
The Dynamics of Process Modeling: New

Directions for the Use of Events and Rules in

Service-Oriented Computing

Susan D. Urban, Le Gao, Rajiv Shrestha, and Andrew Courter

Texas Tech University
Edward E. Whitaker Jr. College of Engineering

Department of Computer Science
Lubbock, TX 79409

{susan.urban,le.gao}@ttu.edu

Abstract. The introduction of service-oriented computing has created a
more dynamic environment for the composition of software applications,
where processes are affected by events and data changes and also pose
data consistency issues that must be considered in application design and
development. This chapter addresses the need to develop a more effec-
tive means to model the dynamic aspects of processes in contemporary,
distributed applications, especially in the context of concurrently exe-
cuting processes that access shared data and cannot enforce traditional
transaction properties. After an assessment of current tools for process
modeling, we outline four approaches for the use of events and rules to
support dynamic behavior associated with constraint checking, exception
handling, and recovery. The specific techniques include the use of integra-

tion rules, assurance points, application exception rules, and invariants.
The chapter concludes with a discussion of future research directions for
the integrated modeling of events, rules, and processes.

Keywords: service composition, event and rule processing, integration
rules, application exception rules, assurance points, invariant conditions,
dynamic process modeling

1 Introduction

The advent of Web Services and service-oriented computing has significantly
changed software development practices and data access patterns for distributed
computing environments, creating the ability to develop processes that are com-
posed of service executions. These processes are often collaborative in nature, in-
volving long-running activities based on loosely-coupled, multi-platform, service-
based architectures. This new software development paradigm makes the con-
cept of virtual organizations a reality, better supporting enterprise-to-enterprise
business processes and data exchange. Service-oriented computing, however, also
poses new challenges for software process modeling. In particular, processes must

2 Susan D. Urban, Le Gao, Rajiv Shrestha, and Andrew Courter

be flexible enough to respond to the different types of change that can occur dur-
ing execution. Change occurs, for example, when exceptional conditions arise in
an application, such as a customer canceling or changing an order, or a ware-
house discovering damaged shipments. Change also occurs when a process fails
and needs to be recovered in a manner that maintains consistency for the failed
process as well as for other processes that access shared data with the failed pro-
cess. Processes must also be capable of executing in environments that no longer
support traditional transactional properties but also guarantee correctness and
consistency of execution. The ability to respond to change and guarantee con-
sistency requires not only a flexible execution environment, but also techniques
that support the modeling of a process’s ability to correctly respond to events
and failures that affect the normal flow of execution.

In this chapter, we first summarize existing techniques for modeling the dy-
namics of processes. We then introduce additional considerations for the use
of events and rules in process modeling, especially in the context of service-
oriented computing. In particular, this chapter illustrates the use of integration

rules, invariant rules, and application exception rules together with the concept
of assurance points to model the more dynamic nature of service-oriented com-
puting. Integration rules are similar to the use of events and rules to control
process flow [11,12, 20, 38]. They are different, however, in that events are raised
before and after the execution of services to trigger integration rules that test
control logic that is orthogonal to the main procedural specification of process
flow. Assurance points (APs) enhance the use of integration rules, providing
checkpoints that are placed at critical locations in the flow of a process. An AP
is used to store execution data that is passed as parameters to integration rules
that check pre and post conditions and invoke additional execution logic. APs
are also used as intermediate rollback points to support compensation, retry,
and contingent procedures in an attempt to maximize forward recovery.

Whereas integration rules can be used to check data conditions at certain
points in process execution, invariants provide a stronger way to monitor data
conditions that must hold over a certain period of time during the execution of
a process, especially when data items cannot be locked over the span of multiple
service executions. Invariants are activated with a starting AP, deactivated with
an ending AP, and monitor the data of the invariant condition in between APs
using a concept known as Delta-Enabled Grid Services (DEGS) [2]. An invariant
therefore allows a process to declare data conditions that are critical to the
execution of the process, but to allow multiple processes to access the same data
in an optimistic fashion. When critical data conditions are violated, as detected
by the DEGS capability, recovery conditions can be invoked.

Finally, application exception rules provide a way to interrupt the execution
of a process in response to exceptional conditions and to respond to exceptions
in different ways depending on the state of the executing process as determined
by assurance points. Application exception rules can also be combined with a
data dependency analysis procedure associated with the use of DEGS to provide
a way to help a process determine how its own recovery or forward execution

The Dynamics of Process Modeling 3

can be affected by the failure and recovery of other processes that are accessing
shared data [46]. This is especially important for maintaining data consistency in
environments that cannot provide traditional transaction processing guarantees.

In the sections that follow, we first outline past work in the area of process
modeling with a specific focus on the use of events, rules, and exception handling
to provide dynamic behavior. We then provide motivation for integration rules,
assurance points, invariants, and application exception rules in the context of
decentralized process execution agents (PEXAs) that we have developed as part
of our research on service-oriented computing. We then elaborate on assurance
points and the rule functionality of our research. The chapter concludes with a
summary and discussion of future research for modeling methodologies, modeling
tools, and execution environments that support events and rules.

2 Conceptual Modeling of Business Processes

As described by Lu and Sadiq [26], most modeling techniques can be categorized
as either graph-based techniques or rule-based techniques. The following subsec-
tions summarize graph and rule-based techniques, with a focus on support for
dynamic capabilities.

2.1 Graph-Based Modeling Techniques

In graph-based modeling techniques such as BPMN [43], UML [14], and EPC
[36], a business process is described by a graph notation in which activities are
represented as nodes, and control flow and data dependencies between activities
as arcs or arrows

BPMN. The Business Process Modeling Notation (BPMN V1.0) was intro-
duced by the Business Process Management Initiative in 2004 [43]. The objective
of BPMN is to provide a graphical model that can depict business processes and
can be understood by both users and developers. Flow objects include symbols
to represent events, activities, and gateways (i.e., decision points). Flow objects
are connected to each other via connecting objects that represent sequence flow,
message flow, and association. A process always starts from an event and ends in
an event. All other events inside the process are called intermediate events and
can be part of the normal flow or attached to the boundary of an activity. An
attached event indicates that the activity to which the event is attached should
be interrupted when the event is triggered. The attached event can trigger either
another activity or sub-process. Typically, error handling, exception handling,
and compensation are triggered by the attached event.

To detail a business process, swim lanes and artifacts can be used. Swim lanes
are used to either horizontally or vertically group a process into subgroups by
rules, such as grouping processes by departments in a company business process.
Artifacts provide additional information in a business process to make a model
more readable, such as text descriptions attached to an activity.

4 Susan D. Urban, Le Gao, Rajiv Shrestha, and Andrew Courter

BPMN (V2.0 beta 1) [3] was released in 2009. In BPMN 2.0, the most im-
portant update is standardized execution semantics which provide execution
semantics for all BPMN elements based on token flows. A choreography model
is also supported in BPMN 2.0. Other significant changes include 1) a data
object supporting assignments for activity; 2) updated gateways supporting ex-
clusive/parallel event-based flow; 3) event-subprocesses used to handle event
ocurrences in the bounding subprocess; 4) a call activity type that can call an-
other process or a global task; and 5) escalation events for transferring control
to the next higher level of responsibility.

Mapping tools that can convert BPMN to executable languages, where the
translation is enhanced with the execution semantics of BPMN 2.0. For example,
the Business Process Execution Language (BPEL) [1] is used for executing busi-
ness processes that are composed of Web Services. A well-known, open-source
mapping tool is BPMN2BPEL [31].

UML. The Unified Modeling Language (UML) is a general-purpose modeling
language with widespread use in software engineering. UML provides a set of
graphical modeling notations to model a system. An activity diagram describes
a business process in terms of control flow. A state diagram represents a business
process using a finite number of states. UML also provides sequence diagrams
that emphasize interactions between objects.

In UML 2.0, new notations have been added to activity diagrams to pro-
vide support for the specification of pre and post conditions, events and actions,
time triggers, time events, and exceptions. These notations provide more dy-
namic support to process modeling in UML. Researchers have also proposed
process modeling enhancements to UML. For example, the work in [32] proposes
a framework that supports exception handling using UML state charts. In [15],
the authors present a method that can handle exceptions in sequence diagrams.

EPC. The Event-driven Process Chain (EPC) method was developed within
the framework of the Architecture of Integrated Information Systems (ARIS)
in the early 1990s. The merit of EPC is that it provides an easy-to-understand
notation. OR, AND, and XOR nodes are used to depict logical operations in
the process flow. The main elements of a process description include events,
functions, organization, and material (or resource) objects. The EPC does not
have specific notation support for exception processing. Instead, EPC uses the
logical operations to specify the handling of events and exceptional conditions.
Recent work has modified the EPC notation to provide better support for process
modeling. For example, in [29], yEPC provides a cancellation notation to model
either an activity or a scope cancellation process.

Other Related Methods. FlowMake is presented by Sadiq and Orlowska in
[35]. FlowMake models a workflow using a graphical language, including work-
flow constraints that can be used to verify the syntactic correctness of a graphical
workflow model. Reichert and Dadam [34] present a formal foundation for the
support of dynamic structural changes of running workflow instances. ADEPT-
flex is a graph-based modeling methodology that supports users in modifying
the structure of a running workflow, while maintaining its correctness and con-

The Dynamics of Process Modeling 5

sistency [34]. YAWL [42] is designed based on Petri nets for the specification of
control flow. ActivityFlow [24] provides a uniform workflow specification inter-
face to describe different types of workflows and helps to increase the flexibility of
workflow processes in accommodating changes. ActivityFlow also allows reason-
ing about correctness and security of complex workflow activities independently
from their underlying implementation mechanisms.

An advantage of graph-based languages is that they are based on formal
graph foundations that have rich mathematical properties. The visual capabil-
ities also enhance process design for users and designers. The disadvantage is
that graph-based modeling methods are not agile for dynamic runtime issues,
requiring the use of specialized notations that can cause the model to become
more complex.

2.2 Rule-Based Modeling Techniques

In a rule-based modeling approach, business rules are defined as statements
about guidelines and restrictions that are used to model and control the flow of
a process [16]. More recently, rules are used together with agent technology to
provide more dynamic ways of handling processes.

Use of Rules in Workflow and Service Composition: Active databases ex-
tend traditional database technology with the ability to monitor and react to
circumstances that are of interest to an application through the use of Event-
Condition-Action (ECA) rules [44].

The work of Dayal et al. [9] was one of the first projects to use ECA rules
to dynamically specify control flow and data flow in a workflow. In the CREW
project [21], ECA rules are used to implement control flow. The TrigSFlow [23]
model uses active rules to decide activity ordering, agent selection, and worklist
management. Database representation of workflows [17] uses Event-Condition-
Message rules to specify workflows and utilize database logging and recovery
facilities to enhance the fault-tolerance of the workflow application. Migrat-
ing workflows[7] provide dynamics in workflow instances. A migrating workflow
transfers its code (specification) and its execution state to a site, negotiates a
service to be executed, receives the results, and moves on to the next site [7].
ECA rules are used to specify the workflow control.

Active rules also provide a solution for exception handling in workflow sys-
tems. ADOME [5] and WIDE [4] are commercial workflow systems that use
active rules in exception handling. Rules are also used in workflow systems to
respond to ad-hoc events that have predefined actions. Other workflow projects
that use active rules are described in [6, 13]. Active rules have been used to gen-
erate data exchange policies at acquaintance time among peer databases [22].

Agent-Based Techniques. Agent technology has been introduced to model
business processes. Agents are autonomous, self-contained and capable of mak-
ing independent decisions, taking actions to fulfill design goals and to model
elements in a business process. Agents also support dynamic and automatic
workflow adaptations, thus providing flexibility for unexpected failures. ADEPT
[18] is an agent-based system for designing and implementing processes. The

6 Susan D. Urban, Le Gao, Rajiv Shrestha, and Andrew Courter

process logic is defined by a service definition language, where agents have suf-
ficient freedom to determine which alternative path should be executed at run-
time. AgentWork [30] is a flexible workflow support system that provides better
support for exception handling using an event monitoring agent, an adaptation
agent, and a workflow monitoring agent. Events represent exceptional conditions,
with rule conditions and actions used to correct the workflow. The adaptation
agent performs adjustments to the implementation. The workflow monitoring
agent checks the consistency of the workflow after adaptation implementation.
If the workflow is inadequate, the workflow monitoring agent will re-estimate
the error and invoke a re-adaptation of the workflow.

Rule and agent-based modeling methods provide better support for flexibility
and adaptability in process modeling. Rule-based methods support modifications
at runtime much easier than graph-based methods. It is easy to modify a pro-
cess model by rule-based methods, and, unlike graph-based methods, rule-based
methods do not need new notations to express exception handling processes.
Rule-based methods, however, can be difficult to use and understand.

3 Motivation for New Rule Functionality

As illustrated in the previous section, most process modeling techniques are
aligned with either a procedural approach, specified as a flow graph, or a rule-
driven approach, where events and rules are used to control the flow of execution.
Rules provide a more dynamic way to respond to events that represent a need
to change the normal flow of execution. The use of rules in process modeling
is especially important considering the growing prevalence of complex events,
event-driven applications, and business activity monitoring.

In our view, a dynamic approach to process modeling for service-oriented
environments requires a combination of graph and rule-based techniques, where
graph-based techniques provide a means for specifying the main application logic
and events are used to interrupt or branch off of the main flow of execution, trig-
gering rules that check constraints, respond to exceptions, and initiate parallel
activity. Events and rules should also play an increased role in supporting fail-
ure and recovery activity. Planning for failure and recovery should be an integral
component of process modeling for service-oriented architectures, especially in
the context of concurrently executing processes that access shared data and
cannot enforce traditional transactional properties.

Our research addresses consistency checking as well as failure and recovery
issues for service-oriented environments through the use of integration rules,
invariants, and application exception rules, used together with a checkpoint-
ing concept known as assurance points. To motivate the use of these concepts,
consider a decentralized execution environment consisting of Process Execution
Agents (PEXAs) as shown in Figure 1. In our research, a PEXA is responsible for
monitoring the execution of different processes. As shown in Figure 1, PEXA 1
is responsible for the execution of P1 and P4, PEXA 2 is responsible for P2, and
PEXA 3 is responsible for P3. Each process invokes services at various locations

The Dynamics of Process Modeling 7

within the network. As shown in Figure 1, P1 invokes operation a at the site of
PEXA 1, operation b and operation c at the site of PEXA 2, and operation d
at the site of PEXA 3.

Figure 1 also illustrates that PEXAs are co-located with Delta-Enabled Grid
Services (DEGS). A DEGS is a Grid Service that has been enhanced with an
interface that stores the incremental data changes, or deltas, that are associ-
ated with service execution in the context of globally executing processes [2,
41]. A DEGS uses an OGSA-DAI Grid Data Service for database interaction.
The database captures deltas using capabilities provided by most commercial
database systems. Our own implementation has experimented with the use of
triggers as a delta capture mechanism, as well as the Oracle Streams capability
[41]. Oracle Streams is a feature that monitors database redo logs for changes
and publishes these changes to a queue to be used for replication or data sharing.

P1

.

.

AP1

AP2

.

.

AP3

AP4

.

.

Integration Rules {Pre|Post}

Invariant Rules

Application Exception

Rules
.

.

Operation_a

Operation_b

Operation_d

DEGS

Interface

DEGS

Interface

DEGS

Interface

PEXA1

PEXA2 PEXA3

P1

P2 P3

P4

AP1

P1

Service Invocation

P2P Communication

Interruption

Rule Invocation

Process

Assurance Point

� � � � � � � �

� � � � �

Operation_c

Pointer: Process

Instance

Instance Details

PEXA
Process Execution

Agent

DEGS

Interface

Delta-Enabled

Grid Service

Interface

Source

Database

Source

Database

Source

Database

Local

Delta

Schedule

Local

Delta

Schedule

Local

Delta

Schedule

Fig. 1. Decentralized Process Execution Agents with Events and Rules

Deltas captured using DEGS are stored in a delta repository that is local to
the service. Our past work has experimented with the creation of a centralized
Process History Capture System (PHCS) that included deltas from all DEGSs
in the environment and the process runtime context generated by the process

8 Susan D. Urban, Le Gao, Rajiv Shrestha, and Andrew Courter

execution engine. Deltas are dynamically merged using timestamps as they arrive
in the PHCS to create a time-ordered schedule of data changes from the DEGS.
The global delta object schedule is used to support recovery activities when
process execution fails [47, 46, 45], where the global delta object schedule provides
the basis for discovering data dependencies among processes. Our most recent
work has transformed the global delta object schedule into a distributed schedule
with a decentralized algorithm for discovering data dependencies [40, 25]. As a
result, each PEXA in Figure 1 has its own local delta object schedule.

Given that processes can execute in an environment where decentralized
PEXAs can monitor data changes and communicate about data dependencies
among concurrently executing processes, our work is focused on how to enhance
the ability to monitor data consistency in the failure and recovery process. To
illustrate our approach, the expanded view of P1 in Figure 1 shows the use of as-
surance points (APs) and the different types of rules. As shown for P1, APs can
be placed at strategic locations in a process, where an AP is a combined logical
and physical checkpoint that can be used to store execution data, alter program
flow, and support recovery activity. One use of an AP is to trigger integration
rules as shown for AP1, where integration rules check pre and post conditions
for service execution. By checking pre/post conditions, user-defined consistency
constraints can validated, which is important since most service-oriented en-
vironments cannot rely on traditional notions of serializability to ensure the
correctness of concurrently executing processes.

Another use of an AP is to activate invariant rules. Invariants indicate con-
ditions that must be true during process execution between two different APs.
As shown for P1 in Figure 1, an invariant is monitored during the execution
between AP2 and AP3, where the invariant represents a data condition that is
critical to the correct execution of P1. P1, however, may not be able to lock
the data associated with the invariant during the service executions between
AP2 and AP3. Given that DEGS can be used to monitor data changes, P1 can
activate the invariant condition, but still allow concurrent processes to access
shared data. P1 can then be notified if data changes violate the invariant con-
dition. For example, if P3 modifies data associated with the invariant of P1, P1
can re-evaluate the invariant condition and invoke recovery actions if needed.

P1 also illustrates the use of application exception rules at AP4. A process
should be capable of responding to external events that may affect execution
flow. The response to the event, however, may depend on the current status of
the process. For example, P1 may respond one way if the process has passed
AP4, but may respond differently if the process is only at AP1. Application
exception rules therefore provide a case-based structure that allows a process to
use information about assurance points to provide greater flexibility in response
to events. Furthermore, since PEXAs can communicate about data dependencies
among concurrently executing processes, when a process Pj invokes recovery
procedures in response to integration rules, invariant conditions, or application
exception rules, event notifications can be sent through P2P communication to
dependent processes that are controlled by other PEXAs. Application exception

The Dynamics of Process Modeling 9

rules can be used by a process Pi to intercept such events, determine how the
failure and recovery of Pj potentially affects the correctness conditions of Pi,
and respond in different ways depending on the AP status of the process.

4 Assurance Point and Rule Functionality

This section provides a more detailed description of the capabilities outlined in
Section 3. The first subsection elaborates on foundational work with integration
rules. The following subsections then address assurance points, invariant rules,
and application exception rules.

4.1 Dynamic Behavior with Integration Rules

Integration Rules (IRules) were originally defined in [38] to investigate the
middle-tier, rule processing technology necessary for the use of declarative, ac-
tive rules in the integration of Enterprise Java Beans (EJB) components. Several
different subcomponents to the IRules language framework have been defined,
including the Component Definition Language (CDL) for defining a global object
model of components and their relationships [11], the IRules Scripting Language
(ISL) for describing application transactions (a BPEL-like language), the Event
Definition Language (EDL) for defining events, and the Integration Rule Lan-
guage (IRL) for defining active rules [11, 12, 38]. In this section, we focus on IRL
and the functionality that it provides for dynamically testing the correctness of
process execution. The remaining subsections then show modifications to IRL
for additional dynamic modeling capabilities that address exception handling
and the consistency of concurrent processes.

IRules are different from past work with the use of rules to control workflow in
that they are integrated with the use of procedural specifications. Using IRules,
the main logic of a process can be expressed using a modeling tool such as BPMN.
It is assumed, however, that the start and end of a process generates application

transaction events. The execution of individual services within a process also
generates method events both before and after the execution of a service. IRules
are then used to respond to application transaction events and method events,
controlling rule actions together with the normal process flow using rule coupling
modes from active database technology [44]. Integration rules can therefore be
used to check pre and post conditions, to change the flow of execution, to spawn
a new flow of execution that eventually joins the main flow, to defer a new flow
of execution upon successful completion of the main flow, or to invoke a new,
independent, parallel flow of execution in addition to the main flow.

The structure of an integration rule is shown in Figure 2. Events are gen-
erated before and after the execution of individual services and their enclosing
processes by wrappers that coordinate rule and component execution. Rule con-
ditions and actions can be enhanced with ec (for event/condition) and ca (for
condition/action) coupling modes [20]. For example, the immediate synchronous
mode implies that the main flow of execution (i.e., the one that generated the

10 Susan D. Urban, Le Gao, Rajiv Shrestha, and Andrew Courter

event that triggered the rule) is halted while rule execution occurs. The imme-
diate synchronous mode is therefore useful for checking preconditions before the
execution of a service. The immediate asynchronous mode allows the main flow to
continue during rule execution, with the rule executing in the same transactional
framework as the process that triggered the rule. The deferred mode provides a
way of triggering a rule that schedules the execution of a procedure at the end of
the main procedural flow. The deferred mode is useful for scheduling the execu-
tion of a post condition that must be used to ensure data consistency at the end
of a service execution. Alternatively, a post condition can be tested by triggering
an integration rule with an immediate synchronous mode after the execution of a
service. The decoupled mode is used to trigger the execution of a rule condition
or action that executes in parallel with the main flow of execution as a separate
transactional entity. The decoupled mode therefore provides a way to use rules
for invoking procedures that involve business activity monitoring.

create rule ruleName
event eventName(eventParameters)
 [on componentName componentVariables]
condition [ec coupling]
 rule condition specification
action [ca coupling]
 rule action

Fig. 2. Structure of an Integration Rule [20]

As an example, consider the integration rule for a stock application in Figure
3. The purpose of the stockSell rule is to initiate sellStock transactions when
a price increase occurs. We only want to initiate such transactions, however,
for pending orders where the NewPrice exceeds the desired selling price in the
pending order. This situation implies that we need to compare the new price
of the stock with the old price of the stock to determine if there was a price
increase. This can only be done by examining the old and new values before
the execution of the price change in the Stock component, thus illustrating the
need for the beforeSetPrice event. The coupling mode on the rule condition is
immediate, indicating that the check for a price increase should be performed
as soon as the rule is triggered. The sellStock transactions on the appropriate
pending orders, however, should only be executed after the completion of the
setPrice method. As a result, the action part of the rule is deferred, meaning that
the action will not be performed until the end of the outer-most transaction in
which the rule was triggered.

The full details of the integration rule execution model as originally used with
EJB components can be found in [19, 20, 38]. With respect to dynamic process
modeling, integration rules illustrate the manner in which rules can be used for
more than just the interconnection of steps in a workflow. Integration rules work

The Dynamics of Process Modeling 11

create rule stockSell
event beforeSetPrice(NewPrice)
 on stock S
condition immediate

when NewPrice>S.price
action deferred
 from Pn in S.pendingTrades
 where S.price>=Pn.desiredPrice AND Pn.action=�sell�

do sellStock(S,Pn);

Fig. 3. Integration Rule Example for a Stock Application [38]

together with procedural, graph-based specifications and are particularly useful
for 1) checking conditions that validate the correctness of service execution and
2) invoking business activity monitoring procedures that execute in parallel with
business processes.

4.2 Dynamic Behavior with Assurance Points

In our current research, we have enhanced the use of integration rules using
assurance points and recovery actions. An assurance point (AP) is defined as a
process execution correctness guard as well as a potential rollback point during
the recovery process [37, 39]. Given that concurrent processes do not execute
as traditional transactions in a service-oriented environment, inserting APs at
critical points in a process is important for checking consistency constraints and
potentially reducing the risk of failure or inconsistent data. An AP also serves as a
milestone for backward and forward recovery activities. When failures occur, APs
can be used as rollback points for backward recovery, rechecking pre-conditions
relevant to forward recovery. The work in [37, 39] has developed a prototype of
APs using the Process Modeling Language (PML) described in [27, 28].

An AP is defined as: AP = <apId, apParameters*, IRpre?, IRpost?>, where:
- apID is the unique identifier of the AP
- apParameters is a list of critical data items to be stored as part of the AP,
- IRpre is an integration rule defining a pre-condition,
- IRpost is an integration rule defining a post-condition,
- IRcond is an integration rule defining additional application rules. In the above
notation, * indicates 0 or more occurrences, while ? indicates zero or one optional
occurrences.

IRpre, IRpost, and IRcond are expressed in the integration rule format intro-
duced in Figure 2, where the eventName is the name of the assurance point that
triggers the rule. For IRpre and IRpost, a constraint C is always expressed in a
negative form (not(C)). The action of a rule is invoked if the pre or post condi-
tion is not true, invoking a recovery action or an alternative execution path. If
the specified action is a retry activity, then there is a possibility for the process
to execute through the same pre or post condition a second time. In such a case,

12 Susan D. Urban, Le Gao, Rajiv Shrestha, and Andrew Courter

IRpre and IRpost rules support the specification of a second action to invoke a
different recovery procedure the second time through.

In its most basic form, the recovery action of an integration rule simply
invokes an alternative process. Recovery actions can also be one of the following
actions:
- APRollback: APRollback is used when the entire process needs to compensate
its way back to the start of the process.
- APRetry: APRetry is used when a process needs to be backward recovered
using compensation to a specific AP. The backward recovery process will go to
the first AP reached as part of the compensation process. The pre-condition
defined in the AP is re-checked before resuming the execution.
- APCascadedContingency (APCC): APCC is a backward recovery process
that searches backwards through the hierarchical nesting of processes to find
a contingent procedure for a failed sub-process. During the APCC backward
recovery process, when an AP is reached, the pre-condition defined in the AP is
re-checked before invoking a contingent procedure for forward recovery.

When the execution of a process reaches an AP, integration rules associated
with the AP are invoked. The condition of an IRpost is evaluated first. If the
post-condition is violated, the action invoked can be one of the pre-defined re-
covery actions as described above. If the post-condition is not violated, then an
IRpre rule is evaluated before the next service execution. If the pre-condition
is violated, one of the pre-defined recovery actions will be invoked. If the pre-
condition is satisfied, the AP will check for any conditional rules (IRcond) that
may exist. IRcond rules do not affect the normal flow of execution but provide
a way to invoke parallel activity based on application requirements. Note that
the expression of a pre-condition, post-condition or any additional condition is
optional.

As an example, consider a subset of an online shopping process, as shown
in Figure 4, where two APs are inserted. Both APs have integration rules that
must be checked when the process execution reaches the APs. The cop and
top in the process indicate the compensation and contingency of the attached
activity, respectively. AP1 is orderPlaced, which reflects that the customer has
finished placing the shopping order. Before executing the payment activity, the
pre-condition at AP1 is checked to guarantee that the store has enough goods
in stock. Otherwise, the process invokes the backOrderPurchase process instead.
Similarly, the CreditCardCharged AP2 after payment activity has a post-condition
that further guarantees that the in-stock quantity must be in a reasonable status
(not less than zero) after the decInventory operation. Otherwise, a recovery action
APRetry must be invoked to recover the process back to AP1 and re-execute the
payment activity. If the post-condition fails after re-execution, then APRollback
will be invoked to abort the overall process.

4.3 Dynamic Behavior with Invariants

APs together with integration rules allow data consistency conditions to be
checked at specific points in the execution of a process [37], using rule actions

The Dynamics of Process Modeling 13

Add to cart

Select shipping method

Payment information input

Place an order

Process

OrderPlaced (orderId, itemID, N)

Charge credit

card

Dec inventory

CreditCardCharged (orderId, cardNumber, amount)

cop

(AbortOrder)

cop(creditBack)

cop(incInventory)

top(eCheckPay)

create rule QuantityCheck::pre

event: OrderPlaced (orderId)

condition: exists(select L.itemId from

Inventory I, LineItem L where

L.orderId=orderId and L.itemId=I.itemId

and L.quantity>I.quantity)

action: backOrderPurchase(orderId)

create rule QuantityCheck::post

event: CreditCardCharged (orderId,

cardNumber, amount)

condition: exists(select L.itemId from

Inventory I, LineItem L where

L.orderId=orderId and L.itemId=I.itemId

and I.quantity<0)

action1: APRetry

action2: APRollback

AP1

AP2

Operation

Cop Compensation

Top Contingency

Assurance Point

Rule Invocation

Fig. 4. Portion of a Process Illustrating Assurance Points and Integration Rules

to invoke recovery procedures. In some applications, however, stronger condition
checking techniques may be needed to monitor data consistency. As a result, an
additional way to use rules together with APs is through the use of invariants.
An invariant is a condition that must be true during process execution between
two different APs. An invariant is designed for use in processes where 1) isola-
tion of data changes in between service executions cannot be guaranteed (i.e.,
critical data items cannot be locked across multiple service executions), and 2)
it is critical to monitor constraints for the data items that cannot be locked. The
data monitoring functionality provided by our previous work with DEGS makes
it possible to monitor invariant conditions. Invariants provide a stronger way
of monitoring constraints and guaranteeing that a condition holds for a specific
duration of execution without the use of locking. A prototype of the invariant
capability has been developed and demonstrated in [8].

Using the invariant technique, a process declares an invariant condition when
it reaches a specific AP in the process execution, also declaring an ending AP
for monitoring of the invariant condition. When a concurrent process modifies
a data item of interest in an invariant condition, the process that activated the
invariant is notified by a monitoring system built on top of Delta-Enabled Grid

14 Susan D. Urban, Le Gao, Rajiv Shrestha, and Andrew Courter

Services. If the invariant condition is violated during the specified execution
period, the process can invoke the recovery procedures defined in Section 4.2.
The strength of the invariant technique is that it provides a way to monitor
data consistency in an environment where the coordinated locking of data items
across multiple service executions is not possible.

An invariant has an identifier, two AP specifications (APs as a starting AP
and and APe as an ending AP), and optional parameters that are necessary in
the condition specification. Once APs is reached, the invariant rule condition
becomes active. The condition is specified as an SQL query. The condition is
initially checked and the action is executed if the invariant condition is violated.
If the invariant condition holds, the rule condition goes into monitoring mode
using the DEGS capability. The condition monitoring continues until APe is
reached or until the invariant condition is violated.

As shown in Figure 5, when an invariant condition goes into monitoring mode,
the data items of interest in the invariant condition are registered with a moni-
toring service. The monitoring service subscribes to the DEGSs that contain the
relevant data items referenced in an invariant. The DEGSs of the environment
will notify the service of any changes to the relevant data items by concurrent
processes. Any deltas that are forwarded to the monitoring service will cause the
invariant condition to be rechecked. As long as the condition still holds, then
there is no interference among the concurrent process executions. If the condition
is violated, then the recovery action of the invariant rule will be executed.

Process Specification

Process A
.

.

.

AP1
.

.

.

AP2
.

.

.

Invariant

data changed

condition

checked

violated?
invoke

recoveryAction

data

monitoring

YN

DEGS

interface

Process B
.

.

.

Update operations

.

.

.

Process Specification

Fig. 5. Semantics of an Invariant under Monitoring Mode

The Dynamics of Process Modeling 15

As a specific example, consider the invariant in Figure 6, where the LoanAmount-
Monitoring invariant is to be monitored between the LoanAppCreation AP (i.e.,
the starting AP for the monitoring process) and the LoanCompletion AP (i.e., the
ending AP for the monitoring process). The process represents a loan approval
process, where the process is creating a loan application for a customer at a bank
that already has an account at that bank. Figure 6 shows an invariant that checks
to make sure the loan applicant has a tenth of the requested loan amount in the
account, where the amount and customerid are passed as parameters from the
LoanAppCreation AP. The condition is expressed as an SQL query, preceded with
the not exists clause. Therefore, according to the SQL condition defined, if the
account balance does not meet the criteria, then the select condition will return
no tuples, making the not exists clause true, which triggers recoveryAction1. If the
query returns tuples that satisfy the SQL condition, then the process continues
and the status of the SQL query is monitored using the DEGS capability and
the invariant monitoring system. If the process reaches the LoanCompletion AP
and the applicants account balance still meets the necessary criteria, then the
process continues past the LoanCompletion AP, completing the loan application
after deactivating the LoanAmountMonitoring invariant. If at anytime between
the LoanAppCreation AP and the LoanCompletion AP, the applicant’s account
balance falls below the necessary criteria, the invariant monitoring system will
notify the process, which will execute one of the recovery actions.

create rule LoanAmountMonitoring::inv
event LoanAppCreation(LoanCompletion, customId)
condition (Not exists (select * from loan where loan.applicantID =
 ��+customId+�� and loan.status=�pre-qualified� and
 loan.amount < (select 10*balance from account where
 account.customId = ��+customId+��))
recoveryAction1 APRetry
recoveryAction2 APRollback

Fig. 6. An Invariant Example for Monitoring a Bank Balance for a Loan Approval
Process

4.4 Dynamic Behavior with Application Exception Rules

Dynamic behavior can also be achieved by using rules to respond to exceptional
conditions, where exceptions are communicated as events that interrupt the nor-
mal flow of execution. Whereas past work generally provides a fixed response to
exceptions, our work with application exception rules, provides a more flexible
way of using rules to respond to exceptions. We are currently developing the
application exception rule functionality in [33].

16 Susan D. Urban, Le Gao, Rajiv Shrestha, and Andrew Courter

As with integration rules and invariants, application exception rules are also
associated with assurance points. An outline of a process with APs is shown
in the leftmost column of Figure 7, where two different APs are defined. Each
AP represents the fact that a process has passed certain critical points in the
execution and that responding to an exception depends on the APs that have
been passed for individual instances of a process. Application exception rules are
then written to respond to exceptions according to the AP status of a process.

��������

�	��
�
��
��

���������
�

�

�

���
�

�

�

���
�

�

�

���������

�����������

�

�
����

�

�����������

�

�����

�

�����

�

���������

��������	
���	�

��������	
���	�

�		"
��
���

����	
���#�"�

$��������

����

���%

��
���&

���%

��
���&

��������

Fig. 7. The Use of Application Exception Rules

As shown in the middle column of Figure 7, application exception rules have
a case structure, defining recovery actions based on APs. When an exception
occurs, application exception rules are triggered. The exception handling proce-
dure to execute varies according to the AP status of the process, where recovery
actions can query the execution state associated with the most previous AP. As
shown in Figure 7, one instance of process A executes recoveryAction1 since the
process has passed AP1 but not AP2. The other instance of process A executes
recoveryAction2 since the process has passed AP2. For example, in an order pro-
cessing application, if an order is canceled before the packing and shipment of
the order, then the order processing is cancelled. If the order is cancelled af-
ter the shipment has occurred, the order processing might be cancelled with an
additional restocking fee charged to the customer.

APs and application exception rules represent the fact that a response to an
exception is not always a fixed action. The manner in which a process responds to
an exception depends on the state of the process. Identifying exceptions that alter
the execution path should be a routine aspect of process modeling. Application
exception rules advocate that the identification of exceptions should be extended
to also consider the critical execution points that may affect recovery actions, and
that rules, together with supportive execution environments, should be designed
to provide variability of response.

The Dynamics of Process Modeling 17

A broader use of application exception rules is in the context of the decen-
tralized execution environment with support for data dependency analysis as
described in Section 3. Using the data monitoring capabilities of DEGS, we have
developed a decentralized data dependency analysis algorithm [40, 25] to enhance
recovery activities for concurrent processes that execute with relaxed isolation
properties. In particular, when one process fails, recovery activities in the form of
compensation can occur. Compensating procedures, however, may make changes
to the data that has been read and used by concurrent processes. Using DEGS
together with the decentralized data dependency analysis algorithm, the failure
and recovery of one process can include the identification of other dependent
processes that may be executing within the decentralized environment. Events
can then be used to interrupt the execution of dependent processes, with appli-
cation exception rules providing a way to respond to such events in a flexible
manner.

We have experimented with this approach using process interference rules
(PIRs) [46]. A PIR is written from the perspective of an executing process and
is used to test user-defined correctness conditions to determine if a dependent
process should continue running or invoke its own recovery procedures. We are
currently integrating the PIR functionality into the concept of application ex-
ception rules to provide a more dynamic way to 1) recognize potential data
inconsistency problems among concurrently executing processes and 2) use the
event and rule functionality of application exception rules to interrupt depen-
dent processes, test data consistency conditions, and invoke recovery procedures
as needed.

5 Summary and Future Directions

This chapter has outlined several non-traditional uses of rules for supporting
dynamic behavior in service-oriented environments. The advantage of the tech-
niques presented is that they integrate the use of procedural and rule-based
techniques for process modeling. As a proof of concept, prototypes have already
been developed for integration rules, assurance points, the integration rule re-
covery actions, invariants, the process interference rule pre-cursor to application
exceptions rules, and decentralized data dependency analysis [20, 37, 39, 40, 47,
25]. A prototype of the more general use of application exception rules is cur-
rently under development.

An interesting challenge lies in developing methodologies that are capable of
supporting each rule paradigm in an integrated manner. Each rule type addresses
a different dimension of dynamics for service-oriented environments. Methodolo-
gies are needed to define when and how the different rule forms are defined.
Notational conventions are needed to enhance existing, graph-based approaches
with notations that depict the way in which rules are used and integrated with
procedural specifications. Guidelines are also needed to assist with the place-
ment of assurance points, with the specification of the different types of rules,
and with defining the conditions under which the rules are used. Execution

18 Susan D. Urban, Le Gao, Rajiv Shrestha, and Andrew Courter

environments are also needed to support the dynamic capabilities supported by
integration rules, application exception rules, and process interference rules. Our
own research is focused on the development of decentralized Process Execution
Agents that communicate in a peer-to-peer manner to dynamically determine
data dependencies among concurrently executing processes and to coordinate
the execution of processes with the different rule forms outlined in this chapter.

Acknowledgments. This research has been supported by NSF Grant No. CCF-
0820152 and NSF Grant No. IIS-9978217.

References

1. Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F.,
Ford, M., Goland, Y., Gúızar, A., Kartha, N., et al.: Web services busi-
ness process execution language version 2.0. OASIS Standard http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html 11 (2007)

2. Blake, L.: Design and Implementation of Delta-Enabled Grid Services. M.S. Thesis,
Deptment of Computer Science and Engineering, Arizona State Univ (2005)

3. BPMN, O.: BPMN 2.0 beta 1. http://www.omg.org/cgi-bin/doc?dtc/09-08-14.pdf
(2009)

4. Ceri, S., Grefen, P., Sanchez, G.: WIDE-a distributed architecture for workflow
management. In: proceedings of 7th Int. Workshop on Research Issues in Data
Engineering. pp. 76–79 (1997)

5. Chiu, D., Li, Q., Karlapalem, K.: Exception handling with workflow evolution in
ADOME-WFMS: a taxonomy and resolution techniques. ACM Siggroup Bulletin
20(3), 8 (1999)

6. Cichocki, A.: Workflow and process automation: concepts and technology. Kluwer
Academic Pub (1998)

7. Cichocki, A., Rusinkiewicz, M.: Migrating workflows. NATO ASI series. Series F:
computer and system sciences pp. 339–355 (1998)

8. Courter, A.: Supporting Data Consistency in Concurrent Process Execution with
Assurance Points and Invariants. M.S. Thesis, Texas Tech University (2010)

9. Dayal, U., Hsu, M., Ladin, R.: A transactional model for long-running activities.
In: Proceedings of the 17th International Conference on Very Large Data Bases.
pp. 113–122. Citeseer (1991)

10. Desel, J.: Process modeling using petri nets. Process-Aware Information Systems:
Bridging People and Software through Process Technology pp. 147–177 (2005)

11. Dietrich, S., Patil, R., Sundermier, A., Urban, S.: Component adaptation for event-
based application integration using active rules. Journal of Systems and Software
79(12), 1725–1734 (2006)

12. Dietrich, S., Urban, S., Sundermier, A., Na, Y., Jin, Y., Kambhampati, S.: A
language and framework for supporting an active approach to component-based
software integration. Informatica-Ljubljana 25(4), 443–454 (2002)

13. Doğaç, A.: Workflow management systems and interoperability. Springer Verlag
(1998)

14. Engels, G., Förster, A., Heckel, R., Thöne, S.: Process modeling using UML. Pro-
cess Aware Information Systems: Bridging People and Software Through Process
Technology pp. 85–118 (2005)

The Dynamics of Process Modeling 19

15. Halvorsen, O., Haugen, O.: Proposed notation for exception handling in UML 2
sequence diagrams. In: Software Engineering Conference, 2006. Australian. p. 10
(2006)

16. Herbst, H., Knolmayer, G., Myrach, T., Schlesinger, M.: The specification of busi-
ness rules: A comparison of selected methodologies. In: Proceedings of the IFIP
WG8. vol. 1, pp. 29–46. Citeseer (1994)

17. Jean, D., Cichock, A., Rusinkiewicz, M.: A database environment for workflow
specification and execution. In: Proc. Intl Symposium on Cooperative Database
Systems Kyoto (1996)

18. Jennings, N., Faratin, P., Norman, T., O?Brien, P., Odgers, B., Alty, J.: Imple-
menting a business process management system using ADEPT: A real-world case
study. Applied Artificial Intelligence 14(5), 421–463 (2000)

19. Jin, Y., Urban, S., Dietrich, S.: A concurrent rule scheduling algorithm for active
rules. Data & Knowledge Engineering 60(3), 530–546 (2007)

20. Jin, Y., Urban, S., Dietrich, S., Sundermier, A.: An Integration Rule Processing
Algorithm and Execution Environment for Distributed Component Integration.
Informatica-Ljubljana 30(2), 193 (2006)

21. Kamath, M., Ramamritham, K.: Failure handling and coordinated execution of
concurrent workflows. In: Proceedings of the International Conference on Data
engineering. pp. 334–341. Citeseer (1998)

22. Kantere, V., Kiringa, I., Mylopoulos, J., Kementsietsidis, A., Arenas, M.: Coor-
dinating peer databases using ECA rules. Databases, Information Systems, and
Peer-to-Peer Computing pp. 108–122 (2004)

23. Kappel, G., Proll, B., Rausch-Schott, S., Retschitzegger, W.: TriGS/sub flow: Ac-
tive object-oriented workflow management. In: Proc. of HICSS. p. 727. Published
by the IEEE Computer Society (1995)

24. Liu, L., Pu, C.: Activity flow: Towards incremental specification and flexible coor-
dination of workflow activities. Conceptual ModelingER’97 pp. 169–182 (1997)

25. Liu, Z.: Decentralized Data Dependency Analysis for Concurrent Process Execu-
tion. M.S. Thesis, Texas Tech University (2009)

26. Lu, R., Sadiq, S.: A survey of comparative business process modeling approaches.
In: Business Information Systems. pp. 82–94. Springer (2007)

27. Ma, H.: The design and implementation of the GridPML: a process modeling lan-
guage for the DeltaGrid. M.S. Thesis, Arizona State University (2005)

28. Ma, H., Urban, S., Xiao, Y., Dietrich, S.: GridPML: A Process Modeling Language
and History Capture System for Grid Service Composition. Proceedings of the
International Conference on e-Business Engineering (2005)

29. Mendling, J., Neumann, G., Nüttgens, M.: Yet another event-driven process chain.
Business Process Management pp. 428–433 (2005)

30. Müller, R., Greiner, U., Rahm, E.: AW: a workflow system supporting rule-based
workflow adaptation. Data & Knowledge Engineering 51(2), 223–256 (2004)

31. Ouyang, C., Dumas, M., Aalst, W., Hofstede, A., Mendling, J.: From business
process models to process-oriented software systems. ACM transactions on software
engineering and methodology (TOSEM) 19(1), 2 (2009)

32. Pintér, G., Majzik, I.: Modeling and analysis of exception handling by using
UML statecharts. Scientific Engineering of Distributed Java Applications pp. 58–67
(2005)

33. Ramachandran, J.: Integrating Exception Handling and Data Dependency Anal-
ysis through Application Exception Rules. M.S. Thesis (in progress), Texas Tech
University, to appear in (2011)

20 Susan D. Urban, Le Gao, Rajiv Shrestha, and Andrew Courter

34. Reichert, M., Dadam, P.: ADEPT flexsupporting dynamic changes of workflows
without losing control. Journal of Intelligent Information Systems 10(2), 93–129
(1998)

35. Sadiq, W., Orlowska, M.: On capturing process requirements of workflow based
business information systems. In: Proceedings of the 3rd International Conference
on Business Information Systems (BIS99) (1999)

36. Scheer, A., Thomas, O., Adam, O.: Process modeling using event-driven process
chains. Process-aware information systems: bridging people and software through
process technology pp. 119–145 (2005)

37. Shrestha, R.: Using Assurance Points and Integration Rules for Recovery in Service
Composition. M.S. Thesis, Texas Tech University (2010)

38. Urban, S., Dietrich, S., Na, Y., Jin, Y., Saxena, S., Urban, S., Dietrich, S., Na,
Y., Jin, Y.: The irules project: using active rules for the integration of distributed
software components. In: Proceedings of the 9th IFIP 2.6 Working Conference on
Database Semantics: Semantic Issues in E-Commerce Systems, Hong Kong. pp.
265–286. Citeseer (2001)

39. Urban, S., Gao, L.S., Courter, A.: Achieving Flexibility in Service Compo-
sition with Assurance Points and Integration Rules. To appear in Proc. of
the Int. Conf. on Cooperative Information Systems, Crete, Greece, On The
Move(OTM)Conferences, Part 1, Lecture Notes in Computer Science 6426,
Springer, Heidelberg, pp. 28-437 (2010)

40. Urban, S., Liu, Z., Gao, L.: Decentralized data dependency analysis for concur-
rent process execution. In: Enterprise Distributed Object Computing Conference
Workshops, 2009. EDOCW 2009. 13th. pp. 74–83 (2009)

41. Urban, S., Xiao, Y., Blake, L., Dietrich, S.: Monitoring data dependencies in con-
current process execution through delta-enabled grid services. International Jour-
nal of Web and Grid Services 5(1), 85–106 (2009)

42. Van Der Aalst, W., Ter Hofstede, A.: YAWL: yet another workflow language.
Information Systems 30(4), 245–275 (2005)

43. White, S., et al.: Business Process Modeling Notation (BPMN) Version 1.0. Busi-
ness Process Management Initiative, BPMI. org http://www. bpmi. org/bpmi-
downloads/BPMN-V1. 0. pdf (2004)

44. Widom, J., Ceri, S.: Active database systems: Triggers and rules for advanced
database processing. Morgan Kaufmann Pub (1996)

45. Xiao, Y., Urban, S., Liao, N.: The DeltaGrid abstract execution model: service
composition and process interference handling. Conceptual Modeling-ER 2006 pp.
40–53 (2006)

46. Xiao, Y., Urban, S.: Using Data Dependencies to Support the Recovery of Con-
current Processes in a Service Composition Environment. In: Proceedings of the
Cooperative Information Systems Conference (COOPIS), Monterrey, Mexico. pp.
139–156 (2008)

47. Xiao, Y., Urban, S.: The DeltaGrid Service Composition and Recovery Model.
International Journal of Web Services Research 6(3), 35–66 (2009)

