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UNIVERSITY CIRCULARS.

(%3, ¥3, 25) of the third point of intersection may be expressed indifferently
in the two forms -

T3iyi=P:Q:Randzy:ys:2,=A4: B, C.
But these considered irrespectively of the equations Uy =0, U, =0,
are distinet formulac, each of them separutely establishing a correspond-
ence between the three points (zy, v, 21), (2o vay 23), (22 vy, 23) or if we
regard one of these points as a fixed point, then u correspondence between
the remaining two points, or if we consider thesc as belonging each to its
own plane, then a correspondence between two planes.  Writing for con-
venience (o, b, ¢) for the coordinates of the fixed point, and (z,, 13, 7)
. ATq, ya. 230 fur those of the other two points, the formulae with 4, B
give thus the correspondence )

Ty1 yat 2= bez} — a%yyz 1 cay} — iz @bzl — Sy,

?

which is the first of the two cuses in question. These equations give

reciprocally
Zy 1 Y02y == bead — a%yaes : cayd — bizzy : abzd — clzgy,,
or the correspondence is a (1, 1) quadric correspondence.
The formulae with P, @, R give in like manner
T2yt 5 = a(a] + by} + 1) — zy(a’z 4 by + o), &c,
or if tur shortness -
2, = ax} 4 by ez}, 6, == a¥r; -+ by + iz,
then .
Tyt Yyt 23==aly — 7,8, : by — ¥,0, : Q) — 2,6,,
which is the second of the two cases. We have reciprocally
A T3yt 2 = afd; — 2,05 : b2, — Y40y 1 €Qy — 2,04,
where Q; == az} 4 by} 4-cz3, 6, = alry -} by, -+ ¢z,
snd the correspondence is thus in, this case also a (1, 1) quadric corres-
pondence, . - ‘ ,

On & Question in Partitions, by J. J. SYLVESTER. ’ -

- Closcly connected with the theory of the contacts or special intersec-
tions of quadric figures in space of any number of dimensions, und also with
the more general but ullied theory of the different genera and species of
the roots of unitary matrices, is the question of the number of series that
can be formed commencing with zero and ending with n given number
eubject to the condition that each intermediate term of any such series shall
be not greater than the mean between its antecedent and consequent. By
arranging ench of the indetinite Partitions of i according to an aecendiug
order of magnitude, it was shown that there was u one to one correspond-
encebetween each such arrangenientund epch such series, and, consequently,

that the number of the series is equal to the number of indefinite parti-
tions of the given final term <. . ‘ -

On the Relative Forms of Quaternions, by C. S. PEIRCE.

. I X, ¥, Z denote the three rectangular components of a vector, and 7’
denote numerical unity (or a fourth rectangular component, involving
‘epace of four dimensions), and (¥ : Z) denote the operation of converting
tim Y component ot a vector into its Z component, then  °

1=(W: W)+ (X: Xy 4+ (F: PY+(2: 2)

i= (A W)——(W: X)—(Y:2)y 4 (Z: )

J= (Y W)y—(W:Y)—(Z: X)+4+(X:2)

k= (Z:W)—(W:2) —(X:Y)+ (F: X).

In the language of logic (V' : Z) i a-relative term whose relate is a ¥

component, und whose correlute is & Z component, The luw of multipli-
cution is plainly (V': Z)(Z: X) = (Y : X), (Y : 2)(1(: W) =0, and the
application of theserules to the above values of 1,4, j, & gives the quaternion
relutions ]
- i2=.52=k2=—1,‘ijk=_1,&c_.
The 8ymbol a( ¥ : Z) denotes the changing of ¥ to Z and the multipli-
cation of the result by a. If the relatives be urranged in the block
w.w W:X WwW:¥Y WwW:Z
X:W X:X X:¥Y X:Z
Y: W Y: X Y:¥y. rY:z
Z: W Z:X- Z:Y - Z:2Z,
then the quaternion w - ai 4- yj 4 zk is ropresented by the matrix of
numbers
v o —z —y @ —z
T s w -_—3 Y
y z W e
-z —y z 0, .
The multiplication of such matrices fullows the same laws as the multi-
plication of quaternions. The dgterminant of the matrix = tho fourth
power of the tensor of the quateriion, .

The imaginary = 4+ y)/—1 may likewise bo ropresented by the matrix
_ z .y S

[ y .z’
- and the determinant of the matrix == the square of tho modulus,

'

On. & Geometrical Proof of a Theorem in Numbers, by .
SYLVEST®R, ' )

The theorem in question is the well-known one that if a, b are ineo
mensurable and z, v integers az - by~ ¢ nay be made positively and
negatively indefinitely small.  This is tuntamount to showing that on th
plane of a reticulation,* nodes may be found indefinitely near to and.
each side of an irrational straight line, i, e. a line not paraliel to any-}
of nodes.  The proof is based on'the Lemma that no infinito parallelog
ench side of which is an irrational line containing a node, cun'be vacuois
of nodes in its interior. If this were not true a succession of shifts of th
figures in the direction of the line forming the two nodes would lead to th
absurd conelusion thatthe whele reticulation consists of asingle lino of node

1°. Suppose the irrational line L contains a node and thut there is 1
other node at less than o finite distance from it on one side of it, say:
the right.  Let it be moved to the right parallel to itself- until it passe
through another node NV, then there will be a vacuous parallelogram;s
the kind declared impossible by the Lemma. [To this it may be-objecte
that when L has moved from the left to M through a distance 6, M migh
be supposed to be an asymptote to an infinite series of nodes t- its righ
But if this were-he case a node P might be found at a less distance IR
¢ from M, and & node, Q, nearer to M than P is; if this line of node
PQbe followed up until wereach the first node Ton the other side of M), th
most elementary geometry seems to show that T in any case is nearer:!
M than P is and consequently there would be a node batween L and
contrary to hypothesis.] Hence there must be a node indefinitely nes
to L on cach side of it.” - ! '

2°. Suppose the irrational line L not to contain a node. If the theon
to be proved is not true, L may as before be moved parallel to it
(through a finite distance) until it pass through a single node and th
would be a vacuous parallelogram ot which one side contains nodes, whid
has already been shown to be impossible.

Dr. Story and Dr. Franklin took part in the discussion and the valuabl
critienl observations of the atter, led to the consideration of the objectics
stated and disposed of in the paseage within brackets above, 1’rofessor Oiy
ley made a remark to the efect that the diamond point in a graver's &
however fine, drawn in a straight direction across the face of 1 double graf
ing must cither pass through none of the intersections of the two'systems
{mrullcl lines or through an infinite number of them, The principle e

ished in the bracketed passage ndmits of being stated in the follo
terms: It is impossible for a straight line in the plane of o reticuls
to be nsymptotic in regard to nodbs on oneside of it and not so in regard-t
the nodes on the other side; " this proposition and the Lemma being eo¥
ceded, the existence of any indefinite vacuous strip bounded by irration
parallel lines is disproved by imagining it distended on both sides, st
retaining its form (in case neither ﬁounding line contains s node), or in ‘th
contrary casc on one ride only (i. ¢. in the dircction away from the nods
line) until the distended figure passes through two nodes. The asymy
totic rule shows that this construction would be possible—the Lemma thi
it leads to an impossible result. From this it follows that every irration
line is asymptotic in resgect to the nodes Iying on each side of it whic
is the thing to be proved. .

Let n line be termed mono-nsymptotic when it is asimptotic in rogar
to any echeme of points Iying on one side of it,~—amphi-asymptotic whel
it is so for schemes of pointslying on each side of it. The foregoin$ ATge
ment may then be summed up as follows. Any irrational right line
the plane of a reticulation, must be amphi-asymptotic as regards th
nodes.  For if not, a line parallel to it must (under pain of contradictin
the Lemma) be conceded to exist, which shall be mono-asymptotie”
respect to them, but the existence of such a line has been proved to %
impossible.t Similarly, it mayhe ehown forusgolid network, that noindef
nite opeu prism whose parallel edges are doubly-irrational (i. e. neithe
purallel to a nodal line nor fo a plune of nodes) can be vacuous of node
and also thut no plane can be mono-asymptotic—from which, by ves
similur reasoning to that previously used, may be deduced the law, th
no prism of finit¢’diméneions, vacuons of nodes, can be constructed about
irrational linensitsaxisand that consequently any such line may be regard
as 4 gort of asymptotic axis to a helical epiral of nodes. Hence it follo
that if a, b, ¢ {taken two and two) arc incommensurable with each othe

-the quadratic function

(b(z—7)~ely — B))* + (¢(z — a) — a(2—7))* + (a(y — B) — B{a —a))
and as a particular case ) ’ ,
(s — ey)?+ (cz— 02t oy — Bz}
may be-mado indefinitely emall with integer values of z, y, 2. )
7 Nor is this all, for not only can a node be found indefinitely near to th
doubly irrational line z:y:2::a:b: ¢, but such node mny be successful
sought for within any infinitesimal sector of space contained within ¢
plunes tthn through that line, or in other words a node can be four

* By a reticunlation is to be understood a Eair of systems of an infinite number of {bd
nite cquidistant parutle] lines in a plane whose intersections formi the nodes. .
1 The form of proof is a somewhat nnusual combination of an Er-absrrdo with.a Dile
ma. A denia! of the swphi-asymptoticism of an jrrationul straizht line efther dash
itself against the impossibility of lEc existence of & veuous paraliclogram or agalns
equal iimpossibility of the existence of a mono-nsymptotic line, ’ RN
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