count of the s’s, then R .

[8]~<08 gcs——<fj

The relative “identical Wrth” satisfies the deﬁmtlon of a relutlvo of Slmple
correspondence, and the definition of a count is satisfied by putting “identical
with” for ¢, and “positive mtegra,l number as small as «” for s In thls mode of
.counting, the number of numbers as small as « is «. '

~ Suppose that in ar?§ count the number of numbers as small as the minimum
number, one, is found to be #. Then, by the definition of a count, every number
as small as n counts a number as small as one. . But, by the definition of one’
there is only one number as small as one. Hence, by the definition of single
correspondence, no other number than'one counts one. Hence, by the definition
of one, no other number than one counts any number as small as one. "Hence,

by the definition of the count, one is, in every count the number of numbers
as small as one.

! -
v

If the number of numbers as small as x is in some count ¥, then the
number of numbers as small as y is in some count x. For if the définition of a

simple correspondence is satisfied by, the rela’mve ¢, it is- equally satrsﬁed by
the relative ¢'d by.. : .

fl

.Since the number of numbers as small as  is in some count y, we. h'me ¢
being some relative of simple correspondence, :

1st. Every number as small as  is ¢’d by a number. .

2d. Every number as small as avn”amber that is ¢ of & number a8 small a8 %
is itself ¢ of a number as small as .

3d. The number y is ¢ of a number as small as «. :

4th. Whatever is not as great as a numbeér that is ¢ of a number as sma.ll as
x 18 not . : .

Now let ¢; be the converse of c. Then the converse of ¢ 18 ¢; whence,
since ¢ satisfies the definition of a relative of simple correspondence, so also does
¢;. By the 3d proposition ahove, every number a8 small as 3 y is’ as small as a
number that is ¢ of a number as small as «. Whence, by the 2d proposition,

Y
i




94 . Pemoe: OntleogwofNumber

every nhmber as small as _/ ise of & number as sma{l as'z; and it follows that
. every number as small a8 7 is ¢,/d by a number. It follows further that every

‘number ¢, of ‘a number as small'as y is ¢, of something ¢,’d by (that is, ¢, being a._
.-relative of mmple correspondence is identical with) some number as small as .
A.lso, ‘‘a5 small as”’ being a transitive relative, every number as small as a number

c of a number as small as y is a3 small as «. - Now by the 4th proposition yis

_ ag great as any number that iscof a number as small as «; so that what is- not

. a

-as'small as y is not ¢ of a'number as small as z; whence whatever number is ¢’d
.. by a number not as small as y is not ‘a number as small as . ‘Bat by the 2d

proposxtton every number as small as x not ¢'d by a number not as small as y is

¢d by a number as small as . Hence every number as small as  is -¢d by a
" pumber as small as y. ‘Hence, every, number-as small as a number ¢, of 2 number

~ as'small as y is ¢, of a number as small as y. Moreover, since we have shown
that every number as small as « is ¢, of a number as small as y, the same is true -

of thjelf Moreover, since we have seen that whatever is ¢, of a number as

. small s y is as small-as =, it follows that whatever is not as great s a number

¢, of a number as small as’y is not as great as a number as small as z; . e. (“as
great as” béing a transitive relatlve) is not as great as x, and consequcntly is not
. We have now shown— : ' _
 1st, that every number as small as 3 y is ¢,'d by a number ;
2d, that every number as small “ag a fiumber that is c1 of a number as small
a8 y is. itself ¢, of a number as small as y; ' :
" 8d, that the number = is ¢, of a number as ‘small as y/;. and

4th that Whatever is not as great as a number that is ¢, of a number a

smull as y is not .-

These four proposltxons taken together satmfy the deﬁmtlon of the number v'

of numbers as small-as y countlng up to z. , . ,
' Hence since the number of numbers as small as ‘one cannot in any count
be greater than -one, it follows that ‘the number of numbers as small as any

~~number greater than one cannot in any count be one.

Suppose that there is 2-count-in which . the number of numbers as small as.

1 + m is found to be 1 4-n, since we have just seen that it cannot be 1. In this
count, let m’ be the number which is ¢ of 1+, and let 7' bé the number which

s c'd by 14 m.  Let us now consider a relative, e, which differs. from ¢ only
3 ‘in excludmg the relatlon of m' to 1+ nas well as the relutlon of 1 + m to n'

e

as small gs the number of 8’s;

| and in 'includmg the rela,tlon of m' to w/, -

-~ ‘same ] 18 true whatevier the value of z.

. reasomng that a proposxtlon,
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: hen e W1ll be a relative of single
correspondence; for ¢ is 80, and no exclusmn of relations fromi a single corres-

~ pondence aﬁ‘ects this character, while the inclusion of the relation of m' to '
~ leaves m’ the only e of #' and an ¢ of #’ only. Moreover, every number as small
as m is e of a number, since every number except 1 + m that is ¢ of any-
thmg is ¢ of somethmg, and every number except. 1+ m that is as small as
14 m is as small as m. Also, ev ef’y\r\mmber as small as a number ¢'d by a |
‘number is itself ¢'d by a number; for every number ¢'d is ¢'d except 1+ m, and |
this'is greater than any number c’d It follovvs that ¢ is the basis of a mode of
.counting by which the numbers as small ‘asm'count up to n. Thus we have
shown that if in any way 1+ m counts up to 1 +n, then'in some way m counts
up ton. But we have already seen that for'z= 1 the number of numbers as
small as ¥ can in no way count up to other. than @. Whence it follows that the

If every Sisa P, and if the P’s are a -ﬁnite’lot counting up to a number

, then every Pisan §: For if, in counting the

P’s, we begin with the 8’ (which are a part of them) and having counted all the

S’s arrive at the number n, there will remain gver no P's not &'s. For if there

were any, the number of P’s would count up to more than ». From this we

deduce-the validity of the following mode of mference :
Every Texan kills a Texan,

%s‘ killed by but one pe.rs'on

Hence; every Texan is killed by a Texan, . '
supposing Texans to be a finite lot. For, by the, ﬁrst premise, every Texan kllled
by a Texan is a Texan killer of a Texan. By the second premise, the Texans
killed by Texans are as many as the Texan klllers of Texans, Whence we

* conclude that every Texan killer of a Texun is'a Texan killed by, a Texan, or,

by the first premise, every Texan is killed by &. Texan. This mode of reasoning
is. frequent in the theory of numbers B

2

'\

faiom?; ~—1It may be remurked that when we reason that a_ certam proposition, if false of any number,
is e of some smaller number, and since there is no number (in a semi-limited system) smaller than
every number, the proposition ‘must be trueé, our reasonmg 8 & mere logical transformation of the ’

if true forn is true foyfl + n,zmd thnt it is true for 1.

Sl




