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Abstract—This paper presents our results with the investigation 
of decentralized data dependency analysis among concurrently 
executing processes in a service-oriented environment. 
Distributed Process Execution Agents (PEXAs) are responsible 
for controlling the execution of processes that are composed of 
web services. PEXAs are also associated with specific distributed 
sites for the purpose of capturing data changes that occur at 
those sites in the context of service executions using Delta-
Enabled Grid Services. PEXAs then exchange this information 
with other PEXAs to dynamically discover data dependencies that 
can be used to enhance recovery activities for concurrent 
processes that execute with relaxed isolation properties. This 
paper outlines the functionality of PEXAs, describing the data 
structures and communication mechanisms that are used to 
support decentralized construction of distributed process 
dependency graphs, demonstrating a more dynamic and 
intelligent approach to identifying how the failure of one process 
can potentially affect other concurrently executing processes. 

Keywords-data dependency; concurrent process execution; 
relaxed isolation; process recovery; decentralized communication 

I.  INTRODUCTION 
One of the advantages of service-oriented computing is 

that it allows business processes to be composed by 
executing distributed web services [16]. Unlike traditional 
distributed transaction processing, however, since each 
service is autonomous and platform-independent, the 
commit of a service execution is controlled by the residing 
service instead of the global process.  As a result, processes 
composed of web services do not generally execute as 
transactions that conform to the concept of serializability. 
Since a service can commit before a global process is 
complete, dirty reads and dirty writes can occur among 
globally executing processes. 

From an application point of view, dirty reads and dirty 
writes do not necessarily indicate an incorrect execution, and 
a relaxed form of correctness dependent on application 
semantics can produce better throughput and performance. 
User-defined correctness of a process can be specified as in 
related work with advanced transaction models [12] and 
transactional workflows [21], using concepts such as 
compensation to semantically undo a process. But even when 
one process determines that it needs to execute compensating 

procedures, information about global data dependencies is 
needed to determine how the data changes caused by the 
recovery of one process can possibly affect other processes 
that have either read or written data modified by the services 
of the failed process. This ability to capture and analyze data 
dependencies in a service composition environment does not 
exist in current service-oriented architectures, thus creating 
data consistency problems for concurrent execution and 
limiting the effectiveness of recovery procedures for failed 
processes.  

This paper presents our results with the investigation of 
an approach that performs decentralized data dependency 
analysis among concurrently executing processes in a 
service-oriented environment. In particular, we present the 
concept of Process Execution Agents (PEXAs) and the 
manner in which multiple PEXAs communicate to discover 
data dependencies that can be used to support recovery 
activities. PEXAs are responsible for controlling the 
execution of processes that are composed of web services. 
PEXAs are associated with specific distributed sites and are 
also responsible for capturing and exchanging information 
with other PEXAs about the data changes that occur at those 
sites in the context of service executions.  

The ability to capture data changes, also known as 
deltas, builds on our past work with the use of Delta-Enabled 
Grid Services (DEGS) [3, 17], which are Grid Services that 
have been extended with the capability of recording and 
externalizing incremental data changes using features such as 
Oracle Streams [16]. Whereas the work in [3, 17, 22, 23] 
forwarded streaming deltas from multiple DEGS to a single, 
time-ordered, delta object schedule for a centralized 
approach to data dependency analysis, the work presented in 
this paper has extended the data dependency analysis process 
to support decentralized communication among multiple 
PEXAs. Each PEXA creates its own local delta object 
schedule that can be used to create process dependency 
graphs. But since a process can execute services that are 
associated with multiple PEXAs, the data dependency 
analysis process requires a global view of distributed process 
dependency graphs.  

This paper outlines the functionality of PEXAs and also 
describes the data structures and communication 
mechanisms that are used to achieve a decentralized 
approach to the analysis of data dependencies and the 
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construction of distributed process dependency graphs. In 
particular, we outline the information that must be captured 
during process execution and communicated when failures 
occur to construct a complete picture of process 
dependencies. The decentralized approach eliminates the 
bottleneck and overhead reported in [3, 17] of forwarding all 
data changes to a central point for analysis. More 
importantly, the distributed delta object schedule and 
decentralized data dependency algorithm described in this 
paper represents a new way of integrating existing 
transaction processing theories with execution platforms that 
can be used to address data consistency issues for concurrent 
process execution in service-oriented environments, 
providing more dynamic and intelligent ways of monitoring 
failures, detecting dependencies, and responding to failures 
and exceptional conditions. 

In the remainder of this paper, section II presents related 
work. Section III then outlines the functionality of PEXAs 
with an illustration of the decentralized data dependency 
analysis problem in section IV. Section V discusses the 
decentralized approach to the propagation of the recovery 
and graph construction process. The paper concludes in 
section VI with a summary and discussion of future research 
directions. 

 

II. RELATED WORK 
This section outlines related work. Section A first 

summarizes past work with advanced transaction models 
and transactional workflows, as well as recent work with 
recovery procedures for service-oriented environments. 
Section B then presents background on the DeltaGrid 
project that provides the basis for the work described in this 
paper. 

A. Advanced Transaction Models and Transactional 
Workflows 
Advanced Transaction Models (ATMs) were  designed 

to relax traditional ACID properties and the use of the two-
phase commit protocol to provide functionalities such as 
compensation for backward recovery and contingency for 
forward recovery. In the work of [6], a mechanism was 
proposed to structure a long running process as a Saga. A 
Saga defines a chain of transactions, with each sub-
transaction having a compensating procedure to reverse the 
affects of the Saga when it fails. Other advanced transaction 
models, such as the multi-level transaction model and the 
flexible transaction model have made use of compensation 
for hierarchically structured transactions [12]. In fact, 
current standards for web services, such as WS-BPEL [1] 
and WS-Business Activity [4] build on the concept of 
compensating procedures as a means of recovery. These 
models, however, do not support isolation of data and do not 
address recovery for dependent transactions in loosely-
coupled applications. 

The term Transactional Workflows was introduced to 
recognize the relevance of transactions to workflow activity. 

Transactional workflows involve the coordinated execution 
of multiple related tasks that support access to 
heterogeneous, autonomous, and distributed data through 
the use of selected transactional properties for individual 
tasks or entire workflows [21]. The ConTract Model 
provides a classic example of work with transactional 
workflows [19], supporting the correct execution of non-
atomic, long-lived applications with application-dependent 
consistency constraints. The ConTract Model provides 
compensation for backward recovery, and user-defined 
consistency through the specification of pre-conditions or 
post-conditions for steps. Other examples of transactional 
workflow models include the Workflow Activity Model [5], 
the Crew Project [8], and METEOR [19]. Transactional 
workflow models have improved the robustness of 
distributed transaction executions, but the work in this area 
still does not address the affect that a failed process can 
have on other concurrently executing processes.  

Numerous other techniques are being investigated for 
addressing data consistency in service composition. 
Tentative holding is used in [9] to achieve a tentative 
commit state for transactions over Web Services. 
Acceptable Termination States (ATS) [2] are used to ensure 
user-defined failure atomicity of composite services. A 
reservation-based protocol is defined in [26], where a 
process uses an explicit reservation phase to request 
resources, followed by an explicit confirmation/cancellation 
phase. The concept of a promise in [7] is similar to the work 
in [26], where a promise is an agreement between a client 
and a resource owner, allowing a service provider to offer 
assurances that resources will be available when they are 
needed. Other techniques include Web Services 
Composition Action [14, 15], WebTransact [11], and the 
work of [18], defining a model that supports features such as 
atomic transactions, pivot transactions, compensatable 
transactions, and re-triable transactions, as well as forward 
and backward recovery techniques.  

The technique presented in this paper dynamically 
analyzes write dependencies and potential read dependencies 
among concurrently executing processes by capturing data 
changes from distributed service executions and providing an 
intelligent, decentralized approach to discovering 
dependencies that can be used to enhance recovery 
techniques such as those described above. 

B. The DeltaGrid Project 
The research described in this paper builds on our past 

work with the DeltaGrid project [22, 23, 24] and Delta-
Enabled Grid Services (DEGS) [3, 17]. A DEGS is a Grid 
Service that has been enhanced with an interface that 
provides access to the incremental data changes, or deltas, 
that are associated with service execution in the context of 
globally executing processes. A DEGS uses an OGSA-DAI 
Grid Data Service for database interaction. The database 
captures deltas using capabilities provided by most 
commercial database systems. In [3, 17], we experimented 



with triggers and with the use of Oracle Streams as a way to 
capture data changes [16]. Oracle Streams is a feature that 
monitors database redo logs for changes and publishes these 
changes to a queue to be used for data sharing.  

Deltas captured over the source database are stored in a 
local delta repository. Deltas are then generated as a stream 
of XML data from the delta repository to the Process 
History Capture System (PHCS) [22, 23] of the DeltaGrid 
execution environment, where a complete execution history 
for distributed, concurrent processes is formed. The 
execution history includes deltas from distributed DEGSs 
and the process runtime context generated by the process 
execution engine. Deltas are dynamically merged using 
timestamps as they arrive in the PHCS to create a time-
ordered schedule of data changes from distributed DEGS. 
This global delta object schedule creates a log file that is 
used to support recovery activities when process execution 
fails [22, 23].  

In particular, the global delta object schedule can be 
used to support the backward recovery of a completed 
service using Delta-Enabled rollback (DE-rollback). The 
delta schedule also provides the basis for discovering data 
dependencies among processes. As defined in [22, 23], a 
process-level write dependency exists if a process pi writes 
an object x that has been written by another process pj before 
pj completes (i≠j). An operation-level write dependency 
exists if an operation opik of process pi writes an object that 
has been written by another operation opjl of process pj. 
Operation-level write dependency can exist between two 
operations within the same process (i = j). The operations 
that are write dependent on a specific operation opjl form 
opjl’s write dependent set. If opik is write dependent on opjl, 
the enclosing process of opik is also write dependent on opjl. 
Note that DE-rollback of an operation is only performed if 
the operation’s write dependent set is empty.  

Similar definitions exist to define read dependencies, 
but since a DEGS does not capture read information, the 
global execution context can be used to reveal potential 
read dependency among operations. An operation opik is 
potentially read dependent on another operation opjl if: 1)  opik 
and opjl execute on the same DEGS, and 2) the execution 
duration of opik and opjl overlaps, or opik is invoked after the 
termination of opjl. The operations that are potentially read 
dependent on an operation opjl form a set referred to as opjl’s 
read dependent set. Potential read dependency can be 
defined at the process or operation levels.  

An object interface is used to query the delta object 
schedule to return information about read and write 
dependencies. This information identifies concurrently 
executing processes that may be affected by the failure and 
recovery of a process that is accessing shared data. A user-
defined rule-based approach for recovery actions of 
processes that are dependent on a failed process is addressed 
in [22, 25]. 

The research in [3, 17, 22, 23, 24] demonstrated the 
feasibility of the DeltaGrid approach to analyzing data 

dependencies among concurrently executing processes, but 
identified the centralized approach to data dependency 
analysis as a major bottleneck in the process. The results 
presented in this paper extend the data dependency analysis 
concept to a decentralized approach, where multiple Process 
Execution Agents maintain local delta object schedules and 
communicate as peers to share information about common 
data access patterns among concurrent processes. 

III. PROCESS EXECUTION AGENTS (PEXAS) 
This section provides an initial overview of process 

execution agents. The discussion begins with an example 
execution scenario in Fig. 1, where we assume there are 
three PEXAs in the decentralized environment. Each PEXA 
is indicated as a rectangular box and is associated with a 
distributed site (Di) that has a DEGS interface and possibly 
multiple databases. Executing processes are indicated as 
circles, with lightning bolts indicating the PEXA that is 
controlling the execution of the process. A solid line from a 
process to a DEGS interface represents a service invocation. 
Dashed lines between PEXAs indicate decentralized 
communication among PEXAs. Data changes that are made 
by each DEGS are forwarded to the PEXA that is associated 
with the DEGS and stored in the local delta object schedule. 
Section A presents an example execution scenario. Section 
B then describes the internal architecture of a PEXA.  

A. A PEXA Execution Scenario 
As shown in Fig. 1, each PEXA is responsible for 

controlling the execution of local processes that are 
composed of service executions. Each process is invoking 
services that modify data at distributed sites. For example, 
site D1 is controlling the execution of p1 and p4. Process p1 is 
composed of two service executions identified as op11 and 
op12, both executing at D1. Process p4 executes op41, also at 
site D1. Site D2 controls the execution of p2, where p2 
executes op21 at D1 and op22 at D2. Site D3 controls the 
execution of p3, which is executing op31 at D2,  op32 at D1, and 
op33 at D3.  

As indicated in Fig. 1, each invocation of an opij has a 
timestamp, tx, indicating the time at which the operation is 
invoked. The box inside each PEXA provides a snapshot of 
the local delta object schedule for the data items that are 
being modified by each service that accesses data at the site, 
illustrating the interleaved data access by the service 
invocations of concurrent processes. For example, the delta 
object schedule for D1 shows that objects X1, Y1, and Z1 
have been modified. The schedule indicates the operations 
that have made the modifications and orders the schedule by 
the operation timestamps. The local schedule at D1 indicates 
that p2 is dependent on p1 since op21 has modified X1 after 
op11 has modified X1 and p1 is still executing. The schedule 
also indicates that p4 is dependent on p3 through access to 
Y1. At D2, the operations have accessed data item X2, with 
the local schedule indicating that p3 is dependent on p2.  
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Figure 1.  Decentralized Process Execution Agents 

 

B. Internal PEXA Architecture 
Fig. 2 shows the internal architecture of a PEXA. A 

PEXA contains a process execution component with a 
Process History Capture System that records runtime 
information about the status of each executing process. In 
the current environment, we are simulating the process 
execution component. Our current implementation uses the 
db4o object-oriented database [10] to record the runtime 
status of each process and to record the data changes that are 
communicated to the PEXA from each DEGS associated 
with the PEXAs local environment. Our future work will 
integrate the use of BPEL [1] into the PEXA architecture. 

The local delta object schedule is an indexing structure 
defined in [22] that sequences data changes in the delta 
repository according to time stamps and allows the recovery 
system to 1) analyze data dependencies and 2) retrieve delta 
information at different levels of granularity (e.g., all 
changes associated with a specific process or all changes 
associated with a specific service invocation within a 
process). The data dependencies are used by the recovery 
algorithm to identify processes that are write dependent on a 
failed process. There is no explicit data about read 
dependencies, so potential read dependencies are identified 
using runtime information about overlapping service 
execution as defined in [22, 23]. Dependent processes can 
then query delta values, checking user-defined conditions to 
determine if they need to recover (e.g., execute 
compensating procedures) or continue running. 

As part of the recovery process, a PEXA builds a 
process dependency graph based on the information in its 
local delta object schedule. But since a process can execute 
services at multiple sites, each monitored by a different 
PEXA, a PEXA must communicate with other PEXAs to 
construct a global, distributed view of process dependencies 
when a process fails. As a result, a PEXA also contains a 
peer-to-peer communication component that uses the JXTA 
message exchange protocol from Sun Microsystems [20]. 

 

 
 

Figure 2.  Internal PEXA Architecture 



Furthermore, local process dependency graphs are extended 
with a structure known as a link object to assist in the 
construction of the global, distributed view. Section IV 
elaborates on the use of link objects and other runtime 
information to construct global, distributed process 
dependency graphs. 
 

IV. DECENTRALIZED DATA DEPENDENCY ANALYSIS 
The objective of decentralized data dependency 

analysis is to construct a virtual, global process dependency 
graph to determine all active processes that are potentially 
affected by the recovery of a failed process. For example, if 
p2 is dependent on p1 and p3 is dependent on p2, then if p1 
fails, the global process dependency graph is p1←p2←p3. As 
a simplification at this stage in the research, we assume that 
a failed process and every dependent process of the failed 
process executes a compensating procedure as part of the 
recovery process, creating a cascaded recovery process. We 
use this as a worst-case scenario for constructing the full 
process dependency graph. We will address extensions to 
this simplification at the end of the paper when we discuss 
future research directions for the use of user-defined 
correctness conditions. 

If the data changes for all active processes are in one 
delta object schedule [22, 23], the construction of a global 
process dependency graph is straightforward. The challenge 
with multiple PEXAs is that the delta object schedule is 
distributed among several PEXAs. As a result, a global view 
of process dependencies must be discovered through PEXA 
communication.  

As an example, consider again the process execution 
scenario in Fig. 1. Fig. 3 shows the interleaved execution 
view of each process and operation from a data access point 
of view when op12 fails at time t8. The global process 
dependency graph for the four active processes is shown in 
the upper right portion of Fig. 4, indicating that the process 
dependency graph is p1←p2←p3←p4. The recovery process 
is invoked when op12 fails at site D1 and invokes the 
compensation of p1, which is controlled by PEXA 1. Fig. 3 
and Fig. 4 illustrate that PEXA 1 can detect that p2 is 
dependent on p1 due to modification of X1. PEXA 1 can also 
detect that p4 is dependent on p3 due to modification of Y1, 
but PEXA 1 cannot identify this dependency as part of the 

P1 P2 P4P3

op11 op21 op12op33op41op32op31op22

Time t1 t2 t3 t4 t5 t6 t7 t8

D1

X 1

Y 1

Z 1

D2 X 2
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Figure 3.  Data Access View of Interleaved Execution 

graph for p1 due to the distributed nature of the execution. 
As shown in Fig. 3, p3 is not dependent on p1, p2, or p4 based 
on data access patterns at D1, but p3 is dependent on p2 based 
on data accessed at D2. We refer to disconnected graphs 
such as those in PEXA 1 of Fig. 4 as hidden dependencies. 
Additional execution information must be recorded to link 
together all distributed components of the graph and to 
identify hidden dependencies within a single PEXA. 

In particular, the runtime information about processes 
must be extended to record information about the distributed 
execution. When a service is executing at a PEXA, it is 
important to record whether the service was invoked by an 
internal or an external process. An internal process is a 
process that is controlled by the PEXA where the service is 
invoked. An external process is a process that is controlled 
by a PEXA different from the one where the service is 
invoked. For example, in Fig. 1, op21 executes at the site of 
PEXA 1 but is invoked by a process running at PEXA 2. As 
a result, p2 is marked as an external process (EX) in PEXA 1 
within Fig. 4. Using the same rationale, p3 is marked as 
external in PEXA 2 (because of op31) and also in PEXA 1 
(because of op32).  

In the opposite direction, a PEXA that controls a 
process that invokes a service at a different site must create 
a link object to record information about the site where the 
service is executed. In Fig. 4, PEXA 2 creates a link object 
to indicate that op21 of process p2 is executed at the site of 
PEXA 1. PEXA 3 creates two link objects to record the fact 
that op31 executes at PEXA 2 and op32 executes at PEXA 1. 
Used in combination, link objects together with an 
indication of internal or external process invocation can be 
used to dynamically discover global, distributed process 
dependency graphs. Section V elaborates on the algorithm 
for constructing distributed process dependency graphs 
among decentralized PEXAs. 
 

V. DISTRIBUTED GRAPH CONSTRUCTION AND 
RECOVERY PROCESS 

The distributed graph construction and recovery 
algorithm is invoked upon the failure of a service within a 
process. The approach is to construct an initial process 
dependency graph at the site of the failure by calling 
findProcessDependencies(processId), where processId is the 
identifier of the failed process. The graph is then used to 1) 
recover local service executions and 2) find information 
about external processes and link objects to communicate 
with other PEXAs about propagation of recovery and graph 
construction activities. Recall that link objects point to 
services that are under the control of a process at the current 
PEXA but were executed at a different PEXA, whereas 
services marked as external (EX) have executed at the 
current PEXA but are under the control of a process at a 
different PEXA. In the following sections, we first address 
process dependency graph construction. In the interest of 
space,     we     do     not     present   the     details     of     the  



 

 
Figure 4.  Global, Distributed Process Dependency Graph 

 
findProcessDependencies(processId) algorithm, but outline 
relevant issues related to graph construction. We then 
address the use of external processes and link objects and 
demonstrate propagation of the recovery and graph 
construction process using the execution scenario 
introduced in Fig. 1. 

 

A. Preliminary Issues for Graph Construction and 
Analysis 
Information about a service execution that was 

requested by an external process is stored in the runtime 
component of a PEXA. The structure of an entry in the 
schedule is: 

- pName (the process name) 
- pId (the process identifier) 
- opName (the operation name) 
- opId (the operation identifier) 
- oId (the object identifier) 
- inOrEX (indicating internal or external process) 
- degsId (DEGS identifier) 
- PEXAId (the controlling PEXA identifier) 
- status (the execution status of the process) 
The inOrEx field distinguishes between service 

execution requested by a local process and service execution 
requested by an external process of another PEXA. This 
information is queried during the graph construction process 
to indicate that notifications must be sent to the 
corresponding PEXA about propagation of the recovery and 
graph construction process.  

Link objects are created by a PEXA when a process 
executing at the PEXA invokes a service at a remote site. 
The structure of a link object is: 

- processId (identifier of the controlling process) 
- opName (name of the service) 
- opId (service identifier) 
- degsId (DEGS identifier) 
- PEXAId (PEXA identifier) 
- status (indicating successful or compensated) 

Link objects are also needed for propagation of the recovery 
and graph construction process. 

A process dependency graph is created by 
findProcessDependencies(processId) at the process execution 
level rather than at the  service execution level. Let opjk 
represent a service invoked from process pj and opmn 
represent a service invoked from process pm. If opmn is write 
dependent (or potentially read dependent) on opjk, then pm is 
identified as dependent on pj in a process dependency graph 
for pj when pj fails. 

In the graph, nodes represent processes and edges 
represent dependencies. The graph is represented as a 
hashmap that combines a key/value pair for fast retrieval, 
where a process is a key and its value is a list to store all 
processes that are immediately read and/or write dependent 
on another process. Read and write dependencies are found 
using procedures in [22] for querying a delta object schedule 
together with the process execution context. After finding 
immediate dependencies, transitive dependencies are 
recursively found. 



There can potentially be cycles in a process dependency 
graph. For example, suppose the following cycle exists: 
p1←p2←p3←p1, where p1 and p3 are dependent on each 
other, but the dependency of p3 on p1 was created before the 
dependency of p1 on p3. Since the graph is constructed to 
control the order of the recovery process, cyclic information 
is not needed in the graph. In the above example, p1 will be 
recovered before p2 and p2 will be recovered before p3. As a 
result, it is not necessary to enter the cycle in the graph since 
p1 is recovered before p3. The difficulty with cycles is that 
the graph is distributed. A PEXA must therefore be capable 
of dealing with local and global cycles.  

Local cycles can be detected using information in the 
local delta object schedule. The method g.addVertex(pi) is 
used to add nodes that represent processes (pi) to the graph 
(g). The method g.addEdge(pi, pj) is used to create an edge in 
g, indicating that pj is dependent on pi. To avoid local cycles, 
the method g.addEdge(pi, pj) prevents cycles by first checking 
to see if pj is already a parent of pi in the graph. If so, the 
edge is not created to avoid a cycle.  

The link object attribute inOrEx is used to address 
distributed cycles. The attribute indicates the status of an 
external operation as either successful or compensated. When 
an external operation finishes executing successfully, it will 
send its successful status back to the controlling process and 
update the corresponding link object. If the service is later 
compensated at the execution site, a notification will be sent 
back to the controlling process to change its status to 
compensated. This value is used in the propagation of the 
recovery and graph construction process to avoid distributed 
cycles (i.e., to prevent invoking compensation of procedures 
that have already been compensated). The use of this value 
will be illustrated in the following two subsections.  

B. Recovery and Graph Propagation 
Fig. 5 provides pseudocode for the recovery and graph 

propagation process. The procedure is called after the 
construction of the local process dependency graph and is 
passed an ordered list of processes to be recovered. The list 
is created by doing a breadth-first traversal of the local 
process dependency graph.  

The recover procedure examines each process in the list, 
finds operations of the process that were executed locally, 
and invokes compensating procedures for each process. For 
internal processes (i.e., the IF part of the algorithm), the 
algorithm then queries the link objects associated with the 
process to find services of the process that were executed at 
other sites. Notifications are then sent to the PEXAs of each 
external process. Each PEXA that is notified will invoke 
findProcessDependencies(processId) for the relevant process to 
construct its own local dependency graph to continue the 
recovery process at the new PEXA site. When receiving the 
notification, the process will be checked to see whether it is 
already in the graph. If it exists, the notification is ignored. 

For a service invoked by an external process (i.e., the 
ELSE part of the algorithm), a notification is sent to the 

external PEXA to propagate the recovery and graph-
building process. The notification triggers the graph 
construction in another site if the process from the 
notification is not in the local graph, and then compensates 
processes in the graph. 

C. Execution Scenario 
Fig. 6 uses the execution scenario from Fig. 1 to 

illustrate the logic of the algorithm presented in Fig. 5. 
When the execution of an external operation is completed, 
the execution result is sent back to its controlling PEXA to 
mark the status in its link object. This communication is 
shown as solid lines between PEXAs in Fig. 6. Notifications 
that are initiated by the sendNotification procedure in Fig. 5 
are drawn as dashed lines in Fig. 6.  
// recover dependent processes according to where they come from 
public void recover( List list){ 
 
    //create a new list for operations from the lcoal schedule 
    List tempList; 
 
    FOR each processId in the list 
    { 
        //find operations from the local schedule 
        tempList =      
              (List)ProcessInfoAccess.getExecutedOperationList(processId); 
 
        // there are operations to be compensated 
        if(tempList!= null){ 
            compensate(tempList); 
        } 
 
        IF the process is initiated by the local PEXA 
        { 
                //find external operations of processId from the link objects table 
                tempList=LinkObject.getExecutedOperationList(processId); 
 
                //send notifications 
                if(tempList!=null) 
                { 
                        For each operationId in the tempList 
                        { 
                            //mark compensated operations 
                            LinkObject.updateOperation(operationId,  
                                                                      "compensated"); 
                            String pexaId=       
                                              LinkObject.getExecutingPexa(operationId); 
                            sendNotification(processId, operationId, pexaId); 
                        } 
                 } 
        ELSE //the process is initiated by a peer PEXA 
        { 
                //mark compensated process 
                For each operationId in the tempList 
                      OperationInfo.updateOperation(operationId, "compensated"); 
                //send notification 
                String pexaId=       
                          ProcessInfoAccess.getProcessInfo(processId).getPEXA(); 
                sendNotification(processId, pexaId); 
        } 
    }END FOR 
} 

Figure 5.  The recover Procedure 
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Figure 6.  Execution Scenario 

 
The recovery process is initiated when op12 fails in 

PEXA 1 and constructs a local process dependency graph. 
Recall that link objects have already been created for each 
process as a result of execution up to this point. In PEXA 1, 
the local dependency graph is initially determined to be 
p1 p2. In Fig. 6, the box to the left of each process node 
shows the runtime information for the process, indicating 
the service executed and the internal/external status of the 
associated process. The recover procedure for the graph 
compensates procedure op11, which is an internal service. 
There are also no entries for p1 in the link object table, 
indicating that all of p1’s services were executed at site D1. 
As a result, tempList is null and no notifications are sent. 
Since p2 is an external process, op21 is compensated at PEXA 
1 and then a notification is sent to PEXA 2 (labeled as 
notification 1 in Fig. 6), indicating that 1) op21 should be 
marked as compensated in the link object table and 2) the 
recovery and graph construction process should continue at 
PEXA 2 using p2 as a root node (i.e., invoke 
findProcessDependencies(p2)). 

At PEXA 2, the graph p2 p3 is created from the local 
delta object schedule. The algorithm in Fig. 5 is then 
invoked to recover the operations associated with the graph. 
The first iteration through the recover procedure determines 

that p2 is an internal procedure, finding a local operation 
(op22) and a remotely executed operation (op21). PEXA 2 will 
compensate op22 and discover that op21 has already been 
compensated. As indicated in the comment box in Fig. 6, 
successful* is changed to compensated for op21 in the PEXA 2 
link object table when notification 1 is received. 

When p3 is processed, it is identified as an external 
node. As a result, op31 is compensated and notification is 
sent to PEXA 3 (notification 2 in Fig. 6) to propagate the 
recovery and graph construction process, together with 
information about changing the status of the link object for 
op31 from successful* to compensated. 

At PEXA 3, the graph contains only one node for p3, 
which in an internal process. When the algorithm in Fig. 5 is 
invoked, the IF part of the code is then executed. As a result, 
op33 is compensated since it was executed at PEXA 3. Link 
objects are then found for op31 and op32. Since op31 has 
already been marked as compensated, the notification 
message is only sent to PEXA 1 for the invocation of 
findProcessDependencies(p3). The status of op32’s link object 
is changed from successful** to compensated before sending 
the notification, with the actual compensation to take place 
at PEXA 1. 



PEXA 1 constructs the graph p3 p4. Since p3 is an 
external node, op32 is compensated at PEXA 1 and a 
notification is sent back to PEXA 3 (not shown in Fig. 6). 
PEXA 3 will be able to determine that all relevant services 
for p3 have already been compensated and thus will not 
continue to propagate the process (i.e., detects and 
terminates a distributed cycle). PEXA 1 then compensates 
op41 and terminates since there are no more notifications to 
send. 

Note that when the findProcessDependencies procedure 
is called in each PEXA to construct a local process 
dependency graph, the data items identified in the local 
delta object schedule are locked, with compensating 
procedures executing as nested transactions that inherit the 
associated locks. This prevents other executing processes 
from accessing the data involved in the recovery process 
and creating further dependencies. 

VI. CONCLUSIONS 
This paper has provided an overview of our work with 

Process Execution Agents for decentralized data 
dependency analysis among concurrently executing 
processes in a service-oriented environment. PEXAs 
monitor the execution of processes and support the dynamic 
discovery of data dependencies that can be used to enhance 
recovery procedures by identifying processes that may be 
affected by shared access to the data of failed procedures. 
We have implemented the procedures described in this 
paper and are currently developing a simulation 
environment for the algorithms to conduct performance 
studies and to address scalability issues. The approach 
described in this paper represents a new way of integrating 
existing transaction processing concepts with execution 
platforms that can be used to address data consistency issues 
for concurrent process execution in service-oriented 
environments, providing more dynamic and intelligent ways 
of monitoring failures, detecting dependencies, and 
responding to failures and exceptional conditions. 

The algorithm presented in this paper represents a lazy 
approach to dependency analysis since the algorithm is not 
invoked until a process fails. We are also developing an 
eager approach to data dependency analysis, where the 
dependency graph is constructed during process execution 
and readily available when a failure occurs. Another 
important issue for future research includes the investigation 
of the fault tolerance of the data dependency algorithm in 
the context of distributed communication failures. 

In this initial stage of the research, we have assumed 
that a failed process and its dependent processes implement 
compensation as a recovery procedure. Future directions are 
focused on integrating the decentralized data dependency 
analysis algorithms with the service composition model that 
in [24], integrating the PEXA concept with BPEL engines, 
and addressing the impact of the approach on process 
consistency. We are enhancing the model with formal 
methods for user-defined specification of correctness 

conditions and are investigating the manner in which these 
specifications can be used with PEXAs to develop more 
intelligent service-oriented execution environments for 
addressing data consistency issues for concurrent processes. 
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