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SETS OF INDE.PEND%POSTULATES FOR THE ALGEBRA
OF LOGIC®

!

AMERICAN MATIEMATICAL SOCIETY

BY
EDWARD V. HUNTINGTON

The algebra of symbolic logie, as developed by LEmnxiz, BooLg, C. 8.
Prirck, E. SCHRODER, and others, { is described by WHITEHEAD as *the only
known member of the non-numerical genus of universal algebra.” $ = This algebra,
although originally studied merely as a means of handling certain problems in
. the logic of classes and the logic of propositions. has recently assumed some
VOLUMES 1-5 , 1 : , importance as an independent calculus; it may therefore be not without interest

) to consider it from a purely mathematical or abstract point of view, and to show -

1900 -1904 - . ‘ g how the fvhole algebra, in its abstract form, may be developed from a selected

: : set of fundamental propositions, or postulates, which shall be independent of
each other, and from which all the other propositions of the algebra can be
deduced by purely formal processes. - '

In other words, we are to consider the construetion of a purely deductive
theory, without regard to its possible applications.

Introductory remarks on deductive theories in general.§ The first step in
such a discussion is to decide on the fundamental concepts or undefined symbols,
concerning which the statements of the algebra are to be made.

One such concept, common to every mathematical theory, is the notion of

INDICES o 1) a class (&) of elements (a, bycy--). |
’ : ' *presented to the Society: §1, September 1, 1903; §2, December 28, 1903 (and sincé
revised) ; § 3 and the appendix, April 30, 1804. Received for publication, April 30, 1904.
+ For an extensive bibliograyliy, see SCHRUDEK'S Algebra der Logik, vol. 1 (1890).
. . +A. N, WHITEHEAD, Universal Algebra, vol. 1 (1898), p. 35.
LIBRARY : o . 7 CI. papers by A. PAD0A, cited in Transactions, vol. 4 (1903), p. 358.

EXA . [| A class is determined by stating some condition which every entity in the universe must
TEXAS TECHNOLOG'_CAL COLLEGE either satisfy or mot satisfy ; every entity which satisfies the condition is said to belong to the
LUBBOCK, TEXAS

I

3w

class. (I the condition ia snch that no entity car satisfy it, the class is called a ‘*null”’ class.)
Every entity which belongs to the class in question is called an element (cl, H. WEBER, Algebra,
vol. 2 (1899}, p. 3).

No further analysis of this concept class, or of similar concepts introdaced below, is here
attempted. For an elaborate discussion of the logical processes which underlie all mathematical
thioking, see B. RussgLL’s work on The Principles of Mathematics, vol. 1, 1903.
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E. V. RUNTINGTON: ALGEBRA OF LOGIC 289

I.f two elements @ and & are, for the purposes of the disulesio.n‘ i hand
CQuwa/e.'lt, that is, if either may replace the other in every \n;o~ iti 1 of the
algebra in question, we write « = b; otherwise, a += o ¥ proposttion of 'the

In regard to. the other fundamental concepts, one has usually a consid vbl
fre?dom of choice : several different sets of undefine! symbols mav seii: er‘at} X
basis of the sawe algebra; the only logical requiremenvt is that t-‘heA sy1 babl 1:
every such set must be definable in terms of the symbols of every oth"}' 1‘1 o

?hus for the algebra of logic the fundamental conce ta (besi I ot
_class) may be selected at pleasure from the followin"-f | )

2) a rule of combination, § denoted, say, by = ( ad
see remark on these symbols below) ) i

3) avother rule of combination, denoted, say, by @ (réad “times™);

4) a dyadic relation, | denoted, say, by o (read, “within :') e

Any two of these symbols can be de}ined, as v:re shall see.
g )

third. ﬂ a

In the present paper, I choose the funtlamental concepts

o3 the notion of

N

read, for convenience, “plus™;

in terms of the

as follows: In § 1;
* C H .
e b(fc:rn;:g :t}l;e.;aymb(;l = we have the following obvions theorems : 1Ya=a, 2)if b
| =a; fa=band d=c, then a == «; which are , iters 59 the prop.
- . T t‘
exttus by which the symhol = isito he detined. Bu oAy
die Lehre vom Yass, Leipziger Berichte, Math.-Phys. Classe. vol
1 CE. remarks by M. PIEEL in his article called : Nu di s
mdna. prejettiva, Reale Istituto Lombardo d
cox:tr:, ger. 2, vol. 31 (1898), especially p. 797.
+ For a quite different point of de y X
parture, see A. B. KeMPE
Uxeor_r'/ of classes and the geometrical theory of points e
matical Society, vol. 21, pp. 147-122, J‘:munry ’
Na;ure, vol. 43. pp. 156-162, December, 1890. ’
2 A rule of combination 0, in the given class, is a convention '1céordin<v to which evers
a 2 versy

ments g and b 3 =} i ini oo e
(whether a =bora =§=_b ), ipa definite order, determine uniyuely an en.titv e

any writers as the prop-

i . 53 (1901), p. 4, fovtnote.
.‘\ uox,:o modo di srolgere deduttivamente Ig gen-
! scienze e lettere (Milano), Rendi-

. elation beticeen the logical
f’roceedlngs of the London Mathe-
1830, and The subject-matter of exact Ehouy/:.‘,

a0bd (read ‘‘a with $),

1 a . *
*
which 18 h(’)WE\el ot neceSSdnly an e]fﬂﬂeﬂt of the 01385 In the class of qUﬂntlthS or numbers
mmlllﬂ( e.lmmples of rules of Cl)lnblﬂﬂtl()n are + y Ty M, -, ete.
A dyadic relation, R, in the giv = 53 ©
* ’ given class, is detemn hen, if Ay two ']ements a and b
yi 'y ped wh N }
are given in a deumte 0((1@1, we can decide WhEther 4 stands in the re ation Rto b or not ; if it
'

aRh, or, equally well, #¥a.

In the iti ili

- Rc:;x::i of (:]?antltxes or numbers, familiar examples of dyadic relations are = <, >, =

rery s ox;s ips umong.humuu beiongs furnish other examples. [If R is such ’»han' /I’l f:'

s im:}l; naR, th;}au RRx?x called & refezive relation; it R is snch that «Rb and ;I‘c n('l*wtbor
¢, then R is called a frunsitive relation : i i 55 impties

bRa, then R is calléd a symumetric relation. ation = e thot a1t e my s

not symmetric ; i i i
y tric; the relation of equivalence is reflexive, transitive and symmetric ]

TIn all discussions like the present, derinitions
ne.w sywmbol as an abhreviatian for an ol;l c;)nce t
Bibliothéque du congre o
lished in 1901).

:x(;'e purely nominal definitions, introducicg a
[. papers by PEANo and Br i

_ . : Al SURALI-TORT! in
§ international de philosophie, Paris, 1900, vol. 3 (pub-

t of. O. HOLDER, Die Aziome der Quantitiit und

Thus the relation = is reflexive and transitive, bug ™™ "7

a
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‘.

’ ' . . .
the two rules of combination, = and o: in § 2, the relation g;.in § 3, a single
rule of combination, &. The three sections form properly three separate papers.

Having chosen the fundamental concepts, the next step is to decide on the
Sundamental propositions, or postulates, which are to stand at the basis of the
algebra. These postulates are simply conditions arbitrarilygdmposed on the
fundamental concepts and must not, of course,be inconsistent among themselves,
Apy set of consistent * postulates would give rise to acorresponding algebra, —
namely the totality of propositions which follow from these postulates by logical
deduction.t For the sake of elegance, every set of postulates should be free
from redundancies ; in other words,*the/postulates of every set should be inde-
pendent, no one of them deducible frop the rest.3 For, if any one of the pos-
tulates were a consequence of the others, it should be counted among the derived,
not among the fundamental propositions. Furthermore, each postulate should
be as nearly as possible a simple statement, not decomposable into two or more
parts; but the idea of a simple statement is a very elusive one, which has not .
yet been satisfactorily defined, much less attained.§ _

In selecting a set of consistent, independent postulates for any particular
algebra, one has usually a considerable freedom of choice; several different sets
of independent, postulates (on a given set of fundamental concepts) may serve
as the basis of {the same algebra:| the only logical requirement is that every
such set of pos';ulates must be deducible from every other. ] ‘

Thus, for the algebra of logic, several different sets of postulates might be
given on each of the three sets of fundamental concepts which we have selected.
In the present! paper a single set of postulates.is chosen for each of the three

sections.

. Object of thfe present paper. ‘The object of the paper can now be stated as
follows: Having chosen a set of fundamental concepts and a set of fundamental
propositions for each of the three sections, I show, first, that the fundamental

_—

* On the cousistency { Widersprocbslosigkeit) of a set of postulates, eee a problem of HILBERT'B
cited in Transactions, vol. 4 {2903), p. 361, and ap article by A. PADOA, Le problime no. 2 de
A David Hilber!, L’Enseignement Math¢matique, vol. 5 (1903), pp. 85-91.

+ The processes involved in ** logical deduction * have been subjected in recent years toa very
gearching analysis; see especially the work of G. PEAxN0 and others in the Revue de Mathé-
matigues, and B RUSSELL's Principles of Mathematics. . ’

1 The method of proving the independence of a postulate used and explaived below, has been

.. made familiar especially by the works ol PEANO, Papoa, PiERI, and HILBERT.

§ Compare remarks by E. H. Mooxrg, in bis paper on 4 dejinition of abstract groups, Trans-
actions, vol. 3 (1902), especially pp. 488-489.
" |i For a striking example, see the postulates for a field in recent articles by L. E. DICESON
and E. V. HuxTINGTON, Transactions, vol. 4 (1903), p. 13 and p. 3).
€ Cf. M. P1ERI, loc. cit.  Evenif the postulates could be made strictly simple statements, I see
no rens(‘)\n why several different sets of consistent, independent, and simple postulates might not
be possible for the same algebra. (CE. SCHRGDER, loc. cit., vol. 3, p. 19.)
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propositions of each set are consistent (and independent); and secondly, that the
fundamental concepts of each section can be defined in terms of the fundamental
concepts of each of the other sections, while the fundamental propositions of
each section can be deduced from the fundamental propositions of each of the
other sections. Then we may say, first, that each section determines a definite
algebra, and secondly, that the three algebras are equivalent. '

Finally, in order to justify the name “algebra of logic” for the algebra thus
established, I show that the fundamental theorems of that algebra, as set forth
in standard treatises like those of SCHRODER and WHITEHEAD, can be derived
from either of my fhree sections. And the development of the theory in the
present paper is carried only so far as is necessary for this object.

In working out the set of postulates in §1, I have followed WHITEHEAD
closely. The postulates Ie-V are substantially the same as ‘the fundamental
propositions given in his Tniversal Algebra, Book IL: except that the associa-
tive laws for addition and multiplication, which are there admitted as funda-
mental, are here deduced as theerems.

In § 2, postulates 1-10 are substantially the same as the fundamental pro-
sitions (called by various names*) in SCHRODER’s dlgebra der| Logik ; except
that postulate 9 here replaces a much less simple postulate of SCHRODER's which
I cite for reference as 9,. For the possibility of this simplification I am especi-
ally indebted to Mr. C. S. PeircE, who has kindly communicated to me a proof
of the second part of the distributive law (22a, b) on the basis of this postulate
9. (See footnote below.) A further prob]em in regard to postulate 9 is pro-
posed at the end of § 2. |

The third set of postulates (§ 3) is a fairly obvious modification of the second.

The only part of the paper for which I can claim any originality (except pos-
sibly the proofs of XIlla, 4 in §1 and 20, b in § 2) is the establishment of the
complete independence of all the postulates of each set. There has been no dis-
cussion of this question, as far as I know, except an oily partially successful
attempt of SCHRODER's to prove the independence of 9,.t

A simple interpretation of the algebra.  Although the algebra is necessarily |

treated here solely in its abstract form, without reference co its possible applica-

tions—that is, without reference to the possible interpretations of the symbols .

K, ®, 0, and @—nevertheless it may be well to mention at once one of the
simplest of these applications, so that the reader may give a concrete interpre-

*® ¢ Prinzipien,” ‘‘Postulaten,’’ ** Definitionen.” See Joc. cit., pp. 168, 170, 184, 188, 196,
293, 303.

t He suocceeded in showing, by a very complicated method, that 9, is independent of postu-
Iates 1-7, omitting postulate 8. ~ (Loc. cit., pp. 236-288, 617-628, 633-640, 642-€43.) But the
question whether 9, is independent of the full list of postulates 1-8 was left undecided ; see loo.
cit: p. 310, bottom.
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tation, if he so desires, to all the propositions of the algebra. Any system
(&7, &, @. ©) which satisfies the postulates and definitions of §1, § 2, or §3
will answer the purpose. One of the simplest of such systems is the following : *

A = the class of regions in the plane including the ¢ null region ” [= A3
read “nothing ] and the whole plane [ = '/ ; read “everything J; ,

a = b = the sallest region which includes both @ and b, called the “ logical
sum” of ¢ and b;

a o b= the larrrcst region v\luch lleS mthm both @ and b, called the “logical
product” of ¢ and J,.

© = the relation of mclusmn that is, a © b signifies that the region a lies
within or coincides with the region 5.

Remarks on the symbols &, @, etc. The symbols. @, 0, and © are chosen
with a double object in view. On account of the circles around them they
are sufficiently unfamiliar to remind us of their true character as undefined
symbols which have no properties not expressly stated in the postulates; while
the 4, -, and - within the circles enable us to adopt, with the least -mental
effort, the interpretation which is likely to be the thost useful. The symbol &
was used by LriBxN1z for the same purpose about 1700. ¢ ’

The symbols /. and -/, which oceur below, I take from PEANO's Formu-

“laire de \Iathemathues vol. 4 (1903). pp. 27-28. The resemblance which

these symbols. bear to an empty glass and a full glass will facilitate the inter-
pretation of them as * nothing  and “everything respectively.
§ 1. Tue FirsT SET OF PoOSTULATES.

In §1 we take as the fundamental concepts a class, A", with two rules of
combm'mon, @ and ©; and as the fundamental propositions, the following ten
postulates : -

Ie.asbis in the class whenever a and b are in the class,

1b. @ o b is in the class whenever @ and b are in the clags.

Ila. There is an clement /[, such that a = /k\ = a for cvery element a.

115, There is an element V) such that @ ©\/ = a for every element a.

IMla. ¢ 2 b =0 awhenerer a, b', agb,and b e aare in the class.
b2 0 b =006 a whenever a, b, « @b, und b © a arc in the class.

Wa. ae(boc)y=(asb)o (asc)uwheneera,bc,asb,acc,boc,
as(boc),and (agb)o(aec)are in the class. )

* Compare EULER's diagrnms, in works on logic.

t LE1BN1Z, Philosophische Schriften, herausgegelen von GRRHARDT, vel. 7 (1890), p. 237; cf.
Formulaire de Mathématiques, vol. 3 (1901), p. 19. On the use of the circles aronnd
these symbols, see also CHRISTINE LADD [Mrs. FRANKLIN], On the algebra of lugzc, in Studies in
Logic by members of Johns Hopkins ancrexly, 1883, p. 18.

-
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Vb ao(bec)=(ao b) 3 (aoc)whenevera,d,
ao(boc) and (¢ 0 b) s (ao ¢) are in the cluss.

V. If the elements I\ and ©/ in postulates 1 o
then for every element a there is an element d such th

VI. Zhere are at least two elements,

ya0b,aoc,bac,

nd 116 exist and are unique,
Wusid=" andaci= /.

zand y, in the class such that » *+ .

Consistency of the postulates of the first set.
37

To show the consistency of the postulates, we have only

- (A, @, @) in which A, 9, and o are so interpreted th
satisfied. For then the postulates themselves, and

be simply expressions of the properties of this sys

involve contradiction (since no system which really ex

to exhibit some system
at all the postulates are
all their consequences, will
tem, and therefore cannot
ists can have contradictory

~ One such system is the following : A~

= the class of regions in the plane
" including the *null region

* and the whole plane; a2 b =
of ¢ and b (that is, the smallest region which inelude
“logical product " of ¢ and (that is,
both). o
Another such system,
comprising only two ele

the logical sum "’
s them both); ¢ 5 b = the
the largest region which lies within them”

in fact the simplest possible one, is this: A = a clags
ments, say 0 and 1, with = and o defiged by the tables
P o

01
0.0 0.
10 1

—_—

For other such systems, see the appendix.— The existence of any one of these

the postulates.

Deductions from the postuluates of the first set.

The following theorems follow readily from-the postulans Ia-VI; the proofs

are given in the next paragraph,
Vlila. The element /, in IIq is unique: ¢ g /, = ¢,
VIIb. The element '/ in 11} is unique: ¢ o \/ = ¢,
Villa. a5 a=aq. '
VUIb ¢ a=aq.
IXa. a9 vy =y,
IX4. -aQ/\#/\. o
Xa ae(ach)=a. (The *law of absorption.”)
Xb. a0 (aebd)=uq. ‘ :

B e o S SR,
T A e -
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XI. The clement @ in V is uniquely determined by a:
a2 a=Y and aca= A.

DerrviTioN.  The element a is called non-a. or the supplement of a. ?i IIIiz,
1112, if b is the supplement of a then a is the supplement of & ; that is, if b = 4,

_then ¢« =, or,-7 = a.

Xlla. e b=a @_—é, and

XI. cob=aseb: : i
that is, @ ¢ & and @ @ b are supplementary elements as are also a © b an}(]l' (;Je‘?sb;
These theorcms establish the principle of duality between  and ad,f;\ ic 2
characteristic feature of the algebra. They also enable.e us to define e
" ition i tiom.

iplicati addition in terms of the other and negal N

mu}\'t]II}IIltc;I 1(Otilf:-")rb) ec=as(bec). (Associative law for addlt.xox?.) .

%IiIL. (a ; byec=ac(boc). (Assodiative Jaw ‘for multiplication.)

?[‘hese theorems are sufficient to make the connection between the] po\s;tyulajts
here adopted and the usual treatment of the subject. See, 1fox; exafmf id amlzl -

s Uni ; : II, where two lists of fu

HEAD's Universal Algebra, vol. 1, book LI, ) :
propositions for the algebra of logic are given; t'he first llyst (p- 25)&0[1;5;5:(;
(besides la, 8) Ilq, b, I1la, b, IVa, V, VIllq, b, Xa, and ).Hlaiv, beIX(Z L
list (p. 37), which is more symmetric, includes Ila, b, Illa, b, IVa, b, , by
Xa, 4, X1, and X111, .

NP P ‘hich

The further development of the subject is based on the definition of ©, whie

iven in vari thus o

may: be given in various forms, s o I
- DEFINITION.  If acb=b; or,if a0 b=a; or,if dab=\/; or,if a©b=/\;
then we write a © b (or b o a). , o ]
It is easily seen that these definitions are all equivalent, and that the prop-
erties of @ used as postulates in §2 can be readily deduced.

-

Proqfs of theorems in the preceding paragraph.

In the following proofs we write, for brevity, ¢ @ & = ab. The p(;;)ocf’s tio;
the theorems “ *’ may be obtained from the proofs for the corresponding
" by i ing & with @ and A with v/, '
rems *a” by interchanging ¢ with @ an \
’ Proof of Vila. Su;poose there were two elements, /\14.,a_.nvd -/\2, such that
ae /[ =a and ¢ & /,,=a for every element ¢. Then, putting a= /\,1n
the ﬁ;';t- equation and ({= /\, in the second, we should have /., & /N\,= /\,
nd' /\, & /.,= /\,; whence, by IIla, A, = /. ] o
a‘ Pl/-c\)clgf o}" -iTIII(\l.l By V (in view of V1Iq, b) take @ so thata & @ = \/ and
ai= A. Then by Iu, Ia, b, and IVa we have

uea=(asa)\/=(aea)(asd)=ao(aa)=as /\ =a.

PRSP TFTUR, 255 G-t |
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- Proof of IXa. ByV (in view of VIIu,d) take @sothata © @ = \/. Then
by Ia, 115, 111, and IV« we have

eeV =(ad\)V="(as\)=(a2d)(ea\/)=as (d/)=a2i="/.
. Proof of Xa. By Ia, b, 115, IV}, I1la, and IXa we have .
ag(ab)=(a"/)e(ad)=0a(/ 3b)=a(ba/)=a/ =a.

Proof of XI. Suppose that for a given element a there were two elements,
and @,. such that ¢ 57, =a* d,= '/ and ad, = ud,= /\; then using Iq,

Z,l Ila, b, 111, IV3, and V we should have
Va,=(a3sd)d,=(ai) s (q,4q,)=/ 2(4a,)
. - =(da)2(5,a,)=a (asd,)=a "/ <a.
Proof of X1Iu. We notice first that
| as(@asc)=/ and  a(ac)= /;
for, by Ia, b, 116, 1115, IV, V, and X3, .

ae(dec)=y/ [ee(iac)]=(asd)[as(ac)]

=ao [@(isc)]=aza=",

and similarly for the reciprocal proposition.

Then, using IVaq, b, I1la, b, and XI,

(e28)s(ab)=[(ast)sa][(asb)eb] = v =1/,
and , _ .
(a28)(ab)=[a(@h)] & [b(aB)] =/ h = 1,
whence, by XI, @ 5 b and «-b are supplementary elements.
Proof of Xllla. Let (azd)e2c==x and as(boc)=y; then
(a8)c = z. by XIIq, and in order to prove that » = y it is sufficient (by XI)
to show that z and y are supplementary elements. - oo ’

Now _ _
@ yse=yolb=yec="/.

For, first, y 2 d=d 2 [e2 (b®c)] ="/ as in the proof of XIla; secondly,

yeb="(bsy)=(52b)b2y)=03(by)byIVq
while

by=b[ao(bec)]=(ba)o [b(b=b)]=(ba)s b=2>,byIVband Xa, b,

sothat ye b="54=b="/; and similarly, y s ¢ = /.

t
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Also, by a similar method,

(2) Ta=ub=ZTc= /.
Therefore, by IVa, (

yer=ye [@d)e]=[(yea)(yeb)](yee)= (v V)=,
and, by IV3, ‘ '

Zy=zfas(boc)=(3) e [(B)e(F)]=Ae(heA)=A;

whence. by XI,  and y are supplementary elements. Therefore z = y.
Theorem XIIIb follows a. once from X1Ilg by XIle, &.

Independence of the postulates of the Jirst set.

The ten postulates of the first set are independent ; that is, no one of them
can be deduced from the other nine. To show this, we exhibit, in the case of
each postulate, a system (A, &, ©) which satisfies all the other postulates, but
not the one in question. This postulate, then, cannot be a conseqience of the
others: for if it were, every system which had the other properties would have
this property also, which is not the case. -

For postulate VI take A = the class comprising a single element, @, with
asa=qcand ava=aq. : .

For the other postulates, take & = a-class containing two elements, say 0 and
1, with & and © defined appropriately for each case, as indicated in the fol-
lowing scheme: ’

0 1 1 0 0

1060 0s1 1¢0 1e1 000 0ol 100 1o1
i

1a)
1),
Ila) |
Iy
- 111a) |
1115 |
D IVa) l
- IVE)

-t

o

coocoocoocoo
e S RS SPRPE
et e O O g
HoorHROoOMHOQ O
b A e e e e b

bt b ek b e O
OH OO OKHOR
HoooorHOoOo

In verifying these results, notice that the system for Ila (or 1Id) satisfies
postulate V «vacuously,” since no element having the properties of /\ (or V/)
exists; wlile the system for I1la (or IIIb) also satisfies V' vacuously, since the
element /, (or V/) is not uniquely determined. In the other systems, A\ =0
and '/ =1, except in the system for V, where /,.=0 and \/ = 0. -
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THE ALGEBRA OF LOGIC

§ 2. THE SEcOND SET OF POSTULATES.

In § 2 we take as the fundamental concepgg a class, A, witha dyadlc relatxon,
©; and as the fundamental propositions, the following ten postulates. ()ote
that ¢ © b and b © ¢ mean the same thing.) '

1. a © @ whenever a belongs to the class.
.Ifaoband alsoac b, tlzena:b
.Iffaebandboc,thenavc.:
. Thereis an element [\ such that /\ © a Sor e‘/ element a & /..
. There is an element \/ such that \/ © a for every element £/
. If @ %= b,-and neither a © b nor a © b, there is an element s such that
) 1°) soa; 2% sob; and '
8%).if y, +s,issuch that yo a and y © b, then Yo s.

v

- If @ = b, and neither a © b nor a 0 b, there is an element p such that
1) poa; ) pob; and
3°) if x, % p,issuck thatxoaand 20 b, then x @ p.

8. If the elements /, and \/ in 4 and 5 exist and are unique, then for every
element a there is an elcment i such that

i

1°) ifzouand x 0 a, thenx = )\ ; and
) ifysa aml/@u, then y = /.

9. If postulates 1, 4, 5, und 8 hold, and if a©bis fulse, then there i i8 an
element £ %= [, such thatx @ a and z 2 b.

10. There are at least two elements, x and v, such that » 4 y.

In this list, postulates 1-T are independent among themselves, and postulates
8 and 9 are independent of the first seven (ordinally independent). Taking the
whole list together, however, either 6 or 7 can be deduced from the rest, as
shown in 25 below. Both postulates 6 and T are allowed to stand in the list for
reasons of symmetry; butif a set of absolutely (not merely ordinally) inde-
pendent postulates is desired, either one or the other must be omitted.

COns'{'stency of the postulates of the second set.

To show the consistency of the postulates, we have only to exhibit some s¥S-
tem (X, ©)in which AT and © are so interpreted that all the pgstulates are
satisfied. - ‘

One such system is the following: A = the class’ of regions in the plane
(including the null-region and the whole plane); @ © b signifying that the region
a lies within (or coincides with) the region 5. '
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~ Another such system 1s the class composed of two elements, 0 and 1 with
000,0o1,and1eo1,butnot1e0.
For other such systems, see the appendix.

’

Deductions from the postulates of the second set.

The following theorems are deduced from the postulates of the second set, and
are sufficient to connect these postulates with the usual presentation of the
theory ; the proofs wherever needed are given in the next paragraph. The pos-
tulates on which each theorem depends are indicated at the right.

1la. The element /, in 4 is_iinique, - 2, 4)
Hence /, € a for every element a; and if x ©/\, {hen r=/\. - (1,2,4)

1156. The element */ in § is unique. - (2,5)
Hence '} @ a for every element a; and if y & \/, then y =\/. 1,2,4)

2a. The element s in 6 is uniquely determined by a and b ; hence we may

ﬂehne a = b as follows:

Derixition. lfe¢eb,acb=0;ifecb,acb=a:ifa=b,aca=aqa;

- otherwise, ¢ 2 b =3 (in 6).  Henceesbcaeandez=bcb;andif y o aand

yob,thenycaeeb. Obvicusly,asb=0bea. . (1,2,6)
120. The element p in 7 is uniquely determined by ¢ and b; hence we may
define a ¢ b, or ab, as follows: -

Derrarior. Ifaeb,ab=a;ifacd, ab=1>0; if a =b, aa = a; other-
wise, ab=p (in 7). Hence abd ©a and abob; and if xoa and = © b then
& ab. . Obviously ab = ba. .

13a. ve /i=aand ag \/=/.

132. a\/=a agd a/\=/.

14a. f yoae b, theny caand y o b.

14b. If x © al, then x @ a and z © b.

16a. facbandx sy, thenaezobde y.

In pdrticul'u-, ifrxcy,thenezxecasy.

158. If ¢ @ b and = © y, then ax o by.
In pamcular, if x © y, then ax © ay.

16a. (af«b)ec—ae(bec)

16&. (ab) c—-a(bc)

17. The element @ in 8 is uniquely determined by @; hence

DeriNiTioN. The element @ (in 8) is called non-a, or the supplement of a.

Hence,a e @ =\/ and a@ = /,. Obviously, /, =/ and V/ = /.

18. If =10, then ~ =5 hence, &= a, by 17.
19. If ¢ © b then, inversely, b © a.
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20a. aob=ado Z‘" (1,2,8,4,5,6,7,8,9)
205. aob=ach. T (1L2,3,4,5,6,7,8,9)
These last theorems, 20a and 203, establish the duality between « = b and
aob. . .
2la. a(b2c)oub = ac., S |
21b. acsbco(azbd)(azc). . (
‘.:Za. a(dzc)dudb=ac. (1, 4, 5,6
22b. anbeo(azb)(ezc). 1,2,3,4,5,6
N
;

1]

s + Al

From theorems 21 and 22 the dlstxlbutlw Ia“s follow at once, by

tive la , namely, -

23a. a(bsc)=ab = uc. (1,2,8,4,56,17, 8, 9)
23b. avbc=(udb)(a=zc). ;' , (1,2,34 , 6,7, 8,9
Al these theorems would hold for a class containing only a single element «,
with a © a. This trivial case is excluded by postulate 10, however, and we
have: .
24, @4 a; in particutar, e (1,2,4,5,6,7, 8, 10)
25a. Postulate 6 is a consequence of postulates 1, 4,5, 7,8, and 9;

+ ?

the requlred element s being s = & 2 b. '

- 25b. Pos‘fulate Tisa consequence of postulates 1,2,8,4,5,6,8, and 9;:
the required element p being p = @ = 5. '

© Proofs of theorems in the preceding paragr-apiz. :

The theorems 11a, b and 124, b follow immediately from the postulates indi-
cated. In theorems 13a.} it ‘is sufficient to notice that the sum or product ~

b AL 1

%_ﬁ

300 E. V. HUNTINGTON: POSTULATES FOR . NG [July

Prooi of 17. Let a, :m’d a, be tv«o elements having the properties of @ in 8.

Then @, ¢ a,: for if not we should have, by 9. an element > 4= /\ such that
T Cda dnd o a, v.hen(e, by 8 and- 11_(1, T = /\.

Again, (7 2 a,; for, if not, we should have, by 9, an element y & /\ such
that 7 2 a, 'md y 2 a. whence, b\ 8 and lla, y = /..

Thenfme a,=a,, by 2. .

Proot of 18 . From @= 1 we have: if r@ o and x © b, then x = /\ ; and
ify~aandycd,theny= /. But These are precisely the conditions under
which @ =1, by 8. ' .

Proof of 19. 1§ g a were false, we should h'a“x'e,AE".' 9, an element x & /,
such that =« b and o 2 «. But from e «and a o bfollows x © b, by 3;
and from = ¢ b and b Tollows z = /v» by 8 and 1la, which contradicts the
condition == /..

Proof of 20a. Let a = b =s and @b = p; it is required to prove (see 18)
that s = p. :

B\' 1'2(/. s aand s @ b; hence by 19, sodand s o0, or, by 120, 5 © ab;
that is s };. or b\ 19, pes. -

Again, by 120, p ¢ @ and p < T; hence, by 19, p‘@a and p G b, or, by 12a
poacbythatis, pos. .

Therefore s = p, by 2. =i

Proof of 21a.. By 12b, ab © a and ac @ aliwhence, by 12a,

ab ¢ ac © a.

*Again, «b © b and ac e ¢, by 12(); hence, by 164,

givern Has the-properties stated 124, 5. Tlheorems 13«7 and 145 Tollow from
12 and-125 by 3. The remaining theorews miay be proved as Tollows, the proof
for any theorem « 4" being in each case readily supplied from the proof for the
correspondm«r theorem ¢’ by interchanging o with g, 3 w1th o, and /,
with /. * ’ i

Proof of 15a.-

aob, by, 732 0b; fmmamxtdasandx@‘/,bv3 as

© .5 therefore,
“byl2¢,azxc0bzy. 3

Proof-of-16a.—By-12u; (a5 b)ﬁ: @a—b and @ = b3 a; hence, by 3,
(esbd)ecoa. Butalso, « = b odiihence (a=b)scob; and further,

(esb)yscoc, by 124 honoptﬁwr‘ lazbyses{h

By-12¢-e-@x9e-and ¢35 ror—From "'('1"9':::.9 @ and

{h=—<c)—Therefore; by
]nn (1]"}1 VW L) Y
"’"/ Ereain SgmPr et ) aae=Sh 2y IC

L

e
aciase &€~

PPN
= uv QLG

* Theréfore, a) € ac @ a(b € ¢), by 12, S e
Proof of 22a In order to facilitate the proof’ of thxs theorem, we first _

establish the followmg N - Ly
Lr:\m.x: a(bsc)obe ac. |

. N

*Tlm dunoustratlon is borrO\ved almost \erbatxm from & letter of Mr. C S. PEIKCE' 5, dated
December 24,1903 Mr. PEIRCE uses the symbol < where 1 have used @ , and ip a slightly
different sensc; so that he is enabled to state that the principle here called poqtulate 9 ‘‘follows
from the derimition of P.< (:on }n"c 187" of his article of 1880. The demonstration was origi-

n.lll\ worked out for that article (American Journal of Mathematics, vol. 3 (1880),

p. 33i. but is pow published for the first time (compare ibid., vol. 7, p. 190, footnote, 1885

[wropgly cited as 1854 in SCHRADER'S bibliography], and SCHRODER, loc. cit., p. 201).
Uhnder the date February 14, 1904, Mr. PEIRCE writes a8 follows:

‘
¢
'.Slmxlar]y, az(bac)o (a3 b) & c. Henne the theorem bv 9.

.- ¥ Theorems 215, 32b. and 23 may also be mferred directly from 21q, 22a, and 23q, by t.he aid” o

.

ol the prigeiple of duality establish®ed in 20z and 205.

T R d WA O

TR,

YRS A

** Dear Mr. HUNTINGTON : Should you decide to print the proof of the distributive principle
tand this would® not only relieve me from a long procrastinated duty, but would have o certain
value for exact logic, as removing the eclipse under which the method of developing the subject
followed in my paperin vol. 3of the American Journal of Mathematics hus been obscured)
Ishould feel that it was incumbent npob me, in decency, to explain its having been so long with-
held. The truth is that the paper aforesaid was written during leisure hours gained to me by

: L]
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Suppose _the lemma to be false. Then, by 9 and 18, there is an element ’ . : ‘_: : A Therefore the supposition from which we started is ilnpossible; and the lemma
z = /A such that : ' AR is established. 3 _
. . zoa(bse), ! (1°) : 15 o The proof of the main theorem then proceeds as follows: By the lemma,
and robsac, ‘ ’ R . a(bzc)obeag '
whence, by 19, £obeac. (2°) i Therefore, by 15, ala(bzc)]oa[beac]. (12°)
‘ v But, by 164 and 128, ‘

From (1°), by 142, roa, " (3° .
1 (3%) a[a(bec)]=(aa)(‘bec')=a(b.@c), (13°)

an\(i . I@b%(;. 1 “l ) (40)

>

albeac] =a(aczb)oacs ab=ab (14°)

Therefore, by 3,

. and by 12¢ and the lemma again,
i SR e i

From (2°), by 142, Z 5 b and 7 o ac, whenée_,'by'lg\‘ a
."'__. USSR P, - R . = R i N

i

zob, (5°)

and . s O an. ' (6 0) .
. ! . a(bzc)oabe ac.
From (6°) and (3°) it follows that z & ¢ must be false: for if = o ¢ and : . :

zoa, then = @ ac by 126, whence x = /, , by 17, which contradicts the condi- o Proof of 23a.  This theorem follows at once from 21a and 22¢ by 2.

tionz 4 /. - \ ' e v Proof of 24. If @ = a for any particular element a,then a=/, by 8,1,

. Therefore, by 9 and 18, there is an element y 4 /| SU!.‘Chvtha,t‘ y 3 and 1la. But if /,=/,, then /, = '/, by 8,1, and 11%: whence, every ele-
yozx, “‘.‘ (T°) : ment coincig]es with /., by 2—a result which is impossible by 10. Therefoxje

and - . Yo, : @ =% «a, for every element a. - : o

" Proof of 25a. Let s=T7®0b; we have then to show that this element s

: ' : , (R ) - has the properties 1°), 2°), and 3°) demanded by postulate 6. By 18 and 123,

Frodi (7°) and (5°), by 3, y o &, whence by 19, \ » B S - aecledand 228¢T; hence, by 19, sc ¢ and sed. Further, if yoa
7ob . : 19°) O and y ¢ b, then, by 19, y &« and J © T ; whence, by 12ly 0 @0, or, by

e i : . . 19; G s.
From(8°) and (9°) by 124, ¥ b2 c, whence, by 19, o

whence, by 19, YO ec. o ) (8°)

¥ b J

Irdependence of the postulates of the second set.

L T

yobse : (16°y

_: B Eutfmm(7°)and (42),-by-3,-we have--- T T e : The iﬁdep;z-n(iéhgé of th.er nine postulates of the second set (either 6 or 7 being

s

omitted) is shown by the following svstems (&, ©), each of which satisfies all
th other postulates, but not the one for which it is numbered, .

4 . ) yo bs c, ‘ (110)
zmd from(10°) gnd (11°), by 17,y= /\» which contradiets the condition y F /.. . ' (1) A= a class of four elements, say 0,1,2,3, with ¢ defined by the

' " X - . ) -~ . - s T T} Y . . - . .
my being shat up “"’-‘h—“»ie»Yiefﬁ-mﬁ“m-wIﬂ-—Wf*'Giﬂgﬂ'0:“1“'omitted‘th‘exa‘i‘ﬁcﬁf,“i's'ﬁiér"e“'g;;;"d;'be_' e accompanying !‘f‘ relation table.” In a table of this kind,* a dot standing to

. Couse it was ‘ too tedions’ and ‘because it seemed to me very obviona Nevertheless, when Dr. : : ¥ metes )
SCHRUDER questioued its possibility, I found myself unable to reproduce it. and so concluded
that it was to be added to the list of Bhunders, due to the grippe, with ' which that paper abounds,
__ b conclusion that was strengthened. when SCHRIGDER-thonght he  demonstrated the indemor-
gtrability of the law of distribativeness, (I miust confess that I pever carefally examined his
‘proof, baving my table loaded with logical books for the perusal of which lifa was not long
enough.) It was not until many-years-alterwards that, looking over ny papers of 1530 for a
different purpose, I_stumbled npan this procbaesitten<owter tittor i Press. though it was
-eventually cat out, and, at first, I was inclined to think that it emploged the principle that alf
existence is individnoal, which my method, ip the paper in question, did not permit me to em-
ploy at that stage. I venture to opine that it fully vindicates y characterization of it as
‘tedious.” But thi@i&\how [ have a new apology to make to exact logicians.” »

Trans. Am..Math, Soc. 20

co'-t[o to*l

Ry

*SCHRUDER makes extensive use of tables of this kind in his dlgebra der Logik ; see vol. 3
(1895), p. 44. '
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the right of « and underneath 4. indicates tl?at; the relation a j :3'1: trluei; r:};i
absence of such a dot indicates that e £ & is false. Here tpo:t- );ek s not
satisfied, for 0 2 0 and 1 5 1 are not true. In postulates 4 and 3, 1')1 et /h;e— i

= 1. In postulate §,take 0 =1, 2 =3, :mld» conversely. Pos ulate ¢

is satibfied vacuously.

i 3 3 is satisfied vacuously, since
Herel postulate 2 is clearly false. Postulate 9 is satisfiec ‘

a 2 b isinever false. o oL e
= a class of six elements, 0,1, 2, ..., 5, with & defined as

‘ . -
o e M S e K X DLl e e Bttt 4 et A
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Here postulates 1-5 clear]y hold. Postulate 6 fails when/a‘: U, b =u

049
and also when  — Uy b = u

D . T Fatle we — j—
- Postulate 7 fails when ¢ — Uy b=, and

also when o = Uylogs b = Y., Postulates 8 and 9 hold.
(8) A= 1a class of three elements, 0. 1
panying table.

» 20 with v defined by the accom-

|

(¢
"

)
}
|

P oo M=
¢ o

Ur C,O_b—‘

i

dlat i ; ot 203. ritu-
Here postulate 3 is false, since 25 4 and 4 2 3, but not 2 og 3In:j?«_ !
lates 4 and 5, take /. =0,/ =1. In postulate 8,take 0=1,2=3, +=35,
and converse"]f. . o .
#) A= the class of all the finite sets of integers which include the mte%ext'
1; with o interpreted as * the same as or includes.” (Thus, « © & means tha
7 1 iin the set b is also in‘the set 7.)
every integeriin the set D . o
Postula:e 4 fails, since there is no set which includes all the other sets n

5,take \/'=1. TIn 6 and 7, let s be the set of integers common to the sets «
L - .

“Tand b, and pthe sets composed of « and b together. Postulates 8 and 9 are

* satisfied vacuously. _ o — o
(8) A= the class of. all the finite sets of integers which include the ll’)t(.]ct,;

5 et T é ans tha
05 with o interpreted as “the same as or part of.” (Thus, ¢ © b means that

Here postulates 4 and 5 bold,-and /. and ‘/Vare unigge: / = 0, =1
But postulate 8 is false for the case ¢ = 2.
(9 A =a class of five elements, 0, 1. 2

« 3. 4, with ¢ defined by the
accompanying table.

-

Here postulates-4 and 5 are satisfied: '/, =0, */=1: and also postulate 8,
although the element @ is not always udiquely determined by a: thus, 0 = 1,
2= 3,3=2 or 4,4=3, 1= 0. Postulates 9 fails, since 4 0 2 is falge,
while = = 0 is the only element u such that » oiand r 0 3.

I have not been able to find a system for (9) in which @ is alw
determined by «; qce the unsolved problem prol)osed below.

(10) K= a class comprising a single element «, with « @ a. (Postulate 9
1s satisfied vacuously.). '

ays uniquely

Thus the postulates of § 2, omitting either 6 or 7
be proved. - - U

» are independent, as was to

..

*mevery«i-uteger»in/-tlw~sct-.--(z~iralso-1'-n-fhe"setf;b:-); . T

Postulate & {uils, since there is no set of which evcry other set is l‘zlt a.ther

4,take \ =0. In6 and 7,let s be the set composed of sets « and b together,
and p the set of integers common to the sets 2 and 3. } o

(6 and 7). A = a class of fourteen elements, denoted‘, say, by w5 u, yu,,, e

Uyr U orgs > With @ defined as follows :

. oy
Upgs Ugras Uipga Ugays Wyg 5 Wypagy Wiy Wypggs Wimy's

3 } Heinuluded
] l—onlgwhon-thedigitsminathe-subsoriptmriare-al-invluded
iy J A 20 ) AP (3 2 Y5} 4 WG, S 304 IFeY ¥ &
B o

It is ifxteresting to notice also that, if we confine ourselves to the first seven

postulates, then -postulates 6 and T ave independent of * each other. This is

proved by the following systems, each of which satisfies all the postulates 1-7
except the one for which it is numbered,

(6) U= a class composed of the following areas: all the squares which lie

x&',iﬁlliILAa,gi\'ﬁn45quare~-( with-sides parallel to the sides of the given square); the

ioits i i " (Noti : u,,, are not included
among the digits in the subscript B." (Notiee that u,, and w,,,

in the class.)

given, square itself, and the “null” square ; a fixed circle, Iying wholly within
the given sqiare ;: and all areas formed by the'addition of two or more of these
areas;-— with © interpreted as * includes or coincides with,”
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Postulates 1-5 clearly hold. (In 4, A = the whole square: in 5, '/ = the
null-square). Postulate 6 fails when « = the circle and b = a square which
overlaps the circle; for there is no largest area (belonging to the class) which
lies within both « and 5. Postulate 7 holds, the arvea 2 being the combined
area of a and b. ' '

~ (7) A = the same class as used above in the proof of the mdependence of b

B R S (LN R L8 Pric X RIS TR AT R 23
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§3. TuHe Tmirp SET OF POSTULATES.

In § 3 we take as the fundamental concepts a class, &, with a rule of com-
bination, ¢-; and as the fundamental propositions the following nine postulates :

A a s a=awhenecer a and a & a belong to the class.

B.azb=>bg awhenevera,b.azb,and b= « belong {o the class

Cr(as b)—«(‘—a:«(bwc) whenever a, b, c,a < b, bmc (azd)ec,

" with @ interpréted as ‘“within or coincident with.”

Postulates 1-5 clearly hold. (In 1, /. = the null-square; in 5, \/ = the
whole squaré).  Postulate 6 holds, the area s being the combined area of « and
b. DPostulate 7 fails when « = the circle and » = a square which overlaps the
circle; for there is no lurgest area (belonging to the class) which lies within

both ¢ and 4. S . e

- problem connected with postulate 9.

Other forms which may be used in place of postulate 9 are the following
[assuming such of the postulates 1-8 as may be necessary, and defining « = b
and ¢ 0 b(= ab) as above]:

9,. Ifbc= /., thenboc. .

9,. If.be= /\, then a(b < ¢) © ab 5 uc [whence a(b & ¢)=ab & ac, by
-~ nd 21a].

9,.1 a® ab s ab [whence « = ab < ab, by 2 and 21a]. .

The form 9, can be deduced from 9, or 9, as follows: if bc= /., then
bE:bcebE:b(e%E):b'/:b;whence,ba(}. -

The form 9 can be deduced from 9, as follows: if € 2.8 is false, there must be
some element x % /\‘, such that = 2 « and » 2 b; for, if there were no element
except /, whichis 2@ and ©5. then by 12b. vb =/, w henee, by 9,, a2 ), which
contradicts the hy potheals

The form 9, is clearly simpler than 9, or even than 9, but all these forms

.are’in so far un:atlafa(,ton as they lack the. -symmetry which Lmrespouds to the
principle of duality between = and 2
I therefore propose the followmfr pmblem i postulate 9 is repluced by 9,
‘ 7zame1y . -

. If the elements /. and '/ in postulates 4 and 5 exist and are unique,
and 1f postulates b is true, then the elemcnt ain 8 is umqueh datexmmed
by theelutient iy ' T

ean 9 then be deduced from 9., or must some other postulate be added ?
In this connection, 19 is clearly of special importance.

* This is SCHRIDER’ g ** Prinzip 1[4 (Ioc cil., p. 293), from which he showed that the dis-
tribative law, 23, can be deduced. - B )

t This is SCHRGDER'S ** Prinzip 111%,"" a weaker form 01’ bis *‘ Prinzip' 1II.,” and not, as lar
as he could see witlout the knowledge of a proo! like that of PEIRCE's in the present /paper suf-
ficient for his purpose.

/

{ 3

og/fean s (u =) OClO)l(/ LO Ute c(ass

D. T/lerc 1s an element /, such i]za! a s /= a for ecery element a.
L. There is an clement / such that *} & a =/ for every element a.
F. If a and b belong to the cluss, then o = b belongs to the class.

G._ If the elements [, and \/ in postulutes D and+ E exist and are unique,’
then Jor every element u there is an element G such that

1% ifrea=aandrea=a,thne=/;
and 2% asa= .

. If postulates 4, D, E, and G hold, m'zd if a al + b then. there is

an element x 4/ such thatae x=aand ba 2=2».

J. There are at least two elements. « and y. such that = % y.

Consistency of the postulates of the third set.

The consistency of the postulates is shown by the existence of the following

- system (/U, <), in which all the postulates are satisfied :

K = the class of regions in the plane (including the null recion and the whole
5 1 g 8
plane); a & I = the *logical sum ™ of the regions a and b, that is, the smallest
region which includes them both.

___ Another such system is the dass _composed ¢ of two. elements, Oand I, with@.... .
defined b} ‘the table : o .

- For other such systems, see the appendix.”

Deductions from the postulates of the third set..

All the postulates of §2 are very easily deduced from the postulates of §3
when © is defined as follows:
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VDEFINITION. We shall writea 2 b (or b ©.a) when and only when a = b=2.
The proof of 6, for example, is as follows: By ', B, C'and 4,

(eeb)sa=az(azb)=(a2a)zb=azd,

and similarly: (e2b)2b=a2b; whence,a = boaand «= b o b. Further,
if yoaand yoh. then asy=yand bay=y, vhence (e2y)2(bzy)=y=y.
=~ — - N ) . .
or(aeb)zy=y,or yo(a2b) o
I()ostulate 7 follows as in 255, and we may define ¢ @ b thus:

DEEINITION. abh— b
AJEFENITION,
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Here D fails. since no set includes all the rest. In F,take /' =1.
lates G and 7 wre satisfied vacuously.
(£) The class of all the finite sets of integers which inclnd. the integer 0;
with ¢ = 7 defined as the set composed of the sets ¢ and 7 together.

Here £ fails, since no set includes all the rest. In D, take /, = 0. Postu-
lates G' and /7 are satisfied vacuously. ‘

Postu-

: . . ] n £
The equivalence between the algebra of § 3 and the aleebrasof $1 and §2 13
Py

&) Lheclass of fourteen elements used in proving the independence of 6

~ thus readily -establisheds e - "

Independence of the postulutes of the t/ufrcl set.

‘The independence of the nine postulates of the third set is shown by the fol-

lowing systems (A7, &), each of which satisties all the other postulates, but npt
R =Y ! o - o ~ .

“the one for which it is lettered." ' s
() The class of positive integers, and 0 anfl <! :\1th «zb=a+b. .
Here postulates B-F clearly hold. In & take @ = s when « % =, an

@ = any other element when ¢ = . Postulate A is satistied vacuously.
(B) A class of two or more elements, with « 5 5 = «. . : 1
Here B clearly fails. In D, £, and F, any elements will answer a§ /. ant
\/. Postulate G is satisfied vacuously, since /, and '/ are not uniquely deter-
mined. In A, r = any element.

”~

1 ( : ith = as in the accom-
(C) A class of six elements, 0,1,2,...,5, with = defined

panying table.

0
4 .

4
4
4
4

1

3' 3

3
————51 5

Here C fails, since (2 2 4)23=423=3,while22(423)=223=

In D and E, take /, = 0 and '/ =1. Postulate & holds:

sely also holds. : 5
and conversely. Postulate /1 also ho S ~ .
(D) “The class of all the finite sets of integers which include the itteger 1;
with ¢ © b defined as the sct of int@@;@@;—jﬁhe sets u-and b.
| B

e

—and-in§2widr=defined as Tollows: Uy Uy = ug, where the whueript S

includes all the digits in the subSeript 4 and also all those in the subseript B,
Here F fails when ¢ = Uy b= u,,. and also when ¢ =

-
(G) A class of three elements, 0, 1, 2, with < defined as i&, tke accompany.-
ing table.

71”2, ]/ = ”n

‘ -

Here G fails when ¢ = 2. In D and E, take /, = 0.and /=1, Postu.
late /7 is satisfied vacuously. . '

(1) A class of five elements, 0,1,2,3, 4 with & defined as in the accom-
panying table. '

0 2
0

&
0

3.3
4 4

o~

-

1.1 111"

" Here' A and B 'c]em-]y bold. Postulate € holds, when @ or b or ¢ is
0 or 1; when v =c¢: and in the other cases by trial. Postulate ¢ holds:
0=1,2=3 .3=2 or 4,4=3,1=0: but notice that @ is not uniquely
determined by a in the case ¢ = 3. Postiilate 77 fails in the case ¢ = 4 ,0=38.
b=2. (Compare proof of independence of postulate 9 in $2, and the unsolved
problem proposed at the end of fll:iiﬂé»éction.) o

(/) A class composed of a single element a, with ¢ ¢ ¢ = a.

1

ArPENDIX. :
Any system (K, «, ¢, ©) which obeys the laws of the algebra of logic may

be called a logical field (a term which I venture to suggest as analogous to

N

" - B P Ty
B, e—— JUR,
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« Galois field ”). In this appendix * we consﬁder all possible, finite logical fields,
that is, all possible finite classes, A7, in which the rules of combination, & and

[

: -" B | el

©, and the dvadic relation, &, can be so defined as to satisfy the postulates of
§1.§2,0r§
1. The number of elements in every _ﬁmtc logical field mu.st be 2™, where
=1,2,8, ...
- For, if ao b. and @ & b, we can always find an element x4 /.. namely
= ab, such that « 2 x = b and wx=/,. Hence.in any finite logical field
we can find a set of » elements different from /., say u,, #,, - -+, u . such that

o

s
ROE 7 SR EORS SRR

ul+u2+uJ+ et u, ="/
while /.
uay = [\ (isj).
These m elements may be called irreducible.
Every elemtent except /, is then the sum of % of these ‘irreducible elements
(1 =k =m), whence, by a familiar theorem in combinations, t the total num-
ber of -elements is 2™, S e

2. Any class the number of whose elements is a poucr uf 2, say 2™, can be
ma(le into a logical field by properly defining &, > 5 and ©; and this in essen-
tially only one way. '

The process of constructing the requisite * addition-,” multiplication-,” and
« relation-tables ™ is the following:

Select one element to strve as /.. Select m other elements to serve as the _
“irreducible ” elements of the system, and denote them by u,, w,, %y, oy 1 .- ‘ THIS PAGE LEFT BLANK INTENTIONALLY
Select €, other elements to serve as the elements which ave the sums of tio of ‘ :
the irreducible elements, and denote them by . u,, u,, etc., so that we shall
have u, =u, 9 u,, etc. Select | ) other elements to serve as the elements
which are. the sums of three of the irreducible elements, and denote them by
Upsgs Uyzyy Ung,» €EC.3 5O that we shall have u ., = u, & v, 2 u, ete. And so on.

1
Finally, v, . ="'/.

. m

¥
.
3
.

-

The construction of the tables is then obvious. Thus, 1, © u; when and only
when the digits in the subseript -1 are all contained among the digits in the sub-
seript B uy S ny=1, where the subscript S contains all the digits that occur
in d and also all that oecur in 87 2 = uy = n,, where the subscript [” con-
tains only those digits which are common to the subscripts A and L.

""“'A.‘.‘w [RPUR-TPSrY PERRI- VIR P ORI S

HARVARD UNIVER-ITY, .
Cumnrnoz, .\I,\ss.
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*Cf. P. PORETSKII, Thw e et r’r/vrh!u loyiques Q trots termes a, b el ¢ Bibliothéque du
congrés international de philosophie, Paris 1900, vol. 3 \1901), pp. 201-233; and
SCHRUDEER, loc. cit., vol. I, p. 833, “The notation and method of proof here used were- nu;.gested-~— R —
" to me by Professor E. H. MooRE.

+This theotem: 1 — O\ =~ O~ 00+ =+ J0n=2", is, oddly enough, not explicitly

mentioned in CHRYSTAL's Algebra; see vol. 2 (2d edition). chap. XNIII, §13.
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