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SYLLOGISTIC -—— SYMBOLIC LOGIC

8yllogistic (argumentation ; al-o used as
a noun). SYLLOGISM (q.V.).

Symbol [Gr. ovpBoloy, a couyentional
sign, from oiv + BdAew, to throw]: Ger.
Symbol ; Fr. symbole; Ital. simbolo.” (1) A
S16N (q.v.) which is constituted‘ggsign merely
or mainly by the fact that itﬁs used and

understood as such, whether ‘vhe habit is!
natural or conventional, and without rugard

to the motives which originully governe; &g
selection.

SupBodov is used in ‘this sense by Aristotle
several times in the Peri hermeneias, in the
Sophistici Elenchi, and elsewhere.

(2) An algebraic character. (c.s.p.)

Symbol (and Symbolic) [Gr. el +Bikhey,
to put together, compare]: Ger. (symbolisch);
Fr. (symbolique); Ital. (simbolica). (1) An
object which stands forsomeotherobject or idea;
the former is suid to be ‘symbolic’ of the latter.

_ Cf.Br6x, and S16N-MAKING FuNCTION.

(2) In aesthetics, an' object which, apart
from its own immediate and proper signifi-
cance, suggests also another, especially a more
ideal content which it cannot perfectly em-
body.

The symbol may be either natural: as light
is a symbol of truth; or traditional and con-
ventional : as the cross ig a symbol of sacrifice.
" The conception of art 2§ symbolic goes back
at least to Plotinus, but the term seems to
haye come into general nesthetic currency
through Goethe and Schlegel—the latter
declaring it to be%u gense 1, above) the
essence of all art. “Hegel made the symbolic
in sense (2) the principle of oriental as com-
pared with Greek art. Vischer laid special
stress on the symbolic (significant) character
of art, as against the Formalists. Recently,
the psychology of symbblization has received
special treatment. Fechner explained it as
association. Others have congidered it as an
investiture of the object| with the observer’s
own idea and feeling in a more intimate

and have sought for terms expressing this, as

i. Abth., Srery, Einfiihlung u. Association in
d. neu. .\esth. (1898); Frcu~ER, Vorschule
¢. Acs'h., W) Lorze, Gesch. d. Aesth., 74 ff.;
Fr. Viarigr, Aesthetik; Krit. Giinge, v,
vi; s.dWas Symbol, Altes u. Neues (1889);
R. Viscuer, Uber d. optische Formgefiihl
(1573); VorkeLt, Der Symbolbegriff in d.

ieuesten Aesth. (1876); Lirrs, Raumiisthetik”

u. geouietrisch-optische Tiuschungen (1897);
VorxeLt, Zeitsch. . Philos., cxiii. 161-79 ;
STERN, ibid, cxv.' 193-203; KULPE, Zeitsch.
f. wiss. Philos., xxiii. 145-83; TURNARKIY,
Arch.. f. Gesch. ‘d. Philos, xii. 257-89;
Ferrero, T simboli (1892). Cf. also Fory,
BALANCE, SYMMETRY. (J.1.1.)

Symbolic Function: no foreign equiva-
lents in use. The function whereby a mental
result primarily referring to one set of objects
1s transferred to another set of objects; the
first set is said to MMsymbolic of the second.

SyMBOL (q.v.) is frequently used in a very
wide sense as equivalent to any kind of sign.
But it seems desirable to limit its application
in psychology to cases in which the sign is
provisionally substituted for the thing sym-
bolized. Words are not substitute signs in
this sense; they are means by which we
attend to what is signified, not themselves
objects of attention. Cf. SreN-MAKING Fyunc-
TION, and 816N (for a more special meaning
of symbol). - (G.F.8.)

~ 8ymbolic Logic or Algebra of Logic :
Ger. dlgebra der Logik; Fr.logique symbolique
ou algorithmique, algébre de la logique ; Ital.
logica simbolica. Symbolic logic is that form
of logic in which the combinations and rela-
tions of terms and of propositions are repre-
sented by symbols, in such g wiy that the rules
of a calculug may be substituted for actively
conscious reusoning,

An algebra of logic enables us to disengage
from any subjget-matter the formal element
which gives its'necessary (apodictic) force to
Teasoning ; it is therefore nothing but an

ealization of the purpose of formal logic (cf.

manner than is implied by the term association, Fxnct “logic, that is to say, the complete

‘mitfithlen,’ feeling with (Lotze), ‘einfiihlen,’
feeling into (R. Vischer, FY. Vischer), a lend-
ing or animating (Leiher, Bescelung; Fr.
Vischer), fusion (Verschmelzung; Volkelt).
According to Lotze we livelover again in th

“object the motion to produte it, &c. Groos

(Play of Man, Eng. travs.| 31) makes eye-
movements and other ‘inmner  imitations’
‘symbolic’ of the real mow ments of imita-
tion. See SympaTHY (aesthefic).

Prorosiriox). The ordinary formal logic has,
from the earliest times, substituted symbols
(viz. the letters of the alphabet) for signifi-
cant terms, and has thus added much to the
facility with which the validity of arguments
can’ be tested; symbolic logic goes a .step
further, and adds symbols to stand for com-
binations of terms, or functions of terms, and
statements of relations between terms. The
aid which is thus given to logic, not only in

the carrying' out of complicated trains of
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reasoning, but also in the exact analysis of the
various steps involved, is very great.

Several systems of symbolic logic have been
proposed within. the last half-century (sce
literature). We shall here describe only one
—that of Boole, as reformed and developed
by Schrider, Peirce, and others. This system
is not Lased exclusively upon the considera-
tion of the estension (application) of terms
and of propositions, but covers all relations
of intension (SIGNIFICATION, .v.) as well.
It is, however, more convenient, when formulae
are to be expressed in words, to use the
language of onc or the other of these two
parallel interpretations exclusively; that of
the application-interpretation will be used in
what follows. C

Throughout symbolic logic there is an
exact analogy between terms und propositions,
50 that the sume theorems (or formulae) apply
to both; it is not & case of two parallel systems
(a calculus of concepts and a caleulus of pro-
positions), but of a single system susceptible of
& double interpretation. In what follows, the
letters of the alphabet stand for either con-
cepis or propositions’, .

The algebra of logic rests upon two relations
—that of inclusion (or subsumption, or suffi-
cient condition) and that of equality, of which
the first ouly is fundamental—and upon three
operations—aggregation (or logical addition),
composition (or logical multiplication, as it
has been unfortunately named, upon a false
analogy), and negation. Of the three opera-
tions, negation together with either of the
other two would suffice for the algebra
(though facility of expression is greatly in-
creased by admitting all three of them);
hence one relation (or form of statement) and
one operation, together with negation (applied
not only to terms but also to the assumed
form of statement and to the assumed opera-
tion), are all that -are absolutely essential to
the building up of the theory.

The relation of inclusion, which is written
a <D, signifies that the class @ constitutes a
part (or it may be the whole) of the class b,
or that the quality-complex a is indicative of
the quality-complex b, or that the statement a
involves the statement 8. Conceptual Inter-
pretation: The a’s are all J's; Propositional
Interpretation: If @ is true b is true, or, a
entails b. The relation of equality, or identity,
which is written a = &, signifies, for one thing,
that the two classes a and b are identical

! Abbreviations: C. I, = conceptual interpretation ;
1. =propositional interpretation. .

J
(made up out of the same elements). It may
be defined as equivalent to the system of two
inverse inclusions
(«<b)(b<a);
C.IL: Allaisbandall bisa; P.L: aecntails
b und b entails a. In the case of propositions,
logical equality is called equivalence. Multi-
plication ard addition are thus defined in
terms of classes: the sum of two classes is
the class which contains all the elements of
each (without repetition) ; the product is the
class which contains all the elements which
are common to both, Formally these opera-
tions may be defined as follows :
(a<e)(d<c)= (a+b<c);
C.L: If a is ¢ and b is ¢, what is either
aorbisc, and conversely; P.L: If a implics
¢ and & implies ¢, whatever implies either «
or b implies ¢, and conversely.
(c<a)(c<d)= (c<ab);
CL:Ifcis aund cisd, cis a and b, and
conversely; P.L: If ¢ implies « and ¢ implies
b, ¢ implies both a and b, and conversely. Tt
will be seen that the signs + and x (under-
stood in the form ab) correspond to s cerfain
extent to the conjunctions or and and, but
not completely; for instance, a+5 <S¢ must
Le read ‘@ and bgre ¢, but by throwing the
first member of this inclusion into a subor-
dinate predicate (which can always be done
without change of meaning) it may be read
‘What is @ or b is ¢’ The inclusion ab<¢
can be read ‘a which is & is ¢, or ¢4 which i
aise,’ or ‘Whatisaand b is ¢’ ‘
It is necessary to define at once two special
terms which play an important réle in symbolic
logic, the logical zero (o) and thelogical every-
thing (o or 1). They are defined formally as
follows :
oy, <1,
where & stands for any term whatever, or for
any proposition whatever. In the conceptual
interpretation, 1 is everything which exists, or
the universe of discourse, and o is nothing, or
the non-existent; in the propositional inter-
pretation, 1 is the aggregate of those states of
things which occur, or are true, and o is the
Jalse, or the non-occurrent, The special terms
may equally well be defined as follows :
z+o<y, s<aX1;]
we should then say that o is that term which,
when added to any term, makes it no greater
than it was before, and that 1 is that term
which, when compounded with any term,
makes it no less than it was before. From
either of these pairs of definitions the other
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pair follows at once; the following formulae
are also evident : :
o< oI, 1<,
(t<0)= (=), (1<) = (1 =)
xto=m xXI=na
The third operation of exact logic is nega-
tion. It is indicated by a horizontal line
~ placed above the term or the expression to be
denied ; @ signifies non-a; @ < b is the denial
of All @ is &. (In this last case the sign of
negation may be equally well placed upon the
copula; a<<b means Not all a is b.) Ne-
ation may be defined formally by the two
following statements: at<<o, 1<a+q,
ith translate respectively the principles of
‘ contradiction’ (or mutual exclusion) and of
‘excluded middle’ (or conjoint exhuustion—
see Laws or Teouenr). C.L: a which is
non-a is non-existent, Everything is a or
non-a; P.I.: The-statements @ and non-a

cannot both be true at once, What is possible

is that a is true or that non-a is trie (i.e
that a is false). It can be proved that the
negative as thus defined is unequivocal, i. e.
that the term non-a is unique, ,
The propositions of logic may all be deduced
from the definitions and. a Jimited nupmber of
principles, or axioms, which are independent
and irreducible ; among them are the principle
of identity: « <a(C.L: Allaisa; PL:Ifa
is true @ is true), which has for a corollary
@ = a; and the principle of the syllog-ism:
(a<t)b<c)<(a<o)
(C.L: Ifaisband if bis ¢, then aisc; P.L:
If a implies b and b implies ¢, then a implies
¢).. The operations of multiplication and ad-
dition are subject, to the commutative law,
atb=0b+a, ab= ba,
the associative law,™ :

-
(a+b)+c=a+(b+g) b)e = a(bc),
and to the special lawAf tautology, :
‘ at+a=a, aa=a -~ *

The law of absorption,
at+ab=a, a(a+bd)=4¢,
can be proved, but the law of dis ibution,
a(b+c)=ab+ac, a+ = (aAb) (a+c),
it is not possjble to demgnstrate Without the
assumption %nn additiofal principle,\or axiom,
namely a(b+c)<ab+ac. -
The distributive law has for corollaries the
following formulae : :
ab+ed = (a+c) (b+c) (a+d) (b+a),
(a+0) (c+d)=ac+be+ad+bd.
These formulaé, as well as all those already
given, show that there is a perfect correlation,
or duality, betwween addition and multiplica-

tion, which consists in the fact that the signs
+ and x may be interchanged upon the
condition of interchanging at the same time
the special terms o and 1, and inverting the
sign of inclusion, <<.

The following formulae may also be demon-
strated : :

(a<h)(c<d)<(ac< hd) :
. <(atc<zb+d)
(e=0b)(c=d)<(ac= bé)
<(a+c=10+d);

these enable us to combine (but not without
loss) several inclusions or equalities by either
adding or multiplying them member by
member (as in algebra). It is also possible
to add & common term to each member of an
inclusion or an equation (but not to take one
away) and to introduce a common term as
a factor (but not to remove one). :

The operation of negation adds important
properties to the algebra; of which the prin-
cipals are: the law of double negation, a = a
(C.1.: Non-non-a is identical with a; D.T.:
To deny the denial of a statement is the same
a3 to affirm it); the formulae of De Morgan,

ab=a+b, atb= ab,

which enable us to distribute the process of
denying upon the elements of a sim or of a
product (and which illustrates the duality
mentioned above), aud the principle of contra-
position, Co-
(a<b) = (b <a), :
(a<l)= b= @) _
(C.L: ‘Allaisd’ is the same thing as ‘All non-
isnon-a’; ‘Not all @ is b’ is the same thing as
‘Not all non-b isnon-a’; P.1.: ‘Ifa is true b
is-true’ has the same validity as * If b is false a

is false’; that ‘ The truth of @ does not entajl

the truth of 0’ is equivalent to saying that
‘The falsity of b does not entail the falsity

-|of-a’).  Asw corollary to this we may add

(@ =b)=(a=10).
The principl of -contraposition is merely
a special case of the principle of Traxsrosi-
T10N (q.Vv.), that is, of
© (ae<btd)= (ad <b+3),
- Aac <b+td)= (ad<b+6),
which may be stated thus: an element of &
sum in a predicate is the same thing as its
negative as a factor of the subject, both in
the universal and in the particular statement
in terms of this copula. (But the opposite
relation does not.-hold—an element of a sum
cannot be introduced in this way into a subject
nor a factor-iuto a predicate.)
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The formulae for the addition and the
multiplication of o and 1,
otx=wa 14zx=1,"
OXT=0, IXx=nuz, ‘
lead to the formudac of development, which
were given by Boole,

w=wx(a+a) (0+0) ... i

=aab ... +xab ... +aab .., +a ab...,
w=a+ad+0b+ ... _

=(v+a+d)(v+a+b) (w+a+d) ...,
o= (a+ b)(a+0) (z'i+ b) (@+b),

1=ab+abtab+ab. =~ .

= abe+ abi+ abe+ ...,
and o for any number of simple terms, a, ¥,
¢, veeo (The terms of the development of 1 are
called its constituents.)

To Boole is due also the formula for the
development of a function in terms of any
variable, or unknown quantity, @, which it
contains: Fx) = F(t)x+ Flo)s, F%Ig being

what F() becomes for @ = 1, and 7 being

what F(x)'becomes for 2 = 0. Hence one of

the normal forms for a logical statement (in
one unknown quantity) is

ax+ bt <o, :
which may equally well be written' (since

. 0 << I'(x) is always true, no matter what F(x)

may be), ax+b% = o,
or, . ax+bz =1, *
In order to reduce the problems of logic to
lnclusions or equations of this form, it is
necessary to apply to the premises (into which
the verbal data have been translated) the pre-
ceding formulae of transformation, and to bring
them thus into forms in which the second
member is either o or 1 ; they are then to be
combined in accordance with the following for-
mulae: ga = o) Eb =0)=(a+b=o),
le=1)b=1)=(ab=1),

until there is only a single equation to be re-

solved, of one or the other of the two forms,
ax +b% = o, (a+=) (0+7)=1.

We shall co ourselves to the treatment

of the first 4F these two forms (the reader can

easily tranglate it, step by step, into the treat-

ment for-the second form). The equation is

equivalent to this system of two inclusions,
<o, bi<o,

or, r<a, b<ry,

that is to say, to b<w<<a, . (S,

whence . b<a, or, ab<o. S

2,
* Thus the solution is, in words, z contains b and

is contained in @, or, as it can be otherwise
expressed, L ax 4 b% (Poretsky),
@ ='au+ba (Schrider).

(In the last expression « is a purely arbitrary
term.) The two extreme values of z for
u=r1andu=oarex =) x=a But the
solution of the equation in terms of & i given
completely in (8,), and (S,) contains all that
is involved in the prcmises independently of
x, that is, it is the resultant which remains
after the elimination of,z. It is also the
condition for the resolvability of the original
expression, ¢

[But the problem of eliminating « appears
in a still more interesting form if we equate
to o a sum and to 1 a product of functions of
x and @, if we write, that is, for the canonical
form of the equations to be resolved,

(a+=z) O+Z)=0, art+bi= I,
instead of those just given. ~ The rule for the
elimination of the quantity to be discarded is
then exactly the same for both of these ex-
pressions; it is simply : erase 4. (Of course,
if either «or  is zero in the left-hand form or
I in the right-hand form, & cannot be elimi-
nated, for we have then only one premise
instead of two.) Moreover, this same rule
applies to the elimination of the umknown
quantity in the particular Ppropositions,™

ax+dbr£o, 1 # (et ) (b+x);
they give, respectively, a+b Fo, 1ab
The argument is here (1) If some @ is = or
clse some & is non-x, then in any case Some-
thing is either @ ord; and (2) If not every-
thing is at once either a or = and also b or
%, then, all the more, Not cverything is at *
once @ and b. The first of these two forms is
probably more convincing intuitively than the
second.~—c.L.F.]

The common syllogism, when universal, is
a particular case of the,equations Jjust dis-
cussed, if @ and & are ﬁﬁe terms, instead of
expressions of any degr¥ of complexity, These
formulae do not, of course, constitute a demon-
stration of the principle of the syllogism, for
they depend upon it, ~.

The formulae of symbolic logic have usually
been developed in terms of the non-symmetrical
affirmative copula, a<<h, and its denial, a <5 ;
this metlod is the best in point of naturalness,
but either ok the universal symmetrical copulas
(seé ProrosiTION, in loc.) combined with either
of the corresponding particular copulas gives
an algebra which has great advantage in point
of Yonciseness; a, single formula takes the
place, throughout; of the dual pair of formulae
of Schrider (see Studies in Logic, by members
of the Johns Hopking University.) '

Exact logic does not admit the deduction
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from the universal affirmative proposition,
a <<b, of ‘“Some b is a’ nor of ‘ Some « is b’y
for the proposition a <& does not imply the
existence of a, gince it is true (no-matter what
may be the me&ing of &) for the value a=o,
while ‘ Some a i3 5" and ‘ Some b is @’ (ab o)
do imply the existence of a, since
(n<0)+(b <o)< (ab<o).
But these two deductions are permissible
whenever we are in possession of the additional
infoymation that a exists, or that a <o, |
For we have (¢ <b) = (ab <o).
Now (ab < 0)(ab <o)<t (a <o),
Whence, by the principle of transposition, we
have (ab<o)(au< o) < (ab< o).
It is by means of this principle of trans-
position that Mrs, Ladd-Franklin has reduced
the traditional fifteen valid moods of the
syllogism,-or -the 8,192 (= 16X 16X 16 X 2)
valid syllogisms which are possible if the full
scheme of propositions—as Everything is a
or b, Not all but a is b, &c.—is taken account
of; to the single formula '
(ab = o) (be = 0) (ac #* o) <o,
Jwhich may be called an Antilogism, and to
- which corresponds either the universal or the
‘," particular syllogism (in all its forms) according
| as one or another of these three incompatible
| propositions is transferred to the conclu-
!_sion, . .
) (ab = 0) (be = o) < (ac = o)~
(@b = o) (ac £ o) < (b = o).
(See Schrider, dlgebra d. Logik, § 43, and
E. Miller, Ueber d. Algebra” d. Logik, ii.
19.) Cf. PROPOSITION. o
The theorems given hitherto hold equally
for concepts and for propositions. But there
is a special set of theorems for such propo-
sitions as are either always true or ‘always
Jalse. These theorems follow from the two
following formulae, which constitute the
definition of propositions of this kind,
4 =(1<4), 4,= (4 <o) '
(with capital letters it is convenient to write
a dash for the sign of negation), or, as they
: may also be written, , .
Ty 4 =(1=4), 4= (4 = o).
These. propositions, that is to say, have only
two values, o and 1. Propositions of variable
value are such as contain one or several in-
determinate quantities (2,%, 2 ...), for some
values of which the propositions are true, for
others false. They have an intermediate ex-
tension (Giltigkeitsbereich) between o and 1,
measured mathematically by their probability.

The following formulae hold for propositions
of constant value: '
(t=44+B)= (r= AY+(r = ),
(dB=o)= 2;1 =0)+(B=o0),

' 4 <DB)= A4, + D).

In the last of these equations we permit
ourselves to write (following a peculiarity of
language) simply 4, + B instead of 1 << 4, + B.
To take an example, the proposition ‘% is v
implies that 2 is »’ becomes, upon L transpo-
sition of the first member, ¢ What is possible
is thut u is not v or else that -z is . a stute-
ment which we are in the habit of using in
the apocopated form, ‘. is not v or w is 7.’

This abbreviation amounts, in the algebra, to
" |the convention that whatever expression, a,

shall be simply written upon our sheet of
paper shall be understood to have the force
of the statement r<<a; we might equally
well, if we had adopted the negative copula,
agree that whatever, x, is written upon the

paper has the force of x <o. Neither pro- |

cedure would be permissible if particular pro-
positions, the denials oftuniversal propositions,
were to be treated at the same time, It by

hypothesis we are here dealing only with state- .
ments which have no other values than o aud -

I, that is, which are upiversal.
‘We have, agaiu,__} ’
(A=B)=AB+ 45,
(A = B') = ABI +AIB,
and also, (AB<C)=(d <)+ (B<(),
(C<d4+B)=(C<d)+(C<B),
and the theorem due to Mr. Peirce,
(AB<C)=[4 <(B<()
B<(d<0)],

and finally theArinciple of hypothetical -
reasoning, dircef and inverse, '
(A<BYA<B, (A<B)B <A, .

For propositions of variable value another
notation may be used. -~ Let JS(x) be a logical
function containing the variable z, which is
capable of taking the several values a, b, c; ... ;
and let _ s

S F(@) = f@+F Q)£+ o

IT, 7(@) = 7(a) x F(0) X F (o) % -}
then the equations

2. f(@) =0, ILf(z)=o,

signify, the first, that for every one of the
values of 2 the equation f(x) = o is satisfied ;
the second, that for some one at least of its
values the equation is satisfied. The formula

for the solution of equations given above -

becomes, in this notation,

(a2 4 0% = o) = (ab = 0) 3, (v = Qu+ bir),-
which means that if the equation ax+8F = o
644 ‘
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. holds, then on the one hand ab = o, and on

the other hand for every one of tIff values
of u, x = au+ba satisfies the equation, and
regiprocally.

Synibolic logie, it will be seen, constitutes
a real algebra, which has its own laws; it
gives rise to a theory of equations and of in-
equalities which has not yet been fully worked

out. It also serves as an introduction to a

more general logic—the logic of RELATIVES
(q. v.)—of which it is a particular case. This
Latter was foreseen by Leibniz, prepared for by
De Morgan, founded by Peirce, and developed
by Schrider. '

Besides the system of symbolic logic here
developed, to which the writings of Johnson,
Whitelead, Poretsky, Mitchell, and Mrs. Iadd-
Franklin have contributed, the principal

.systems that have been proposed are «(r)

that of Jevons, whicl consists in forming
all possible’ combinations of positive and
negative factors (the constituents of Boole),
suppressing those which are annulled by the
given premises, and reuniting the remaining
combinations to form the solution of the

" problem (an operation which may be facilitated

by diagrams and by a logical machine); (2)
that of Peirce, whose method consists in
separating the combined data up intb the pro-
duct (instead of the sum) of a function of x
and of non-w, and'in eliminating z by means
of the formula , '
(az <) (cz<d) < (ac <b+d);

(3) that of MacColl, which consists in con-
sidering propos(if/lons alone as the elements
of reasoning, and in assigning to them three
distinet values: e{1),n (0), 8 (neither 1 nor o)—
‘this method is particularly adapted.to ques-
tions of probability and to certain questions of

- mathematics (the caleulus of the limits .of a
- multiple Tutegral), which in fact gave rise to

4% ; (4) that of Peano, the object of whick is to

“analyse -and to verify the- propositions of

mathematics, and which employs, besides the
‘logical 8ymbols (necessarily different from the
preceding, but nearly equivalent to them),

" symbols for mathematical notions and rela-

tions. ' o (L.C—C.L.F.)

If symbolic logic be defined as logic
—for the present only deductive logic—
treated by means of a special. system of
symbols, either devised for the purpose or
extended to logical from other uses, it will
be convenient not to confine the symbols used
to ‘algebraic symbols, but to include some
graphical symbols as well.

[The reader will observe that the symbols
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adopted for the dictionary are in some measure
departed from in what follows.—y.:.5.]

The first requisite to understanding this
matter is to recognize the purpose of a system
of logical symbols. That purpose and end is.
simply and solely the investigation of the
theory of logic, and not at all the construction
of a calculus to aid the drawing of inferences. |
These two purposes are incompatible, for the
reason that the system devised for the inves-
tigation of logic should bLe as analytical as
possible, breaking up - inferences into the
greatest possible number of steps, and ex-
hibiting them under the most general cate-
gories possible; while a caleulus would aim,
on the contrary, to reduce the number of
processes as much as possible, and to specialize :
the symbols so as to adapt them to special
kinds of inference. It should be recognized
as a defect of a system intended for logical
study that it lias two ways of expressing the
same fact, or any superfluity’ of symbols,
although' it would not be a sorious fault for a
caleulus to have two ways of expressing a fact.

There must be operations of transformation.
In that way alone can the symbol be shown
determining its interpretant. In .order that
these operations should be as analytically re-
presented as possible, each elementary opera-
tion should be either an insertion or an
omission. Operations of commutation, like
&y ...y ¥may be dispensed with by not recog-,
nizing any order of arrangement as signifi-
cant. Associative transformations, like (xy) »
- @ (yz), which is a”species of commutation,
will be dispensed with in the same way ; that-
is, by recognizing an equiparant as what it is,
o symbol of an unorflered set. :

It will be necessary to recognize two diffe-
Tent operations, because of the difference
between the relation of a symbol to its object
and to its interpretant. 1llativé transforma- .
tion (the only transformation rélating solely
to truth that a system of symbolsican undergo)
is the passage from a_syibol to an inter-
pretant, generally o partial interpretant. But
1t is necegsary that the interpretant. shall be
recognized without the actual transformation.
Otherwise the symbol is imperfect. There
must, therefore, be a sign to signify that an
illative transformation ‘would be possible.
That is to say, we must not only be able to
oxpress ‘4 therefore B, but “If 4 then B.
The symbol must, besides, separately indicate_
its object. This object must be indicated by
a sign, and the relation of this to the signifi-

cant element of the symbol is that both are
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signs of the same. object. This is an equi-
parant, or commutative relation, It is there-
- fore necessary to have an operation combining
two symbols ds referring to the same object.
This, like the other operation, must have its
actual and its poteutial state. The former
makes the symbol a proposition‘ is B/ that is,
! Bomething A stands for, B stands for” The
latter expresses that such a proposition might
be expressed, ¢This stands for something
which-d stands for and B'stands for.’ These
relations might be expressed in roundabout
ways; but two operations would always be
necessary. Ji Jevons's modification of Boole's
algebra the two operations are aggregation
and composition. ~Then, using non-relative
terms, ‘ nothing ’ is defined as that term which
aggregated with any term gives thut term,
. While ‘what is’ is that term which com.

pounded with any term gives that term. But.

here we are already using a third operation;
that is, we are using the relation of equiva-
lence; and this is a composite relation.  And
when we draw an inference, which we cannot
avoid, since it is the end and aim of logic;
we uce still anether. It is true that if our
purpose were to make a calculus, the two
operations, aggregation and composition, would
go admirably together. Symmetry in a cal-
culus is & great.point, and always involves
superfluity ; as in homogeneous co-ordinates
avrd in" quaternidns, Superfluities which
bring symmetryare immense economies in a
calculus, But for purposes of analysis they
- are great evils. | ' :

A proposition de tnesse relates Yo a single
state of the universe, like the rresent in-
stant. Such a. proposition is altogether true
or altogether false. But it is = question
whether it is not better to suppose a general
universe, and to allow an ordinary proposition
to mean tha it is sometimes or possibly frue.
Writing down &' proposition under certain
circumstances asserts it, Let these circum-
stances be represented in our system of
symbols by writing the proposition on a
certain sheet. If, then, we write two pro-
Positions on this same sheet, we can hardly
resist understanding that both are asserted,
This, then, will be the mode of representing
that there is something which the one and the
other represent—not necessarily the same
quasi-instantaneous state of the universe, buts
the same universe, If writing 4 asserts that
: 4 may be true, and writing B that B may be
true, then writing both. together will assert
that 4 may be true and that B may be true,

By a rule of a system of symbols is meant

make a certain transform ion ; and we are to
recognize no transformations as elementary
except writing down and erasing. From the
conventions just adopted, it follows, as Rurr: I,
that anything written down may.he erased,
provided the erasure "does not visitly affect
what else there may be which is writton along
Fawith i, '

- Let us suppose that two facts are so related
that asserting the ore gives us tho right ‘to
assert the other, because if the former is true,

written, we can add B, we may then; by our
first rule, erase A ; and consequently A may
be transformed into B by two steps.  We
shall need to express the fact that writing .
gives us a right, under all cir umstances, to
add B. Sinee this is not a reciprocal rélation,

A and B must be written differently ; and
since neither is positively asserted, neither
must be written so that the other could be
erased without affecting it. We need some
place on our sheet upon which we can writo
& proposition without -asserting it. The

main sheet by enclosing it within an oval
line; but in order to facilitate the printing,
we will here evclose it in fquare brackets,
In order, then, to express that ‘If .{ ecan

B can under some circumstauces be true, we
must certainly enclose 4 in square Lrackets.
But what are we to do with B1 We are not
to assert positively that B can be truc; yet it
is to be more than hypothétically set forth,
as 4 is. It must certainly, in gome fashion,
be enclosed within the bracf;;j); for were it
detathed from the brackets, tiEbrackets with
their enclosed 4 could, by Rule I, be erased ;
while in fact the dependence upon 4 cannot
be omitted without danger of falsity. It is

‘If 4 can be true, B can be true,’ then,
a fortiori, we can assert that * If both 4 and
C can be true, B can be true,’ no matter what
proposition C' may bhe. Consequently, e
have, as RuLe II; that, within brackets al-
ready written, anything whatever can be in-
serted. But the fact that ‘If A can be true,
B can be true’ does not generally justify.

are true’; yet our second rule would imply
that, unless the B were cut off, in some way,
from the main field within the brackets, We

will therefore enclose B in parenthes, and
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& permission under certain circumstances to ,

"the latter must be true. If A having been

“proposition X may be.- That is to say, that

present writer's habit is to cut it off from the .

under any circumstances whatever be true,:

to be remarked that, in case we can assert that .

the assertion ‘If 4 can be ¢ ue, both Band D). ,
‘ rul wou . permits us to write [(B)], and them Rule II
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express the fact that ‘IfA4 can be true, B can
be true’ by 4

[4(B)] or [(B) 4] or [( B)J’ &e.

The arrangement is without . signifi®nce.
The fact that ‘If 4 can be true, both B and
D cair be true, or [ (BD)], justifies the
asgertion that ‘If A is true B is true,’ or
[4 (B)]. Hence the permission of Rule I may
be enlarged, and we may assert that anything
unenclosed or enclosed both in brackets and
parentheses can be erased if it is separate
from everything else. Let us now ask what
(4] means. Rule II'gives it a meaning; for
by this rule [A] implies [4 (X)), whatever

[ 4] can Le tyue implie/a_.ﬂmt ‘If 4 can under
uny circumstances be ftrue, then an)‘tlqu you
like, X, may be true” But we may like ~o
make .\ express an absurdity. This, then, is
n reductio ad absurdwm of A ; so that [d]
implies, for one ‘thing, that 4 cannot under
any circumstances be true. The question is,
Does it express anything further ? According
to this, {4 (B)] expresses that A (B) is im-
possible.  But what is this? It is that A
can be true whilg romething expressed by (B)
can be true. Now, what can it be that
renders the fact that “ If .t can ever.be true,
B can sometimes. be true’ incompatible with
4’s being able to be frue? ‘Evidently the
falsity of B under all circumstances. Thus,
Jest ns [A] implies that 4 can never be true,
80 (B) implies that B can never bg true. But
further, to say that [t (B)], or ‘If 4 is ever
true, B is sometimes true,” is to say no more
than that it is impossible that 4 is ever true,
B being never true. Hence, the square |
brackets and the parentheses precisely deny
what they enclese. A logical principle can
bo deduced - from this: namely, if [4] is
true [4 (X)] is true. That is, if 4 is pever
true, then we have a right to asseft that ¢ If
4 is ever true, X is sometimes true,” no
matter what proposition X" may be. Square
brackets and. parentheses, then, have the
same meaning. Braces may be used for the
same purpose. Moreover, since two negatives
make an affirmative, we have, as RuLE I1I, that
anything can have double enclosures added or
taken away, provided there be nothing within
one enclosure but outside the other. Thus,if B
can be true, so that B is written, Rule III

permits us to write [X'(B)]. That is, if B is
sometimes true, then ¢If X is ever tmue, B

“of a conditional proposition itself a conditional
proposition. That is, in (C {D}) let us put
for D the proposition [4 (B)]. We thus have
(c{[4 (B()J}). But, by Rule III, this is the
same as (74 (B)). , .

All our transtormations are analysed into
insertions and .omissions, That is, if from 4
follows B, we can transform 4 into 4B and
then omit the B." Now, by Rule I, from 4B
follows 4. Treating this in the same way, we
first insert the conclusion and sz\;‘\%\nt from
4B follows AB4. We thus get as Rure IV
that any detached portion of a proposition can
be iterated. .

It is now tinie to reform Rule II so as to
state in general terms the effect of enclosures
upop, permissions to transform. It is plain
thu?if we have written [4 (B)] €, we can write
[4 (BC)] 0, although the latter gives us no
right to the former. In place, then, of Rule IT
we have: ’ .

- Rure II (amended). Wlatever trangforma-
tion-can be performed on & whole proposition
can be performed upon any detached part of it
under additional enclosures even in number,
and the reverse transformation can be performed
under additional enclosures odd in number.

But this rule does not permit every trans-
formation which can be performed on a
detached part of a proposition to be performed
upon the same expression otherwise situated.

Rule IV permits, by virtue of Rule II
(amended), all iteration under additional en-
closures and erasure of a term inside enclosures
if it is iterated outside some of them. '

We can now exhibit the modi tollens et
ponens. - Suppose, for example, we have these
plemises: ‘If A is ever true, B is sometimes
true,” and ¢ B is never {rue.’ Writing them,
we have [4(B)](B). By Rule IV, from (B)
we might proceed to (B)(B). Hence, by
Rule II (amended), from |4 (B)](B) we can
proceed to [A](B), and by Rule I to [4].
That is, ¢ 4"1s never true’ Suppose, on the
other hand, our premises are [4(B)] and 4.
As before, we get [(Bg 4, and by Rule III,
B4, and byyRule I, B: That is, from the
premises of tNe modus ponens we get the con-
clusion. Let us take as premises ‘If 4 is
ever true, B is sometimes true, and ‘ If B is
ever true, C is sometimes true.” ' That is,
(4{B})[B(0)]. Then,iterating [B (0)% within
two enclosures, we get (4 { B[ B(C)]}) [ B (C)),
or, by Rule I, (4 LB g (O)]}).  But we have
just seen that B [ B(C)] can be transformed to
C. Performing this under two enclosures, we

ig sometimes true.’ Let us make the apodosis
' . 6

get (4{C}), which is the conclusion, * If 4 i
1 -

- .
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ever true, C is sometimes true.” Let us now
formally defluce the principle of contradiction
[4 (A)IJ Start from any premise X. By
Rule IIT we can insert [(.X)], co that we
have X[(X)]. By insertion under odd en-
closures we have X [4(X)]. By iteration
under additional enclosures we get X [4(42))
by erasures under even enclosures [4 (4)).

In complicated cases the multitude of
enclosures become unmanageable. But by
using ruled paper and drawing lines for the
enclosures, composed of vertical and hori-
zontal lines, always writing what “is more
cnclosed lower than what is less encloged, and
what is evenly enclosed on\th'e left-hand part
of the sheet, and what is'oddly enclosed on
the right-hand part, this difficulty is greatly
reduced. The following diagram illustrates
the general style of arrangement recom-
mended.

where unenclosed. ——A will mean ‘At soms
quasi-instant 4 is true’ It is equivalent to
A simply. But +{d) will differ from (—4)
or (4) in merely asserting that at some quasi-
instant 4 is not true, instead of asserting
with the latter forms that at no quasi-instant
is 4 true. Our quasi-instants may be indi-
vidual things, In that case —A will mean
*Something is 4’; «4); ‘Something is not
A’; [44)), ‘Everything is A’; (—4),
‘ Nothing is 4. So A—B will express ‘Some
A is B'; (A—B), ‘No 4 -is B'; A4B),
*Some 4 is not B’; [A+L)], ‘ Whatever A

there may be is B'; () (4%, * There is some-
thing besides 4 and B, [(.-m)')], ‘ Every-
thing is either 4 or B’ The rule of iteration
must now be amended as follows.

Ruie IV (umended). A nything can be
iterated under the same enclosures or wnder

'

B

I is.now time to make an addition to our
system of symbols. Namely, 4B signifies that
4 is at some quasi-instant true, and that B is
at some quasi-instant true. But we wish to
he able to assert that 4 and B are true at the
same quasi-instant. We should always study
to make our répresentations iconoidal ; and
a very iconoidal way of representing that
there is. one quasi-instant at which both 4
and B are true will be to connect them with
a heavy line drawn in any shape, thus

A—B or [g L

If this line be Lroken, thus 4— B, the

-identity ceases to be asserted. - We have
-evidently— )

. Rowe V. 4 line of identity may be brof;éz;

¥

additional ones, its identical comneclions re-
maining identical.

- Thus, [44B)] can be transformed to

[4(4--B)]. By the same rule A— {(=B),i.e,
‘Something is 4 and nothing is B, by
iteration of the line of identity, can be trans-

formed to A (1 =B), i.e. ‘Some 4 is ot
coexistent with anything that is B whence,
by Rules V and IF (amended), it can be fur-

ther trangformed to 4 (“B), i.e. “Some 4
isnot B |

But it must be most carefully observed
that two unenclosed parts dannot be illa-
tively united by a line of identity, The
enclosure of such a line is that of -its least
enclosed part. We can now exhibit uny.

648

~ SYMBOLIC LOGIC

ordinary syllogism, Thus, the premises of
Barolo,* Any M is P’ and* Some § is not P,’

. e T oy | .

may be wiitten {A[£]} S (P). Then, as just
o e

seen, we can write { A/ [P]} S(F). Then, by

iteration, {A/ [P (L)]; S (P). Breaking the
line  under even enclosures, we get

{[P(P)A;3(P). But we have already|.

shown that [P (P)] cay be written unen-
closed. Hence it cnn/&a struck jout under

i .
one enclosure; and the unenclosed (P) can be

eraged.  Thus we get {4} S, or Some § je
not /. The great number of steps into which
syllogism is thus analysed shows the perfec-
tion of the method for purposes of analysis.
In taking account of relations, it*is neces-
sary to distinguizh between the different sides
of the letters. Thus let I be taken in such
a sense that X—l—Y means ‘X loves Y.

Then X - ¥ will éan ¥ loves X Then,

if Mie— mewns ‘Something is a man,’ and —w
means ‘Something is a woman,’ m——I—mw
will mean ‘Some man loves some woman’;

m [(LZJ)_Lw] will’mean ‘Some man loves all

women’; [(m—l-])w] will mean ‘Every
wcman is Joved by gome man,” &e.
Since enclosures signify negation, by en-

v \ closing a part of the line of identity, the

relution of otherness is represented. Thus;
A (I)B will assert ‘Some 4. is not some B’
Given the premises ‘Spme 4 is B’ and
‘Some C is not B, théy can be written
—
*d—BC(B). By Raule III, this can bLe
—
written A {[5]} C(5). By iteration, this
s v TR
givesA{[ B (B)]} C(B). The lines of identity
are 4o be conceived as passing through the

space between the braces ocutside of the
brackets. By breaking the lines under even

enclosures, we get A'TI (B (B)]IE_CI‘(B}. As

we have already seen, oddly enclosed [B(B)
can be erased. This, with erasure of the

detached (B), gives A,{—IL}_JC. Joining the

lines under odd enclosures, we get 4{]1C,or

¢Some 4 is not some

- For all considerable steps in_ratiogination,
the reasoner has.to treat qualities, or collec-
tions (they only differ grammatically), and
especially relations, or systems, ag objects of
- relation about which propositions are asserted

oo | o

and inferences drawn. It is, therefore, neces-
sary to make a special study of the logical
relatives ¢ is o member of the collection
, and ¢ 18 in the relation to
~——. The key to all that amounts to much
in symbolical logic lies in the symbolization
of these relations. But we cannot enter into
this extensive subject in this article.
The system of which the slightest possible
sketch has been given is not so iconoidal as
the so-called: Euler’s dingrams; but it is by
far the best general system which has yet
been devised. The present writer has had
it under examination for five years with »
continually increasing satisfaction. However,
it is proper to notice some other systems that
are now in use. Two systems which are
merely extensions of Boole's algebra of logie
tay be mentioned. One of these is called by
no more proper desifrpafion than the ‘general
algebra of logig?” The other is called
‘Peirce's algebra of dyadic relatives” In the
former there are two operations—aggregation,
which Jevons (to whom its use in algebra is
due) signifies by a sign of division turned on its
side, thus .| (I prefer to join the two dots,
in order to avoid mistaking the single character
for three); and composition, which is best
signified by a somewhat heavy dot, *,

Thus, if 4 and B are propositions, 4 -|-Bis
the proposition which is true if 4 is true, is true
if B'is true, but is such that if 4 is false and
B is false, it is false. A*B is the proposition
which is true if 4 is true and B is true, but is
falseif 4 is false and false if B is fulse.
Considered from an algebraical point of view,
which is the point of view of this system,
thesé expressions 4 .- B and A*B are mean
Junctions; for a mean function is defined as
such a symmetrical function of several vari-
ables, that when the variables have the same
value, it takes that same value. It is, there-
fore, wrong to consider them as addition and
multiplication, unless it be that truth and
falsity, the two possible states of a proposi-
tion, are considered as logarithmic infinity and
zero. It is therefore well to let o represent
a false proposition and oo (meaning logarithmic
infinity, so that +4 0 and — oo are different)
4 true proposition, A heavy line, called an
‘obelus,” over an expression negatives it.

- The letters 7, 7, %, &c., written below the line
after letters signifying predicates, denote
individuals, or supposed individuals, of which
the predicates are true, Thus, l; may mean
that 1 loves 5. * To the left of the expresgion -
a series of letters I and = are written, each -

=
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with a special one of the individuals 7, j, %
attached to it in order to show in what order
these individuals are to be selected, and how,

E 3; will mean that ¢ is to be a suitably chosen

individual, ; that j is any individual, no
ol 7
means that there is an individual 7 such that
every individual j loves ¢; and
: s

will mean that tuking any individual j, no
matter what, there is some individual 7, whom
J loves. This is the whole of this system,
which has considerable’ power. This use of
2 and I was probably urst introduced Ty
O. C. Mitchell in his epoch-making paper in
Studies in Logic, by members of the Johns
Hopkins University.

In Peirce’s algebra of dyadic' reiatives the
signs of aggregation and-composition are used;
but it is not usual to attach indices. In
place of them two rclative operations are
used. Let 7 be ‘lover of, s ‘servant of’
Then s, called the relative product of ¢ by 7,

denotes ¢ lover of some servant of’; and Its,
“called the relative sum of I to s, denotes ‘ lover

of whatever there may be besides servants of.’
In MS. the tail of the cross will naturally be
curved. The sign | is used to mean ¢ numeri-
cally identical with, and T to mean ‘other

than.! Schrider, who has written an admirable

treatise on this system (though his characters

" are very objectionable, and should not be
.. used), has considerably increased its power by

various devices, and especially by writing, for

-example, T before an expression contaiing

% to signify that % may be any relative
whatever, or $ to signify that it is a possible
relative. In this way he introduces.an ab-
straction or term of second intern.tion. (c.8.p.)

Peano has made considerable use of a
system of logical symbolization ‘of his own.
Mrs. Ladd-Franklin advocates eight copula-
signs to begin with, in order to. exhibit the
equal claim to consideration of the ¢ight propo-
sitional forms. Of these she chooses ‘ No a is
b’ and ‘Some aisb’ (a\/ b and a \/b) asmoct
desirable for the clements of an algorithmic
scheme; they are both symmetiical and
natural. She thinks that a symbolic logic
which takes ‘All a is &’ (Boole, Schrider) as
its basis is cumbrous; for every statement of
a theorem, there is a corresponding statement
Decessary in terms of its contrapositive. This,
she says, is the source of the parallel columns
of theorems in Schroder’s Logik; a single set
of theorems is all-sufficient if a symmetrical

pair of copulas is chosen. Some logicians
(as c.s.1.) think the objections to Mis. Ladd-
Franklin's system outweigh its advantages.
Other systems, as that of Wundt, show a
complete misunderstanding of the problem.
Cf. Syrrocisa (2). (C.8.1., C.L.F.)

Symbolic logic finds occasion to single out
two terms as of peculiar significance, and to
represent them by the special symbols o
(zero) and <o (infinity); all other terms bave
both application and signification, but tho
first of these has no ohject of consciousness to
which it is applicable, and simply significs the
non-existent, while-the secondhas every object
of consciousuess as its application, and has no
signification whatever, ~These properties ave
expressed in formal language by saving that

A< x, 0<a
are, no matter what « may be, propositious of
no content, though always true. But
L <€a, <0

state, the fir<t, that everything is a, and the
second, that @ is non-existent. Theee last two
propositions are contrapositives one of the
otler, and = und o are a pair of contradictory
terms (i. e. cach is the negative of the other).
Much confusion would be saved in discussions
in non-symbolic logic by the recognition of
these special terms, (C.I.F.)

Literature: LriByiz, iles.  Schriften,
t. vii, ed. Gerhardt (Berlin¥£890); Opuscles
et fragments inédits de Leffbniz, ed. Couturat
(Paris, 1902); LaMperT, Neues Organon

(Leipzig, 176.4); PLoucQuEr, Mctiodus caleu- B

Jandi in logicis (1763); GERGONNE, Fssai e
dialectique rationrelle, Ann. de Math,, t. vii ;
DE Morgay, Formul Logic (London, 184%);
SyHabus of a Proposed System of Logic (x 860);
On the Syllogism, in Trans, Camb. Philos.
Soe,, vill, ix,"x (1847~64); GEorGE BooLk,

The Mathematical Analysis of Logic (London, .

1847); AnInvestigation of the Laws of Thought
(Cambridge, 1854); STANLEY JEvVoNs, Pure
Logic (London, 1864); C.S. PEirc, aiticles
in Proc. Amer. Acad. Arts and Sci., vii, x,
xiii; Memoirs of the same, ix, Amer. J. of
Math,, iii, iv, vii; RoBerRT GRASsMANY, Die
Begriffslehre oder Logik (Stettin, 1872);
DeLBeur, Logique algorithmique (Licwe,
Bruxelles, 1877); and in the Rev. Philes., if,
ili; Huenr MacCovy, articles on the Caleulus
of Equivalent Statements, London Math. Soc.,
ix, x, xi, xvi, xxviii, xxix, xxx ; and in Mind,
1880, 1897, and xi, N. S, No. 33; Ernsr
ScHrODER, Der Operationskreis des Logik-
kalkuls(1877); Algebra d. Logik, i (1890),ii(r)
(1891); iii (1), Algebra u. Logik d. Relative
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(1895); Studies in Logic, by members of the
Johns Hopkins University (Peirce, Mrs. Ladd-
Frnéclin, Mitchell, &ec.) (Boston, 1883);
G. Praxo, Calcolo geometyico (Turin, 1888);
Arithmetices Principia, I Principii di Geome-
tria (ibid,, 1889); Formulaire de Math{ma-
tiques, en colluboration (i, 189s5; ii, 1897~9; iil,
1901); and Rev. de Math., i=vii, 1891-1901);
W. E. Jonxsox, The Logical Calculus, Mind,

- 1892 ; KEey~NEs, Studies and Exercises in

Formal Logic (3rd ed., 1894); A.N. WuIte-
HEAD, Universal Algebra, i. Bk. 11 (Cambridge,
1898); Lucex Mtrnrer, Ucber d. Algebra
d. Logik (Leipzig, 1goo, 1961); PraTon
Ponrersky, Sept lois fondamentales de In
théorie des égalités logiques (Kazan, 1890);
Bibliotheque du Congrés int. de Philos,, iii,
containing the papers of Jonxsox, MacCoLr,
PoreTsky, SCHRODER, PEAxo, BuraL-Forrr,
Papos, and Piert (Paris, rgor). For the
history of Symbolic Logic see Liarp, Les

“logiciens anglais contemporains (Paris, 1878);
VEXN, Symbolic Logic(London, 2nd ed., 1 894);

and Praxo’s Formulaire de Mathématiques (for
indications of sources of formulae). (v.c., c.L.F.)
Symbolical: Ger. symbolisch; Fr. sym-

bolique ; Ital. simbolico. (1) Relating to
symbols in the general sense. “See Syxpor (1).

\ (2) Relating to symbols, rovel or peculiar.

In this sense the treatment of logic by
means of peculiar ‘characters or old characters
put to peculiar uses is by some writers called
Syisoric(ar) Loeic (q.v.).

(3) Relating to an algebraical method in
which operations are denoted by letters and
made {he subject of operations. (c.s.2.)

Symbolism : Ger. Symbolismus; Fr, sym-
bolisme; Italasimbolismo. (1) In aesthetics:
(a) symbols considered. abstractly ; () the
theory of the nature and use of the SysoL
(q.v. 2). _

(2) In religion: the use of objects in & sym-
bolic tense; that is, as censuous emblems of
spiritual acts and objects; as, for example,
ritual in worship and the sacraments in one
aspect of their significance.

Symbolism in this sense has a wide use in
religion, the objects of whicly are unseen and
intangible. Hence the need of helping the
imagination by means of sensuous objects
which may serve as fitting materinlizations of
the spiritual. Symbolism enters into every
phase of religion, including the architecture
of its churches and teimples. "Che significance
of sacred architecture is never wholly that of
adaptation to certain functions, but it is
determined also to a degree by the spiritual

import of those functions and by the influence
of religious ideas, (A.T.0.)

Literature: sce SymMBoL; also G. FERRERO,
I simboli (1892); G. MarcuEsixy, Il sim-
bolismo (rgor). (B.M.)

Symbols (and Symbolics) [Gr. oluBohor,
a sign]: Ger. Symbole; Fr.symboles; Ital.
simboli. The authoritative doctrines or creeds
of the Christian Church. Symbolics: a de-
partment of ecclesiastical history which treats
of the origin, history, and contents of tho
various creeds of Christendom. ]

The term symbol was first employed in
a theological sense by Cyprian in the year
250 A.D.,, and after the 4th century came
into general use. It was first applied fo the
Apostles’ Creed as a wilitary wachword, dis-
tinguishing Christians from Pagans. Luther
and Melanchthon first applied the name to
Protestant confessions. . Since Reformation
times the use has been gencral.

Literature: OenvreRr, Lebrb. d. Symbolik
(1876); Wuxpr, Symbolik & rimisch-
katholischen Kirche (1880); Literature in
the Creeds (1878); Scuarr, Creeds of Chris-
tendom. (A.T.0.)

Symmetry [Gr. odv, with, + HéTpoY,
measure]: Ger. Symmetrie: Fr. symétric;
Ital. simmetria. The, arrangement in reverse
order, on opposite sides of a perpendicular line
or plare, of like and equal parts of an object.
More loosely, the equable distribution of parts
in the formation of a halanced whole,

In the latter sense it is almost synonymous
with proportion, consistency’;” and congruity.
In the narrower sente applied most appro-
prifitely in architecture and sculpture; more
ambiguouslyin drawing and painting. Applied
rarely and somewhat metaphorically to canon
and fugue in music, referring to the temporal
repetition of musically similar passages, to
metrical relations, as in the asclepiadic verse,
and to the structure of the drama, us involving
‘ exposition,’ ¢conflict, and ‘solution.’ For
closely connected meanings sece BALANCE,
Harmoxny, and ProroRrTION. :

The Greek term was probably first applied
to the commensurability of numbers, thence
to the parts of a statue, and finally to the
relations of form in general. The aesthetic
value of the quality has been recognized by
practically all aestheticians from the earliest
Greek writers down to the present day.* The
principle, with its connected categories, har-
mony end proportion, is, however, so funda-
mental to the Greck conception of beauty,
that it plays relatively a mere important
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