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Abstract 

We study the effect of algorithmic trading (AT) on market quality between 2001 and 2011 in 42 
equity markets around the world. We use exchange co-location service that increases AT as an 
exogenous instrument to draw causal inference of AT on market quality. On average, AT improves 
liquidity and informational efficiency but increases short-term volatility. Importantly, AT also 
lowers execution shortfalls for buy-side institutional investors. Our results are surprisingly 
consistent across markets and thus across a wide range of AT environments. We further document 
that the beneficial effect of AT is stronger in large stocks than in small stocks.  
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I.  Introduction  

By most accounts, high frequency trading (HFT) represents the majority of the trading 

volume in today’s equity markets.1 Besides the sheer trading volume, HFT is important because 

their strategies are often not transparent, nor are the underlying strategies well understood. These 

reasons elicit substantial public policy interest in the effects that HFT has on other market 

participants, trading strategies, and the quality of markets. Security-market regulators around the 

world actively debate whether and, if so, how HFT should be regulated, and regularly scrutinize 

algorithmic and high-frequency order submission strategies and their consequences. Despite the 

intensity of this debate and a large theoretical and empirical literature in this area, many questions 

remain unanswered (see, e.g., Chordia et al. (2013), Jones (2013), O’Hara (2015), and Menkveld 

(2016) for reviews).  

In this paper, we take a basic but comprehensive approach that contributes new insights 

and novel broad-sample evidence to this debate. Following Hendershott, Jones, and Menkveld 

(2011), we construct proxies for algorithmic trading (AT) intensity, a precondition for HFT, from 

order-related message traffic, and estimate an instrumental variable model that allows us to make 

causal inferences.  We use eleven years of intraday data on security-level quotes and trades in 42 

equity markets around the world, on average covering more than 21,507 firms per year. This new 

and comprehensive sample allows us to exploit the effect of AT intensity on market quality across 

stocks, markets, and trading infrastructures.2 

                                                        

1 HFT, also called low latency trading (LLT), refers to the activity of algorithms that emit orders or order cancellations, 
reacting within milli- or nano-seconds to market updates or new information. 
2 Strictly speaking, HFT is a subset of algorithmic trading. HFT likely accounts for most algorithmic message traffic 
and volume. Because our analysis of AT has implications for HFT, we often use the terms “algorithmic trading” and 
“high frequency trading” interchangeably. 
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In addition to examining the relationship between algorithmic trading and standard market 

quality metrics of liquidity, informational efficiency, and short-term volatility, we investigate how 

AT affects buy-side institutional investors. Market quality metrics are indicators of specific aspects 

of overall market quality. With HFT accounting for a large fraction of trading, market wide 

statistics do not necessarily reflect the trading outcome for other market participants. For instance, 

institutional investors trade large quantities of shares and execute their orders over an extended 

period of time. This trading behavior increases the chances that these participants become targets 

of predatory trading or “back running” strategies that some high frequency traders use, hence 

leading to greater trading costs (Brunnermeier and Pedersen (2005), Yang and Zhu (2019)). 

Therefore, the net effect of higher AT intensity on institutional investors’ execution costs is an 

open empirical question. As an overall assessment of the impact of AT intensity on institutional 

investors, we estimate and analyze a commonly used trading cost measure that can be applied to 

large institutional orders, execution shortfall, using trade records of institutional investors around 

the world. 

To help draw causal inferences of AT intensity on market quality, we use the formal 

introduction of co-location services as an exogenous instrument for AT intensity, an instrument 

with the same interpretation across markets that differ in trading protocols and market structure. 

Co-location allows fast traders to minimize data turnaround time by physically locating their 

computer hardware close to the exchange’s hardware. The event itself, the actual introduction of 

co-location services, marks the exchange’s commitment to low-latency infrastructure. Other things 

equal, this commitment makes the exchange more attractive to AT and should thus lead to an 

increase in AT intensity. Conversely, the introduction of co-location services has little direct 

impact on market quality (Menkveld and Zoican (2017)). Therefore, we develop instruments based 

on co-location events and use them to help assess the effect of AT on market quality.  
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We find that AT affects various dimensions of market quality. First, higher AT intensity 

improves liquidity. Specifically, we find that higher AT leads to smaller quoted and effective 

spreads. Second, more AT results in higher price efficiency. Stocks with higher AT intensity have 

smaller absolute value of autocorrelations of intraday returns, an indicator of prices being more 

random. Third, higher AT intensity increases short-term volatility: daily price range, intraday 

return variances and daily return volatility all increase with AT intensity. 

We see at least two reasons why elevated volatility could be desirable. First, the more 

efficient markets are, the faster prices change in response to new information, producing 

presumably desirable price volatility. It is thus conceivable that the greater efficiency induced by 

more AT also produces higher desirable volatility. To address this issue empirically, we hold 

constant each stock’s level of informational efficiency, and still find that AT increases volatility. 

Therefore, it is unlikely that the AT-induced change in volatility is due solely to the “good” 

volatility associated with faster price discovery. 

Second, volatility could increase when AT is more intense because some fast traders may 

prefer high-volatility environments. It is conceivable that these fast traders enter the market when 

volatility is high as a by-product of a market-making strategy. In this case, high volatility could be 

desirable because it attracts additional liquidity that would otherwise be absent. We analyze this 

possibility empirically by relating AT’s effect on volatility to its contemporaneous effect on 

liquidity. We find that on days when AT leads to higher volatility, AT also induces lower liquidity. 

This link between volatility and liquidity suggests that either the same traders who generate higher 

volatility also cause lower liquidity by withdrawing their supply of liquidity or that the traders 

attracted by high volatility take liquidity rather than provide liquidity. Either way, AT activity that 

takes place during high-volatility episodes and lower liquidity appears undesirable to the market.  

Although we document higher volatility induced by greater AT, we are agnostic about the 

exact causes of such high volatility. More intense AT-induced volatility is consistent with the 
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model by Rosu (2019), who shows that volatility increases when more high frequency traders enter 

the market or when their information becomes more precise. One might be concerned, however, 

that the AT effect on volatility we document could be driven by the release of firm fundamental 

news. To mitigate this concern, we control for firm news announcements in our analysis.  We find 

that a stock’s volatility is indeed high at news announcements, but AT’s effect on volatility extends 

well beyond the news event itself.   

The multifaceted effects of AT on traditional measures of market quality motivate us to 

look at buy-side institutional transaction costs. For buy-side institutions, smaller spreads may help 

lower their trading costs, but higher information efficiency could increase their costs of trading 

with informed traders. Furthermore, higher volatility could increase their trading costs because 

large orders take longer time to execute and prices may be pushed away while their orders are 

being executed.  Thus, ex ante it is not clear how execution shortfalls, which capture cumulative 

price impact of a large order over the entire execution period rather than the half-spread for a single 

market order, are affected by AT. We find that the net effect of AT is beneficial for buy-side 

institutional investors: higher AT intensity reduces execution shortfalls.   

While the average effect of AT on market quality has both benefits and costs, we observe 

substantial variation in AT intensity. Thus, understanding the cross-sectional differences of the 

benefits and costs of greater AT intensity is important. We examine how AT’s effect on market 

quality varies with market capitalization. For example, providing liquidity in large-cap stocks 

requires less effort and their trading is active enough to allow for significant algorithmic activity. 

Implementing high-frequency market-making strategies in particular is likely easier in large-cap 

stocks than in small-cap stocks.  To analyze these issues, we divide stocks into terciles based on 

market capitalization within each equity market and allow the effect of AT to vary across sizes. 

We observe that the benefits of high AT intensity are more pronounced among large and 

medium stocks than in small stocks. When AT increases, small stocks experience less liquidity 
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improvement and little price efficiency enhancement. The main costs of high AT intensity, in terms 

of elevated volatility, are higher in small stocks than in large stocks. These findings suggest some 

segmentation of liquidity provision across large and small stocks, indicating that potential 

regulations on HFT should not impose one-size-fits-all rules. 

Our study contributes to the growing literature on HFT in the following ways.  First, we 

provide new large-sample, cross-country evidence of AT’s effect on market quality. Existing 

literature offers mixed evidence on the effect that HFT has on market quality. Many studies find 

that HFT increases liquidity and price discovery, but others raise concerns about the quality or 

usefulness of HFT-provided liquidity, noting that such liquidity is often short-lived and negatively 

affects information acquisition and volatility.3 This is partly due to the fact that most studies either 

employ a small sample of U.S. stocks traded by HFT firms or focus on a sample from a particular 

market outside the U.S.4 Our analysis of a large international sample, particularly covering a period 

when algorithmic trading becomes more mature around the globe, helps draw broader inference 

on the effect of AT on market quality.  

Second, our examination and results of the relationship between algorithmic trading and 

volatility shed light on an overlooked issue that has potential policy implications. In contrast to 

prior findings that market-making HFT reduces volatility based on 30 stocks listed on Nasdaq-

OMX Stockholm (Hagströmer and Nordén (2013)), we find that across a large number of equity 

markets, more intense AT activity induces higher volatility. Our finding contributes to the 

                                                        

3 For example, among others, Brogaard et al. (2014) find improved liquidity by HFT. Hasbrouck and Saar (2009) 
document the “fleeting” nature of many limit orders in electronic markets, questioning the traditional view that limit 
orders provide liquidity to the market. Weller (2018) finds that AT can reduce price informativeness due to less 
information acquisition. 
4 For example, among other studies that look at markets outside the U.S., Hendershott and Riordan (2013) examine 
30 German stocks in a stock index on the Deutsche Boerse in January 2008; Menkveld (2013) examines one HFT firm 
on Euronext and Chi-X; Brogaard et al. (2015) examine NASDAQ OMX Stockholm; Anand and Venkataraman 
(2016) look at Toronto Stock Exchange; van Kervel and Menkveld (2019) examine Swedish market for large cap 
stocks.  
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theoretical debate on the relation between high frequency market-making and volatility (Baruch 

and Glosten (2016), Yueshen (2017), and Rosu (2019)). 

Third, our study goes beyond examining AT’s effect on traditional trading cost measures 

such as bid-ask spreads. Our analysis of buy-side institutions improves our understanding of how 

AT affects this important group of market participants. We show that these institutions incur lower 

execution costs when AT intensity is higher. Our international evidence complements recent 

studies that examine execution costs on a specific market (e.g., van Kervel and Menkveld (2019) 

on Swedish index stocks; Korajczyk and Murphy (2019) on the Canadian market; and Tong (2015) 

on Nasdaq).  

Fourth, we establish important differences across stock sizes in the effect of AT on market 

quality under different trading environments.  This is important, because given the increasing focus 

on how to regulate HFT, our results suggest segmentation of liquidity provision and imply that 

optimal regulation may need to impose different rules on different categories of stocks.  

Our paper is organized as follows. In Section II, we discuss our data sources and define the 

key variables used in our analysis. We discuss our empirical design in Section III and present our 

main results in Section IV. Section V provides additional analysis and discussion. Section VI 

concludes. 

II.  Data and Variables 

A.       Data sources 

We combine several data sources for our analysis. The Thomson Reuters Tick History 

(TRTH) database contains intraday trades and quotes for many equity markets around the world. 

Intraday trades and quotes for U.S. stocks listed on NYSE and NASDAQ are from the Trades and 

Quotes (TAQ) database. We use Thomson Reuters Datastream and Center for Research and 

Security Prices (CRSP) to obtain stock-level and market-level data. In addition, data on buy-side 
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institutional transaction costs come from the Ancerno database compiled by Ancerno Ltd. 

(formerly the Abel/Noser Corporation). Finally, we use RavenPack to obtain data on a firm’s news 

release.  

The TRTH database (supplied by the Securities Industry Research Centre of Asia-Pacific, 

SIRCA) provides access to the data feeds from various stock and derivatives exchanges that are 

time-stamped to the millisecond and transmitted through Reuters' terminals. TRTH organizes data 

by the Reuters Instrument Code (RIC). Each RIC is associated with a list of characteristics, such 

as asset class (e.g., equity), market, currency denomination, the date of the first and the last record, 

and the ISIN and SEDOL where applicable. The database contains more than 5 million equity and 

derivatives instruments around the world. A company may have multiple RICs representing 

common shares, preferred shares, different share classes, or securities in special trading status. To 

both create a comprehensive sample of RICs for each market and avoid double counting, we focus 

on one common stock per company, traded in the home country and in local currency. As TRTH 

has limited coverage of these screening variables, we construct our sample by first merging TRTH 

with Datastream by identifying matches between RIC and Datastream firm identifiers.  

Datastream identifies securities by DSCODE, which uniquely identifies a security-trading 

venue combination. Each DSCODE is associated with a comprehensive list of static securities 

information. We retain only the DSCODE in the local market, traded in the local currency and 

identified as “major security” and “primary quote.” These screening criteria lead to one DSCODE 

per domestic company, each having a unique ISIN. We are interested in the primary trading 

location, which coincides with the listing exchange in all markets except Germany. For Germany, 

we use XETRA (the primary trading location) rather than Frankfurt (the primary listing location), 

because XETRA handles roughly 90% of volume for most stocks in our sample period. We merge 

the two data sources as follows: For each exchange, we obtain the ISIN and the history of high, 

low, and last trade price for each RIC from the TRTH database. We find the corresponding trading 
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venue on Datastream and identify the unadjusted daily price, market capitalization, and the 

adjustment factor (dilution) for each screened DSCODE. Then we match RIC to DSCODE using 

ISIN. There may be more than one RIC per DSCODE if a company changes the trading symbol. 

We validate the match by comparing the Datastream price history to the TRTH price history after 

adjusting for currency-reporting differences. 5 This procedure, together with TAQ, produces stocks 

trading on 42 equity exchanges in 37 countries spanning from 2001 to 2011.6 

The TRTH data have qualifiers that contain market-specific codes denoting the first trade 

of the day, auction trades, and irregular trades (such as off-market trades or option exercises). We 

remove irregular trades before computing intraday variables.  

Trading hours differ across exchanges and over time. We determine each exchange’s 

historical trading hour regime by examining the trade frequency across all stocks on the exchange 

at 5-minute intervals. We identify the opening and closing times of regular trading from spikes 

and drops in trading activity across all stocks at each exchange. We cross-check our approach 

against the trading hour regime and the trading mechanism entries listed in Reuters’ Speedguide 

and the Handbook of World Stock, Derivative and Commodity Exchanges.  

We also employ data from Ancerno in our analysis. Ancerno provides transaction costs 

analysis for its institutional buy-side clients. Each Ancerno data record includes an anonymized 

client code, a broker code, the CUSIP and ISIN for the stock, the date of execution, the execution 

price, and the number of shares executed, as well as whether the execution is a buy or sell. Multiple 

trades are often associated with a client on a particular stock day. We match the Ancerno data to 

CRSP and Datastream data using date, CUSIP, ISIN, and ticker. To accommodate investors who 

                                                        

5 TRTH prices are historical prices in the original currency. Datastream unadjusted prices are historical prices in the 
current currency unit, e.g., French stocks prior to 1999 were traded in French franc. We convert Datastream prices to 
Euro equivalents.  
6  We drop Ireland, where data is available for fewer than 30 stocks prior to 2008.  China has three exchanges covered 
in Datastream (Hong Kong, Shenzhen, and Shanghai); India (Mumbai and National exchanges), Japan (Tokyo and 
Osaka), and the U.S. (NYSE and Nasdaq) have two; and all other countries have one exchange included in the sample. 
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split orders across brokers, we follow Anand et al. (2012) by aggregating trades into daily orders 

by client, stock, date, and trade direction. 

Ravenpack, a leading news provider that covers corporate news releases, is used for some 

of our analysis. RavenPack generates company relevance scores ranging from 0 to 100 to measure 

the informational content of a news story. The company relevance scores allow researchers to 

extract news articles that are related to a specific company in the database. A relevance score equal 

to 100 indicates that a company is quoted as the main subject of a news release. Following Dai, 

Parwada, and Zhang (2015), we record the presence of news articles that are related to a specific 

company with relevance scores equal to 100 on a particular day.  

B.        Variable construction 

Our main objective is to examine the effect of algorithmic trading on market quality. 

Following previous literature, we construct variables that describe several dimensions of market 

quality, focusing on liquidity, informational efficiency, and volatility. We also construct measures 

for buy-side institutional trading costs. We describe these variables in this subsection, along with 

our proxies for AT. 

Liquidity measures 

We compute several standard measures of liquidity. For each stock, we have the best 

quoted spread throughout the trading day. For a given time interval s, the relative quoted spread, 

RQS, is defined as 

 RQSs = (Asks - Bids) / ((Asks + Bids)/2)      (1) 

where Asks is the best ask quote and Bids is the best bid quote in that time interval. We standardize 

the quoted bid-ask spread by the quote midpoint. When aggregating over a trading day, we use 

time-weighted averages of RQS. Wider RQS suggests less liquidity. 
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To take into account possible price improvement arising from hidden liquidity, we compute 

the relative effective spread, RES. The RES on the  trade is defined as  

 RESk = 2Dk (Pk - Mk)/ Mk      (2) 

where Dk is an indicator variable that equals +1 if the  trade is a buy and -1 if the  trade is a 

sell, Pk  is the price of the  trade, and Mk is the prevailing midpoint at the time of the  trade. 

We follow the standard trade signing approach of Lee and Ready (1991) and use contemporaneous 

quotes to sign trades and calculate effective spreads (see Bessembinder (2003) for example). We 

then standardize the measure by the quote midpoint at the time of the trade. RES measures the total 

price impact of a trade.  

We further decompose this price impact into a permanent (information-related) relative 

price impact, RPI, and a transitory component, the relative realized spread, RRS. We base both 

components on the quote midpoint that prevails five minutes after the trade. RRS on the  trade 

is defined as 

RRSk = 2Dk (Pk - Mk+5)/ Mk      (3) 

where Mk+5 is the midpoint five-minutes after the  trade. RRS can be interpreted as the reward 

for providing liquidity. 7 

 The permanent component, RPI, is defined as  

RPIk = (RESk -RRSk) = 2Dk (Mk+5 - Mk)/ Mk    (4) 

and measures the change in quote midpoints that is attributable to the information content of the 

trade. We compute trade-weighted averages of RES, RRS, and RPI for each stock-day.  

                                                        

7 We follow the convention in the literature to use a 5-minute post-trade horizon (e.g., Boehmer, et al (2007), O’Hara 
and Ye (2011), Battalio, et al (2016)). This appears reasonable during our sample period 2001-2011. In the U.S. market 
after 2011, Conrad and Wahal (2019) show that a shorter post-trade horizon can better capture liquidity provision by 
high frequency market makers.  

thk

thk thk

thk thk

thk

thk
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Informational efficiency 

We compute intraday measures of relative informational efficiency following Boehmer and 

Kelley (2009). For most of our analysis we rely on intraday measures of quote midpoint 

autocorrelation. If prices are efficient and follow a random walk, these measures should be close 

to zero at all horizons. Deviations from zero in either direction indicate partial predictability and 

less efficiency. We thus use the absolute value of quote midpoint return autocorrelations. The 

larger this value is, the less efficient the prices are. We estimate this measure for each stock-day, 

|AR10| (|AR30|), based on 10- (30-) minute return intervals (see Chordia et al. (2005)).  

Volatility 

Our primary measure of short-term volatility is the intraday range between the highest and 

lowest prices of a day standardized by the daily closing price.  This measure is useful because it 

reflects intraday fluctuations in share prices that may trigger or result from algorithmic trading. As 

higher-frequency measures, we also use the log of intra-day return variances computed from 10-

minute and 30-minute mid-quote returns, Ln(Ret10_Var) and Ln(Ret30_Var). Additionally, we 

compute measures of realized volatility using the absolute value of daily returns.   

Execution shortfall  

In addition to the above traditional measures, we use execution shortfall for the buy-side 

firms that report to Ancerno (e.g. Anand et al. (2012)). In contrast to the trade-and-quote-based 

measures, the shortfall represents actual execution expenses for an institution’s order flow. We 

define daily execution shortfall, SHORTFALL, as: 

SHORTFALL = Dk ( XP – RP ) / RP     (5) 

where Dk is an indicator variable that equals +1 if the  trade is a buy and -1 if the  trade is a 

sell, XP is the volume weighted average price across component trades of a daily order and RP is 

the reference price, defined as the opening price on the day of the order.  

thk thk
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Proxy for AT 

The spread of AT over the past two decades has spurred many studies to develop measures 

of AT and examine their consequences. Some studies are able to observe the actual identifier for 

a group of HF traders. For example, within the U.S. market, Brogaard et al (2014), Brogaard et al 

(2015) and Carrion (2013) use a 2008-2009 Nasdaq sample that summarizes the aggregate order 

flow generated by 26 HFT firms that capture about three quarters of trading volume in the sample 

stocks. A few other studies have access to actual HFT data for a specific foreign market.8 Most of 

the remaining studies (e.g., Hendershott, Jones, and Menkveld (2011), Hasbrouck and Saar (2013)) 

use some variations of message-to-trade ratios as proxies for AT/HFT. Messages refer to trades, 

order arrivals, or order cancellations. Because many algo-trading strategies involve frequent 

cancel-and-replace order traffic, the proportion of traffic that leads to a trade is typically much 

smaller for algorithmic traders than for non-algorithmic traders. Message-to-trade ratios are well 

accepted as AT proxies in the trading industry. They allow researchers to use the full panel of 

stock-days for which standard intraday trade and quote data are available and, in principle, allow 

the strongest inferences.  

We follow Hendershott, Jones, and Menkveld (2011) and construct a proxy for AT that 

reflects fast order submissions and cancellations that are associated with algo-trading strategies. 

Specifically, the proxy for AT is the negative of trading volume in USD100 divided by the number 

of messages. It represents the negative of the dollar volume associated with each message (defined 

as either a trade or a quote update). An increase in this measure reflects an increase in algorithmic 

activity. 

                                                        

8 For example, outside the U.S., Hendershott and Riordan (2013) examine 30 Deutscher Aktien Index stocks on the 
Deutsche Boerse in January 2008. Menkveld (2013) examines one HFT firm on Euronext and Chi-X. Brogaard et al. 
(2015) find NASDAQ OMX Stockholm introduction of optional colocation improve effective spread and depth for 
slow traders and the market overall. Anand and Venkataraman (2016) find that synchronous withdrawal of liquidity 
provision by HFT firms under difficult market conditions contributes to fragility of liquidity supply on Toronto Stock 
Exchange. 
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Our AT measure is well suited for international and inter-firm comparisons, because it 

provides a continuous scale of relative AT intensity for each market (rather than an on-off switch, 

or an absolute measure that does not recognize differences across markets). It thus allows us to use 

the same measure across a variety of market structures that differ substantially in the degree to 

which AT is prevalent. Perhaps more importantly, using a relative measure of AT intensity allows 

the nature of “fast” or “low-latency” trading to differ across markets. For example, some markets 

impose hurdles to fast quoting.  AT will remain more intense in some stocks and some episodes 

than in others traded on the same exchange. Moreover, because our proxy represents a relative 

measure of AT, we can use it to compare the effect of AT across countries even when comparing 

a market with latency measured in nanoseconds to one where it is measured in seconds. In either 

market, HF traders gain by being faster than other traders and our relative, continuous measure of 

AT captures this contrast well.9  

Our measure of AT differs in an important way from the one used by Hendershott, Jones, 

and Menkveld (2011), who have access to order-level messages. For our worldwide sample, we 

have access only to a subset of these messages, observing each exchange’s best quotes and trades, 

rather than all order-related messages. Conceptually, using just trades and changes in the best 

quotes should not impose serious problems on our analysis. For example, the HFT strategies 

mentioned in the SEC 2010 concept release involve most activity at the BBO, rather than behind 

                                                        

9 The AT proxy also has potential drawbacks. First, as suggested by Hendershott, Jones, and Menkveld (2011), it may 
have low power for small stocks due to less algorithmic trading. For small stocks the AT proxy could potentially 
capture market uncertainty, when orders are submitted and cancelled yet few of those orders result in transactions. To 
mitigate this concern, we explicitly control for market cap in our regression analysis. Second, the AT proxy may not 
be very good during the release of news announcements. Fundamental volatility is high during news announcements, 
and the event, rather than algorithmic trading, could cause a high number of electronic messages to transaction volume 
ratio and high price volatility. To help address this concern, we control for news announcements in additional analysis. 
Our results suggest that the AT proxy is a reasonable proxy for algorithmic trading even in the presence of high 
fundamental volatility during news releases. 
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it. Therefore, the AT activity in our BBO trade data set is highly correlated with AT activity in an 

order trade dataset.10 

III.  Sample and Methodology 

A.        Descriptive statistics 

To be included in our analysis, a stock needs to have data for more than 21 trading days 

during the sample period to minimize the concern of thin trading. We then winsorize all variables 

each day at 0.5% and at 99.5% within each market. To illustrate the breadth of our sample, Table 

1 lists the number of stocks for each market. For the average year, our sample includes about 

21,507 firms, and we have substantial variation across markets. Over the sample period, the 

number of listed firms increases, on average, by more than half, or from 473 to 560.  

Our key variable is the distribution of message traffic (the number of all quote changes and 

all trades), the main component of our algorithmic trading proxy. For each market, Table 2 lists 

the average number of messages per stock day in 2001 and in 2011 along with the growth over 

this eleven-year period. We make several important observations. First, message traffic grows over 

time, often many folds, with the exception of Greece. Overall, message traffic grows by more than 

ten times across markets, from 289 messages per stock day in the beginning of the sample period 

to 4,042 in 2011. This development is consistent with AT playing an increasingly important role 

around the world. Figure 1 shows that this growth accelerates exponentially during the second half 

                                                        

10 We formally address the correlation between AT measures based on order level data, and AT based on trades and 
best quotes. We repeat Hendershott, Jones, and Menkveld (2011)’s time-series and panel results for the U.S. using 
order-level data and compare the results to the ones we obtain with our data and our version of the AT measure. The 
time series in which our order level data and the TAQ data overlap is very similar to the period presented in 
Hendershott, Jones, and Menkveld (2011). Our exercise using only NYSE activity yields qualitatively identical results 
for their order-level count and our count of trades and inside quote changes. This result is not surprising because the 
correlation of these two series, for the average stock, exceeds 0.9. Therefore, we have little reason to expect our AT 
proxy to deliver substantially different results than the Hendershott, Jones, and Menkveld (2011) proxy. 
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of the decade when exchanges started to offer co-location services. Figure 1 also reveals that most 

of the message growth comes from quote messages rather than trade messages, further motivating 

our AT proxy for the unobservable AT intensity.11  

Figure 2 presents the monthly time-series of liquidity, efficiency, and volatility, 

respectively. For each market day, we first compute an equally weighted average across firms, and 

then calculate the average within each market month. In the figure, we plot the monthly time series 

of averages across markets. The relative quoted and effective spreads, RQS and RES, in Panel A 

show similar patterns. For example, RES began at 250 bps in the beginning of 2001 and declined 

to 150 bps by the end of 2007. Afterwards, it peaked at the end of 2008, when the financial crises 

around the world started to unfold. RQS declined from 500 bps in 2001 to 246 bps in 2007, and 

then rose to 660 bps during the financial crisis before declining to 400 bps in 2011. The difference 

between RQS and RES primarily reflects the absence of trades during high-spread periods or the 

presence of traders who execute against non-displayed liquidity inside the quotes. When we 

decompose RES into its transient (RRS) and permanent (RPI) components, we again find very 

similar patterns. Both components decreased until mid-2007 and then increased again. We also 

observe that RRS exceeds RPI in every year by about 50%.  

Panel B plots two efficiency measures, |AR10| and |AR30|. Both measures show a slight 

decrease over the sample period.  The intraday volatility measures in Panel C decline slightly over 

the first half of the sample period, with a large spike towards the end of 2008 and a smaller increase 

in 2011.  

                                                        

11 Conrad, Wahal and Xiang (2015) make similar observations that HFT mainly act via quotes than trades for the 
U.S. and Japan markets. 
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Panel D graphs the monthly measures of execution shortfall. We see an increase in 

execution shortfall from below 20 bps in the pre-crisis period to more than 35 bps during the 

financial crisis period and fall back in the post-crisis period. 

B.  Methodology 

To establish a causal relation between AT and market quality, we use an instrumental 

variable approach. We seek an instrument that satisfies the exclusion restriction, i.e., is not causally 

related to any of our market quality variables. In addition, the instrument should be closely related 

to AT intensity. As our sample represents a multitude of trading protocols and market structures, 

finding an instrument that has the same interpretation across markets is important. We rely on the 

event of “co-location” in each country. “Co-location” refers to locating a trader’s computer 

hardware physically close to a trading center’s hardware. Doing so allows the trader’s order 

submission algorithm to interact with the trading center with minimal latency. Brogaard et al. 

(2015) show that co-location (at NASDAQ OMX Stockholm) allows fast traders to reduce their 

cost of liquidity provision and thus trade more profitably. Similarly, Baron et al. (2019) find that 

HFTs that improve their latency rank due to co-location upgrades (at NASDAQ OMX Stockholm) 

deliver better trading performance that comes through short-lived information channels as well as 

risk management channels.12  

To introduce a co-location program, some markets announce a program or pricing scheme, 

while others announce that a specific trading firm is now co-located (and typically invite 

successors). From these announcements, we identify the first implementation date (rather than use 

the first announcement date itself) to capture the change in trading that is prompted by the lower 

                                                        

12 Other possible instruments include the introduction of direct market access for traders, DMA, or other updates to 
the trading protocol that imply a structural change in how traders implement AT / HFT strategies. We believe that 
co-location allows the cleanest measurement. Moreover, the first co-location also tends to be prominently and 
consistently reported by the media. 
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co-location-related latency. Co-location introductions mark events that are fairly homogenous 

across exchanges, in that the event specifically provides infrastructure for fast traders and signals 

an exchange’s commitment to accommodating such traders. As a potential caveat, the precision of 

reporting on co-location event dates could differ across countries. Yet, to the extent that the 

resulting errors are random, they should not affect the consistency of the IV estimator because 

such random errors would be captured by the regression error. 

During our sample period, 22 markets have adopted co-location services (see the list of co-

location dates in Appendix 1).13 To allow a reasonable amount of time to observe any potential 

changes in the effects of AT due to co-location, we select a two-year window centered on the first 

co-location implementation. Specifically, the co-location dummy takes a value of zero in the 12 

months leading to the adoption of co-location and switches to one during the 12 months after co-

location. To account for the clustering of co-location events across markets, robust standard errors 

are clustered by date.   

In the first stage, we regress our AT proxy on the co-location dummy (adding the remaining 

explanatory variables to the first stage leaves inferences unchanged but increases standard errors). 

In the second stage, we estimate the following equation: 

 MQit = αit + βAT*
it + δXit + εit,                           (6) 

where AT* is the predicted value from the first-stage regression, and X is a vector of control 

variables.  This vector includes variables such as share turnover, inverse price, the log value of 

market capitalization, the lagged dependent variable, and intraday price range (a proxy for 

volatility, omitted from the volatility regressions which add RES and |AR30|). These control 

variables have been shown to be related to market quality (e.g., Hendershott et al. (2011)). 

                                                        

13 For two markets (Germany and Taiwan) we couldn’t obtain the specific month during which co-location was 
implemented, so we use the year-end as the event month.  NYSE’s co-location was first offered through its 
acquisition of TransactTools in January 2007 and its most recent co-location data service started in August 2010. 
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Following Boehmer and Kelley (2009), we lag all control variables by one day to ensure that 

explanatory variables are predetermined.14 To make comparisons meaningful across firms and 

markets, all continuous variables are standardized within each firm during the co-location event 

window.  

In the first stage regression, co-location dummy has a coefficient of 0.108 (t-stat = 13.1). 

This suggests that the adoption of co-location services significantly contributes to AT growth. 

IV.  Empirical results 

In this section, we first analyze how AT affects various spread measures, price efficiency, 

short-term volatility, and institutional buy-side execution costs. We then examine if there exists 

any cross-sectional variations in the AT effect on these dimensions of market quality.    

A.  Main results 

Table 3 presents the regression estimation results based on Equation (6). Panel A of Table 

3 reports the effect of AT on liquidity after controlling for other variables.15 Each row represents 

a measure of liquidity. We find that AT significantly lowers the quoted and effective spreads. A 

one-standard deviation increase in AT improves effective spreads (RES) by 0.7 standard 

deviations. When we decompose RES into its adverse selection and transitory components, we find 

that AT’s effect on the permanent portion (RPI) is larger than the effect on the transient portion, 

the realized spread (RRS). RRS is a measure of the premium earned by liquidity suppliers. These 

results suggest that, on average, greater AT intensity leads to improved liquidity by reducing the 

information content of trades rather than reducing the rewards earned by liquidity suppliers.  

                                                        

14 Using contemporaneous values produces similar results. 
15 Coefficients on control variables are not tabulated. 
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The positive effect of AT on liquidity we document across the international markets is in 

line with several existing studies. Hendershott, Jones, and Menkveld (2011) are among the first to 

show that algorithmic trading leads to better liquidity. They use the 2003 introduction of autoquote 

at the NYSE as an instrument to establish causality from algorithmic trading to market quality 

improvements. Using HFT activity inferred from millisecond-level responses, Hasbrouck and Saar 

(2013) find improvements in liquidity when these fast traders are more active. Malinova, Park, and 

Riordan (2013) show that a decline in HFT reduces liquidity for retail traders in the Canadian 

market. 

Panel B presents the effect of AT on informational efficiency. The significantly negative 

coefficients on AT suggest that more intense AT leads to smaller absolute value of intraday return 

autocorrelations, indicating that prices are closer to a random walk. These results indicate that 

across markets, more AT consistently leads to an improvement in informational efficiency. Our 

finding complements Brogaard, Hendershott and Riordan (2014) who show that HFT facilitates 

price discovery among a sample of Nasdaq stocks. Conrad, Wahal and Xiang (2015) also find 

higher quoting activity is associated with better price efficiency. 

Panel C presents the effect of AT on short-term volatility. More intense AT leads to higher 

volatility, and the results are uniform across volatility proxies whether we look at intraday realized 

volatility or daily realized volatility. Larger AT-induced short-term volatility is also documented 

in several others studies in different contexts. For example, Kirilenko et al. (2014) argue that HFT 

worsened (but did not cause) the May 6, 2010 flash crash. Dichev, Huang and Zhou (2014) show 

that trading per se generates excess volatility, arguing that HFT can lead to undesirable levels of 

volatility.  

Volatility is important to traders and can have adverse effects on market quality through 

several channels. Limit orders provide liquidity to the market and represent options to trade for 
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other market participants. Greater volatility makes this option more expensive and thus makes 

liquidity provision more costly.16 We will return to the volatility discussion later. 

In Panel D, we focus on the impact of AT intensity on execution shortfall, an overall 

assessment of the execution costs incurred by buy-side institutional investors. As alluded to earlier, 

the majority of trading activity involves AT, so that market wide metrics of trading may not 

properly represent the outcome of buy-side institutional traders, because they typically trade large 

quantities of shares and their orders are executed over a longer trading horizon. High frequency 

traders can choose to provide liquidity, conduct order-anticipation strategies or back-running 

strategies on large institutional orders (van Kervel and Menkveld (2019), Yang and Zhu (2019)). 

While narrower spreads can lower trading costs for an average trader who submits a market order, 

higher information efficiency may increase the costs of trading with informed traders. Moreover, 

higher volatility could lead to larger trading cost variability and increase execution risk. Thus, the 

net effect of higher AT intensity on institutional investors’ execution cost is best answered by the 

data.  

Panel D reports a significant and negative coefficient on AT. This suggests that more AT 

helps reduce buy-side execution shortfall. Thus, the net effect of smaller spreads, better 

information efficiency and higher volatility induced by higher AT intensity appears beneficial to 

this group of market participants across many markets. Our result based on a broad international 

sample helps resolve different findings reported in several recent studies that examine institutional 

                                                        

16 Consistent with this concern, Egginton, Van Ness, and Van Ness (2016) show that periods of extremely active 
quoting behavior are associated with degraded liquidity and elevated volatility. Importantly, they show that such 
episodes are surprisingly frequent. Yet despite good economic reasons for such quote-bunching to occur as a benign 
by-product of HF liquidity provision, as Hasbrouck and Saar (2013) argue, that this quote-bunching arises as a 
consequence of intentional “quote stuffing” is also possible. This practice involves submitting a large volume of 
messages to disguise trading strategies. Gai, Yao, and Ye (2014) show that quote stuffing has negative effects on 
trading. 
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investors’ execution costs on a specific market (e.g., van Kervel and Menkveld (2019) on Swedish 

index stocks; Korajczyk and Murphy (2019) on the Canadian market, and Tong (2015) on Nasdaq).  

B.  Heterogeneity of AT impact  

Both anecdotal information as well as academic evidence show that AT plays a more 

important role in larger stocks than in smaller stocks. We address such heterogeneity by estimating 

AT’s effect on market quality for different market-cap groups. We group stocks into small, 

medium, and large categories based on their market capitalization within each market. Then we 

interact the instrumented AT with the three size dummies in the second stage to capture the 

potentially different AT impact across market-capitalizations. Specifically, we expand Equation 

(6) as follow:  

MQit = αit + β1AT*
it×Si + β2 AT*

it×Mi + β3 AT*
it×Li + δXit + εit,                           (7) 

where S, M, L represent dummies for small, medium, and large stocks, respectively. Table 4 

presents the results.17  

Panel A focuses on liquidity measures. Results show that AT improves liquidity in all size 

categories, but its effect is stronger in large stocks. Take RES for example, the negative coefficient 

on AT*×L is almost twice as large as the negative coefficient on AT*×S, suggesting a larger 

reduction in effective spreads in large-cap stocks compared to small-cap stocks. Panel B reports 

AT’s effect on price efficiency across three sizes. Again, AT’s effect is mainly present in medium 

and large stocks. AT has minimal improvement in price efficiency in small stocks. Panel C presents 

the volatility results. Although we see higher volatility across all stocks, smaller stocks experience 

a larger increase in volatility (except for the daily price range, which is more sensitive for large 

firms).  

                                                        

17 Regressions also include the size dummies but are not tabulated. 
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Lastly, Panel D shows that the beneficial effect of AT on execution shortfalls is mostly 

concentrated in large and medium stocks. Note that the negative (but insignificant) coefficient on 

the interaction between AT and small stocks indicates that AT does not lead to lower execution 

cost when buy-side institutional investors trade small stocks. 

Overall, results in this subsection suggest an important heterogeneity in AT’s effect on 

market quality. AT leads to better liquidity, faster price efficiency, moderately higher volatility 

and lower execution costs in large firms. Small firms, however, experience less liquidity 

improvement and much higher volatility. These results indicate that segmentation in liquidity 

provision across stocks of different sizes goes beyond the U.S. market (Hendershott, Jones, and 

Menkveld (2011)).  

 

C.   AT and volatility 

We show earlier that AT leads to higher volatility. This finding raises the question 

regarding the nature of this volatility. Given that AT leads to better informational efficiency, it is 

conceivable that the elevated volatility reflects faster price adjustments when new information 

arrives. Under this scenario, the higher volatility reflects new information, not noise, and could 

therefore be desirable. Another possibility is that narrower spreads, which also result from greater 

AT, are related to smaller quoted sizes, so that subsequent trades result in trade prints that 

experience lower trade-by-trade execution costs but generate greater price fluctuations. Such a 

trade-off between liquidity and volatility could be desirable if the benefit of smaller spreads 

outweighs the potential costs of elevated trade-to-trade volatility. We take several approaches to 

address these possibilities.  

First, we directly control for price efficiency and liquidity in the volatility regression. 

Specifically, efficiency proxy |AR30| and liquidity proxy RES are already included in the 

regression model whenever we estimate AT on volatility in Equation (6). By controlling for 
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efficiency and round-trip transaction costs, we hold constant price efficiency and liquidity which 

likely are the main sources of “good” volatility. Since the reported results already control for 

informational efficiency and liquidity associated with “good” volatility, it is difficult to attribute 

the elevated volatility that we observe to either faster incorporation of new information or to tighter 

spreads.  

Second, we examine whether higher AT-induced volatility is associated with improved 

liquidity. Our results suggest that more AT leads to better liquidity and greater efficiency but also 

to greater volatility. If a stock experiences these effects on the same trading day, they could 

conceivably offset one another. For example, high-volatility periods could attract AT, which would 

then lead to a liquidity improvement. Although we cannot fully disentangle these effects and causal 

directions, we conduct a simple test that sheds additional light on the relation among AT, volatility, 

and liquidity. We employ a two-step procedure. In the first step, we estimate cross-sectional 

regression within each market day, regressing liquidity, price efficiency, and volatility on AT and 

control variables, and record the AT coefficients. Doing so produces a time series of daily AT 

coefficients for each market; one set each for liquidity, efficiency, and volatility. In the second 

step, we compute Spearman rank correlations between liquidity and volatility effects and between 

efficiency and volatility effects.18   

Panel A of Table 5 reports Spearman rank correlations between AT coefficients for 

liquidity and volatility. All but one of the correlations is positive, and most are significantly so. 

This means that on days when AT is associated with higher volatility, AT is also 

contemporaneously related to wider spread, rather than narrower spread. Or, conversely, if high 

volatility indeed attracts algorithmic traders, these traders demand—rather than supply—liquidity. 

                                                        

18 Pearson correlations produce the same inferences. 
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Therefore, at least in our sample, the costs of high volatility are not contemporaneously offset by 

greater liquidity, as suggested by Castura et al. (2010).  

In contrast to the relationship between liquidity and volatility, Panel B shows that days 

with high efficiency also tend to have high volatility. This result is intuitive, because greater 

efficiency implies faster incorporation of news into prices, resulting in greater realized volatility. 

Because our volatility regressions already control for the level of efficiency, this observation does 

not affect our inferences from Panel A. In other words, the greater volatility-related efficiency 

happens on days when liquidity declines.  

Third, we address a potential concern that fundamental volatility is high during news 

announcements, and the news event, rather than algorithmic trading, causes the high volatility. To 

examine this possibility, we explicitly control for news announcements. Specifically, we obtain 

news data from RavenPack, a professional news provider whose products have been used in some 

recent studies (e.g., Dai, Parwada, and Zhang (2015)), and augment our main second-stage 

regression into the following specification: 

MQit = αit + β1AT*
it + β2 AT*

it ×Newsit + β3 Newsit + δXit + εit,                          (8) 

where News is a dummy variable equal to one if there is news announcement for a firm on a day 

and zero otherwise.  

Table 6 reports the regression results on volatility controlling for news. As expected, the 

significant coefficient on News suggests that volatility is heightened when news comes to the 

market. More importantly, the coefficient on instrumented AT is still significantly positive, 

suggesting that AT leads to higher volatility even in the absence of news. The interaction term of 

AT*×News indicates that AT’s effect on volatility is even stronger on news days.  

Overall, these three approaches complement one another in addressing the nature of the 

volatility. Although we are agnostic about the exact causes of AT-induced volatility, the overall 

evidence suggests that AT-induced volatility is difficult to attribute to more “good” volatility that 
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would arise from faster price discovery, to algorithmic traders’ inclination to enter the market 

when volatility is high, or to trading on fundamental news. Although we see beneficial effects of 

AT in improving liquidity and efficiency, AT also appears to elevate less desirable volatility. 

V.  Additional analysis 

A.  Market-level IV estimation 

To complement our firm-level analysis, we also conduct market-level estimation with the 

adoption of co-location as an instrumental variable for AT. Specifically, each day, we aggregate 

all variables within each market by forming value-weighted averages across firms. This produces 

one time-series for each market. To maintain a balanced panel with all 42 markets, this analysis 

uses data from 2005 to 2011. We estimate a two-way panel across markets and days using co-

location as the instrument for AT. In the first stage, we regress AT on the co-location dummy that 

equals one once that market officially starts co-location service. For markets that have not adopted 

co-location services by the end of our sample period, its co-location dummy has a value of zero. 

As expected, co-location significantly contributes to the intensity of AT, with a highly significant 

coefficient of 0.217 (t-stat = 27.9).  In the second stage, we use the predicted value of AT as a 

regressor. While such market-level IV estimation allows us to conduct a difference in differences 

analysis, it has lower statistical power.  

The second-stage results are reported in Table 7. Overall, these market-level estimates 

deliver similar results to the firm-level analysis. Importantly, despite the lower power of this 

approach, most estimates remain significant. The liquidity measures in Panel A decline as AT 

increases, suggesting that more AT leads to narrower spreads. The efficiency measures in Panel B 

also decrease with higher AT, likewise implying greater efficiency. Panel C shows that AT 

increases volatility. In Panel D, we observe better execution quality for buy-side investors who 

experience smaller execution shortfalls when AT increases. 
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B.   Market-specific analysis 

We also use another approach to help draw inferences across markets. Specifically, we first 

conduct country-specific analysis on the relation between AT intensity and market quality for each 

of the 42 markets, and then aggregate the results across markets. Cross-market inference is based 

on equal-weighted means of the 42 market-specific AT coefficients and simple cross-sectional t-

statistics also based on these 42 observations. Although this approach does not directly address 

causality, we can still learn from the actual (not instrumented) relationships between AT and 

market quality, especially when the relationships are consistent across countries. We find that 

better liquidity, better price efficiency and higher volatility are observed when AT is high. These 

results are reported in Appendix 2.   

VI.  Conclusion 

Previous studies have produced mixed evidence on the effect of AT/ HFT on market 

quality. This is partly due to data limitations that constrain researchers to either a small sample of 

stocks or a specific market outside the U.S. We examine a large international sample over an 

extended period of time that helps draw broader inferences about the effect of AT on market 

quality. 

Surprisingly consistent across the 42 markets in our sample, more intense algorithmic 

trading leads to improved liquidity, better price efficiency, and elevated volatility.  The overall net 

effect of AT on buy-side institutions’ execution shortfalls is positive, suggesting that more AT 

benefits this group of market participants. AT’s effect on volatility cannot be attributed to more 

efficient prices that adjust faster to new information, to the activities of liquidity suppliers seeking 

out more volatile stocks, or to heightened volatility at news announcements.  
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Aside from AT's overall influence on market quality, its effects are not uniform across all 

stocks. AT’s positive effects on liquidity and efficiency are more pronounced for large stocks, and 

AT also increases volatility more in smaller stocks.  

Overall, our findings support prior results that attribute liquidity-enhancing and efficiency-

enhancing effects to algorithmic and high frequency trading. We show that this finding is 

surprisingly pervasive across countries. We complement prior studies with evidence that AT’s 

liquidity provision does not apply uniformly to all firms, suggesting that regulation should tread 

carefully and recognize that the effects of AT differ across firm characteristics. Equally 

importantly, we show that AT systematically increases volatility, thereby imposing costs on 

market participants. 

These results suggest that measures of the true cost of algorithmic trading should 

incorporate realized volatility. Our evidence suggests that the positive effect of AT on volatility 

doesn’t derive from reverse causality and doesn’t rely on specific types of volatility that market 

participants would consider beneficial. We further show that the effect of AT on market quality, 

and hence the need to impose new regulation, differ dramatically across stocks and markets. This 

suggests that borrowing regulatory approaches from abroad is unlikely to produce a balanced 

playing field. 
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FIGURE 1 

Messages and AT 

This figure presents the time series of aggregate messages and AT measure. Our sample covers the period 2001-
2011. We count all intraday messages that represent trades or changes in the price or size of the best quotes for 
each stock. AT is the negative of dollar trading volume ($100) per message. Then we compute equally weighted 
averages each market month, and report the mean across 42 markets.  
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FIGURE 2 

Market quality measures over time 

This figure graphs the time series of market quality over the sample period. All measures are computed intraday 
for each stock. Then we compute the mean for each day, and then the mean for each market month. The figures 
report the average across 42 markets. Our sample covers the period 2001-2011. Panel A is liquidity. RQS are time 
weighted relative quoted spreads, RES are relative effective spreads, RRS are 5-minute relative realized spreads, 
and RPI are 5-minute permanent price impacts. Panel B is efficiency. |AR10| (|AR30|) is the absolute value of the 
daily average 10-minute (30-minute) quote-midpoint return autocorrelations. Panel C is volatility. Measures 
include the daily intraday price range standardized by the daily closing price, the variances of 30-minute quote 
midpoint returns (Ret30_Var). Panel D plots execution shortfall. 
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TABLE 1 

Number of stocks listed on markets in our sample 

This table lists the year-end number of stocks listed on each stock exchange. Our sample covers the period 2001-
2011. Growth is calculated as the number of firms in 2011 divided by the number of firms in the beginning of the 
sample and then minus 1.  

Market  2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 Growth  
 Argentina  19 55 64 45 61 66 68 57 65 71 65 2.42 
 Athens  287 285 287 284 276 263 250 226 219 186 168 -0.41 
 Australia  714 666 921 990 1105 1343 1415 1215 1337 1254 1220 0.71 
 Brussels  121 105 124 117 132 132 139 128 139 130 131 0.08 
 Copenhagen  154 143 164 169 166 183 207 201 202 193 177 0.15 
 Xetra  239 264 257 264 314 345 377 368 366 381 383 0.60 
 Euronext 
Amsterdam  152 148 139 136 136 138 129 116 114 108 104 -0.32 
 Euronext Lisbon          42 41 41 43 42 40 35 0.83 
 Euronext Paris  480 462 456 454 567 635 669 611 615 585 575 0.20 
 Helsinki   152 149 143 148 147 148 147 141 138 134 129 -0.15 
 Hong Kong  389 419 493 520 549 580 629 701 765 832 802 1.06 
 Istanbul  277 286 287 299 305 314 313 307 314 338 359 0.30 
 Jakarta  261 253 277 274 267 280 295 185 304 327 347 0.33 
 Johannesburg   270 220 230 224 245 263 299 266 257 256 261 -0.03 
 Korea  311 300 667 670 678 703 713 742 711 754 764 1.46 
 Kuala Lumpur  692 728 782 824 857 870 855 811 824 829 813 0.17 
 London   838 781 821 892 1006 1334 905 799 735 891 736 -0.12 
 Madrid  120 119 110 110 108 116 125 123 120 117 114 -0.05 
 Mexican   69 61 67 66 72 82 81 77 91 97 87 0.26 
 Milan  271 280 265 264 280 289 310 281 274 272 264 -0.03 
 Mumbai   240 425 716 821 1077 1161 999 939 1348 1414 1242 4.18 
 NASDAQ  3606 3237 2948 2879 2822 2797 2743 2622 2466 2359 2237 -0.38 
 NSE (India)  500 542 598 671 750 880 1034 1107 1188 1329 1308 1.62 
 New Zealand    55 54 63 77 82 95 74 84 86 69 1.25 
 NYSE  1524 1498 1475 1475 1459 1443 1392 1347 1328 1330 1311 -0.14 
 Osaka  183 195 232 242 277 275 263 250 253 252 246 0.34 
 Oslo   174 174 164 172 198 206 236 226 218 213 202 0.16 
 Philippines  140 112 135 143 153 184 187 162 195 194 205 0.46 
 Santiago     81 69 84 84 90 91 92 100 89 100 1.23 
 Sao Paulo            306 400 379 385 368 350 1.14 
 Shanghai  580 669 742 803 709 716 734 754 821 843 833 0.44 
 Shenzhen  459 466 487 516 459 508 596 693 780 1105 1314 1.86 
 Singapore  315 326 368 424 472 514 553 525 552 572 545 0.73 
 Stockholm  328 315 314 319 345 384 443 462 468 472 467 0.42 
 Swiss  224 218 228 227 235 235 227 227 221 218 213 -0.05 
 Taiwan  518 592 636 667 661 670 676 704 735 755 765 0.48 
 Tel-Aviv   310 283 319 342 417 469 528 495 484 480 453 0.46 
 Thailand   314 335 363 407 446 466 467 480 480 486 487 0.55 
 Tokyo  1957 1996 2072 2205 2310 2371 2360 2289 2284 2286 2261 0.16 
 Toronto   614 619 658 712 780 872 930 936 913 915 942 0.53 
 Warsaw  137 135 137 179 209 237 307 323 354 366 369 1.69 
 Wiener Borse  45 61 53 50 54 61 71 73 68 56 58 0.29 
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TABLE 2 

Number of messages per stock-day by market 

This table reports the summary statistics of messages at the beginning and end of our sample period. Messages 
represent trades or changes in the price or size of the best quotes in each stock. Reported numbers are the median 
of the daily mean of messages for each stock within each market. Growth is calculated as messages in 2011 
divided by messages in 2001 and then minus 1. * Quote messages computed based on only price changes because 
quote sizes are not available until recent years. ** Data begin in 2005. *** Data begin in 2002. **** Data begin 
in 2006.  

Market Messages 2001  Messages 2011  Growth  
 Euronext Amsterdam  480  18718  38.00 
 Athens  324  245  -0.24 
 Australian   95  1403  13.82 
 Argentina  89  90  0.01 
 Thailand   219  551  1.52 
 Mumbai   120  132  0.10 
 Brussels  110  4375  38.63 
 Copenhagen  49  1039  20.33 
 Xetra  229  3597  14.68 
 Helsinki   233  2565  10.01 
 Hong Kong  247  1013  3.11 
 Istanbul  246  970  2.94 
 Johannesburg   74  2232  29.32 
 Jakarta  115  689  4.98 
 Kuala Lumpur  85  200  1.35 
 Korea  523  3547  5.79 
 London*  259  2171  7.38 
 Euronext Lisbon**  281  3167  10.25 
 Madrid  1014  8649  7.53 
 Milan  553  5621  9.16 
 Mexican   113  2600  21.91 
 NASDAQ  1006  15363  14.27 
 NSE (India)  357  2768  6.75 
 NYSE  1207  45998  37.10 
 New Zealand ***  33  66  0.97 
 Oslo   119  2002  15.85 
 Osaka  73  468  5.37 
 Euronext Paris  566  9266  15.37 
 Philippines  35  159  3.56 
 Swiss   99  688  5.92 
 Sao Paulo ****  621  4599  6.40 
 Singapore  170  279  0.64 
 Santiago ***  19  134  6.04 
 Shanghai  489  7710  14.78 
 Stockholm  242  1791  6.40 
 Shenzhen  431  2522  4.85 
 Tokyo  280  2026  6.24 
 Tel-aviv   55  549  8.90 
 Toronto   221  7659  33.70 
 Taiwan  487  656  0.35 
 Wiener Borse  60  1273  20.27 
 Warsaw  100  200  1.00 
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TABLE 3 

The effect of AT on market quality 

This table reports AT’s effect on market quality using panel regression, with co-location as instrument variable 
for AT. In the 1st stage, AT is regressed on co-location dummy. In the 2nd stage, each measure of market quality 
is regressed on predicted AT (AT*) and controls. Market quality includes liquidity, efficiency and volatility. Panel 
A presents the effect of AT on liquidity measures including time-weighted quoted spread (RQS), trade-weighted 
relative effective spread (RES), permanent price impact (RPI), and temporary price impact (RRS). Panel B 
presents the effect of AT on efficiency measures including the absolute value of intraday autocorrelations |AR##|, 
measured for quote-midpoint returns over 10-minute and 30-minute periods. Panel C presents the effect of AT on 
volatility measures including daily price range standardized by the closing price, Ln(Ret##_Var), log value of the 
daily variances of 10-minute and 30-minute quote midpoint returns, and |Ret|, the absolute value of return. Panel 
D presents the effect of AT on execution shortfall calculated following Anand et al. (2012). AT is the negative of 
dollar trading volume ($100) per message where messages include all inside quote changes and trade messages. 
Control variables include daily share turnover, price range, inverse price, log market cap, and the first lag of the 
dependent variable, all measured at t-1. Regressions where the dependent variable is volatility do not include price 
range, but add RES and |AR30|. The estimation is performed for the 12 months before and 12 months after the 
co-location in the 22 markets that adopted this service. All continuous variables are standardized to have zero 
mean and unit variance within the estimation window for each firm. Standard errors are clustered by date. The 
table reports coefficients on predicted AT. *, **, *** indicate significance at 10%, 5% and 1%, respectively. 

Panel A. Liquidity   

 Coef. t-stat 
RQS -0.220** -2.35 
RES -0.705*** -13.93 
RPI -0.341*** -10.33 
RRS 0.091*** 2.98 

   
Panel B. Efficiency   

 Coef. t-stat 
|AR10| -0.320*** -3.45 
|AR30| -0.227*** -2.45 

   
Panel C. Volatility   

 Coef. t-stat 
Price Range 1.246*** 4.73 
LnRet10_Var 1.564*** 6.01 
LnRet30_Var 1.438*** 5.61 
|Ret| 0.385** 2.41 

 

Panel D. Execution shortfall Coef. t-stat 
Shortfall -0.116** -2.44 
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TABLE 4 

The effect of AT on market quality by size 

This table reports how AT’s effect on market quality varies with size, using a panel regression with co-location 
as instrument variable for AT. In the 1st stage, we regress AT on co-location dummy, and in the 2nd stage, each 
measure of market quality is regressed on predicted AT (AT*), its interaction with three size dummies S, M, and 
L, and controls. Market quality includes liquidity, efficiency and volatility. Panel A presents the effect of AT on 
liquidity measures including time-weighted quoted spread (RQS), trade-weighted relative effective spread (RES), 
permanent price impact (RPI), and temporary price impact (RRS). Panel B presents the effect of AT on efficiency 
measures including the absolute value of intraday autocorrelations |AR##|, measured for quote-midpoint returns 
over 10-minute and 30-minute periods. Panel C presents the effect of AT on volatility measures including daily 
price range standardized by the closing price, Ln(Ret##_Var), log value of the daily variances of 10-minute and 
30-minute quote midpoint returns, and |Ret|, the absolute value of return. Panel D presents the effect of AT on 
execution shortfall calculated following Anand et al. (2012). AT is the negative of dollar trading volume ($100) 
per message where messages include all inside quote changes and trade messages. Control variables include daily 
share turnover, price range, inverse price, log market cap, and the first lag of the dependent variable, all measured 
at t-1. Regressions where the dependent variable is volatility do not include price range, but add RES and |AR30|. 
The estimation is performed for the 12 months before and 12 months after the co-location in the 22 markets that 
already adopted co-location. All continuous variables are standardized to have zero mean and unit variance within 
the estimation window for each firm. Standard errors are clustered by date. *, **, *** indicate significance at 10%, 
5% and 1%, respectively. 

Panel A. Liquidity 

    Coef. t-stat 

RQS AT*×S -0.212*** -3.19 

 AT*×M -0.147 -1.61 

 AT*×L -0.288** -2.36 

RES AT*×S -0.479*** -10.02 

 AT*×M -0.532*** -10.25 

 AT*×L -0.998*** -15.47 

RPI AT*×S -0.390*** -11.60 

 AT*×M -0.419*** -12.20 

 AT*×L -0.244*** -5.99 

RRS AT*×S 0.080** 2.30 

 AT*×M 0.249*** 6.75 

 AT*×L -0.038 -0.97 
 

Panel B. Efficiency 

    Coef. t-stat 

|AR10| AT*×S -0.069 -0.65 

 AT*×M -0.497*** -4.79 

 AT*×L -0.322*** -2.76 

|AR30| AT*×S 0.054 0.52 

 AT*×M -0.324*** -3.22 

 AT*×L -0.301** -2.37 
 

Panel C. Volatility 

    Coef. t-stat 
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Price Range AT*×S 1.150*** 5.03 

 AT*×M 1.059*** 4.35 

 AT*×L 1.512*** 4.84 

LnRet10_Var AT*×S 1.879*** 8.35 

 AT*×M 1.320*** 5.34 

 AT*×L 1.499*** 4.78 

LnRet30_Var AT*×S 1.642*** 7.33 

 AT*×M 1.287*** 5.33 

  AT*×L 1.330*** 4.30 

|Ret| AT*×S 0.692*** 4.22 

 AT*×M 0.150 0.88 

 AT*×L 0.159 0.89 
    

 

Panel D. Execution shortfall 

    Coef. t-stat 

Shortfall AT*×S -0.023 -0.13 

 AT*×M -0.132** -2.12 

  AT*×L -0.126*** -3.04 
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TABLE 5 

Correlation between AT coefficients in liquidity and volatility regressions 

We first estimate cross-sectional regressions each day with each market to obtain AT coefficients. We regress 
liquidity, efficiency, and volatility measures on AT and controls. Liquidity measures include time-weighted 
quoted spread (RQS), trade-weighted relative effective spread (RES). Efficiency measures are daily observations 
of the absolute value of intraday autocorrelations |AR##|, measured for quote-midpoint returns over 10-minute 
and 30-minute periods. Volatility measures include daily price range standardized by the closing price, 
Ln(Ret##_Var), log value of the daily variances of 10-minute and 30-minute quote midpoint returns, and |Ret|, 
the absolute value of return. AT is the negative of dollar trading volume ($100) per message where messages 
include all inside quote changes and trade messages. Control variables include daily share turnover, price range, 
inverse price, log market cap, and the first lag of the dependent variable, all measured at t-1. Regressions where 
the dependent variable is volatility do not include price range, but add RES and |AR30|. All continuous variables 
are standardized every day to have zero mean and unit variance within each exchange. This table reports the mean 
spearman rank correlation between AT coefficients from the regressions of volatility and liquidity (Panel A) and 
between the AT coefficients from the regressions of volatility and efficiency (Panel B). *, **, *** indicate 
significance at 10%, 5% and 1%, respectively. 

Panel A. correlation of AT coefficients from the regressions of volatility and liquidity 

  Price Range Ln(Ret10_Var) Ln(Ret30_Var) |Ret| 

RQS 0.04 *** 0.10 *** 0.08 *** 0.01 * 
RES 0.08 *** 0.14 *** 0.11 *** 0.06 *** 

 

Panel B. correlation of AT coefficients from the regressions of volatility and efficiency 

  Price Range  Ln(Ret10_Var) Ln(Ret30_Var) |Ret| 

|AR10| -0.10 *** 0.04 ** -0.09 *** -0.04 *** 
|AR30| -0.05 *** 0.01   0.01   -0.02 *** 
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TABLE 6 

The effect of AT on volatility on news days 

This table reports how AT’s effect on volatility varies with news, using a panel regression with co-location as 
instrument variable for AT. In the 1st stage, we regress AT on co-location dummy, and in the 2nd stage, each 
measure of volatility is regressed on predicted AT(AT*),, its interaction with news dummy, news, and controls. 
Volatility measures include daily price range standardized by the closing price, Ln(Ret##_Var), log value of the 
daily variances of 10-minute and 30-minute quote midpoint returns, and |Ret|, the absolute value of return. AT is 
the negative of dollar trading volume ($100) per message where messages include all inside quote changes and 
trade messages. Control variables include daily share turnover, inverse price, log market cap, RES and |AR30|, 
and the first lag of the dependent variable, all measured at t-1. The estimation is performed for the 12 months 
before and 12 months after the co-location in the 22 markets that already adopted co-location. All continuous 
variables are standardized to have zero mean and unit variance within the estimation window for each firm. 
Standard errors are clustered by date. *, **, *** indicate significance at 10%, 5% and 1%, respectively. 

 

    Coef. t-stat 
Price Range AT* 1.171*** 5.10 

 AT*×News 1.524** 2.29 

 News 0.079*** 4.31 
LnRet10_Var AT* 1.392*** 5.91 

 AT*×News 2.292*** 4.10 

 News 0.053*** 3.56 
LnRet30_Var AT* 1.262*** 5.44 

 AT*×News 1.954*** 3.87 

 News 0.044*** 3.23 
|Ret| AT* 0.291* 1.84 

 AT*×News -0.354 -1.07 
  News 0.120*** 13.53 

 

 

 

 

 



40 
 

 

TABLE 7 

The effect of AT on market quality at the aggregate level 

This table reports the effect of AT on market quality at the market level. Each day, we aggregate all variables 
within each market by forming market-value-weighted averages across firms. We estimate a two-way panel across 
markets and days using an instrumental variable approach. We use co-location as an instrument for algorithmic 
trading, a market-specific dummy that switches on once that market officially or at least publicly starts co-location 
service. Panel A examines liquidity measures which include time-weighted quoted spread (RQS), trade-weighted 
relative effective spread (RES), permanent price impact (RPI), and temporary price impact (RRS). Panel B 
examines efficiency measures which are daily observations of the absolute value of intraday autocorrelations 
|AR##|, measured for quote-midpoint returns over 10-minute and 30-minute periods. Panel C examines volatility 
measures which include daily price range standardized by the closing price, Ln(Ret##_Var), log value of the daily 
variances of 10-minute and 30-minute quote midpoint returns, and |Ret|, the absolute value of return. Panel D 
examines execution shortfall calculated following Anand et al. (2012). AT is the negative of dollar trading volume 
($100) per message where messages include all inside quote changes and trade messages. Control variables 
include daily share turnover, intraday price range, inverse price, log market cap, and the first lag of the dependent 
variable, all measured at t-1. Regressions where the dependent variable is volatility do not include price range, 
but add RES and |AR30|. The sample period is from 2005 to 2011 to maintain a balanced panel where all 42 
markets are present in the data. *, **, *** indicate significance at 10%, 5% and 1%, respectively. 

Panel A. Liquidity 

  Coef. t-stat 
RQS -0.023*** -4.06 
RES -0.045*** -7.12 
RPI -0.010 -1.30 
RRS -0.097*** -11.07 

   
Panel B. Efficiency 
 Coef. t-stat 
|AR10| -0.041*** -4.00 
|AR30| 0.010 0.99 

   
Panel C. Volatility 

  Coef. t-stat 
Price Range 0.060*** 9.99 
ln(Ret10_Var) 0.076*** 15.62 
ln(Ret30_Var) 0.093*** 16.79 
|Ret| 0.036*** 5.11 

 

Panel D. Execution shortfall 

  Coef. t-stat 

Shortfall -0.024** -1.95 
 

 

 

 


