REPORT OF THE SUPERINTENDENT

F THE

U. S. COAST AND GEODETIC SURVEY-

SHOWING

THE PROGRESS OF THE WORK

DURING THE

FISCAL YEAR ENDING WITH

JUNE, 1885.

WASHINGTON:
GOVERNMENT PRINTING OFFICE
1886.

TEXAS TECHNOLOGICAL

APA 20 1955

COLLEGE

THIS PAGE LEFT BLANK INTENTIONALLY

APPENDIX No. 16.

ON THE INFLUENCE OF A NODDY ON THE PERIOD OF A PENDULUM.

By C. S. PEIRCE, Assistant.

Suppose a noddy, adjusted to accord with a reversible pendulum, remain on the pendulum-support throughout the experiments to determine gravity. How much can the results be affected by this circumstance?

Let us use this notation:

l and l', the lengths of the single pendulums corresponding to the pendulum and noddy, respectively; that is, in each case the square of the radius of gyration divided by the distance between the center of mass and center of rotation;

 μ and μ' , the ratio of any linear displacement of the support to the angular displacement of the pendulum or noddy required to produce it;

 τ and τ' the natural periods of pendulum and noddy;

T the period of either harmonic constituent of the motion.

Then, the formula, easily derived from my paper on two pendulums on one support, is:

$$T^{2} = \frac{1}{2} \left\{ \left(1 + \frac{\mu}{l} \right) \tau^{2} + \left(1 + \frac{\mu'}{l'} \right) \tau'^{2} \right\} \pm \sqrt{\frac{1}{2} \left\{ \left(1 + \frac{\mu}{l} \right) \tau^{2} - \left(1 + \frac{\mu'}{l'} \right) \tau'^{2} \right\} + \frac{\mu \mu'}{l \, l'} \tau^{2} \, \tau'^{2}}$$

Any increase of τ' always produces an increase of T; and of the two values of T², one is always smaller, the other greater than

$$\left(1+\frac{\mu}{l}\right)\tau^2$$

Consequently, the greatest effect is produced when one value of \mathbf{T}^2 is as much greater as the other is less than

$$\left(1+\frac{\mu}{l}\right)\tau$$

that is, when

$$\left(1+\frac{\mu'}{l'}\right)\tau'^2 = \left(1+\frac{\mu}{l}\right)\tau^2$$

In this case,

$$\mathbf{T}^{2} = \left(1 + \frac{\mu}{l}\right) \tau^{2} \pm \sqrt{\frac{\mu \, \mu'}{l \, l'}} \right) \tau^{2} \, \tau^{l^{2}}$$

Denote by M and M' the masses of the pendulum and noddy, respectively, and by h and h' the distance in each between the center of mass and the center of rotation. Then

$$\mu \tau^2 \colon \mu' \tau'^2 = \frac{Mh}{l} : \frac{M'h'}{l'}$$

and

$$\sqrt{\frac{\mu \, \mu'}{l \, l'} \, \tau^2 \, \tau'}^2 = \frac{\mu}{l} \tau^2 \sqrt{\frac{\mu' \, \tau'}{\mu}^2 \frac{l}{\tau^2 \, l'}} = \frac{\mu}{l} \, \tau^2 \frac{l}{l'} \sqrt{\frac{M' \, h'}{M \, h}}$$

Assuming

$$\frac{M'}{M} = \frac{1}{100}, h' = \frac{1}{36}$$

for heavy end down, $\frac{1}{12}$ for heavy end up, and $\frac{l}{l} = 20$, it would follow that the effect of the noddy might be as great as $\frac{1}{3}$ of the floxure with heavy end down, and as $\sqrt{3}$ times the flexure with heavy end up. But it could not produce a sensible effect in both positions.

THIS PAGE LEFT BLANK INTENTIONALLY