SOME AMAZING MAZES.

[coNcLusiON.]

EXPLANATION OF CURIOSITY THE FIRST.

You remember that at the end of my description of the card
“trick” that made my first curiosity, I half promised to give, some
time, an explanation of its rationale. This half promise I proceed
to half redeem.

Suppose a prime number, P, of cards to be dealt into S (for
strues) piles, where S<P. (Were S=P, it would be impossible
to regather the cards, according to the rule given in the description
of the “trick.”) Then, in each pile, every card that lies directly
on another occupied, before the deal, the ordinal, or serial, place
in the packet whose number was S more than that of the other;
and using Q to denote the integral part of the quotient of the
division of P by S, so that P-QS is positive, while P—(Q+1)S
is negative (for P being prime, neither can be zero,) and assuming
that the piles lie in a horizontal row, and that each card is dealt
out upon the pile that is next on the right of the pile on which the last
preceding card was dealt, it follows that the left-hand piles, to the
number of P-QS of them, contain each Q+1 cards, while the
(Q+1)S-P piles to the right contain each only Q cards. It is plain,
then, that, in each pile, every card above the bottom one is the
one that before the dealing stood S places further from the back
of the packet than did the card upon which it is placed in dealing.
But in what ordinal place in the packet before the dealing did that
card stand which after the regathering of the piles comes next in
order after the card which just before the regathering of the piles
lay at the top of any pile whose ordinal place in the row of piles,
counting from the left, may be called the sth? In order to answer
this question, we have first to consider that the effect of Standing
Rule No. IV is that the pile that comes next after any given pile
in the order of the regathered packet, counting, as we always do,
from back to face, is the pile which was taken up next before that
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given pile; and of course it is the bottom card of that pile to which
our question refers. Now the rule of regathering is that, after
taking up any pile we next take up, either the pile that lies P-QS
places to the right of it, or else that which lies (Q+1)S-P places
to the left of it. In other words, the pile that is taken up next before
any pile, numbered s from the left of the row, is either the pile
numbered s+QS-P (and so lies toward the left of pile s) or else is
the pile numbered s+(Q+1)S-P (and so lies toward the 7ight of pile
s). But if pile number s were one of those which contain Q+1
cards each, since these are the first P-QS piles, we should have
$s<sP-QS, and the pile taken next before it, if it were to the left of
it, would be numbered less than or equal to zero; and there is no
such pile. Consequently in that case, that pile taken up next before
pile s will be to the right of the pile numbered s, and its number
will be s+(Q+1)S-P, which will also have been the number of its
bottom card in the packet before the dealing; while, since the
bottom card of pile number s was card number s before the dealing,
and since this pile contains QQ other cards, each originally having
occupied a place S further on than the one next below it in the pile,
it follows that its top'card was, before the dealing, the card whose
ordinal number was s+QS. Thus, while every other card of any
of the first P-QS piles is followed after the regathering by a card
whose original place was numbered S more than its own, the top
card of such a pile will then be followed by a card whose original
place was S more than its own, counting round a cycle of P cards.
In a similar way, if pile number s contains only Q cards, it is one
of the last (Q+1)S-P piles. Then it cannot be that the pile taken
up, according to the rule, next before it lay to the right of it; for
in that case the number of this previously taken pile would exceed
S. It must therefore be pile number s+QS-P; and this will be the
original number of its bottom card, while the original number of
the top card of pile number s (since this contains only Q cards,)
will be s+(Q-1)S. Hence, as before, the top card will be followed
after the regathering by a card whose original place would be S
greater than its own, but for the subtraction of P in counting round
a cycle of P numbers. This rule then holds for all the cards.

It follows that if, after the regathering, the last card, that at
the face of the pack or in the P place is the one whose original
place may be called the IIth, then any other card, as that whose
place after the gathering is the Ith, was originally in the II+H!S—mP,
where mP is the largest multiple of P that is less than I+/S. If
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however, after the regathering, the pack be cut so as to bring the
card which was originally the Pth, or last, that is, which was at the
face of the pack, back to that same situation, then, since the original
places increase by S (round and round a cycle of P places) every
time the regathered places increase by 1, it follows that the original
place of the card that is first subsequently to that cutting will have
been S, that of the second, 2S, etc.; and in general, that of the I/th
will have been IS—mP. If the cards had originally been arranged
in the order of their face values, the face value of the card in the
Ith place after the cut will be IS-mP, which we may briefly express
by saying that the dealing into S piles with the subsequent cutting
that brings the face card back to its place, “cyclically multiplies
the face-value of each card by S,” the cycle being P. If after dealing
into S piles, another dealing is made into T piles, and another into
U piles, etc., after which a cut brings the face card back to its place,
the face value of every card will be cyclically multiplied by SxTxUx
etc. Moreover, if cuttings were made before each of the dealings,
since each cutting only cyclically adds the same number to the place
of every card, the cards will still follow after one another according
to the same rule; so that the final cutting that restores the face
card to its place, annuls the effect of all those previous cuttings.
My hints as to the rationale of the exceptional treatment of the

last card in twelve initial deals, and as to the extraordinary relation
which results between the orders of succession of the black and of
the red cards must be prefaced by some observations on the effects
of reiterated dealings into a constant number of piles. What I
shall say will apply to a pack of any prime number of cards greater
than two; but to convey more definite ideas I shall refer particu-
larly to a suit of 13 cards, each at the outset having its ordinal num-
ber in the packet equal to its face-value. The effect of one cyclic
multiplication of the face-values by 2, brought about by dealing the
suit into 2 piles, regathering, and cutting, if need be, so as to restore
the king to the face of the packet, will be to shift all the cards except
the king in one circuit. That is, the order before and after the
cyclic multiplication being as here shown.
Before the cyclic doubling of

the face values ......... 1,2 3, 4,5 6, 7,8, 9X, QK
After the same ............ 2, 4,6, 8X%,0, 1, 3,5 7,9 JK,
the 2 takes the place of the 1, the 4 that of the 2, the 8 that of the 4,
the 3 that of the 8, the 6 that of the 3, the Q that of the 6, the J
that of the Q, the 9 that of the J, the 5 that of the 9, the X that of the
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5, the 7 that of the X, and the 1 that of the 7 ; so that the values
are shifted as shown by the arrows on the circumference of the
circle of Fig. 6. If 7, instead of 2, be the number of piles into which
the thirteen cards are dealt there will be a similar shift round the
same circuit, but in the direction opposite to the pointings of the
arrows; and if the cards are dealt into 6 or into 11 piles, there
will be a shift in a similar single circuit along the sides of the in-
scribed stellated polygon. But if the 13 cards are dealt into a
number of piles other.than 2, 6,7, or 11, the single circuit will break
into 2, 3, 4, or 6 separate circuits of shifting. Thus, if the dealing
be into 4 or into 10 piles, there will be two such circuits, each along
the sides of a hexagon whose vertices are at alternate points along

the circumference of the circle in the same figure (or, what comes
to the same thing, at alternate vertices, along the periphery of the
stellated polygon). Dealing into 4 piles makes one round from
1 to 4, from 4 to 3, from 3 to Q, from Q, to 9, from 9 to X, and
from X back to 1 ; while another round is from 2 to 8, from 8 to 6,
from 6 to J, from J to 5, from 5 to 7, and from 7 back to 2.
Dealing into 5 or into 8 piles will make three circuits each from one
vertex to the next one of 3 squares inscribed in the circle. Dealing
into 3 or into 9 piles will give 4 circuits round three inscribed
equilateral triangles. Finally, dealing into 12 piles, with regather-
ing, etc. according to rule, simply reverses the order so-that the
ace and queen, the 2 and knave, the 3 and ten, etc, change places.
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It has already been made evident that if any prime number, P,
of cards, each inscribed with a number, so that, when operations
begin this number shall be equal to the ordinal place of the card in
the pack, be dealt into any lesser number, S, of piles, and these be
re-gathered, etc. according to rule, the effect is cyclically to multiply
by S the number inscribed on any card which is identified solely
by its resulting ordinal place, that is, to multiply in counting the
numbers round and round a cycle of P numbers,—or, to state it
otherwise, the ordinary product has the highest lesser multiple of
P subtracted from it, though this seems to me to be a needlessly
complicated form of conceiving the cyclical product. In counting
round and round, the number of numbers in the cycle, the so-called
“modulus of the cycle,” is the same as zero; so that the product
of its multiplication by S is zero; or, regarding the matter in the
other way, SP diminished by the largest lesser multiple of P gives
P. Consequently, the face card will not change its face-value. Let
the dealing etc. be reiterated until it has been performed & times.
The effect will be to multiply the face-values (of cards identified
only by their final ordinal places) by S8. Since this is the same mul-
tiplier for all the cards, it follows that when § attains such a value
that the card in any one place, with the exception of the face card
of the pack, which alone retains an unchanging value, recovers its
original value, every one of the P-1 cards of (apparently) changing
values equally recovers its original value; and if the values do not
shift round a single circuit of P-1 cards, all the circuits must be
equal; for otherwise the single number S8 would not fix the values
of all the cards. And since zero, or P, is the only number that re-
mains unchanged by a multiplication where the multiplier is not
unity (and S is always cyclically greater, that is, more advanced
clockwise, than 1 and less than P,) it follows that the moduli of the
shifts must all be the same divisor of P-1, and consequently P-1
deals, whatever be the constant number of piles, must restore the
original order. The pure arithmetical statement of this result is
that SP—, whenever P is a prime number and S not a multiple of
it, must exceed by one some multiple of P. This proposition goes
by the name of its discoverer, perhaps the most penetrating mind
in the history of mathematics; being known as “Fermat’s theorem” ;
although from our present point of view, it may seem too obvious
to be entitled to rank as a “theorem.” The books give half a dozen
demonstrations of it. It lies at the root of cyclic arithmetic.

Fermat said he possessed a demonstration of his theorem: and
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there is every reason for believing him; but he did not publish any
proof. About 1750, the mathematician Konig asserted that he held
an autograph manuscript of Leibniz containing a proof of the
proposition ; but it has never been published, so far as I know.
Euler, at any rate, first published a proof of it; and Lambert gave
a similar one in 1769. Subsequently Euler gave a proof less en-
cumbered with irrelevant considerations; and this second proof is
substantially the same as that in Gauss’s celebrated “Disquisitiones
Arithmeticae” of 1801, §49. Several other simple proofs have since
been given; but none, I think, better than that derived from the
consideration of repeated deals.

But what concerns the curious phenomenon of my little “trick”
is not so much Fermat’s theorem as it is the more comprehensive
fact that, whatever odd prime number, P, the number of cards in
the pack may be, there is some number, S, such that in repeated deals
into that number of piles, all the numbers less than P shift round
a single circuit. I hope and trust, Reader, that you will not take
my word for this. If fifty years spent chiefly with books makes
my counsel about reading of any value, I would submit for your
approbation the following maxims:

I. There are more books that are really worth reading than
you will ever be able to read. Confine yourself, therefore, to books
worth reading and re-reading; and as far as you can, own the
good books that are valuable to you.

II. Always read every book critically. A book may have three
kinds of value. First, it may enrich your ideas with the mere possi-
bilities, the mere ideas, that it suggests. Secondly, it may inform
you of facts. Thirdly, it may submit, for your approbation, lines
of thought and evidences of the reasonable connection of possibili-
ties and facts. Consider carefully the attractiveness of the ideas,
the credibility of the assertions, and the strengths of the arguments,
and set down your well-matured objections in the margins of your
own books.

III. Moreover, procure, in lots of twenty thousand or more,
slips of stiff paper of the size of postcards, made up into pads of
fifty or so. Have a pad always about you, and note upon one of
them anything worthy of note, the subject being stated at the top
and reference being made below to available books or to your own
note books. If your mind is active, a day will seldom pass when you
do not find a dozen items worth such recording; and at the end
of twenty years, the slips having been classified and arranged and
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rearranged, from time to time, you will find yourself in possession
of an encyclopadia adapted to your own special wants. It is espe-
cially the small points that are thus to be noted; for the large ideas
you will carry in your head.

If you are the sort of person to whom anything like this recom-
mends itself, you will want to know what evidence there is of the
truth of what I assert, that there is some number of piles into which
any prime number of cards must be dealt out one less than that
prime number of times before they return to their original order.

If these maxims meet your approval, and you read this screed
at all, you will certainly desire to see my proposition proved. At
any rate, I shall assume that such is your desire. Very well; proofs
can be found in all the books on the subject from the date of Gauss’s
immortal work down. But all those proofs appear to me to be need-
lessly involved, and I shall endeavor to proceed in a more straight-
forward way, which “mehr rechnend zu Werke geht.” Indeed, I
think I shall render the matter more comprehensible by first exam-
ining a few special cases. But at the outset let us state distinctly
what it is that is to be proved. It is that if P is any prime number
greater than 2, then there must be some number of piles, S, into
which a pack of P cards must be dealt (and regathered and cut,
according to the rule) P-1 times in order to bring them all round to
their original places again. The reason I limit the proposition to
primes will presently appear: the reason I limit the primes to those
that are greater than 2 is that two cards cannot, in accordance with
the rule be dealt, etc., into more than one pile (if you call that deal-
ing) ; and of course this does not alter the arrangement; and since
there is no number of piles less than one, the theorem, in this case,
reduces itself to an identical proposition ; while if 1 be considered
to be a prime number, the proposition is falsified since there is no
number of piles into which one card can be dealt and regathered
according to the rule, which requires S to be less than P.

Let our first example be that of P=17, Then P-1=16; and
unless there be a single circuit of 16 face-values, which my whole
present object is to show that there must be, all the circuits must
either be one or more sets of 8 circuits of 2 values each, or sets of
4 circuits of 4 values each, or sets of 2 circuits of 8 values each;
unless, indeed, we count in, as we ought to do, the case of 16 circuits
of 1 value each. This last means that each of the 16 cards retains its
face-value after a single deal. It is obtrusively obvious that this
can only be when S=1. But since in these hints toward a demonstra-
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tion of the proposition the particular values of S do not concern
us, and had better be dismissed from our minds, we will denote this
value of S by S*¥i, meaning that it is a value that gives 16 circuits.
We will now ask what is the number of piles into which 2 dealings
will restore the face-value of every card; or, in other words, will
give 8 circuits of 2 values each. Letting x denote that unknown
quantity, the number of piles, or the cyclic multiplier, the equation
to determine it is #*=1. To many readers two values satisfying this
equation will be apparent. But I do not care what they are, further

~ than that the value #=1 obviously satisfies the equation #2<1. I do

care, however, to show that there can be but two solutions of the equa-
tion w2=1. For suppose that x3=1 and x3=1. Then x}-x3=(#,+%,)
* (#,-#,)=0 or equals mP. Now if a multiple of a prime number
be separated into two or more factors, one of these, at least, must
itself be a multiple of that prime,. just as in the algebra of real and
of imaginary quantities and in quaternions, if the product of several
quantities be zero, one or other of those factors must be zero; and
just as in logic, if an assertion consisting of a number of asserted
items be false, one or more of these items must be false. In addi-
tion, every summand has its own independent effect; but every
unit of a product is compounded of units of all the several factors.
This is the formal, or purely intellectual, principle at the root of
all the reasons for making the number of cards dealt, especially
in reiterated dealings, to be a prime. It follows, then, that there
are but two numbers of piles dealings into each of which will re-
store the original arrangement after 2 deals; and one of these is
#=1; for evidently (bear this in mind,) if #2=1, then also #(sb)=(xo)b
=1. There is then but one number of piles dealings into which shift
the values of the cards in eight, and only eight, circuits; and this
number we will denote by S¥ii, Then, reserving # to denote any
root of the’equation #2=1, and taking ¢ to denote that one of the
two roots that is not 1, we will take y to denote any number of
piles, after dealing into which 4 times, the resulting arrangement
of the values will be the original arrangement. That is to say, y
will be any root of the cyclic equation y4=1. But x4=(x?)2=12=1;
so that any value of # is a value of y. Let n denote any value of y
that is not a value of #; and let us suppose that there are two values
of 5, which we may denote by Sivand S¥i. It will be easy to show
that there is no third value of y. For (9?)2=1, where »* fulfills the
definition of « and is thus either 1 or §&. But the roots of the equation
7°=1 fulfill the definition of #, whose values are excluded from the
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definition of ». Hence we can only have 5?=¢; and that this has but
two roots is proved by the same argument as was used above.
Namely, 5, and 5, being any two of these, (72—=2)=(7+7:)" (n:=12)
=0, so that unless 7, and », are equal, and »,—,=0,, then »,+7,=0 or
7, and », are negatives of each other. Now no more than 2 quanti-
ties can be each the negative of each of the others. We now pass
to the consideration of those numbers of piles into which eight
successive dealings result in the original arrangement. Denoting
by = any such number, it is defined by the equation z8=1. But every
value of ¥ (of which we have seen that there cannot be more than
4,) satisfies this equation, since y8=(y4)2=12=1. Let ¢ denote any
value of 2 which is not a value of y. We may suppose that there are
two of these for each of the two values of », which we will designate
as Sii, Svi, Sx, Sxiv. T need not assert that there are so many; but
my argument requires me to prove that there are no more. The
equation (22)4=z8=1 shows that 22 fulfills the definition of y and
can therefore have no more than the four values 1, £ and the two
values of 4. Now if 22=1, z can, as we have seen in the case of x,
have no other values than z=1 and z=¢, both of which are values
of y.

If 2*=¢, as we have seen in regard to y, £ can have no other values
than the two values of », which are again values of y. Now let us sup-
pose that z has four values, St Svi, Sx and Sxiv, that are not values
of y; and let us define { as any value of z that is not a y. The proof
that there can be no more than four {s is so exactly like the fore-
going as to be hardly worth giving. I will relegate it to a paragraph
of its own that shall be both eusceptic and euskiptatic ;—“what hor-
rors!” I hear from the mouths of those moderns who abominate all
manufactures of Hellenic raw materials, like “skip” and “skimp.”

We have seen that either z2=1, or z2=¢, or 22=y; and also that,
in the first case, either 2=1 or z=£, both of which are values of Y;
and that, in the second case, 2 has one or other of the two values
of n. Accordingly, it only remains that ¢?=;. There are but two
values of # and if ¢, and {, are two different values of ¢ whose
squares are the same value of 7, {§— 5= (¢4 ¢2) (&1 —¢&2) =0.
Hence, since ¢,-¢, is not zero, it follows that every value of ¢
differs from every other value derived from the same » only by
being the negative of it. Now no number has two different nega-
tives; and therefore there can be no more than two ¢s to every n;
and there being no more than two s, there can be no more than
four ¢s.
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Now this is the summary of the whole argument: the 17 cards
of the pack being consecutively inscribed with numbers from the
back to the face of the pack, each number of piles into which they
are dealt etc. according to the rule acts as a cyclic multiplier of the
face-value of every card. Every such multiplier leaves 0(=17)
unchanged, and shifts the other 16 face-values in a number of cir-
cuits having the same number of values in each. The possible con-
sequences, excluding the case of a single circuit of 16 values, are
the following:

16 circuits of 1 value each can result from but 1 multiplier at the
utmost.

8 circuits of 2 values each can result but from 1 other multiplier

4 circuits of 4 values each can result but from 2 other multipliers

2 circuits of 8 values each can result but from 4 other multipliers

In all the number of multipliers that give
more than 1 circuit (of all 16 values) is..... 8 at most
But thereareinall ............c. . ..., 16 multipliers

Hence, the number of multipliers that shift
the values in 1 circuit of 16 valuesis......... 8, at least.
In point of fact, it is precisely 8.
Let us now consider a pack of 31 cards. Here, the zero card
not changing its value, there are 30 values which are shifted in one
of these ways:

In 30 circuits of 1 value each;

In 15 circuits of 2 values each;
In 10 circuits of 3 values each;
In 6 circuits of 5 values each;
In 5 circuits of 6 values each;
In 3 circuits of 10 values each;
In 2 circuits of 15 values each;
In 1 circuit of 30 values.

I propose to show as before that if we exclude the last case, the
others do not account for the effects of so many as 30 different mul-
tipliers. In the first place, as in the last example, but one multiplier
will give circuits of one value each; and but one other multiple will
give circuits of only two values each. We may, call the former
Sxxx and the latter S*v. .

The problems of 10 circuits of 3 values each and of 6 circuits
of 5 values each can be treated by exactly the same method, 3 and



426 THE MONIST.

5 being prime numbers. I shall exhibit in full the solution of the
more complicated of the two, leaving the other to the reader.

I propose, then, to show that there are at most but 5 different
values which satisfy an equation of the form ss=1. The general
idea of my proof will be to assume that there are 5 different valies
(for it is indifferent to my purpose whether there be so many or
not,) and then to show that there is such an equation between these
five, that given any four, there is but one value that the fifth can
have; that being as much as to say that there are not more than
five such values in all. This assumes that every one of the five
values differs from every one of the other four; making ten prem-
isses of this kind that have to be introduced. Now to introduce a
premiss into a reasoning, is to make some inference which would
not necessarily follow if that premiss were not true. Assuming,
then, that s5=1, #5=1, us=l, v5=1, ws=1, are the five assumed equa-
tions, I note that the division by one divisor of both sides of an
equation necessarily yields equal quotients only if the divisor is
known not to be zero. Hence if I divide my equations by s—¢, by s—u,
by s-v, by s-w, by t-u, by t-v, by t~w, by u-v, u-w, and by v-w,
I shall certainly introduce the ten premisses that all the five values
are different; and with a little ingenuity,—a wvery little, as it turns
out,—I ought to reach my legitimate conclusion.

I will begin then by subtracting #5=1 from s5=1, giving s5-#5=0;
and dividing this by s—z, and using ‘|- as the logical sign of disjunc-
tion, that is, to mean “or else,” I get

(1) s4s3t+s2to+st3+44=0 -|-s=t.

By analogy, I can equally write
SHS3uU+S2ucHsud+ud=0 -|- s=u.
Subtracting the latter of these from the former, I get,
$3(t-14)+82 (t2=142 ) +5 (£3-u3 ) +t4-u4=0 -|- s=t -|- s=us.
And dividing this by #-u, I obtain
(2)  s3+82(t+u)+5 (F+tutu® ) +3+ 120+ tu+u3=0 -|-s=t -|-s=u |- t=u.
By .analogy, I can equally write
$3+82 (4+0) +s (2 +tv+0? ) +3+120+102403=0 -|s=t -|-s=v | t=v.
Subtracting the last equation from the last but one, I get
(s2+st+82) (u—v)+(s+t) (0*—v2)+ud—v3=0 -|'s=t -|-s=u -|-s=v
|t=u | t=0.
and dividing by u-v, I have

() srrstta+(s+) (urv) +ur+uv+v?=0 -|-s=t -|-s=u -|-s=v -|t=u

|'t=v | u=v.

e N

e




SOME AMAZING MAZES. 427

By analogy, I can equally write

SHst+4(s+1) (utw) +urtuww=0 -|-s=t -|-s=u -|-s=w -|-t=u
Subtracting the last from the last but one, and dividing by v-w,
I get

(4)  sttrutvrw=0 -|'s=t -|-s=u |s=v -|s=w o|t=u Jt=v | t=w

This shows at once that there cannot be more than 5 different
numbers, which, counting round any prime cycle, all have their 5th
powers equal to 1. By a similar process, as you can almost see with-
out slate and pencil, from #3=1, y3=1, z3=1 one can deduce r+y+2=0
|'#=y -|#=z |'y=2. The existence of these 5 and these 3 numbers
must, for the present, be regarded as problematic, except that we
cannot shut our eyes to the fact that 1 is one of the members of
each set; as indeed 19=1, whatever the exponent may be.

I have numbered some of the equations obtained in the proof
that there are no more than 5 fifth roots of unity. You will observe
that (1) equates to zero the sum of all possible terms of the fourth
degree formed by two roots; that (2) equates to zero the sum of
all possible terms of the third degree formed by three roots; that
(3) equdtes to zero the sum of all possible terms of the second
degree formed from four roots; and that (4) equates to zero the
sum of all possible terms of the first degree formed by all five roots.
Now it is plain that if we assume that there are # unequal nth roots
of unity, then by subtracting #3=1 from »=1, and dividing by x,~x,,
we shall equate to zero the sum of all possible terms of the (n-1)th
degree in x, and #,. And if we have proved, in regard to any m
of the roots, that (all being unequal,) the sum of all possible terms
of the (n-m+1)th degree in these roots is equal to zero; then by
taking two such equations of the (n—m+1)th degree in m-1 roots
common to the two, with one root in each equation not entering into
the other; by subtracting one of these equations from the other,
and then dividing by the difference between the two roots which
enter each into but one of these equations, we shall get an equation

n-1

of the (n—m)th degree in m+1 roots. For wh—yr=(x-y) 3 piyn—i—1
0

Accordingly, by repetitions of this process, we shall ultimately find
that the sum of the # roots, if there be so many, is 0. This proves
that there can be no more than » unequal nth roots of unity in
cyclic arithmetic any more than in unlimited real or imaginary
arithmetic. '
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But if the root of unity be of an order not prime but com-
posite, so that it is the root of an equation of the form ##9=1, it is
evident that it is satisfied by every root of y#=1 and by every root
of y%=1; since every power of 1 is 1. Accordingly, exclusive of
roots of a lower order, the number of roots of unity of order =,
that is, the number of roots of x”=1, additional to those that are
roots of unity of lower order cannot be greater than the number of
numbers not greater than # and prime to it. A number is said to
be prime to a number when they have no other common divisor
than 1. I shall write the expression of two or more numbers sepa-
rated by heavy vertical lines to denote the greatest common divisor
of those numbers. Thus, I shall write 12118=6. This vertical line
may be considered as a reminiscence of the line that separates num-
bers in the usual algorithm of the greatest common divisor. A
prime number is a number prime to every other number. Con-
sequently, 1 is a prime number. It is the only prime number that is
prime to itself; for plp=p. The number of numbers not exceeding
a number, #, but prime to it is now called the fotient of n. In the
books of the first four fifths of the hineteenth century, the totient
of n was denoted by ¢(n); but since the invention of the word
totient, about 1880, Tx has become the preferable notation. Tl=1;
but if p be a prime not prime to itself Tp=p-1. It is quite obvious
that the totient of any number, », whose prime factors not prime to
themselves are p’, p”, p”, etc. is obtained by subtracting from # the
#'th part of it, and then successively from each remainder the p"th,
etc. part of it, but not using any prime factor twice. Thus T4=2
(for 411=1 and 4I3=1; but 412=2 and 414=4) ; T6=2 (for 6-}-6=3
and 3-43=2); T8=4 (for 8-}-8=4), T9=6, T10=4, etc. If mln=1,
then Tmn=(Tm) (Tn). On the other hand, if p is a prime and m
any exponent, Tpr=(p-1)p»—*. A “perfect number” is defined as
one which is equal to the sum of its “aliquot parts,” that is, of all
its divisors except itself; but, in a more philosophical sense, every
number is a perfect number. That is to say, it is equal to the sum
of the totients of all its divisors;—a proposition which is perfectly
obvious if regarded from the proper point of view. However, since
this proposition has some relevancy to the proposition I am en-
deavoring to prove; namely, that there is some number of piles,
dealing into which shifts all the face-values of the cards along a
single cycle, I will repeat a pretty demonstration of the former
proposition that I find in the books. Having selected any number,
m, rule a sheet of paper into columns, a column for each divisor
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of m; and write these divisors, in increasing order from left to right
each at the top of its column as its principal heading. Just beneath
this, write in parentheses, as a subsidiary heading to the column, the
complementary divisor, i. e., the divisor whose product into the
principal heading is the number m ; and draw a line under this sub-
sidiary heading. Now, to fill up the columns, run over all the
numbers in regular succession, from 1 up to m inclusive, writing
each in one column, and in one only’; namely in that column which
is furthest to the right of all the columns of whose principal head-
ings the number to be written is a multiple. Here, for example, is
the table for m=20:

1| 2| 4|5 | 10|20
(20) | (10) | () 4) (2) (1)

142

3 4 | 5

6

7 { 8

9 10
11 12
13 | 14 15

16

17 | 18
19 20

By this means it is obvious that each column will receive all
those multiples of the principal heading whose quotients by that
heading are prime to the subsidiary heading, and will receive no
other numbers. Thus, every column will contain just one number
for each number prime to the subsidiary heading but not greater
than it; [since no number is entered which exceeds the product of
the two headings.] In other words, the number of numbers in each
column equals the totient of the subsidiary heading; and since the
subsidiary headings are all the divisors, and the total number of
numbers entered is m, the sum of the totients of all the divisors
of m is m, whatever number m may be. It will be convenient to
have a name for this principle; and since, as I remarked, it renders
every number a perfect number in a perfected sense of that term,
or say a perfecti perfect number, I will refer to it as the rule of
perfection.

According to this, although #¢=1 may have 6 roots, yet since
x2, 23, and x6 are also roots, by the rule of perfection there can be
but T6=T2-T3=1:2=2 numbers of piles into which dealing must
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be made 6 times successively in order to restore the original arrange-
ment; and similarly for the other divisors. So then the number of
ways of dealing (i. e., number of piles into which the cards can be
dealt, etc.) which will restore 31 cards to their original order in
less than 30 deals cannot exceed T1+T2+T3+T5+T6+T10+T15. There
are, however, in all 30 ways of dealing; and by the rule of perfec-
tion 30=T1+T2+T3+T5+T6+T10+T15+T30. Hence, there must be
T30=T2- T3 T5=1-2-4=8 ways of dealing which shift the 30 values
in a single circuit. And so with any other prime number than 31.
This argument is so near a perfect demonstration that there always
must be such ways of dealing that I may leave its perfectionment
to the reader.

I do not know of any general rule for ascertaining what the
particular numbers of piles are into which the prime number p of cards
must be dealt p—1 times in order to bring round the original arrange-
ment again. It seems that there is a Canon Arithmeticus got out by
Jacobi, which gives the numbers for the first 170 primes or so. It
was published in the year of my birth: so that it was clearly the
purpose of the Eternal that I should have the advantage of it. But
that purpose must have been frustrated ; for I never saw the book.
The Tables Arithmétiques of Hoiiel (Gauthiers-Villars: 1866. 8o,
pp. 44) gives those numbers for all primes less than 200. From
these tables it appears that for about five-eighths of the primes one
such number is either 2 or p-2. Now as soon as one has been
found, it is easy to find the rest which are all the powers of that
one whose exponents are prime to p-1. In case p-1 has few prime
factors, the numbers any one of which we seek must be nearly a
third, perhaps nearly or quite half of all the p—1 numbers ; so that
ere many trials have been made, one is likely to light upon one of
them. Thus if p=17, try 2. Now 24=16=-1; so this will not do.
Nor will -2, Try 3. We have 32=0=-8; 33=27=-7, 34=81=-4, 38
=(34)?=(—4)2=16=-1. Evidently 3 is one of the numbers and the
others are 33=-7, 35=-12=5, 37=(33) (34)=(~7)(—4)=28=-6, and the
negatives of these. If the prime factors are many, a different proce-
dure may be preferable. Take the case of p=31. Here p-1=2-3-5,
Turning to that table of the first nine powers of the first hundred
numbers which is given in so many editions of Vega, I find in the
column of cubes, 53=125=4(31)+1, and 63=216=7 - 31-1; and in the
column of 5th powers, I find 35=243=8( 31)-5. Consequently, (35)3
=3s=-1. This renders it likely that 3 may be such a number as I
seek. 32=9, 33=—4, 34=—12, 35=_5, 36=16=-15, 31o=—6, 312=48 315
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=(35)3=—125=1. It is evident that 3 is one of the numbers. The
other seven are 37=3s- 32=—45=-14, 311=3:310=—18=13, 313=3-312=
24=-7, 317=315.32=9; 319=31s. 34=+12, 323=319.34=—144=111, 329=
317+ 36=(~9)+(-15)-135=+11.

Since, then, whatever prime number not prime to itself p may be,
there are always T (p-1) numbers of which the lowest power equal
to 1 (counting round the p cycle,) is the (p-1)th and these powers
run through all the values of the cycle excepting only p=0, it follows
that these numbers may appropriately be called basal (or primitive)
roots of the cycle; and that their exponents are true cyclic logarithms
of all the numbers of the cycle except zero. But since, if b be such
a basal root, its (p-1)th power, like that of any other number, equals
1 (counting round the p-cycle), it follows that these exponents run
round a cycle smaller by one ‘unit than that of their powers; or in
other words, the modulus of the cycle of logarithms is p-1, while
the modulus of the cycle of natural numbers is p.*

The cyclic logarithms form an entirely distinct number-system
from that of the corresponding natural numbers. For the modulus

* This being the first occasion I have had in this essay to employ the word
“modulus,” I will take occasion to say that its general meaning is now well
established. It means that signless quantity which measures the magnitude
of a quantity and is a factor of it So that if M and M’ are the moduli of two
quantities, Mu and M's’, their product is MM’ . #'y where MM is an ordinary
product, but #x’ may be a peculiar function, Thus, the absolute value of —2,
or 2, is its “modulus,” as 3 is of —3; and (—2)+(—3)=+6 where 2)X3=6 by
ordinary multiplication, but (—1) X(—1)=-+1I by an extension of ordinary
multiplication. So the “modulus” of A~+-Bi, where /=—1, is VA FB% The
tensor of a quaternion and the determinant of a square matrix are other
examples of moduli. The cardinal number of numbers in a cycle has no sign
and may properly be called the modulus of the cycle. But I sometimes refer
to it as “the cycle,” for short. The present usage of mathematicians is to
use, what seems to_me a too involved way of conceiving of cyclic arithmetic
which carries with it an irregular use of the word “modulus.” Legendre and
the earlier writers on cyclic arithmetic conceived of its numbers as signifying
the lengths of different steps along a cycle of objects, and thus spoke of 18
as being equal to 1 on a cycle of 17, just as we say that the 1st, 15th, 22d, and
20th days of August fall on the same day of the week, and just as we say
that 270° of longitude west of any meridian and 9o° east of it are the very
same longitude. Gauss, however, introduced a different locution, involving
quite another form of thought. Instead of saying that 18 is, or equals, 1 in
counting round a cycle of modulus 17, he prefers to say that 18 and 1 belong
to the same class of numbers congruent to one another for the modulus 17.
Here the idea of a cycle appears to be rejected in favor of the idea that
(18—1)/17 is a whole number.

Now I fully admit that the conception of an indefinitely advancing series
is involved in that of a cycle, and further that non-cyclical numbers have to
be used to some extent in cyclic arithmetic. But at the same time it seems
to me that the theoric idea of a cycle ought to take the lead in this branch of
mathematics. In particular, I cannot see why the term cyclic logarithms is not
ggrfec,:’tly correct and far more expressive than Gauss’s colorless name of “in-

ices. :
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of their cycle is composite instead of prime, a circumstance which
essentially modifies some of the principles of arithmetic. For ex-
ample, every natural number of a cycle of prime modulus gives an
unequivocal quotient when divided by another. But some numbers
in a cycle of composite modulus give two or more quotients when
divided by certain others, while others are not divisible without
remainders. The whole doctrine shall be set forth here. I will
preface it with a statement of the essential differences between the
system of all positive finite integers, the system of all real finite
-integers, and any cyclical system. I omit the Cantorian system,
partly because the full explanation of it would be needed and would
be long, and partly because there is a doubt whether it really pos-
sesses an important character which Cantor attributes to it.

It is singular that though the systems to be defined possess,
besides several independent common characters, others in respect
to which they differ, yet all the properties of each system are neces-
sary consequences of a single principle of immediate sequence. In
stating this, I shall abbreviate a irequently recurring phrase of nine
syllables by writing, ‘m is A of (or to) »,’ or even ‘m is An,’ to
mean that the member, m, of the system is in a certain relation of
immediate antecedence to the member n. I shall express the same
thing by writing ‘n is A’d by m.” But when I call A an abbreviation,
I do not mean to imply that the words “immediately antecedent” ex-
press its meaning in a satisfactory way. On the contrary, in part,
they suggest something repugnant to its meaning, which must be
gathered exclusively from the following definitions of the three
kinds of systems:

A cyclical system of objects is such a collection of objects that,
the expression ‘m is A to »’ signifying some recognizable relation
of m to n, every member of the system is A to some member or
other, and whatever predicate, P, may be, if P is true of no member
of the system without being true of some member of it that is A’d
by that member, then P is true either of no member or of every
member. B
The system of all positive whole numbers is a single collection
of numbers, the general essential character of which collection is
that there is a recognizable relation signified by A, such that every
positive integer is A to a positive integer, and there is one, and one
only, initial positive integer, O (or, if this be excluded, then 1,)
such that, whatever predicate P may be, if P is true of no positive
integer without being also true of some positive integer to which
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the former is A, then either this predicate is false of that initial
positive integer or else is true of all positive integers.

The system of all real integers is a collection of numbers of
which the general essential character is that there is recognizable
relation signified by one being A to another, such that every number
of the system is both A to a number of the system, and is A’d by a
number of the system, and whatever predicate P may be, if this
be not true of any number, n, of the system without being both
true of some number that is A of #, and true also of some number
that is A’d by #, then P is either false of every number of the system
or is true of every number of the system.

A Cantorian system is essentially a system of objects positively
determined by every collection of objects of the system being A to
some object of the system, and by a certain object, 0, being a member
of the system; while it is negatively determined by the principle
that, whatsoever predicate P may be, if P is not true of every mem-
ber of any collection of the system without being also true of some
member that is A’d by that collection, then either P is not true of
the member, O, or it is true of every member of the system.

Now for several reasons, partly for the sake of the logical in-
terest and instruction that will accrue I will proceed to show pre-
cisely how all the fundamental properties common to cyclical sys-
tems follow from my definition. In accordance with the usage of
logicians and mathematicians, I shall call this “demonstrating” those
properties. The reader must not fall into the error of supposing
that, by this expression, I mean rationally convincing him that all
cyclical systems have these properties; for I know well that he is
perfectly cognizant of that already. All I am seeking to convince
him of is, Ist, that, and 2d, how, their truth of all cyclical systems
follows from my definition. But in the course of doing so, I shall
endeavor to bring to his notice some things well worth knowing
concerning necessary reasonings in general. Especially, I shall
try to point out errors of logical doctrine which students of the
subject who neglect the logic of relations are apt to fall into.

A brace of these errors, are, first, that nothing of importance
can be deduced from a single premiss; and secondly, that from
two premisses one sole complete conclusion can be drawn. Persons
who hold the latter notion cannot have duly considered the paucity
of the premisses of arithmetic and the immensity of higher arith-
metic, otherwise called the “theory of numbers,” itself. As to the
former belief, aside from the consideration that whatever follows
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from two propositions equally follows from the one which results
from their copulation, they will have occasion to change their opinion
when they come to see what can be deduced from the definition
of a cyclic system, which definition is not a copulative proposition.
That couple of logical heresies, being married together, legiti-
mately generates a third more malignant than either; namely, that
necessary reasoning takes a course from which it can no more
deviate than a good machine can deviate from its proper way of
action, and that its future work might conceivably be left to a
machine,—some Babbage’s analytical engine or some logical machine
(of which several have actually been constructed). Even the logic
of relations fails to eradicate that notion completely, although it
does show that much unexpected truth may often be brought to
light by the repeated reintroduction of a premiss already employed;
and in fact, this proceeding is carried to great lengths in the develop-
ment of any considerable branch of mathematics. Although, more-
over, the logic of relations shows that the introduction of abstrac-
tions,—which nominalists have taken such delight in ridiculing,—
is of the greatest service in necessary inference, and further shows
that, apart from either of those manoeuvres,—either the iteration
of premisses or the introduction of abstractions,—the situations in
which the necessary reasoner finds several lines of reasoning open
to him are frequent. Nevertheless, in spite of all this, the tendency
of the logic of relations itself,—the highest and most rational
theory of necessary reasoning yet developed,—is to insinuate the
idea that in necessary reasoning one is always limited to a narrow
choice between quasi-mechanical processes; so that little room is
left for the exercise of invention. Even the great mathematician,
Sylvester, perhaps the mind the most exuberant in original ideas
of pure mathematics of any since Gauss, was infected with this
error ; and consequently, conscious of his own inventive power, was
led to preface his “Outline Trace of the Theory of Reducible Cy-
clodes,” with a footnote which seems to mean that mathematical
conclusions are not always derived by an apodictic procedure of
reason. If he meant that a man might, by a happy guess, light upon
a truth which might have been made a mathematical conclusion,
what he said was a truism. If he meant that the hint of the way
of solving a mathematical problem might be derived from any sort
of accidental experience, it was equally a matter of course. But
the truth is that all genuine mathematical work, except the forma-
tion of the initial postulates (if this be regarded as mathematical
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work,) is necessary reasoning. The mistake of Sylvester and of all
who think that necessary reasoning leaves no room for originality,—
it is hardly credible however that there is anybody who does not
know that mathematics calls for the profoundest invention, the most
athletic imagination, and for a power of generalization in compari-
son to whose every-day performances the most vaunted perform-
ances of metaphysical, biological, and cosmological philosophers in
this line seem simply puny,—their error, the key of the paradox
which they overlook, is that originality is not an attribute of the
matter of life, present in the whole only so far as it is present in
the smallest parts, but is an affair of form, of the way in which
parts none of which possess it are joined together. Every action of
Napoleon was such as a treatise on physiology ought to describe.
He walked, ate, slept, worked in his study, rode his horse, talked to
his fellows, just as every other man does. But he combined those
elements into shapes that have not been matched in modern times.
Those who dispute about Free-Will and N ecessity commit a similar
oversight. Notwithstanding my tychism, I do not believe there is
enough of the ingredient of pure chance now left in the universe
to account at all for the indisputable fact that mind acts upon matter.
I do not believe there is any amount of immediate action of that
kind sufficient to show itself in any easily discerned way. But one
endless series of mental events may be immediately followed by a
beginningless series of physical transformations. If, for example,
all atoms are vortices in a fluid, and every fluid is composed of atoms,
and these are vortices in an underlying fluid, we can imagine one
way in which a beginningless series of transformations of energy*
might take place in a fraction of a second. Now whether this par-
ticular way of solving the paradox happens to be the actual way,
or not, it suffices to show us that from the supposed fact that mind
acts mmediately only on mind, and matter immediately only on
matter, it by no means follows that mind cannot act on matter, and
matter on mind, without any tertium quid. At any rate, our power
of self-control certainly does not reside in the smallest bits of our
conduct, but is an effect of building up a character. All supremacy
of mind is of the nature of Form.

The plan of a demonstration can obviously not spring up in the
mind complete at the outset; since when the plan is perfected, the

* You may well be puzzled, dear Reader, to iconize the consecution of a
beginningless series upon an endless series. But you have only to imagine a

dot to be placed upon the rim of a half-circle at each point whose angular
distance from the beginning of the semicircumference has a positive or nega-
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demonstration itself is so. The thought of the plan begins with an
act of dyxivowa* which, in consequence of pre-existent associations,
brings out the idea of a possible object, this idea not being itself in-
volved in the proposition to be proved. In this idea is discerned that
the possibility of its object follows in some way from the condition,
general subject, or antecedent of the proposition to be proved, while
the known characters of the object of the new idea will, it is per-
ceived, be at least adjuvant to the establishment of the predicate or
consequent of that proposition.

I shall term the step of so introducing into a demonstration
a new idea not explicitly or directly contained in the premisses of
the reasoning or in the condition of the proposition which gets
proved by the aid of this introduction, a thed'ric step. Two con-
siderable advantages may be expected from such a step besides the
demonstration of the proposition itself. In the first place, since it
is a part of my definition that it really aids the demonstration, it
follows that without some such step the demonstration could not
have been effected, or at any rate only in some very peculiar way.
Now to propositions which can only be proved by the aid of theoric

tive whole number for its natural tangent. These dots will, then, occur at the
following angular distances from the origin of measurement.

ANGULAR DISTANCE TANGENT | ANGULAR DISTANCE TANGENT | ANGULAR DISTANCE

o 00 o 87° 24’ —+22 93° or’ —1IG
45 00 + 1 8 31 +23 93 II —18
63 26 + 2 & 37 +24 93 21 —17
71 34 + 3 87 43 —+25 93 35 —16
75 58 + 4 93 49 —1I5
78 41 4+ 5 and so on endlessly. But 04 o5 —I14
8 32 —+ 6 after all positive integer 04 24 —13
81 52 + 7 values have been passed 04 46 —1I2
8 52 + 8 through  before = go °, 95 Iz —I7
83 40 + 9 (where there will not be 95 43 —1IG
8 17 “+10 any dot,) a beginningless 96 20 — G
8 48 +11 series of dots will suc- 97 o8 — 8
8 14 +12 ceed, for which the tan- 98 08 -7
8 36 —+13 gents are negative; and 99 28 — 6
8 55 —+14 then 101 19 —5
8 11 +15 104 02 — 4
8 25 +16 92° 17’ —25 108 26 — 3
8 38 “+17 92 23 —24 116 34 — 2
8 49 +18 92 29 —23 135 09 — 1
8 590 +19 92 36 —22 180 o0 o
8 o8 -+20 02 44 —21 225 00 + 1
8 16 21 92 52 —20 etc.

*See Charmides, p. 160A, and the last chapter of the First Posterior
Analytics.
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steps, (or which, at any rate, could hardly otherwise be proved,)
I propose to restrict the application of the hitherto vague word
“thcorem,” calling all others, which are deducible from their prem-
isses by the general principles of logic, by the name of corollaries.
‘A theorem, in this sense, once it is proved, almost invariably clears
the way to the corollariai or easy theorematic proof of other propo-
sitions whose demonstrations had before been beyond the powers
of the mathematicians. That is the first secondary advantage of a
theoric step. The other such advantage is that when a theoric step
has once been invented, it may be imitated, and its analogues applied
in proving other propositions. This consideration suggests the pro-
priety of distinguishing between varieties of theorems, although the
distinctions cannot be sharply drawn. Moreover, a theorem may
pass over into the class of corollaries, in consequence of an improve-
ment in the system of logic. In that case, its new title may be ap-
pended to ‘its old one, and it may be called a theorem-corollary.
There are several such, pointed out by De Morgan, among the
theorems of Euclid, to whom they were theorems and are reckoned
as such, though to a modern exact logician they are only corollaries.
If a proposition requires, indeed, for its demonstration, a theoric step,
but only one of a familiar kind, that has become quite a matter of
course, it may be called a theoremation.* If the needed theoric
step is a novel one, the proposition which employs it most fully may
be termed a major theorem ; for even if it does not, as yet, appear
particularly important, it is likely eventually to prove so. If the
theoric invention is susceptible of wide application, it will be the
basis of a mathematical method.

But mathematicians are rather seldom logicians or much inter-
ested in logic; for the two habits of mind are directly the reverse of
each other; and consequently a mathematician does not care to go
to the trouble, (which would often be very considerable,) of ascer-
taining whether the theoric step he proposes to himself to take is
absolutely indispensable or not, so long as he clearly perceives that
it will be exceedingly convenient; and the consequence is that many
demonstrations jintroduce theoric steps which relieve the mind and
obviate confusing complications without being logically necessary.
Such demonstrations prove corollaries more easily by treating them
as if they were theorems. They may be called theoric corollaries, or
if one is not sure that they are so, theorically proved propositions.

| *Gewpnudriov is entered in L. & S, with a reference to the Diatribes of
Epictetus.



438 THE MONIST.

I wish a historical study were made of all the remarkable
theoric steps and noticeable classes of theoric steps. I do not mean
a mere narrative, but a critical examination of just what and of
what mode the logical efficacy of the different steps has been. Then,
upon this work as a foundation, should be erected a logical classi-
fication of theoric steps; and this should be crowned with a new
methodeutic of necessary reasoning. My future years,—whatever
can.have become of them, they do not seem so many now as they
used, when, at De Morgan’s Open Sesame, the Aladdin matmiirah of
relative logic had been nearly opened to my mind’s eye ;—but the
remains of them shall, I hope, somehow contribute toward setting
such an enterprise on foot. I shall not be so short-sighted as to
expect any cut-and-dried rules nor yet any higher sort of contrivance,
to supersede in the least that dyxivowas,—that penetrating glance at
a problem that directs the mathematician to take his stand at the
point from which it may be most advantageously viewed. But I
do think that that faculty may be taught to nourish and strengthen
itself, and to acquire a skill in fulfilling its office with less of random
casting about than it as yet can. '

Euclid always begins his presentation of a theorem by a state-
ment of it in general terms, which is the form of statement most
convenient for applying it. This was called the mpdraois, or propo-
sition. To this he invariably appends, by a Myw, “I say,” a trans-
lation of it into singular terms, each general subject being replaced
by a Greek letter that serves as the proper name for a single one
of the objects denoted by that general subject. Yet the generality
of the statement is not lost nor reduced, since the understanding
is that the letter may be regarded as the name of any one of those
objects that the student may select. This second statement was
called the éfeois, or exposition. Euclid lived at a time when the
surpassing importance of Aristotle’s Analytics was not appreciated.
The use, probably by Euclid himself, of the term mpdracis, which
in Aristotle’s writings means a premiss, to denote the conclusion
to be proved, illustrates this, and confirms other reasons for think-
ing that Euclid was unacquainted with the doctrine of the Ana-
lytics. The invariable appending by Euclid of an &feois to the
mpéracis (except in a few cases in which the proposition is expressed
in the ecthetic form alone,) inclines me to think that it was, for him,
a principle of logic that any general proposition can be so stated;
and such a form of statement was always convenient in demon-
stration; sometimes, necessary. If this surmise be correct, Euclid
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probably looked upon the function of the &fesis as that of merely
supplying a more convenient form for expressing no more than the
mpdracis had already asserted. Yet inasmuch as the mpdracis does
not mention those proper names consisting of single letters, the
éxleois certainly does supply ideas that, however obvious they be,
are not contained in the mpdraois; so that it must be regarded as
taking a little theoric step. The principal theoric step of the demon-
stration is, however, taken in what immediately follows; namely,
in “preparation” for the demonstration, the wapaoxevs), usually trans-
lated “the construction.” The Greek word is applied to any thing
got up with some elaboration with a view to its being used in any
contemplated undertaking: a near equivalent to a frequent use of it
is “ apparatus.” Euclid’s mepaokevy consists of precise directions for
drawing certain lines, rarely for spreading out surfaces; for though
his work entitled “Elements,” appears to have been intended as an
introduction to theoretical mathematics in general, (the art of com-
putation being the métier, —the ’mister, as Chaucer would say, of
the Pythagoreans,) yet Euclid always conceives arithmetical quan-
tities,—even when distinguishing between prime and composite in-
tegers,—as being lengths of lines. It was his mania. Those lines
which are drawn in the mapaoxevy) are not only all that are referred.
to in the condition of the proposition, but also all the additional
lines which he is about to consider in order to facilitate the demon-
stration of which' this wapackevy is thus the soul, since in it the
principal theoric step is taken. But the construction of these ad-
ditional lines is introduced by ydp, here meaning “for,” and some-
times the text does not very sharply separate some parts of the
mapaokevy) from the next step, the éndSefis, or demonstration. This
latter contains mere corollarial reasoning, though, in consequence
of its silently assuming the truth of all that has been previously
proved or postulated (which Mr. Gow, in his Short History of Greek
Mathematics, gives as the reason for Euclid’s having called his work
Sroixewn; which seems to me very dubious,) this corollarial reason-
ing will sometimes be a little puzzling to a student who has not so
thoroughly assimilated what went before as to have the approximate
proposition ready to his mind. After this, a sentence always using
dpa, “hence,” “ergo,” repeats the mpdracis (not often the feous,)
so as to impress the proposition on the mind of the student, in its
new light and new authority, expressed in the form most convenient
in future applications of it. This is called ovumépaoua, the “conclu-
sion,” which sounds highly Aristotelian. Yet the classical use of



440 THE MONIST.

the verb to signify coming to a final conclusion, rendered this noun
inevitable as soon as these neuter abstracts came into the frequent
use that they had by Euclid’s time. The conclusion always ends
with the words dmep &8e 8eifar, “which had to be shown,” quod erat
demonstrandum, for which Q. E. D. is now put.

I will take at random the 20th proposition of the first book, to
illustrate the matter. “In every triangle, any two sides, taken to-
gether are always greater than the third.

“For let ABT be a triangle. I say that any two sides taken
together are greater than the third; BA and AT than BI', AB and BT
than AT, and BT and T'A than AB.

“For extend BA to the point A, taking AA equal to TA, [which
he has shown in the 2d proposition always to be possible;] and join
A to T by a straight line.

“Now since AA is equal to AT, the angle under AAT is equal to
that under ATA [by the pons asinorum,] Hence, the angle under
BTA will be greater than that under AAT. [This is a fallacy of a kind
to which Euclid is subject from assuming that every figure drawn
according to the mapaoxevy will necessarily have its parts related in
the same way, when it can only be otherwise if space is finite, which
he has never formally adopted as a postulate. In the present case,
if AA is more than half-way round space, the triangle ATA will
include the triangle ABT' within it; and then the angle BrA will be
less than the angle AAT.] And since AI'B is a triangle having the
angle under BTA greater than that under BAT, but the greater side
subtends under the greater angle [which is the theorem that had
just previously been demonstrated,] therefore AB is greater than
BI. But AA is equal to AT. Therefore, BA and AT are greater than
BT. Similarly, we shall [i. e. could] show that AB and BT are greater
than TA, and BT and TA than AB.

“In every triangle, then, any two sides joined together are
greater than the third, which is what had to be shown.”

I will now return to the consideration of cyclical systems, and
will begin by expressing my definition of such a system in those
Existential Graphs which have been explained in The Monist (Vol.
XVI, pp. 524-544, where correct the errata given in Vol. XVII,
p.160). In reference to those graphs, it is to be borne in mind that
they have not been contrived with.a view to being used as a cal-
culus, but on the contrary for a purpose opposed to that. Never-
theless, if any one cares to amuse himself by drawing inferences
by machinery, the graphs can be put to this work, and will perform
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it with a facility about equal to that of my universal algebra of
logic and as much beyond that of my algebra of dyadic relatives,
of which the lamented Schroeder was so much enamoured. The
only other contrivances for the purpose appear to me to be of in-
ferior value, unless it be considered worth- while to bring a pasig-
raphy into use. Such ridiculously exaggerated claims have been
made for Peano’s system, though not, so far as I am aware, by its
author, that I shall prefer to refrain from expressing my opinion
of its value. I will only say that if a person chooses to use the
graphs to work out difficult inferences with expedition, he must
devote some hours daily for a week or two to practice with it; and
the most efficacious, instructive, and entertaining practice possible
will be gained in working out his own method of using the graphs
for his purpose. I will just give these little hints. Some slight
shading with a blue pencil of the oddly enclosed areas will conduce
to clearness. Abbreviate the parts of the graph that do not concern

Fig. 7. Fig. 8.

your work. Extend the rule of iteration and deiteration, by means
of a few theorems which you will readily discover. Do not forget
that useful iteration is almost always into an evenly enclosed area,
while useful deiteration is, as usually, from an oddly enclosed area.
Perform the iteration and the immediately following deiteration at
one stroke, in your mind’s eye. Do not forget that the ligatures
may be considered as graph-instances scribed in the areas where
their least enclosed parts lie, and repeated at their attachments.
Their intermediate parts may be disregarded. Reflect well on each
of the four permissions (especially that curious fourth one,) until
you vividly comprehend the why and wherefore of each, and the
bearings of each from every point of view that is habitual with you.
Do not forget that an enclosure upon whose area there is a vacant
cut can everywhere be inserted and erased, while an unenclosed
vacant cut declares your initial assumption, first scribed, to have
been absurd. You will thus, for example, be enabled to see at a
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glance that from Fig. 7 can be inferred Fig. 8. The cuts perform
two functions; that of denial and that of determining the order of
- selection of the individual objects denoted by the ligatures. If the
outer cuts of any graph form a nest with no spot except in its inner-
most area, then all that part of the assertion that is therein expressed
will need no nest of cuts, but only cuts outside of one another, none
of them containing a cut with more than a single spot on it. It
will seldom be advisable to apply this to a complicated case, owing
to the great number of cuts required ; but you should discover and
stow away in some sentry-box of your mind whence the beck of
any occasion may instantly summon it, the simple rule that expresses
all possible complications of this principle. As an example of one
of the simplest cases, Fig. 9 and Fig. 10 are seen precisely equiv-
alent.

Fig. 9. Fig. 10,

Owing to my Existential Graphs having been invented in Janu-
ary of 1897 and not published until October, 1906, it slipped my mind
to remark when I finally did print a description of it, what any reader
of the volume entitled Studies in Logic by Members of the Johns
Hopkins University, (Boston: 1882,) might perceive, that in con-
structing it, I profited by entirely original ideas both of Mrs. and
Mr. Fabian Franklin, as well as by a careful study of the remarkable
work of O. E. Mitchell, whose early demise the world of exact logic
has reason deeply to deplore.

My reason for expressing the definition of a cyclic system in
Existential Graphs is that if one learns to think of relations in the
forms of those graphs, one gets the most distinct and ecthetically as
well as otherwise intellectually, iconic conception of them likely to
suggest circumstances of theoric utility, that one can obtain in any
way. The aid that the system of graphs thus affords to the process
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of logical analysis, by virtue of its own analytical purity, is sur-
prisingly great, and reaches further than one would dream. Taught
to boys and girls before grammar, to the point of thorough familiari-
zation, it would aid them through all their lives. For there are few
important questions that the analysis of ideas does not help to an-
swer. The theoretical value of the graphs, too, depends on this.

Strictly speaking, the term ‘definition’ has two senses,—Firstly,
this term is sometimes quite accurately applied to the composite
of characters which are requisite and sufficient to express the
signification of the ‘definitum,” or predicate defined; but I will
distinguish the definition in this sense by calling it the ‘definition-
term.” Secondly, the word definition is correctly applied to the
double assertion that the definition-term’s being true of any con-
ceivable object would always be both requisite and sufficient to
justify predicating the definitum of that object. I will distinguish
the definition in this sense by calling it the ‘definition-assertion-pair.’
In the present case, as in most cases, it is needless and would be
inconvenient to express the entire definition-assertion-pair with strict
accuracy, since we only want the definition in order to prove certain
existential facts of subjects of which we assume that the definitum,
‘cyclic-system,” is predicable. We do not care to prove that it is
predicable, and therefore the assertion that the definitum is predicable
of the definition-term is not relevant to our purpose. In the second
place, we do not care to meddle with that universe of concepts with
which the definition deals; and it would considerably complicate our
premisses to no purpose to introduce it. We only care for the
predication of the definition-term concerning the definitum so far
as it can concern existential facts. All that we care to express in
our graph is so much as may be required to deduce every existential
fact implied in the existence of a cyclic system.

A cyclic system is a system; and a system is a collection having
a regular relation between its members. One member suffices to
make a collection, and is requisite to the existence of the collection.
The definition, so far as we need it, is then expressed in the graph
of Fig. 11. Here K with a “peg” (See Monist, Vol. XVI, p. 530)
at the side asserts that the object denoted by the peg is a cyclic
system. The letter M with one peg at the top and another placed
on either side without any distinction of meaning, asserts that the
object denoted by the side-peg is a member of the system denoted
by the top-peg. The letter C, with a peg at the top and another
at the side asserts that the object denoted by the top-peg is a relation
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involved in that relation between all the members which constitutes
the entire collection of them as the system that it is, and asserts that
the object denoted by the side-peg is such a system. The Roman
numerals each having one peg placed at the top or bottom of the
numeral and a number of side-pegs equal to the value of the numeral,
all these side-pegs being carefully distinguished, is used to express
the truth of the proposition resulting from filling the blanks of the
rheme denoted by the top or bottom peg, with indefinite signs of
objects denoted by the side-pegs taken in their order, all the left-
hand pegs being understood to precede all the right-hand pegs, and
on each side a higher peg to precede a lower one. With this under-
standing, the graph of Fig. 11, where for the sake of perspicuity
the oddly enclosed, or negating areas are shaded, may be translated
into the language of speech in either of the two following equiva-
lent forms (besides many others) :
It is false that
there is a cyclic system while it is false that
this system has a member
and involves a relation (“being A to,” the bottom peg of II,)
and that it is false that
the system has a member of which it is false that
it is in that relation, A, to a member of the system,
while it is false that
there is a definite predicate, P, (the top or bottom peg
of 1,) that is true of a member of
the system and is false of a member of the system, and
that it is false that
this predicate is true of a member of the system of which
it is false that
it is A to a member of the system of which P is true.
This more analytic statement is equivalent to saying that every
cyclic system (if there be any,) has a member, and involves a rela-
tion called “being A to” (not the graph but perspicuity of speech
requires it to be so named,) such that every member of the system is
A to a member of the system, and any definite predicate, P, what-
soever, that is at once true of one member of the system and untrue
of another is true of some member of the system that is not A to
any member of which P is true.
To anybody who has no notion of logic this may seem a queer
attempt to explain what is meant by a cyclic system; and it is true
that it would be a needlessly involved werbal definition; a verbal

i i e
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definition being an explanation of the meaning of a word or phrase
intended for a person to whose mind the idea expressed is perfectly
distinct. But it is not intended to serve as a verbal, but as a real
definition, that is, to explain to a person to whom the idea may be
familiar enough, but who has never picked it to pieces and marked
its structure, exactly how the idea is composed. As such, I believe
it to be the simplest and most straight-forward explanation possible.
When you say that the days of the week “come round in a set of
seven,” you think of the week everything here expressed of K.
I do not mean that all this is actually existent in your thought; for
thinking no more needs the actual presence in the mind of what is
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thought than knowing the English language means that at every
instant while one knows it the whole dictionary is actually present
to his mind. Indeed, thinking, if possible, even less implies pres-
ence to the mind than knowing does; for it is tolerably certain that
a mind to whom a word is present with a sense of familiarity knows
that word ; whereas a mind which being asked to think of anything,
say a locomotive, simply calls up an image of a locomotive has, in
all probability, by bad training, pretty nearly lost the power of
thinking ; for really to think of the locomotive means to put oneself
in readiness to attach to it any of its essential characters that there
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may be occasion to consider ; and this must be done by general signs,
not by an image of the object. But the truth of the matter will
more fully be brought out as we proceed.

All that we require of the definition may be put into a simpler
shape by omitting the letter M, since the interpreter of the graph
must well understand that the whole talk of the graphist for the
time being, so far as it refers to things and not to the attributes
or relations, has reference to the members of a cyclic system. We
may consequently use the graph of Fig. 12 in place of Fig. 11.

It will be remarked that the graph of Fig. 12 is no more a
definition of a cyclic system than it is of the relation of immediate
antecedence; and this is as it should be; for plainly a system cannot
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be defined, without virtually defining the relation between its mem-
bers that constitutes it a system.

I will now begin by drawing one of several corollaries that are
right at my hand. I am always using the words ‘corollary’ and
theorem in the strict sense of the foregoing definition. This corol-
lary results from the logical principle that to every predicate there
is a negative predicate which is true if the former is false, and is
false if the former is true. This purely logical principle is ex-
pressed in the graph of Fig. 13. Obviously, if any predicate is both
true of some member and false of some member of the system, the
same will be the case with its negative. Consequently, by the defi-
nition, this negative will be true of some member withotit being true
of any to which that member is A ; or, in other words, the original
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predicate will be false of some member without being A to any
member of which it is false. Thus, if any predicate is neither true
of all nor false of all the members of any cyclic system, but is true
of some one and false of some other, there will be two different
members of one of which it is true without being true of any to which
that member is A, while of the other it is false without being false
of any to which that member is A. Or, to put the corollary in a
different light, taking any predicate, P, whatsoever, then, in case
you can prove that there cannot be more than one exception to the
rule that every member of the system resembles some one of those
to which it is A in respect to the truth or falsity concerning it of P,
then if P be true of one member, it is true of all, and if it be false
of one, it is false of all.

I am now going to apply this proposition to a theoric proof of
a proposition which is really only a corollary from the definition of
a cyclic system. My motive for this departure from good method
is that it will afford a good illustration of the advantage of making
the selected predicate, P, as special and characteristic of the state
of things you are reasoning about as possible. The proposition I
am going to prove is, that in any cyclic system that contains more
than one member no member will be A to itself. For this purpose
I will consider any member of the system you please, and will give
it the proper name, N. This ecthetic step is already theoric, but is
a matter of course. Another theoric step, not a matter of course,
shall consist in my selecting, as the predicate to be considered, “is N.”
Now if N is A to itself, every member of the system of which this
predicate is true (which can be none other than N itself,) will be
A to a member of which the predicate is also true; and consequently,
by the definition of a cyclic system this predicate cannot be true of
one member and false of another. But if there be any other member
of the system than N, it will be false of that one. Whence, if N
were A to itself and were not the only member of the system, there
would be no member of which it would be true that it was N. But
by the definition, every cyclic system has some member, and N was
chosen as such. So that it must be, either that the system has no
other member, or that any member you please, and consequently
every one, is non-A to itself.

Now what I wanted to point out was that if instead of “is N,”
I had selected, as my predicate to be considered, “is A to itself,” it
would merely have followed that since any member that is A to
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itself is A to a member that is A to itself, by the genera! definition
either every member of the system is A to itself or none is so.

I will now prove that this proposition that no member of a
cyclical system is A to itself unless it is the only member of the
system is not a theorem, in any strict sense, by proving it corol-
larially. For this purpose I first prove that no cyclical system, by
virtue of the same relation A, involves another as a part, but not
the whole of it. For suppose that certain members of a cyclical
system form by themselves a cyclical system constituted by the same
A-hood. Then, by the part of the definition of a cyclical system
that has been expressed as graph in Fig. 11 and in Fig. 12, there is
a member of this minor system; and every member of it is A to a
member of the major system that is a member of the minor system.
Hence, by that same partial definition, the predicate “is a member
of the minor system” being true of one is true of all members of
the major system. The minor system is, then, the whole of the
major system. To go further, I must employ that assertion of the
definitum “is a cyclic system” concerning the definition-term, which
assertion has not been expressed as a graph, in order to prove, by
its conformity with the definition that a single object, having a re-
lation, identity, to itself, that relation conforming to the conditions of
the constitutive relation of a cyclical system, must be admitted to
be a cyclical system of a single member. If, therefore, one of the
members of a cyclical system of more than one member were A to
itself, it would be a cyclical system which was a part but not the
whole of another cyclical system, which we have seen to be im-
possible,

I shall now employ the first corollary to prove that every mem-
ber of a cyclical system is A’d by some member. For take any
member you please of any such system you please; and I will assign
to it the proper name N. If then N is the only member of the sys-
tem, by the definition N is A to itself. But if there be another mem-
ber, it is one of which the predicate “is N” is not true, though there
is some member, namely N, of which that predicate is true. Con-
sequently, by that first corollary, there must be a member of which
it is not true that it is N which is A to nothing of which this is not
true. But, by the definition, every member of a cyclic system is
A to some member; and therefore that member which is not A to
any member of which “is N” is not true, must be true of a member
of which “is N” is true, which, by hypothesis, is only N itself ; con-
sequently any member of any cyclic system which one may choose




SOME AMAZING MAZES. 449

to select is A’d by some member, and by another than itself, if there
be another. Q.E.D.

Further investigation of the properties of cyclic systems will
need a somewhat more recondite theoric step. Certainly, however,
I must not convey the idea that I claim to be quite sure of this. As
vet, I have not sufficiently studied the methodeutic of theorematic
reasoning. I only have an indistinct apprehension of a principle
which seems to me to prove what I say; and I must confess that of
all logical habits that of confiding in deductions from vague con-
ceptions is quite the most vicious, since it is just such reasonings
that to the intellectual rabble are the most convincing; so that the
conclusions get woven into the general common-sense so closely,
that it at length seems paradoxical and absurd to deny them, and
men of “good sense” cling to them long after they have been clearly
disproved. However, whether it be absolutely necessary or not,
the only way I see, at present, of demonstrating the remaining
properties of a cyclic system is to suppose a predicate to be formed
by a process which will seem somewhat complicated. I shall not state
what this predicate is, but only suppose it to be formed according
to a rule; and even this rule will not be exactly stated but only a
description of its provisions will be given. I shall suppose that
one member of the system is selected by the rule as one of the class
of subjects of which the predicate is true, and that the remaining
members of this class shall be taken into it from among the members
of the system one by ome, according to the rule that when the
member last taken in is not A to any member already taken in, one
and one only of the members of the system not yet taken in to which
that last adopted member is A is to be added to the class; and this
new addition may, in the same way, require another. If the system
were infinite (as we shall soon see that it cannot be,) this might
go on endlessly ; and so far, we have not seen that this cannot hap-
pen. But as soon as it happens that the member last admitted to
the class is A to a member already admitted (and consequently
that every member admitted to the class is A to an admitted mem-
ber) the admissions to the class are to be brought to a stop. There
are now two supposable cases to be provided for which we shall
later find will never occur; but if we did not determine what was
to be done if they should (this not being proved impossible) our
first proof would involve a petitio principii. One is the case in
which the finally adopted member is A to a member already having
an A that had previously been admitted to the class. The other is
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the case in which the last (but not necessarily the final) adopted
member is not only A’d by the last previously adopted member (for
the sake of providing which with a member A’d by it, the very last
was taken in) but is also A’d by an earlier adopted member. In
the latter case, in which the member last adopted, which we may
name V, is not only A’d by the last previous one, which we may
name U, but is also A’d by a previously adopted member of the
class which we may name K, we are to reject from the class all that
were admitted after K to U inclusive; so that we revert to what
would have been the case, as it might have been, if next after K
we had admitted V, to which K is A. We should thus make the
class smaller, which we shall soon see could not happen. In the
other case, where the last adopted member, which we will name,
Z, is A to a previously adopted one, which we will name J, which
was not the first member adopted into the class, but is A’d by another,
which we will name I, we reject from the class both I and all that
were adopted previously to I.

After these supposititious rejections, there is no object of which
the predicate, “is a member of the class so formed,” is true that is
not A of any object of which the same predicate is true, and there-
fore, by the definition so often appealed to, this predicate cannot be
both true of a member of the cyclic system and false of another
such member. Now it plainly is true of some member, since the
first object taken into it as well as every one subsequently taken
into it were members of the cyclic system. Therefore, this predicate
cannot be false of any member of the cyclic system. In other words,
the class so formed includes all the members of the cyclic system.
Consequently, there cannot have been any rejections.

Since there were no rejections, the first member adopted must
remain a member of the class; and since we have seen in a former
corollary that every member of a cyclic system is A’d by a member
of the same system, this first adopted member must be A’d by some
member of the system, that is, by some member of the class. But
by the rule of formation of the class no member of it except the -
finally adopted one can be A to a previously adopted member. It
follows that there must be a finally adopted one; and by the same
rule no member of the class except the first was adopted without there
being a last previously adopted member. It follows that the suc-
cession of adoptions cannot, at any part of it, have been endless.
This is one of the most difficult theorems that I had to prove.

Moreover, every member of the class is by the mode of forma-
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tion A to one, and only to one, member of the class; and con-
sequently the same is true of all the members of every cyclic sys-
tem.

Moreover, every member of the class except the first was only
taken in so as to be A’d by the last, or, at any rate, by one member
only; and the first adopted member as we have seen is A’d by the
finally adopted member. It cannot be A’d by any other, since by
the rule of formation, such another would thereby have become the
finally adopted member. Hence, no member of a cyclic system is
A’d (in the same sense) by any two members of the system; or
no two members are A to the same member.

I have thus, by means of this fevpia of the formation of a certain
kind of class, succeeded in demonstrating, what one might well have
doubted, that from the proposition expressed in Fig. 11 follows the
double uniqueness of the cyclical relation of A-hood or immediate
antecedence. This is the principal, as I think, of those properties
that are common and peculiar to cyclical systems. The same theoric
step, or a reduplication of it, will enable the reader to prove other
properties, common but not peculiar to cyclic systems ; and especially
that a collection the count of whose members in one order comes to
an end can never in any order involve an endless process, whether it
comes to an end or does not. There is, by the way, an important
logical interest in that mode of succession in which an endless suc-
cession, say, of odd numbers, is followed by a beginningless dimin-
ishing succession of even numbers. For it shows that two classes
of objects may have such a connection with a transitive relation,
such as are those of causation, logical implication, etc., that any
member of either class is ummediately in this relation only to a mem-
ber of the same class, while yet every member of one of the classes
may be in this same relation to every member of the other class.
Thus, it may be that thought only acts upon thought ummediately,
and matter immediately only upon matter; and yet it may be that
thought acts on matter and matter upon thought, as in fact is plainly
the case, somehow.

In this theoric step, it is noticeable that I have had to embody
the idea of antecedence generally, in order to prove the properties
of cyclical immediate antecedence. Any reasoner is always entitled
to assume that the mind to which he makes appeal is familiar with
the properties of antecedence in general; since if he were not so,
he could not even understand what reasoning was at all about. For
logical antecedence is an idea which no reasoner can unload or dis-
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pense with. It would have been easy to replace, in my demonstra-
tions, all the “previously”s etc. by relations of inference. I have
not done so in order not to burden the reader’s mind with needlessly
intricate forms of thought.

A corollary from what has already been proved is that if we
regard the definition of Fig. 12 as the definition of A-hood, or cyclical
immediate antecedence, then A-hood is not a single relation but
is any one of a class of relations which, if the collection of all the
members of the system is not very small, is a large class. For taking
any two members of the system, and naming them Y and Y, we may
form such a relation, that of A’-hood, that whatever is neither Y
nor Y, nor is A to Y nor to Y is A’ to whatever is A’d by it, while
whatever is A to Y is A’ to Y, whatever is A to Y is A’ to Y, what-
ever is A’d by Y is A”d by Y, and whatever is A’d by Y is- A”d by Y;
and then A’ will have the same general properties as A, Thus, if
the number of members of a cyclic system is m, the number of rela-
tions of A-hood is (m-1)! If m be seven, the number of A-rela-
tions is 720; etc.

There is no relation in a cyclic system exactly answering to
general antecedence in a denumeral* system,

As a finitude is a positive complication (as is shown by a form
of inference being valid in a finite system that is not elsewhere
valid,) so in place of the relation of betweenness which in a linear
system endless both ways, which, if those ways are not distinctively
characterized, is triadic, we have in a cyclic system a tetradic rela-
tion expressible by o with four tails, so that F ig. 14, which means
that an object which can, wherever it be in the cycle, pass from its
position to that which is next to that position, being either A to it
or A’d by it, will if at I be opposite to an object at J, relatively to
any objects at U and at V. That is, such an object cannot move
from I to J without passing through U and V. This implies that
U is opposite to V relatively to I and J; that no other pair out of
the four are opposite to each other relatively to the other pair; and
that that way of passing round the cycle in which U is reached next
after I is the way in which J is reached next after U, V next after
J, and I next after V; while that way in which V is reached next
after I is the way in which J is reached next after V, U next after
J, and I next after U. This supposes that I, J, U, and V are all
different, as those that are opposite must be unless two that are

* See Note at the end of the article.
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adjacent are identical, in which case we may understand the rela-
tion as always being true and meaningless.
We may modify this relation, so as to render it exact, by de-

| NSO P /!
AN
| N/ NI N4
vy e ZaN N
| / N / N / N\
] \'4 U A-V U v A-V
Fig. 14. Fig. 15. Fig. 16. Fig. 17.

fining Fig. 15 as true, if I and J are identical while U and V are
also identical ; or if I and U are identical while J and V are identical,
and also if Fig. 16 or Fig. 17 is true; but as not true unless neces-
sarily so according to these principles. This last clause, by the way,
has a very important logical form; but I shall not stop to comment
upon it.

It will be observed that if Fig. 15 is true, then one or other of
the graphs of Fig. 18 must be true. And if two e-relations hold,

I I
| |
V——uau —] V—a—U
U ]
PRig. 18.

having three of their four correlates identical, and not the same pair
being opposite in both, then two a-conclusions may be drawn in
which the two correlates that only appeared once each in the premis-

X B B |B
A——a—B A—aqag—Y X—a—Y X—e —Y
C C A C
Fig. 19. Fig. zo,

ses, appear together, and opposite to one another. Thus, from Fig.
19 may be inferred Fig. 20. The B-relation lends itself to much
further inferential procedure. In the first place in Fig. 15, the whole
graph may be turned round on the paper so as to bring each cor-
relate into the place of its opposite. It may also be turned through
180° round a vertical axis in the sheet. [It may consequently be
turned 180° round a horizontal axis in the sheet.] Moreover, the




454 THE MONIST.

two correlates on the left, I and V, may be interchanged. [And so,
consequently may J and U.] Moreover, from F ig. 21, we can infer
Fig. 22. [Whence it follows that from Fig. 23 we can infer Fig

I\ / I / d U\ /V
N ﬁ/ \ ﬂ/ AN ﬁ/
N AN
/ 4 N / 4 \\ / / AN
v U Y X Y X
Fig. 21. Fig, 22.
I\ / I /X I\ /X
AN P / \\ 5 / N 8 /
VRN AN 7\
/ N, S / N / AN
\'% U U Y v Y
Fig, 23. Fig. 24.
I\ / d ]\ /K I\ /K
AN 8 / AN 8 / AN 8 /
VRN VRN VRN
NN N
Fig, 25. Fig. 26

24.] Also, from Fig. 25 we can infer F ig. 26. Whence there follow
very obviously several transformations. For example, Fig. 27 will
be true; and if any three of the four graphs of Fig. 28 are true, so
is the other one. It is obvious that the relation B involves cyclical

A-1 I

Fig. 27.

addition-subtraction, by its definition. Cyclic arithmetic involves
no other ordinal, or climacote, numbers than cyclic ordinals. But
if we define a cardinal number as an adjective essentially applicable,
universally and exclusively, to a plural of a single muiltitude, then
even the relations « and 8 may be said to depend upon the value
of a cardinal number ; namely, upon the modulus of the cycle; and
no cardinal number is cyclic. Dedekind and others consider the
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pure abstract integers to be ordinal; and in my opinion they are
not only right, but might extend the assertion to all real numbers.
[But what I mean by an ordinal number precisely must be ex-
plained further on.] Nevertheless, the operations of addition, mul-

B\ /S T\ /C
\ﬂ/ \ﬁ/
VRN VRN
7 N S N

C o Q D

S\ X X\ /B

/
\B/ \ﬁ/
AN VRN
// N 4 N
D Q O T
Fig. 28,

tiplication, and involution can be more simply defined if they are
regarded as applied to cardinals, that is to multitudes, than if they are
regarded in their application to ordinals,

Thus, the sum of two multitudes, M and N, is simply the multi-
tude of a collection composed of the mutually exclusive collections
of the multitudes M and N. The ordinal definition, on the other
hand, must be that 0+X=X, whatever X may be, while (the ordinal
next after Y)+X is the ordinal next after (Y+X). So the product
of two multitudes M and N, is simply the multitude of units each
composed of a unit of a collection of multitude M and a unit of
multitude N ; while the ordinal definition must be that 0x0=0 and that
X x(the ordinal next after Y) is X+(X+Y) and the ordinal next
after XxY is (X-Y)+Y. So finally the multitude M raised to the
power whose exponent is N, is the multitude of ways in which every
member of a collection of multitude N can be related in a given

X Y z X Y VA X Y VA
AB A B A B
X Y VA X Y z X Y VA
B A AB A B
X Y VA X Y VA X Y z
B A B A AB
Fig. 29.

way, each to some single member or other of a collection of multitude
M. Thus 3?9 because the different configurations of Fig. 29 are
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nine in number; while 2°=8 because the different configurations of
Fig. 30 are eight in number. But a definition of involution which

A | B A | B A | B A| B
XYZ XY | z Xz | Y X | YZ

A | B A | B A | B A| B
YZ | X Y | X2 Z | X

Y XYZ
Fig. 30. ’

shall be purely ordinal must be quite a complicated affair. We may
say, for example, that X=X and XI+¥=X.XY,

In cyclic addition, that is, in the a and B relations, there is but
a single cardinal number to be dealt with; and this is fully dealt
with in counting round and round the single cycle. But in multi-
plication there is always another cycle, and thus another cardinal
number to be considered, although the modulus of the second cycle
is usually such that it is not brought to our attention. But suppose
that in a cycle of 72 we multiply the successive integers from zero
up by 54. The following will be the result:

0x54= 0= 72
1x54=54=-18
2x54=36
I3x54=18
4x54=72= 0

It will be seen that there is a cycle of modulus 4. Suppose that, in-
stead of 54, we take 27 as the multiplicand. Then we shall have

0x27= 0= 72
1x27=27
2x27=54=-18
I3x27=9
4x27=36
5x27=63=-9
6x27=18
7x27=45=-27
8x27=72= 0

By halving the multiplicand we have doubled the modulus. Sup-
pose, however, that, instead of $x54, we take $54=18, as the multipli-
cand. Read the column of successive multiples of 54 upwards, and
we shall see that the multiples of 18 have a cycle of modulus 4.
With 6 as the multiplicand we get a cycle of 12 for its mul-
tiples, the numbers being as follows:
6, 12, 18, 24, 30, 36, -30, 24, -18, -12, -6, 0



SOME AMAZING MAZES. 457

With 2x6 we get a cycle of §12, every other one. With 4x6
as multiplicand, we get a cycle of 312=3, with 8x12 as multiplicand,
since 3 cannot be halved we still get 3. With 3-6=18 as multipli-
cand, we get a cycle of §x12, or every third of the multiples of 6;
but with 3-18=54 as modulus, since 4 is not divisible by 3, we still
get a cycle of 4. With 6-6=36 as multiplicand, we get every sixth
multiple of 6, or two in all, 0 and 36. With 5x6, 7x6, and 11x6
since 12 is not divisible by 5, 7, or 11, we still get a modulus of 12.
With 30, the order is as follows:

0, 30, -12, 18, -24, 6, 36, -6, 24, -18, 12, -30, 0.

This principle is obvious: if the multiples of a number N form
a cycle of modulus K, and p is a prime number, then the multiples
of pN will form a cycle of K/p, provided K is divisible by p; but
otherwise, the modulus will remain K. Suppose, then, that the
cycle of multiples of 1, that is to say, the cycle of our entire system
of numbers is p®- g%, where p and g are primes, and a and b are any
whole numbers. If, then, we multiply 1 by »c-sd-te, where 7, s, ¢
are other primes than p and g, the modulus of the cycle of multiples
of 7¢+ 54 t¢ will remain p°- gb. But every time we multiply this by p
we divide the modulus by p, until we have so multiplied it @ times.
On the other hand, if, instead of multiplying 1 by r¢-sd-¢¢, we
multiply it by p¢- gb to get a new multiplicand, the modulus of the
cycle of multiples of p*-gb will be 1; that is, all multiples will be
equal. It will follow by the distributive principle, that pe- g® added
to any number leaves that number unchanged. That is to say, the
modulus of a cycle is the zero of that cycle. But right here I must
explain what I mean by an ordinal number.

Take any enumerable, or finite, collection of distinct objects.
Let there be recognized one special relation in which each of them
stands to a single one of them, and no two to the same one, and
such that any predicate whatsoever that is true of any one of them
and is true of the one to which any one of which it is true stands
in that relation, is true of all of them. This substantially defines
that relation as the relation of “being A’d by.” Thereby, that col-
lection is recognized as forming a cyclical system of which those
objects are members. But those objects will not in general be
numbers of any kind. They may be days of the week or certain
meridians of the Globe. But now consider a single “step,” or sub-
stitution, by which the A of any member of the cyclic system is re-
placed by the member itself. From what member this step, or sub-
stitution began remains indefinite. The “step” still leads to a single
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member, and the step is a single kind of step even if that member
be any member you please, in which case it is not a single, i. e. a
singular, but the general member. I will condescend to meet the
reader’s probably indurated habit of crass nominalist thought by
saying that, in the one case, it is a single member not definitely de-
scribed, and in the other is a single member, left to him to choose ;
and there is no objection to this, if the member be supposed to be
both existent and intelligible, both of which however it need not be.
Give this kind of a step a proper name. Next consider in succession
all the kinds of step each of which consists in first taking a step of the
last previously considered kind and then substituting for the member
which it puts in place of another, the member of which that member
is A; so that the kinds of steps may be

From the A of a member to that member,

From the A of the A of a member to that member,

From the A of the A of the A of a member to that member,

etc. etc. .

Now if each of these has a name, whether pronounced, scribed,
or merely thought, those names will come round in a cycle of the
same modulus as the original system. They will therefore form
a cyclic system, but not a system of objects not essentially ordered,
as the original system may have been. This system of names is a
cyclic system of numbers. These are ordinal, or climacote, numbers.
By ordinal numbers in general I mean names essentially denoting
kinds of steps each from any member whatever of a system of objects
to, at most, a single object of the system, (i. e., one or another ob-
ject, depending on what object the step replaces by this other).
Thus, as I use the term “ordinal number” I do not mean the absolute
first, second, third, etc. member of a row of objects, but rather su¢h
as these: the same as, the first after, the second after, the third before,
etc. These numbers are certainly “ordinal” in the sense of ex-
pressing relative order; yet it might be better to avoid possible mis-
understanding by calling them metrical numbers, or more specifically,
climacode or climacote numbers.

In order to push further our study of this subject, let us sup-
pose a pack of 72 cards, numbered in order upon their faces, to be
dealt into two piles. We will not directly consider those serial face-
values, but only their differences. The two piles cannot regularly
be reunited, because the difference of successive face-values in each,
comes round in a cycle in each pile, the bottom card of the one pile,
1, being 2 more than the top card 71 (counting round the cycle of
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modulus 72) and that of the other pile also coming round in a cycle.
The difference between the face-values of any two cards in either
pile is a multiple of 2, the multiplier being the difference of position
in that pile. If now we desire so to re-deal the cards of the one pile
and the other into any number # of piles, as to produce the same
effect as if they had originally been dealt into 2# piles, we must
first deal the first pile leaving room between every two of the new
piles for the piles to be produced by dealing the second pile. If for
the number, #, we take 8, we shall get sixteen piles, the first 8 of 5
cards each and the last 5 of 4; and now it is allowable and proper
to place each of the first 8 piles on the pile 8 piles further advanced;
or equally so to place each of the last 8 piles on the pile 8 piles further
advanced, counting round and round the cycle of modulus 16. In
either case the cards of each composite pile so formed will form a
cycle, successive face-values increasing (round and round the cycle
of 72) by 16. The rule for gathering the piles is just the same as
that previously given, except that one must confine oneself to piles
of the same set. For instance if 72 cards, numbered as just de-
scribed, get in ahy way dealt into 15 piles, the top cards of the
piles will have these values:
61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 58, 59, 60
Now since 15172=3 these are in 5 sets of 3 piles, thus
61, 64, 67, 70, 58,
62, 65, 68, 71, 59,
63, 66, 69, 72, 60.

We shall therefore put the pile headed by 72 on the pile headed
by 69, because there is only one pile of the set to the right of the
former, and these on the pile headed by 66, and these on that headed
by 63, and finally all four on the one headed by 60. So we shall in
the next set begin with the pile headed by 71, the last of the larger
piles.

We shall thus get the whole pack divided into three portions,
and there is absolutely no way of getting them back into a single
pack except by undealing them, that is by cutting the cards one
by one from the three portions in turn, round and round.

This general rule holds in all cases; as much when the entire
number of cards is prime as when it is composite. For a prime
number is one whose greatest common divisor with any smaller posi-
tive integer is 1, while, of course, like any other number, its greatest
divisor common to itself is itself.

Having thus fully explained the dealing into any number of
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piles of any number of cards, prime or composite, I revert, after
this almost interminable disquisition, to the subject of cyclic loga-
rithms. I have confined, and shall continue to confine, my study
of these to logarithms of numbers whose cycle has a prime modulus.
Then, the modulus of the cycle of the logarithms being one less
than that of the natural numbers cannot be prime. Still so long
as it is a question of employing the logarithms merely to multiply
two numbers, the logarithm of the product is simply the sum of the
logarithms of multiplier and multiplicand ; and in addition it makes
no difference whether the modulus be prime or composite. But when
it comes to raising numbers to powers or to extracting their roots,
the divisors of the number one less than the modulus have to be
considered. The modulus being prime, the number one less must
be divisible by 2. If 2 be the only prime factor, the modulus must
be 3 or 5 or 17 or 65537 or much greater yet. As an example, let
us take the modulus 17. Then the following two pairs of tables
show the logarithms for the 8 different bases 3,5,6,7,10, 11, 12, 14.

Nat. nos.%-lﬁ -14 -8 -7 —4-12 -2 -6 —1 -3 -9-I10 ~I3 -5 -I5-II —16
' '3 91013 5 15 11 16 14 8 7 4 12 2 6 1
{orz345678910:11213141516
Logs.
-16 -15 ~14 ~13 -12 -I11 -10 -9 -8 -7 6 -5 -4 -3 -2 -1 o
Nat. nos‘{_m “I5-14-13-12-11-10 9 -8 -7 -6 —5 -4 -3 -2 -1
1 2 45678910:112131415:6

0 14 I 12 515 11 10 2 3 7 13 4 9 6 8

Logs. 16 -2-15 —4-11 -1 -§ -6 -14-13 -9 -3-12 -y-10 -8

3
-16-12 9 -I11 -4 -3 -1§ -7 -1 -5 -8 6-13-14 —2-10
5§ 8 6 13 14 2 10 16 12 9 II 4 3 15 ¢
1 2

3

[¢] 345678910:::2:3x415

Logs. -16 -15 ~14 -13 -12 ~11 -10 -9 -8 -7 6 -§ -4 -3 -2 -1

-16 15 -14 —13 —I2 —II 10 -9 -8 -7 6 -5 -4 -3 -2 -1

Nat. nos. 1 2 4 5 6 7 8 9 10 11 12 13 14 15 16

i
Nat. nos. |
%
{

L{0613xzx3152107x1945148
ogs.
~16 -10 -3 -4 -1§ -13 -1 -14 -6 -9 -§ -7 -1a-11 -2 -8

Of course, none of the even numbers can be logarithms of a
possible base of another system since with a modulus 16 no multiple
of an even number can be 1, the logarithm of the base. On the
other hand, every odd number is in every system of logarithms the
logarithm of some base. ,

If, instead of 13 cards and 12, the “trick” be done with 17 and
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16, say the first eight hearts increasingly and then the first eight
diamonds decreasingly, with the joker or king of hearts to make
up 17 and with the first eight spades to correspond with the hearts
and the first eight clubs to correspond with the diamonds, laying
down the black cards on the table, in two rows, one of eight from
left to right, and the other below from right to left, after having
dealt the black cards 16 times into three piles and every time ex-
changing the top card of the middle pile for the topmost red card,
SO as to bring the ace of spades into the right-hand-most place of
the upper row, then having done the trick substantially as above
described, there is a very pretty way in which you can ask into
what odd number of piles the black cards shall be dealt and then deal-
ing out the red cards, minus the extra one 16 times exchanging a card
each time for the three court cards and ten of each suit, so as to
again render the black ones the index of the places of the red ones.
But I leave it to the reader’s ingenuity to find out exactly how this
is to be done. Beware of the moduli. .

There is much more to be said on this subject, but I leave it
for the reader to investigate.

CHARLES SANTIAGO SANDERS PEIRCE.
MILFORD, Pa.

NOTE REFERRED TO ON PAGE 4s2.

Denumeral is applied to a collection in one-to-one correspondence to a
collection in which every member is immediately followed by.a single other
member, and in which but a single member does not, immediately or mediately,
follow any other. A collection is in one-to-one correspondence to another,
if, and only if, there is a relation, 7, such that every member of the first col-
lection is # to some member of the second to which no other member of the
first is 7, while to every member of the second some member of the first is 7,
without being 7 to any other member of the second. The positive integers
form the most obviously denumeral system. So does the system of all real
integers, which, by the way; does not pass through infinity, since infinity itself
is not part of the system. So does a Cantorian collection in which the endless
series of all positive integers is immediately followed by w;, and this by w41,
this by w;+2, and so on endlessly, this endless series being immediately followed
by 20 Upon this follow an endless series of endless series all positive integer
coefficients of w;, being exhausted, whereupon immediately follows w?, and in
due course rw}+4yw,+z, where %, ¥, 2, are integers; and so on; in short, any
system in which every member can be described so as to distinguish it from
every other by a finite number of characters joined together in a finite number
of ways, is a denumeral system. For writing the positive whole numbers in
any way, most systematically thus:

o .5 10, 11, 100, 101, 110, III, 1000, 1001, I0IO, IOII, etc.

it is plain that an infinite square matrix of pairs of such numbers can be ar-
ranged in one series, by proceeding along successive bevel lines thus: (1, 1);
(1,10); (10,1): (1, 11); (10, 10); (11, 1): (1, 100) ; (10; 11); (11; 10) ; etc.
and consequently whatever can be arranged in such a square can be arranged
in one row.
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Thus an endless square of quaternions such as the following can be so
arranged:

[(r,1) (LOl:[11 (1L10)]; [(1,1) (10,0]: (1) (1,11)]; ete.
[(z,10) (1,1)]: [(1,10) (1,10)]; [(1,10) (10,1)] : [(z,10) (1,11)]; etc.
[(zo0,1) (1,1)] : [(10,1) (1,10)]; [(1O,T) (r0,1)] : [(10,1) (1,11)]; etc.
[(r,x1) (1,1)]: [(1,11) (1,70)]; [(1,11) (x0,1)]: [(z,11) (1,11)]; etc.

Consequently whatever can be arranged in a block of any finite number of
dimensions can be arranged in a linear succession. Thus it becomes evident
that any collection of objects, every one of which can be distinguished from
all others by a finite collection of marks joined in a finite number of ways can
be of no greater than the denumeral multitude. (The bearing of this upon
Cantor’s @@ is not very clear to my mind.) But when we come to the
collection of all irrational fractions, to exactly distinguish each of which from
all others would require an endless series of decimal places, we reach a greater
multitude, or grade of maniness, namely, the first abnumerable multitude. It is
called “abnumerable,” to mean that there is, not only no way of counting the
single members of such a collection so that, at last, every one will have been
counted (in which case the multitude would be enumerable), but, further,
there is no way of counting them so that every member will after a while get
counted (which is the case with the single multitude called denumeral). It is
called the first abnumerable multitude, because it is the smallest of an endless
succession of abnumerable multitudes each smaller than the next. For what-
ever multitude of a collection of single members # may denote, 24, or the
multitude of different collections, in such collection of multitude , is always
greater than u. The different members of an abnumerable collection are not
capable of being distinguished, each one from all others, by any finite collec-
tion of marks or of finite sets of marks. But by the very definition of the first
abnumerable multitude, as being the multitude of collections (or we might as
well say of denumeral collections) that exist among the members of a de-
numeral collection, it follows that all the members of a first-abnumerable col-
lection are capable of being ranged in a linear series, and of being so described
that, of any two, we can tell which comes earlier in the series. For the two
denumeral collections being each serially arranged, so that there is in each a
first member and a singular next later member after each member, there
will be a definite first member in respect to containing or not containing which
the two collections differ, and we may adopt either the rule that the collection
that contains, or the rule that the collection that does not contain, this member
shall be earlier in the series of collections. Consequently a first-abnumerable
collection is capable of having all its members arranged in a linear series.
But if we define a pure abnumerable collection as a collection of all collections
of members of a denumeral collection each of which includes a denumeral
collection of those members and excludes a denumeral collection of them,
then there will be no two among all such pure abnumerable collections of
which one follows next after the other or of which one next precedes the
other, according to that rule. For example, among all decimal fractions
whose decimal expressions contain each an infinite number of 1s and an in-
finite number of os, but no other figures, it is evident that there will be no
two between which others of the same sort are not intermediate in value.
What number for instance is next greater or next less than one which has
a 1 in every place whose ordinal number is prime and a zero in every place
whose ordinal number is composite? :IIT0I0IO00I0IOO0IOIOO00IO0000I etc.
Evidently, there is none; and this being the case, it is evident that all members
of a pure second-abnumerable collection, which both contains and excludes
among its members first-abnumerable collections formed of the members of
a pure first-abnumerable collection, cannot, in any such way, be in any linear
series. Should further investigation prove that a second-abnumeral multitude
can in #o way be linearly arranged, my former opinion that the common con-
ception of a line implies that there is room upon it for any multitude of points
whatsoever will need modification.
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Certainly, I am obliged to confess that the ideas of common sense are not
sufficiently distinct to render such an implication concerning the continuity
of a line evident. But even should it be proved that no collection of higher
multitude than the first abnumerable can be linearly arranged, this would be
very far from establishing the idea of certain mathematico-logicians that a
line consists of points. The question is not a physical one: it is simply
whether there can be a consistent conception of a more perfect continuity
than the so-called “continuity” of the theory of functions (and of the differen-
tial calculus) which makes the continuum a first-abnumerable system of
points. It will still rémain true, after the supposed demonstration, that no
collection of points, each distinct from every other, can make up a line, no
matter what relation may subsist between them; and therefore whatever mul-
titude of points be placed upon a line, they leave room for the same multitude
that there was room for on the line before placing any points upon it. This
would generally be the case if there were room only for the denumeral
multitude of points upon the line. As long as there is certainly room for the
first denumerable multitude, no denumeral collection can be so placed as to
diminish the room, even if, as my opponents seem to think, the line is com-
posed of actual determinate points. But in my view the unoccupied points
of a line are mere possibilities of points, and as such are not subject to the
law of contradiction, for what merely can be may also not be. And therefore
there is no_cutting down of the possibility merely by some possibility having
been actualized. A man who can see does not become deprived of the power
merely by the fact that he has seen.

The argument which seems to me to prove, not only that there is such
a conception of continuity as I contend for, but that it is realized in the
universe, is that if it were not so, nobody could have any memory. If time,
as many have thought, consists of discrete instants, all but the feeling of the
present instant would be utterly non-existent. But I have argued this else-
where. The idea of some psychologists of meeting the difficulties by means of
the indefinite phenomenon of the span of consciousness betrays a complete
misapprehension of the nature of those difficulties.

Added, 1908, May 26. In going over the proofs of this paper, written
nearly a year ago, I can announce that I have, in the interval, taken a con-
siderable stride toward the solution of the question of continuity, having at
length clearly and minutely analyzed my own conception of a perfect con-
tinsum as well as that of an imperfect continuum, that is, a continuum having
topical singularities, or places of lower dimensionality where it is interrupted
or divides. These labors are worth recording in a separate paper, if I ever
get leisure to write it. Meantime, I will jot down, as well as I briefly can,
one or two points. If in an otherwise unoccupied continuum a figure of lower
dimensionality be constructed,—such as an oval line on a spheroidal or anchor-
ring surface,—either that figure is a part of the continuum or it is not. If it
is, it is a topical singularity, and according to my concept of continuity, is a
breach of continuity. If it is not, it constitutes no objection to my view that
all the parts of a perfect continuum have the same dimensionality as the
whole. (Strictly, all the material, or actual, parts, but I cannot now take the
space that minute accuracy would require, which would be many pages.)
That being the case, my notion of the essential character of a perfect con-
tinuum is the absolute generality with which two rules hold good, 1st, that
every part has parts; and 2d, that every sufficiently small part has the same
mode of immediate connection with others as every other has. This mani-
festly vague statement will more clearly convey my idea (though less dis-
tinctly,) than the elaborate full explication of it could. In endeavoring to
explicate “immediate connection,” I seem driven to introduce the idea of
time. Now if my definition of continuity involves the notion of immediate
connection, and my definition of immediate connection involves the notion of
time; and the notion of time involves that of continuity, I am falling into a
circulus in definiendo. But on analyzing carefully the idea of Time, I find
that to say it is continuous is just like saying that the atomic weight of
oxygen is 16, meaning that that shall be the standard for all other atomic
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weights. The one asserts no more of Time than the other asserts concerning
the atomic weight of oxygen;—that is, just nothing at all. If we are to sup-
pose the idea of Time is wholly an affair of immediate consciousness, like
the idea of royal purple, it cannot be analyzed and the whole inquiry comes to
an end. If it can be analyzed, the way to go about the business is to trace out in
imagination a course of observation and reflection that might cause the idea
(or_so much of it as is not mere feeling) to arise in a mind from which it was
at first absent. It might arise in such a mind as a hypothesis to account for
the seeming violations of the principle of contradiction in all alternating
phenomena, the beats of the pulse, breathing, day and night. For though the
idea would be absent from such a mind, that is not to suppose him blind to
the facts. His hypothesis would be that we are, somehow, in a situation like
that of sailing along a coast in the cabin of a steamboat in a dark night
illumined by frequent flashes of lightning, and looking out of the windows.
As long as we think the things we see are the same, they seem self-contra-
dictory. But suppose them to be mere aspects, that is, relations to ourselves,
and the phenomena are explained by supposing our standpoint to be different
in the different flashes. Following out this idea, we soon see that it means
nothing at all to say that time is unbroken. For if we all fall into a sleeping-
beauty sleep, and time itself stops during the interruption, the instant of
going to sleep is absolutely unseparated from the instant of waking; and the
interruption is merely in our way of thinking, not in time itself. There are
many other curious points in my new analysis. Thus, I show that my true
continuum might have room only for a denumeral multitude of points, or it
might have room for just any abnumeral multitude of which the units are in
themselves capable of being put in a linear relationship, or there might be room
for all multitudes, supposing no multitude is contrary to a linear arrangement.



