
A Robust Web Service Composition Model with Decentralized Data Dependency
Analysis and Rule-based Failure Recovery Capability*

by

Le Gao, Bachelor of Science

A Proposal

In

Computer Science

Submitted to the Graduate Faculty
of Texas Tech University in

Partial Fulfillment of
the Requirements for the Degree of

Doctor of Philosophy

July, 2011

*This research is supported by the National Science Foundation under Grant No.
CCF-0820152. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

Texas Tech University, Le Gao

TABLE OF CONTENTS

Abstract . iv

List of Tables . v

List of Figures . vi

1. Introduction . 1

1.1 Research Challenge . 1

1.2 Data Dependency Analysis . 3

1.3 The Assurance Point Model 4

1.4 Proposed Research . 5

2. Related Work . 7

2.1 Advanced Transaction Models 7

2.2 Transactional Workflow . 8

2.3 Data Consistency Approaches for Web Service Composition . . 10

2.3.1 Web Service Standards . 10

2.3.2 Recent Data Consistency Approaches 13

2.4 Dynamic Modeling of Business Processes 15

2.4.1 Graph-Based Modeling Techniques 15

2.4.2 Rule-Based Modeling Techniques 18

2.5 Failure Recovery Strategies for Web Services 20

2.5.1 Re-do strategy . 21

2.5.2 Un-do Strategy . 21

2.5.3 Alternative Strategy . 23

2.5.3.1 Alternative with Un-do 23

2.5.3.2 Alternative without Un-do 24

2.5.4 Other Techniques in Executable Process Language 24

2.6 Summary . 26

3. Motivation and Statement of Research Objectives 28

3.1 Overview of the Decentralized Data Dependency Project . . . 28

3.1.1 Decentralized Data Dependency Analysis 30

3.1.2 The Assurance Points Model with Integration and Invariant

Rules . 32

ii

Texas Tech University, Le Gao

3.1.3 Application Exception Rules 35

3.2 Research Challenges for Existing Work 36

3.3 Statement of Objectives . 37

4. Discussion of Research Objectives . 39

4.1 The AP Model with Programming Control Structures 39

4.1.1 Recovery Actions in the AP Model 39

4.1.2 Recovery Issues for Additional Control Structures 44

4.2 Formalization of the AP model 48

4.2.1 Execution Semantics of Assurance Points by Petri Nets . . 48

4.2.1.1 General Approach 49

4.2.1.2 AP Model Represented by Petri Nets 49

4.2.2 Semantics of AP model by YAWL 52

4.2.2.1 Introduction of YAWL 53

4.2.2.2 Atomic Group Represented by YAWL 54

4.3 Integration of the AP Model with Decentralized Data Depen-

dency Analysis . 57

5. Dissertation Outline . 61

6. Summary . 63

Bibliography . 64

References . 64

Appendices . 72

A. Appendix A: . 72

iii

Texas Tech University, Le Gao

ABSTRACT

This research defines a hierarchical web service composition and recovery model

based on the use of assurance points (APs), integration rules, and application excep-

tion rules. Assurance points are correctness guards in a process to check pre and post

conditions before and after critical operations and to provide dynamic recovery ac-

tions in case of execution errors or constraint violations. The pre and post conditions

are represented by integration rules that are structured as event-condition-action.

Application exception rules provide a case-based structure of responding to exter-

nal events that interrupt the execution of a process. The AP service composition

and recovery model will be fully developed in the context of programming language

control structures, with specific emphasis on flow groups for parallel control activity.

The complete execution and recovery semantics will be formally specified and ana-

lyzed using the YAWL workflow tool, which is based on Petri Nets. To provide a

more robust model, the rule-based failure recovery approach will be integrated with a

decentralized data dependency analysis algorithm so that decentralized Process Ex-

ecution Agents (PEXAs) can communicate about process dependencies associated

with partial recovery. A simulation environment will be developed to evaluate the

performance and functionality processes that execute within PEXAs using the AP

model and data dependency analysis. By integrating rule-based and event-driven

techniques into web service composition, process failures and exceptions can more

effectively combine backward and forward recovery techniques. Furthermore, past

work with transactional workflows is inadequate for service composition since most

techniques that support relaxed isolation do not actively address the impact that

the failure and recovery process can have on other data dependent processes. The

integration of decentralized data dependency analysis with the AP model will not

only provide a way to detect data dependency, but also use rule-based techniques to

minimize the impact caused by data dependencies between a failed process and other

concurrently executing processes.

iv

Texas Tech University, Le Gao

LIST OF TABLES

4.1 Symbols used in YAWL . 55

5.1 Tentative Timeline of this Research 62

A.1 Places in an Execution Group Petri Net 72

A.2 Places in an AP Petri Net . 73

v

Texas Tech University, Le Gao

LIST OF FIGURES

1.1 Process Execution in an SOA . 2

3.1 Decentralized Process Execution Agents with Events and Rules . . . 29

3.2 Data Access View of Interleaved Execution 32

3.3 Global, Distributed Process Dependency Graph 32

3.4 Integration Rule Structure . 34

3.5 APs in Online Shopping Process . 35

3.6 The Use of Application Exception Rules 36

4.1 Generic Process: Scenario 1 (APRollback) 40

4.2 CScenario 2 (APRetry-default) . 42

4.3 Scenario 4 (APCC) . 43

4.4 An Example of Flow Group . 45

4.5 General Flow Group with Possible AP Placement 46

4.6 Semantics of Atomic Group . 50

4.7 Semantics of Assurance Point . 51

4.8 Semantics of Composite Group . 52

4.9 Semantics of default AP-Retry . 53

4.10 Atomic Group by YAWL . 56

4.11 Compensation of Atomic Group by YAWL 56

4.12 Dependent Event in Decentralized Data Dependency Analysis 59

A.1 Petri Net of Deep Compensation . 74

A.2 Petri Net of Shallow Compensation 75

A.3 Petri Net of APRollback . 76

A.4 Petri Net of Re-checking Pre-condition (APCC) 77

A.5 Petri Net of Re-checking Pre-condition (APRT) 78

A.6 Petri Net of APCC (1) . 79

A.7 Petri Net of APCC (2) . 80

A.8 Petri Net of APCC (3) . 81

A.9 Petri Net of APCC (4) . 82

A.10 Petri Net of APCC (5) . 83

A.11 Petri Net of APCC (6) . 84

vi

Texas Tech University, Le Gao

A.12 Petri Net of APCC (7) . 85

A.13 Petri Net of APCC (8) . 86

vii

Texas Tech University, Le Gao

CHAPTER 1

INTRODUCTION

With the development of the internet, Web Services and service-oriented comput-

ing are becoming more widely used for business-to-business integration, providing

better support to enterprise business processes and data exchange. These processes

are heterogeneous, autonomous, and long-lived. In a traditional, data-oriented, dis-

tributed computing environment, a distributed transaction is used to provide certain

correctness guarantees about the execution of a transaction over distributed data.

In particular, a traditional, distributed transaction provides all-or-nothing behavior

by using the two-phase commit protocol to support atomicity, consistency, isola-

tion, and durability (ACID) properties. A process in a service-oriented architecture

(SOA), however, is not a traditional ACID transaction due to the loosely-coupled,

autonomous, and heterogeneous nature of the execution environment.

1.1 Research Challenge

SOA (Singh & Huhns, 2005) is an architecture in which a number of services com-

municate in a loosely-coupled manner. A service in SOA is a unit of work executed

by a service provider to achieve desired results for a service consumer. In SOA, a

service is highly independent of the context and the state of other services. Since a

service is autonomous and platform-independent, the commit of a service execution is

controlled by the residing service instead of the global process. Therefore, processes

composed of web services do not generally execute as transactions that conform to

the concept of serializability. In such an environment, concurrently running processes

may access or modify the same data through independent services without the iso-

lation property in between service execution. As a result, dirty reads or dirty writes

may occur from the global process perspective. If a process fails, data recovery may

affect the data consistency in other concurrent processes. Therefore, the recovery of a

failed process is not enough to maintain data consistency due to potential dirty reads

or writes.

As shown in Figure 1.1, three processes are running concurrently in an SOA.

Process1 is initiated by agent1, while process2 and process3 are both controlled by

1

Texas Tech University, Le Gao

operation11 operation12 operation1m

Service

Database1

Service1

Agent1

Process1

Agent2

operation21 operation22 operation2n

Process2

operation23

Service

Database2

Service2

operation31

operation32

operation34

Process3

operation33

Figure 1.1. Process Execution in an SOA

agent2. In Figure 1.1, operation32 and operation23 each invoke service2. If process3

fails at operation34 and recovers operation32, then process2 might be affected due to

the potential dirty read/write problem. The dirty read/write issue might also happen

between processes that are controlled by different agents. For example, the recovery

of process2 controlled by agent2 might affect the correctness of process1 controlled

by agent1, since operation21 and operation12 both execute at service1 and potentially

access the same data. Therefore, it is a challenge to analyze data dependencies be-

tween concurrent running processes to determine how the data changes caused by the

recovery of one process can possibly affect other processes that have either read or

written data modified by the services of the failed process.

On the other hand, a web service composition must be flexible enough to respond

to individual service errors, exceptions, and interruptions. To respond such events,

2

Texas Tech University, Le Gao

backward and forward recovery techniques (Worah & Sheth, 1997; Anderson & Lee,

1981) can be adopted. For example, compensation is a backward recovery mechanism

that performs a logical undo operation. Contingency is a forward recovery mechanism

that provides an alternative execution path to keep a process running. However, ade-

quate combined use of compensation and contingency to keep a process continuously

executing as much as possible is still a challenging problem. To achieve this goal, the

use of rule-based techniques has also been introduced into web service composition to

validate the correctness of execution, especially considering that most processes exe-

cuting in an SOA do not support traditional transaction processing with guarantees

for correctness and consistency of data.

In addtion, from the software engineering point of view, web service composition

is also an architecture of software development. So how to verify the web service

composition is another research interest. These interesting issues include whether

the web service composition can successfully terminate and whether each process can

perform correctly. Ideally a composition should be simulated and verified at design

time to detect and correct errors before implementation. In the past decade, preva-

lent techniques such as the Unified Modeling Language (UML) (Booch, Rumbaugh,

& Jacobson, 2005), the Business Process Modeling Notation (White et al., 2004), and

Event-Driven Process Chains (EPC) (White et al., 2004) have been widely adopted

for process modeling, with execution engines based on standards such as the Business

Process Execution Language (BPEL) (Andrews et al., 2003) providing a framework

for execution of conceptual process designs. Service composition for business integra-

tion, however, creates challenges for traditional process modeling techniques.

1.2 Data Dependency Analysis

Xiao (2006) provides a formal definition of a process dependency model, defining

read and write dependencies at the operation and process level. Due to the nature

of SOA, a failed process may affect the correctness of all other processes that are

dependent on the failed process. By using the process dependency model, a set of

processes that are dependent on the failed process can be formed. Therefore, necessary

recovery actions for the processes in the dependent set must be performed. However,

efficient techniques to evaluate the recovery necessity and to dynamically perform the

3

Texas Tech University, Le Gao

recovery actions is still challenging work. Xiao and Urban (2007) proposed the use of

process interference rules (PIRs) to test user-defined conditions that determine if the

dependent process should continue running or invoke its own recovery procedures.

The decentralized data dependency analysis project is based on the investigation

of Delta-Enabled Grid Services (DEGS) (Blake, 2005; Urban, Xiao, Blake, & Diet-

rich, 2009). A DEGS is a Grid Service that has been enhanced with an interface

that provides access to the incremental data changes, or deltas, that are associated

with service execution in the context of globally executing processes. Deltas captured

over the source database are stored in a delta repository that is local to the service.

Deltas are then generated as a stream of XML data from the delta repository and

communicated to the delta event processor of the DeltaGrid environment. A central-

ized Process History Capture System (PHCS) (Xiao, Urban, & Dietrich, 2006) has

been developed to receive deltas from different DEGSs. After receiving deltas, the

PHCS then forms a complete execution history for distributed, concurrent processes

that are composed of Delta-Enabled Grid Services. The PHCS stores the deltas from

distributed DEGSs and the process runtime context. A complete global delta ob-

ject schedule can be formed according to the timestamps of the deltas. Therefore,

the global delta object schedule can be used to form the process dependent set as

discussed in the previous paragraph.

Based on the DEGS and the PHCS, Z. Liu (2009) developed an approach that

performs decentralized data dependency analysis among concurrently executing pro-

cesses by introducing Process Execution Agents (PEXAs). PEXAs are responsible

for controlling the execution of processes that are composed of web services. PEXAs

are associated with specific distributed sites and are also responsible for capturing

and exchanging information with other PEXAs about the data changes that occur at

those sites in the context of service executions. However, the existing investigation

of data dependency analysis has not been fully integrated into a service composition

recovery model.

1.3 The Assurance Point Model

A hierarchical service composition and recovery model was initially developed in

(Xiao & Urban, 2009). The service composition and recovery model introduced the

4

Texas Tech University, Le Gao

combined use of compensation and contingency operations to maximize the forward

recovery of the process when failure occurs. To enhance the flexibility in process

execution, Urban, Gao, Shrestha, and Courter (2010) extended the model by intro-

ducing Assurance Points (APs) in the execution of a process, providing integration

rules that are capable of checking pre/post conditions. An AP can also be used as

a rollback point for backward recovery. Three different forms of backward recovery

are described in (Urban, Gao, Shrestha, & Courter, 2010) as actions triggered by

integration rules, where rule actions are capable of either full backward recovery or a

combination of backward and forward recovery.

Invariant rules have also been defined in (Courter, 2010). Invariant rules pro-

vide a stronger way of monitoring constraints and guaranteeing that a condition

holds for a specific duration of execution as defined by starting and ending Assurance

Points, using the change notification capabilities of Delta-Enabled Grid Services. In

(Ramachandran, 2011), application exception rules (AERs) have a case structure,

defining recovery actions based on the AP status of a process.

The current AP recovery model, however, has not yet been formally specified and

has not fully defined recovery actions for processes that contain parallel as well as

iteration and looping control structures.

1.4 Proposed Research

The proposed research represents an integration of the current components of the

decentralized data dependency analysis project to create a more robust web service

composition model with decentralized data dependency analysis and rule-based failure

recovery capability. In the current state of the AP model, only sequential execution

has been addressed for recovery actions. In this research, more complex execution

control structures, including, if-else, loop, and parallel structures, will be investigated

with the use of recovery actions provided by APs. In addition, advanced workflow

modeling techniques, such as YAWL (Van Der Aalst & Ter Hofstede, 2005), will

be adopted to formalize and verify the semantics of recovery in fully-defined web

service composition with APs. Furthermore, a study of decentralized data dependency

analysis with the context of rule-based failure recovery feature will be performed

based on (Xiao & Urban, 2007; Urban, Xiao, et al., 2009; Urban, Liu, & Gao, 2009).

5

Texas Tech University, Le Gao

The existing data dependency analysis method does not provide a dynamic recovery

capability based on the execution status of a process. In this research, decentralized

data dependency analysis will be integrated into the use of event-driven and rule-

based recovery techniques. In sum, the proposed research will develop an intelligent

process execution environment supporting use-defined constraint checking, dynamic

event-based recovery techniques and decentralized data dependency analysis.

This research has three unique strengths. First, the concept of APs provides bet-

ter flexibility for process recovery. With the recovery actions provided by APs, a

process can be maximally forward recovered even if an execution error or an event

interruption occurs. Second, the correctness of the execution semantics in the com-

position model will be demonstrated and validated by formal modeling techniques.

Third, with the help of event-driven and rule-based techniques, a more efficient and

effective decentralized data dependency analysis technique can minimize the process

interferences caused by a failure in the SOA, and at the same time, help to maintain

a higher degree of data consistency among concurrently executing processes.

In the remainder of this proposal, Chapter 2 presents related work. After outlining

the motivation and objectives of this research in Chapter 3, the research methodology

plan is presented in Chapter 4. Chapter 5 then provides a tentative outline for the

dissertation. The proposal concludes with a summary and a discussion of expected

contributions in Section 6.

6

Texas Tech University, Le Gao

CHAPTER 2

RELATED WORK

This chapter summarizes the related work that provides the foundation and motiva-

tion for this research. Section 2.1 presents an overview of advanced transaction mod-

els. Section 2.2 discusses the concept of transactional workflow. Recent approaches

supporting data consistency in web service composition are presented in Section 2.3.

Dynamic modeling techniques and failure recovery strategies for processes composed

of web services are discussed in Section 2.4 and 2.5, respectively.

2.1 Advanced Transaction Models

The traditional notion of transactions with ACID properties is too restrictive for the

types of complex transactional activities that occur in distributed applications, pri-

marily because locking resources during the entire execution period is not applicable

for Long Running Transactions (LRTs) that require relaxed atomicity and isolation

(Cichocki, 1998). Advanced transaction models (ATMs), such as Sagas, the Multi-

level Transaction Model and the Flexible Transaction Model, have been proposed to

better support LRTs in a distributed environment (Rolf, Klas, & Veijalainen, 1997;

Elmagarmid, 1992).

The notion of a Saga (Garcia-Molina & Salem, 1987) was proposed in 1987 as a base

model for long-running activities. A Saga consists of many ordered smaller tasks that

conform to ACID properties and these tasks can execute as interleaved operations.

Therefore, the Saga relaxes the requirement of the entire transaction as an atomic

action by releasing resources before the transaction completes without sacrificing the

consistency of the database. A compensator is created with each task in a Saga. The

compensator is an execution that can logically undo the results of the task. When

a Saga needs to be aborted, the system aborts the current active task and executes

the compensators for each task in reverse order to backward recovery the entire Saga

process.

A more relaxed concurrent execution model of independent transactions was in-

troduced in (Weikum, 1991), where a transaction is decomposed into a nested set

of sub-transactions at different levels and then each sub-transaction can commit on

7

Texas Tech University, Le Gao

its own before the whole transaction commits. A sub-transaction can create its sub-

transactions at the next level as child sub-transactions. The commit of parent trans-

action must wait until the child sub-transactions commit. In case of abort at the

parent level, the committed subtransactions will run their own compensators to per-

form “undo”actions.

A flexible transaction model which is suitable for a multidatabase environment was

presented in (Elmagarmid, Leu, Litwin, & Rusinkiewicz, 1990). A flexible transac-

tion defines a set of equivalent alternative subtransactions. The flexible transaction

model relaxes global atomicity by allowing the transaction designer to define a set

of acceptable termination states. Therefore the successful execution of a transaction

will be the successful execution of a set of subtransactions or its alternatives. In

the flexible transaction model, the acceptable state is also used to decide whether to

commit, abort, or compensate a subtransaction.

These advanced transaction models relax the ACID properties of traditional trans-

action models to better support LRTs and to provide a theoretical basis for further

study of complex distributed transaction issues, such as failure atomicity, consistency,

and concurrency control. These models have primarily been studied from a research

perspective and have not adequately addressed recovery issues for transaction failure

dependencies in loosely-coupled distributed applications.

2.2 Transactional Workflow

The term transactional workflow was introduced to recognize the relevance of trans-

actions to workflow activity that does not fully support ACID properties. Transac-

tional workflows contain the coordinated execution of multiple related tasks that

support access to heterogeneous, autonomous, and distributed data through the use

of selected transactional properties for individual tasks or entire workflows (Worah

& Sheth, 1997). Transactional workflows are usually non-atomic and long-lived pro-

cesses, containing a set of tasks executed at different sites. Transactional workflows

require externalizing intermediate results, while at the same time providing concur-

rency control, consistency guarantees, and a failure recovery mechanism for a multi-

user, multi-workflow environment. Concepts such as rollback, compensation, forward

recovery, and logging have been used to achieve workflow failure recovery in several

8

Texas Tech University, Le Gao

projects.

The ConTract Model provides a classic example of work with transactional work-

flows (Wächter & Reuter, 1991). A ConTract model consists of a set of predefined

actions which conform to ACID properties called steps and an explicitly specified exe-

cution plan called a script. The ConTract Model provides compensation for backward

recovery, and basic constraint checking through the specification of pre-conditions or

post-conditions for steps. After the execution of each step, the ConTract Model will

release locks and if failure occurs, the ConTract Model will logically recover completed

steps. However, the execution of compensation in the ConTract model is not flexible

enough.

Eder and Liebhart (1995) introduced the workflow activity model (WAMO). WAMO

supports modeling complex business processes in a simple and reliable way. In

WAMO, a complex business process is composed by a set of smaller work units,

known as activities. In this model, a workflow consists of three basic units: activity,

form and agent. An activity represents the abstract description of a work unit in

the business process. A data repository or container to store relevant data is called

a form. An agent is a processing entity to perform the execution of activities. An

activity may consist of multiple other activities as its steps. Furthermore, activities

are reusable by other activities. So new processes are allowed to be composed of ex-

isting activities. Five control structures are provided to flexibly compose a workflow:

Sequence, Ranked Choice, Free Choice, Parallel and Nesting. In WAMO, the state

after each execution is used to control activities of the workflow.

The Correct and Reliable Execution of Workflows (CREW) project (Karnath & Ra-

mamritham, 1998) introduced correctness requirements and other defined constraints

into transactional workflows. A workflow in CREW includes multiple steps. The com-

pletion of previous steps will trigger the execution of the next steps. The occurrence

of specific events can also trigger the execution of specified steps. The rules, events

or conditions are used to manage the execution of workflows. Handling of failures

to eliminate unnecessary compensations and re-execution of steps are also supported

in CREW. If the execution of a step fails, complete compensation and re-execution,

or partial compensation and incremental re-execution will be invoked to recover the

error. Therefore, CREW provides a more dynamic workflow by the use of rules and

9

Texas Tech University, Le Gao

the mechanisms for handling failures and exceptions.

The METEOR model (Wodtke, Weißenfels, Weikum, & Dittrich, 1996) combines

many features such as two-phase commit (2PC) coordination, error handling, and

failure recovery from other transactional workflows models. A METEOR model in-

cludes four components: processing entities and their interfaces, tasks, task managers

and workflow schedulers. A processing entity is responsible for executing a task. A

task is a basic execution agent that performs some operations. The task manager

takes control of each task. The workflow scheduler is responsible for coordinating

the execution of tasks. METEOR uses a three-layer error model to handle workflow

errors. The error model categorizes runtime errors into three classes: task error, task

manager error and workflow engine error. These errors can be handled automatically

or by human agents by different methods introduced in METEOR.

Workflow management systems have been studied in the context of transactional

workflows. Workflow management systems typically provide exception handlers to

support backward and forward recovery (Kiepuszewski, Muhlberger, & Orlowska,

1998; Hagen & Alonso, 2002; Chiu, Li, & Karlapalem, 2000). However, they do

not fully support constraint checking and do not adopt event-driven techniques for

execution interruption.

2.3 Data Consistency Approaches for Web Service Composition

Due to the loosely-coupled, autonomous, and heterogeneous natures of SOA envi-

ronment, services are independent execution units. Therefore, additional techniques

must be used to ensure data consistency. In this section, web service standards are

first summarized. Then some recent techniques that ensure the data consistency in

web service composition are reviewed.

2.3.1 Web Service Standards

WS-Coordination (F. Cabrera, Copeland, Freund, et al., 2002) describes an ex-

tensible framework for providing protocols that coordinate the actions of distributed

applications. Such coordination protocols are used to support a number of appli-

cations, including those that need to reach consistent agreement on the outcome of

distributed activities. WS-Coordination describes a framework for a coordination

10

Texas Tech University, Le Gao

service (or coordinator) which consists of these component services. The first compo-

nent is an activation service with an operation that enables an application to create

a coordination instance or context. The second component is a registration service

with an operation that enables an application to register for coordination protocols.

The third component is a coordination type-specific set of coordination protocols.

The coordination protocols that can be defined in this framework can accommodate

a wide variety of activities, including protocols for simple short lived operations and

protocols for complex long-lived business activities.

Atomic Transactions defined in WS-Transaction (F. Cabrera, Copeland, Cox, et

al., 2002) build on WS-Coordination, which defines an activation and a registration

service. The WS-Transaction has two characteristics. One is the all or nothing prop-

erty, where the actions taken prior to commit are only tentative. The other is atomic

transactions that require a high level of trust between participants and are short in

duration. WS-Transaction usually uses Two-Phase commit (2PC) to guarantee the

ACID properties. The 2PC protocol coordinates registered participants to reach a

commit or abort decision, and ensures that all participants are informed of the fi-

nal result. It has two types. Volatile 2PC involves participants managing volatile

resources such as a cache. Durable 2PC involves participants managing durable re-

sources such as a database. Based on each protocol’s registered participants, the

coordinator begins with Volatile 2PC, then proceeds through Durable 2PC.

The WS-Business Activity (L. Cabrera et al., 2005) specification defines protocols

that enable existing business processes and workflow systems to wrap their proprietary

mechanisms and interoperate across trust boundaries and different vendor implemen-

tations. Usually WS-Business Activity provides long-running, compensation-based

transaction protocols, where a business activity may consume many resources over a

long duration. There may be a significant number of atomic transactions involved.

Individual tasks within a business activity can be seen prior to the completion of the

business activity since their results may have an impact outside of the computer sys-

tem. Responding to a request may take a very long time. Human approval, assembly,

manufacturing, or delivery may have to take place before a response can be sent. In

the case where a business exception requires an activity to be logically undone, abort

is typically not sufficient. Exception handling mechanisms may require business logic,

11

Texas Tech University, Le Gao

for example in the form of a compensation task, to reverse the effects of a previously

completed task. Participants in a business activity may be in different domains of

trust, where all trust relationships are established explicitly.

In contrast to WS-Transaction, the model of WS-Business activity has several dis-

tinct differences. The participant list is dynamic and a participant may exit the

protocol at any time without waiting for the outcome of the protocol. WS-Business

activity allows a participant task within a business activity to specify its outcome di-

rectly without waiting for solicitation. It allows participants in a coordinated business

activity to perform ”tentative” operations as a normal part of the activity. There are

two coordination protocols for business activities. One is BusinessAgreementWith-

ParticipantCompletion protocol. A participant registers for this protocol with its

coordinator, so that its coordinator can manage it. A participant must know when

it has completed all work for a business activity. The other is BusinessAgreemen-

tWithCoordinatorCompletion protocol, which means a participant registers for this

protocol with its coordinator, so that its coordinator can manage it. A participant

relies on its coordinator to tell it when it has received all requests to perform work

within the business activity. The main difference between the two protocols is that

one executes by itself and the other one executes by a coordinator.

Web Services Business Process Execution Language (WS-BPEL 2.0) (Jordan et al.,

2007) provides the language to specify business processes that are composed of Web

services as well as exposed as Web services. The main concepts in the BPEL 2.0

standard include process, partner links, properties and correlation, as well as basic

and structured activities scopes. BPEL processes are exposed as WSDL services.

Message exchanges map to WSDL operations and WSDL can be derived from part-

ner definitions. A partner link is an instance of a typed connector. A partner link

type specifies required and/or provided portTypes. Properties and Correlations mean

messages in long-running conversations are correlated to the correct process instance.

Typed properties defined in WSDL are named and mapped to parts of several WSDL

messages used by the process. Activities are modeled as composite patterns, which

means that the top level activity most likely is a structured activity. Structured ac-

tivities contain other activities. Basic activities are just operations. The activities

of BPEL are similar to control structures in traditional programming languages. A

12

Texas Tech University, Le Gao

scope is a set of (basic or structured) activities. Variables in a scope are visible only

within the scope. Local correlation sets, compensation handlers, fault handlers, ter-

mination handlers and event handlers can also be defined in a scope. Event handlers

are message events or timer events (deadline or duration). Fault handlers deal with

different exceptional situations (internal faults). Compensation handlers undo per-

sisted effects of already completed activities. Termination handlers support forced

scope termination (external faults).

2.3.2 Recent Data Consistency Approaches

Mikalsen, Tai, and Rouvellou (2002) introduced a new Web Service Transaction

(WSTx) framework, called transactional attitudes, to support the issue of transac-

tional reliability in web service composition. In the WSTx framework, transactional

attitudes are used to allow web service providers to declare their individual trans-

actional capabilities and semantics and to allow web service clients to declare their

transactional requirements. There are two types of attitudes defined in WSTx frame-

work: Provider Transactional Attitudes (PTAs) and Client Transactional Attitudes

(CTAs). PTAs are used for web service providers to explicitly describe their specific

transactional behavior, while CTAs allow the clients to describe their expectations

and outcome acceptance criteria explicitly. Each client executes one or more actions

within the scope of a web transaction, where each action represents a provider trans-

action that executes within the context of the larger web transaction. The WSTx

framework provides reliability during execution by using both PTAs and CTAs to

define attitudes for web services transaction compositions. Also, middleware which

acts as an intermediary between a client and multiple web service providers has been

developed.

Another similar method to temporarily lock data in a concurrent environment, is

the reservation-based approach (Zhao, Moser, & Melliar-Smith, 2005). This approach

reserves resources that meet the criteria of what the web service has requested. In

this protocol, each task within a business activity is divided into two steps. The first

step is to reserve resources based on business logic. Basically, the reservation is a

contract between the client and the resource provider. To maximize the execution

concurrency in the system, a ‘fee’ is associated with each reservation proportional to

13

Texas Tech University, Le Gao

the duration of the reservation, which discourages the application to reserve the same

resources for an extended period of time. In the second step, the reservation is either

confirmed or cancelled according to the business rules. Because the resource that the

application requests is reserved in the first step, the application has the choice and

freedom to decide about either continued execution or backtracking. A two-phase

protocol is used to coordinate the different tasks within a business activity. In the

first phase, the client coordinator sends reservation requests to all the participants.

The confirmation or cancellation of the reservations is decided by the coordinator

at the end of the first phase. In the second phase, the confirmation or cancellation

requests are sent to the corresponding participants. If a participant has accepted

a reservation, it must be committed to the reserved resource unless the coordinator

cancels the reservation. In traditional transactions, any of the participants have the

right to rollback or abort the entire transaction. In the reservation-based coordination

protocol, however, only the coordinator can determine this.

A Promise approach was proposed in (Jang, Fekete, & Greenfield, 2007) to support

the isolation property in web service composition. The goal of the Promises approach

is to ensure that certain values are not overwritten or changed by concurrently ex-

ecuting web services. A promise is an agreement between a client application and

a service or promise maker. A promise assures the client that some set of condi-

tions (predicates) will be maintained over a set of resources for a specific duration

of time, as requested by the client. Instead of locking data, the approach defines

the promise maker to be a promise manager that records promises. The main func-

tionality of the promise manager is to address promise making, check on resource

availability, and also ensure that promises are not violated during the specific time

period. Client applications send the promise manager information in the form of

predicates about the resources they want in order to complete successfully. These

predicates are Boolean expressions over the resources. The request for a promise will

be examined by the promise manager, which will either grant or reject the request.

Once a promise request is granted, the client application is isolated from the effects

of concurrent execution and can complete successfully. One method that has been

used to implement promises is the concept of soft locks. This method uses a field

in the database record to indicate whether an item has been allocated already for a

14

Texas Tech University, Le Gao

client or not. The record is not a real lock. When an application requests the same

recourse, this field is read to determine availability of the resources. Promises are a

weaker form of locking, but do allow other web services to access the data so that

any wait is avoided.

2.4 Dynamic Modeling of Business Processes

As described by Lu and Sadiq (Lu & Sadiq, 2007), most modeling techniques can be

categorized as either graph-based techniques or rule-based techniques. The following

two subsections summarize graph and rule-based techniques, with a focus on support

for dynamic capabilities.

2.4.1 Graph-Based Modeling Techniques

In graph-based modeling techniques such as BPMN (White et al., 2004), UML

(Engels, Förster, Heckel, & Thöne, 2005), and EPC (Scheer, Thomas, & Adam,

2005), a business process is described by a graph notation in which activities are

represented as nodes, and control flow and data dependencies between activities as

arcs or arrows

BPMN. The Business Process Modeling Notation (BPMN V1.0) was introduced

by the Business Process Management Initiative in 2004 (White et al., 2004). The

objective of BPMN is to provide a graphical model that can depict business processes

and can be understood by both users and developers. Flow objects include symbols

to represent events, activities, and gateways (i.e., decision points). Flow objects are

connected to each other via connecting objects that represent sequence flow, message

flow, and association. A process always starts from an event and ends in an event. All

other events inside the process are called intermediate events and can be part of the

normal flow or attached to the boundary of an activity. An attached event indicates

that the activity to which the event is attached should be interrupted when the event

is triggered. The attached event can trigger either another activity or sub-process.

Typically, error handling, exception handling, and compensation are triggered by the

attached event.

To detail a business process, swim lanes and artifacts can be used. Swim lanes

are used to either horizontally or vertically group a process into subgroups by rules,

15

Texas Tech University, Le Gao

such as grouping processes by departments in a company business process. Artifacts

provide additional information in a business process to make a model more readable,

such as text descriptions attached to an activity.

BPMN (V2.0 beta 1) (Bpmn, 2009) was released in 2009. In BPMN 2.0, the

most important update is standardized execution semantics which provide execution

semantics for all BPMN elements based on token flows. A choreography model is also

supported in BPMN 2.0. Other significant changes include 1) a data object supporting

assignments for activity; 2) updated gateways supporting exclusive/parallel event-

based flow; 3) event-subprocesses used to handle event ocurrences in the bounding

subprocess; 4) a call activity type that can call another process or a global task; and

5) escalation events for transferring control to the next higher level of responsibility.

Mapping tools that can convert BPMN to executable languages, where the trans-

lation is enhanced with the execution semantics of BPMN 2.0. For example, the

Business Process Execution Language (BPEL) (Alves et al., 2007) is used for execut-

ing business processes that are composed of Web Services. A well-known, open-source

mapping tool is BPMN2BPEL (Ouyang, Dumas, Aalst, Hofstede, & Mendling, 2009).

UML. The Unified Modeling Language (UML) is a general-purpose modeling lan-

guage with widespread use in software engineering. UML provides a set of graphical

modeling notations to model a system. An activity diagram describes a business

process in terms of control flow. A state diagram represents a business process us-

ing a finite number of states. UML also provides sequence diagrams that emphasize

interactions between objects.

In UML 2.0, new notations have been added to activity diagrams to provide support

for the specification of pre and post conditions, events and actions, time triggers, time

events, and exceptions. These notations provide more dynamic support to process

modeling in UML. Researchers have also proposed process modeling enhancements to

UML. For example, the work in (Pintér & Majzik, 2005) proposes a framework that

supports exception handling using UML state charts. In (Halvorsen & Haugen, 2006),

the authors present a method that can handle exceptions in sequence diagrams.

EPC. The Event-driven Process Chain (EPC) method was developed within the

framework of the Architecture of Integrated Information Systems (ARIS) in the early

1990s. The merit of EPC is that it provides an easy-to-understand notation. OR,

16

Texas Tech University, Le Gao

AND, and XOR nodes are used to depict logical operations in the process flow. The

main elements of a process description include events, functions, organization, and

material (or resource) objects. The EPC does not have specific notation support for

exception processing. Instead, EPC uses the logical operations to specify the handling

of events and exceptional conditions. Recent work has modified the EPC notation to

provide better support for process modeling. For example, in (Mendling, Neumann,

& Nüttgens, 2005), yEPC provides a cancellation notation to model either an activity

or a scope cancellation process.

Petri Nets. Petri Nets were originally invented by Carl Adam Petri (Petri, 1966)

for the purpose of describing chemical processes. In 1970’s, Petri Nets were soon

recognized as one of the most adequate and sound methods to model a system of

synchronization, communication, and resource sharing between concurrent processes.

A Petri net is a directed, connected, and bipartite graph in which nodes represent

places and transitions, and tokens occupy places. Van Der Aalst (1998) discussed the

use of Petri nets in the context of workflow management. Petri nets can be used not

only as a design language for the specification of complex workflows, but also pro-

vides powerful analysis techniques to verify the correctness of workflow procedures.

However, using plain Petri Nets to model workflow has some drawbacks. First, plain

Petri Nets lack the data concept which is very important in some workflow. Second,

due to the strict rule that transitions must be connected through places, a plain Petri

Net of a complex workflow might be excessively large. Third, there are no hierarchy

concepts in plain Petri Nets. Colored Petri Nets (Jensen, 1997) removed some draw-

backs of plain Petri Nets by enabling the tokens to carry values and introducing the

concept of pages. Therefore, rules can be checked in Colored Petri Nets by using the

data values carried by tokens. Pages, which are smaller Colored Petri Nets, can be

used to compose a large hierarchical Colored Petri Nets. YAWL (Van Der Aalst &

Ter Hofstede, 2005) was designed based on Petri nets providing comprehensive sup-

port for workflow patterns, such as complex data, transformations, integration with

organizational resources and Web Service integration. YAWL defines new control-

flow symbols. By using the new control-flow symbols, a complex workflow can be

explicitly transformed.

Other Related Methods. FlowMake is presented by Sadiq and Orlowska in (Sadiq

17

Texas Tech University, Le Gao

& Orlowska, 1999). FlowMake models a workflow using a graphical language, in-

cluding workflow constraints that can be used to verify the syntactic correctness of a

graphical workflow model. Reichert and Dadam (Reichert & Dadam, 1998) present a

formal foundation for the support of dynamic structural changes of running workflow

instances. ADEPTflex is a graph-based modeling methodology that supports users in

modifying the structure of a running workflow, while maintaining its correctness and

consistency (Reichert & Dadam, 1998). ActivityFlow (L. Liu & Pu, 1997) provides a

uniform workflow specification interface to describe different types of workflows and

helps to increase the flexibility of workflow processes in accommodating changes. Ac-

tivityFlow also allows reasoning about correctness and security of complex workflow

activities independently from their underlying implementation mechanisms.

An advantage of graph-based languages is that they are based on formal graph foun-

dations that have rich mathematical properties. The visual capabilities also enhance

process design for users and designers. The disadvantage is that graph-based model-

ing methods are not agile for dynamic runtime issues, requiring the use of specialized

notations that can cause the model to become more complex.

2.4.2 Rule-Based Modeling Techniques

In a rule-based modeling approach, business rules are defined as statements about

guidelines and restrictions that are used to model and control the flow of a process

(Herbst, Knolmayer, Myrach, & Schlesinger, 1994). More recently, rules are used

together with agent technology to provide more dynamic ways of handling processes.

Use of Rules in Workflow and Service Composition: Active databases extend tradi-

tional database technology with the ability to monitor and react to circumstances that

are of interest to an application through the use of Event-Condition-Action (ECA)

rules (Widom & Ceri, 1996).

The work of Dayal, Hsu, and Ladin (1991) was one of the first projects to use ECA

rules to dynamically specify control flow and data flow in a workflow. In the CREW

project (Kamath & Ramamritham, 1998), ECA rules are used to implement control

flow. The TrigSFlow (Kappel, Proll, Rausch-Schott, & Retschitzegger, 1995) model

uses active rules to decide activity ordering, agent selection, and worklist manage-

ment. Database representation of workflows (Jean, Cichock, & Rusinkiewicz, 1996)

18

Texas Tech University, Le Gao

uses Event-Condition-Message rules to specify workflows and utilize database logging

and recovery facilities to enhance the fault-tolerance of the workflow application.

Migrating workflows (Cichocki & Rusinkiewicz, 1998) provide dynamics in workflow

instances. A migrating workflow transfers its code (specification) and its execution

state to a site, negotiates a service to be executed, receives the results, and moves on

to the next site (Cichocki & Rusinkiewicz, 1998). ECA rules are used to specify the

workflow control.

Active rules also provide a solution for exception handling in workflow systems.

ADOME (Chiu, Li, & Karlapalem, 1999) and WIDE (Ceri, Grefen, & Sanchez, 1997)

are commercial workflow systems that use active rules in exception handling. Rules

are also used in workflow systems to respond to ad-hoc events that have predefined

actions. Other workflow projects that use active rules are described in (Cichocki,

1998; Doğaç, 1998). Active rules have been used to generate data exchange policies at

acquaintance time among peer databases (Kantere, Kiringa, Mylopoulos, Kementsiet-

sidis, & Arenas, 2004). Urban et al. (2001) introduced the Integration Rules (IRules)

approach which can interconnect distributed software components.

Agent-Based Techniques. Agent technology has been introduced to model business

processes. Agents are autonomous, self-contained and capable of making independent

decisions, taking actions to fulfill design goals and to model elements in a business

process. Agents also support dynamic and automatic workflow adaptations, thus

providing flexibility for unexpected failures. ADEPT (Jennings, Faratin, Norman,

Odgers, & Alty, 2000) is an agent-based system for designing and implementing pro-

cesses. The process logic is defined by a service definition language, where agents have

sufficient freedom to determine which alternative path should be executed at runtime.

AgentWork (Müller, Greiner, & Rahm, 2004) is a flexible workflow support system

that provides better support for exception handling using an event monitoring agent,

an adaptation agent, and a workflow monitoring agent. Events represent exceptional

conditions, with rule conditions and actions used to correct the workflow. The adap-

tation agent performs adjustments to the implementation. The workflow monitoring

agent checks the consistency of the workflow after adaptation implementation. If the

workflow is inadequate, the workflow monitoring agent will re-estimate the error and

invoke a re-adaptation of the workflow.

19

Texas Tech University, Le Gao

Rule and agent-based modeling methods provide better support for flexibility and

adaptability in process modeling. Rule-based methods support modifications at run-

time much easier than graph-based methods. It is easy to modify a process model

by rule-based methods, and, unlike graph-based methods, rule-based methods do not

need new notations to express exception handling processes. Rule-based methods,

however, can be difficult to use and understand.

2.5 Failure Recovery Strategies for Web Services

In a service-oriented architecture, a business process can terminate successfully

if all activities in it complete successfully or if the process is in a consistent state

and the failed activities have been substituted by alternative execution paths. In

practice, the great majority of business processes may encounter numerous and di-

verse failures. Failures can occur anywhere at any time due to the loosely-coupled,

autonomous, and heterogeneous characteristics of the execution environment. An

activity can fail in many ways, such as an undesirable return value, an unavailable

resource, or even hardware failures. Therefore, the failure recovery techniques in web

service have been widely discussed. As investigated in (Peltz, 2003), nearly 80% of

the time is spent on handling exception (failure) when a business process is executed.

Considering parallel process execution, failure recovery and exceptional handling be-

come considerably more difficult. One important reason is that a failed activity may

already affect another activity before recovery. In (Greenfield, Fekete, Jang, & Kuo,

2003), the authors used an e-procurement example to show that in many situations,

compensation is not enough. In this paper, the authors discussed the shortages of the

standard model for handling failures and cancellation and point out that under many

environments, even if some aspects of an activity can be undone, it is not always the

case that we can return exactly to the original state. The authors also pointed out

that the failed activity may affect the concurrent activities. So in many cases, just

doing a compensation for the failed activity is not enough. This section summarizes

the existing failure recovery techniques in web service composition.

20

Texas Tech University, Le Gao

2.5.1 Re-do strategy

One approach to keep a process running is to re-do (re-try) the failed activity. Re-

do is the easiest way to handle fault and keep running. However, sometimes re-do

procedures are difficult to define in a business process.

Some fault-handling methods for job flow management were presented in (Tan,

Fong, & Bobroff, 2010). The authors proposed a new business process execution model

called BPEL4JOB. In this model, three fault-handling policies are designed. The

cleanup policy gets the failure report and deletes the failed flow instance (assuming

no side effect). The re-try policy uses a signal to indicate the job execution state and

adds a while loop to each scope. The job will be executed repeatedly if the signal

indicates false. The third policy is the re-submission and instance migration method.

This policy means exporting job flow instance data in one flow engine, and importing

it into another one so that the flow instance can resume in it. The challenge for this

policy is to collect sufficient data from the source flow engine.

Another method for handling a re-do mechanism in BPEL was described by (Modaf-

feri & Conforti, 2006). In this method, a re-do procedure is achieved by the event-

handler and the compensation-handler. In the compensation-handler, both re-do

and compensation procedures are defined following a select structure since only one

compensation-handler can be defined for an activity. The aim of the event-handler is

to set the variable that will drive the choice between redo and compensation.

In (Vacuĺın, Wiesner, & Sycara, 2008), based on OWL-S, a recovery mechanism

of semantic web service was introduced. In this recovery mechanism, a retry is used

as a form of recovery action. A retry action can be defined in a fault-handler, or a

constraint violation handler.

2.5.2 Un-do Strategy

Once a crucial error occurs, it is important to clean all of the incorrect data that

were generated by the failed activity. Typically, the overall business is recovered to

the previous consistent state. The recovery procedure is usually done through the use

of compensation.

In (Lakhal, Kobayashi, & Yokota, 2006), the authors used definition rules, compos-

ability rules and ordering rules to build a flexible web service composition model. In

21

Texas Tech University, Le Gao

this model, for each compensatable activity, the users define a compensating proce-

dure, which will be invoked in case of a failure later in the execution of activity that

makes it necessary. A concept of vitality degree is also defined in this model. The

vitality degree indicates that where some activities are identified as optional, others

are tailored as crucial for the overall process.

A concept of automatic compensation was presented in (Wiesner, Vacuĺın, Kolling-

baum, & Sycara, 2008). Since the information of the effect about a service is defined

as a process definition in OWL-S, it is possible to discover an automatic compensa-

tion based on the effect information. This technique is achieved by searching a service

with effect ε−1 to undo the failed service which has the effect ε .

In a loosely-coupled execution environment which allows concurrent activity ex-

ecution without isolation guarantee, the un-do strategy becomes more difficult to

implement, because a failed activity may cause cascaded compensations. Dialani,

Miles, Moreau, De Roure, and Luck (2002) proposed a transparent fault tolerance

architecture for web services. The authors define a two layered model which consists

of an application layer and a service layer. For failure recovery, the application layer

implements two key components which are the global fault manager and the fault

detector. The service layer includes a local fault manager which is a set of libraries

that can be bound dynamically to the service code. In case of a failure, the local fault

manager tries to recover the fault first. In case a full recovery is not possible, the

local fault manager recovers to a maximal state and escalates the fault notification

to the global fault manager. Then the global fault manager initiates a roll back by

notifying the affected services. The functionalities of the fault detector are sending

the fault notification to the global fault manager and providing a dependency set for

the current fault.

A fault handling method in decentralized web service composition was proposed by

Chafle, Chandra, Kankar, and Mann (2005). The authors use a partition technique to

decentralize web services. The decentralization algorithm partitions a scope in such

a manner that the start and end of each scope reside in the same partition which is

referred to as the root partition of that scope and the fault handlers and compensation

handlers are in the end of scope. In addition to this, each partition except root has

an inserted scope start and an inserted scope end which includes an inserted fault

22

Texas Tech University, Le Gao

handler. When a fault occurs, the fault needs to be propagated to the root partition

since the corresponding fault handler only resides in the root partition. Then the

fault handler of the root partition of the scope in which the fault occurred, sends a

DataCollection control message to its next partition(s) according to the control flow.

The message flows along the path traversed by the fault (as per the fault propagation

scheme). Now each root partition except the top level scope for the composite service,

enters a wait state. At last, the fault handler and compensation handler in the top

level root partition will address the fault and compensate completed inner scopes

respectively.

2.5.3 Alternative Strategy

Another approach used in failure recovery is to execute an alternative process in-

stead of running the failed process. In many situations, alternative execution paths

can totally substitute the failed activity so that the whole business can continue

running.

2.5.3.1 Alternative with Un-do

An alternative method is a form of contingency procedure. After failure recovery,

the whole process backs up to a consistent state. However, in many cases, the re-do

of the failed activity is still unsuccessful. Hence, an alternative execution path is a

good solution for maximizing forward recovery.

In (Xiao & Urban, 2009), the authors defined the atomic group and composite

group which may include contingency procedures as alternative execution paths. Af-

ter failure recovery, the contingency procedure of the failed group will be invoked if

the contingency exists. Otherwise, the outer group of the failed group will be compen-

sated in order to find an existing contingency procedure at the outer level. In other

words, once a group fails, the whole process will be compensated recursively until a

contingency procedure is found. Another replace operation was provided in (Vacuĺın

et al., 2008). A ReplaceBy(otherProcess) tries to use another process as a substitute

for a failed process. In (Wiesner et al., 2008), a more flexible operation named Re-

placeByEquivalent was introduced. Because the OWL-S process model defines inputs,

outputs, preconditions, and effects by using existing algorithms for automatic web

23

Texas Tech University, Le Gao

service discovery (matchmaking) (Sycara, Paolucci, Ankolekar, & Srinivasan, 2003),

the information is used to dynamically find an alternative service. Based on Replace-

ByEquivalent, the authors also give a definition of advanced backward and forward

recovery. After a failure, a rollback is performed first for all processes that have fin-

ished at the same level. Then, if ReplaceByEquivalent can find an alternative service,

it is executed. Otherwise, the back recovery is repeated at one higher level in the

hierarchy.

2.5.3.2 Alternative without Un-do

In some failure recovery approaches, the failed activity is not crucial and alternative

execution can be used to keep the business process running. Generally, each activity

has several back-up activities in these approaches.

The Primary-Backup method (Zhang, Zagorodnov, Hiltunen, Marzullo, & Schlicht-

ing, 2004) uses a backup service to substitute the failed primary service in grid ser-

vices. In this model, each primary service has one or more backup services. Before

replying to the client, the primary service needs to send the execution state to every

backup service. If these backup services receive a failure notification, or do not receive

a heartbeat message after a certain period of time, these backups need to cooperate to

elect a new primary service. The newly elected primary service then sends a failover

notification to the client so it can obtain a new server instance handle.

The merit of this approach is that it saves the expensive rollback or compensation

of the failed activities. However, because the failed activity is just abandoned, the al-

ternative strategy does not support the atomicity point of the ACID properties of the

traditional transaction. Traditional transaction concepts require either all operations

have completed or otherwise none has happened. Furthermore, an alternative with-

out un-do method usually does not consider concurrent process execution errors. For

example, if other concurrent activities have data dependencies on the failed activity,

all results of these activities become unbelievable.

2.5.4 Other Techniques in Executable Process Language

The WS-BPEL standard provides fault-handler, compensation-handler, and termination-

handler attached to a scope to handle execution exception. To continue the process ex-

24

Texas Tech University, Le Gao

ecution in case an exception occurs, the fault-handler might invoke the compensation-

handler first to un-do the completed portion in the scope. If the corresponding

compensation-handlers are not specified, then the default compensation-handler is as-

signed to the scope. However, in some cases, the default compensation-handler may

cause complications and return unexpected results. Khalaf, Roller, and Leymann

(2009) highlight the two main problems with the fault and compensation mechanism

in the current BPEL standard: 1) compensation order can violate control link de-

pendencies if control links cross the scope boundaries, and 2) high complexity of the

default compensation order due to the default handler behavior. Instead of the stan-

dard fault and compensation mechanism in BPEL, Khalaf et al. (2009) proposed a

new and deterministic mechanism to better handle default compensation for scopes.

In the new mechanism, the relationships between scopes include both structured nest-

ing and graph-based links. Therefore, in case of an execution exception, the model can

calculate the default compensation order before starting the compensation procedure.

Several efforts have been made to enhance the BPEL fault and exception han-

dling capabilities. The work in (Modafferi & Conforti, 2006) proposed mechanisms

like external variable setting, future alternative behavior, rollback and conditional

re-execution of the flow, timeout, and redo mechanisms for enabling recovery ac-

tions using BPEL. The work in (Modafferi, Mussi, & Pernici, 2006) presented the

architecture of the SH-BPEL engine, a Self-Healing plug-in for WS-BPEL engines

that augments the fault recovery capabilities in WS-BPEL with mechanisms such as

annotation, pre-processing, and extended recovery. The Dynamo (Baresi, Guinea,

& Pasquale, 2007) framework for the dynamic monitoring of WS-BPEL processes

weaves rules such as pre/post conditions and invariants into the BPEL process.

In checkpointing systems, consistent execution states are saved during the process

flow. During failures and exceptions, the activity can be rolled back to the closest

consistent checkpoint to move the execution to an alternative platform (Luo, 2000).

The work in (Dialani et al., 2002) uses the means of checkpointing and rollback

to detect and recover the faults. The rule-based technique can be also used with

checkpointing systems. Marzouk, Maalej, Rodriguez, and Jmaiel (2009) introduced a

periodic checkpointing based approach for strong mobility of orchestration processes.

With a set of rules, WS-BEPL processes can be transformed to equivalent mobile ones.

25

Texas Tech University, Le Gao

This approach can be used as a self-healing mechanism that supports recovering the

execution of instances stopped following a failure and resuming the execution starting

from the last checkpoint.

Aspect-oriented programming (AOP) is another way of modularizing and adding

flexibility to service composition through dynamic and autonomic composition and

runtime recovery. In AOP, aspects are weaved into the execution of a program using

join points to provide alternative execution paths (Charfi & Mezini, 2007). Join points

are well-defined points in the execution of the program. The behavioral code specified

in the join point is known as advice. The advice code can be executed before, after,

or instead of the join points. The work in (Charfi & Mezini, 2006) illustrates the

application of aspect-oriented software development concepts to workflow languages

to provide flexible and adaptable workflows. AO4BPEL (Charfi & Mezini, 2007)

is an aspect-oriented extension to BPEL that uses AspectJ to provide control flow

adaptations (Kiczales et al., 2001). Business rules can also be used to provide more

flexibility during service composition. AO4BPEL enhances the limited capabilities of

BPEL in terms of modularity and dynamic adaptability. XML files are used to provide

functionality in AO4BPEL to avoid changing the service composition during runtime.

In contrast with the standard WS-BPEL, AO4BPEL provides better support for

functional modularization.

2.6 Summary

In this section, many past and ongoing research projects that support dynamic web

service composition are presented. However, due to the distributed nature of services,

flexibility in service composition is still a challenging research topic. Even BPEL, the

de-facto standard for composing web services, still lacks sophistication with respect to

handling faults and events. The focus of the proposed research is to use event-driven

and rule-based techniques to provide better flexibility to dynamically respond to fail-

ure in web service composition. The proposed research is different than the related

work by using event-driven techniques to trigger rule checking to determine the recov-

ery actions. In this way, how to respond to a process exception is fully dependent on

the current execution status and rule checking result. Therefore, rather than uniform

compensation defined in the process specification, different process instances might

26

Texas Tech University, Le Gao

respond to the same exception through different actions. In addition, by analyzing

the data dependency in a decentralized manner, this research provides better recovery

support for failures among concurrent processes in terms of correctness and efficiency.

27

Texas Tech University, Le Gao

CHAPTER 3

MOTIVATION AND STATEMENT OF RESEARCH OBJECTIVES

This chapter provides background and motivation for the proposed research. Sec-

tion 3.1 gives an overview of the foundational work with the decentralized data de-

pendency analysis project. The research challenges of this foundational work are

discussed in Section 3.2. Finally, the statement of objectives of the proposed research

is itemized in Section 3.3.

3.1 Overview of the Decentralized Data Dependency Project

As illustrated in the previous section, most process modeling techniques are aligned

with either a procedural approach, specified as a flow graph, or a rule-driven approach,

where events and rules are used to control the flow of execution. Rules provide a more

dynamic way to respond to events that represent a need to change the normal flow of

execution. The use of rules in process modeling is especially important considering

the growing prevalence of complex events, event-driven applications, and business

activity monitoring.

A dynamic approach to process modeling for service-oriented environments requires

a combination of graph and rule-based techniques, where graph-based techniques pro-

vide a means for specifying the main application logic and events are used to interrupt

or branch off of the main flow of execution, triggering rules that check constraints,

respond to exceptions, and initiate parallel activity. Events and rules should also play

an increased role in supporting failure and recovery activity. Planning for failure and

recovery should be an integral component of process modeling for service-oriented ar-

chitectures, especially in the context of concurrently executing processes that access

shared data and cannot enforce traditional transactional properties.

The proposed research is a component of the decentralized data dependency anal-

ysis project (NSF Grant No. CCF-0820152), which addresses consistency checking

as well as failure and recovery issues for service-oriented environments through the

use of integration rules, invariants, and application exception rules, used together

with a checkpointing concept known as assurance points. To motivate the use of

these concepts, consider a decentralized execution environment consisting of Process

28

Texas Tech University, Le Gao

Execution Agents (PEXAs) as shown in Figure 3.1. In this research, a PEXA is

responsible for monitoring the execution of different processes. In Figure 3.1, PEXA

1 is responsible for the execution of P1 and P4, PEXA 2 is responsible for the execu-

tion of P2, and PEXA 3 is responsible for the execution of P3. Each process invokes

services at various locations within the network. As shown in Figure 3.1, P1 invokes

operation a at the site of PEXA 1, operation b and operation c at the site of PEXA

2, and operation d at the site of PEXA 3.

P1

.

.

AP1

AP2

.

.

AP3

AP4

.

.

Integration Rules {Pre|Post}

Invariant Rules

Application Exception

Rules
.

.

Operation_a

Operation_b

Operation_d

DEGS

Interface

DEGS

Interface

DEGS

Interface

PEXA1

PEXA2 PEXA3

P1

P2 P3

P4

AP1

P1

Service Invocation

P2P Communication

Interruption

Rule Invocation

Process

Assurance Point

� � � � � � � �
� � � � �

Operation_c

Pointer: Process

Instance

Instance Details

PEXA
Process Execution

Agent

DEGS

Interface

Delta-Enabled

Grid Service

Interface

Source

Database

Source

Database

Source

Database

Local

Delta

Schedule

Local

Delta

Schedule

Local

Delta

Schedule

Figure 3.1. Decentralized Process Execution Agents with Events and Rules
(Urban, Gao, Shrestha, & Courter, 2011)

Figure 3.1 also illustrates that PEXAs are co-located with Delta-Enabled Grid Ser-

vices (DEGS). A DEGS is a Grid Service that has been enhanced with an interface

that stores the incremental data changes, or deltas, that are associated with service

execution in the context of globally executing processes (Blake, 2005; Urban, Xiao,

et al., 2009). A DEGS uses an OGSA-DAI Grid Data Service for database interac-

tion. The database captures deltas using capabilities provided by most commercial

29

Texas Tech University, Le Gao

database systems. The original implementation of DEGS (Blake, 2005; Urban, Xiao,

et al., 2009) has experimented with the use of triggers as a delta capture mechanism,

as well as the Oracle Streams capability (Urban, Xiao, et al., 2009). Oracle Streams

is a feature that monitors database redo logs for changes and publishes these changes

to a queue to be used for replication or data sharing.

3.1.1 Decentralized Data Dependency Analysis

Deltas captured using DEGS are stored in a delta repository that is local to the

service. The past work in (Xiao, 2006; Xiao, Urban, & Dietrich, 2006) has experi-

mented with the creation of a centralized Process History Capture System (PHCS)

that included deltas from all DEGSs in the environment and the process runtime

context generated by the process execution engine. Deltas are dynamically merged

using timestamps as they arrive in the PHCS to create a time-ordered schedule of

data changes from the DEGS. The global delta object schedule is used to support

recovery activities when process execution fails (Xiao, 2006; Xiao & Urban, 2009,

2008; Xiao, Urban, & Liao, 2006), where the global delta object schedule provides

the basis for discovering data dependencies among processes.

The most recent work with the decentralized data dependency project has trans-

formed the global delta object schedule into a distributed schedule with a decentral-

ized algorithm for discovering data dependencies (Urban, Liu, & Gao, 2009; Z. Liu,

2009). As a result, each PEXA in Figure 3.1 has its own local delta object schedule.

Z. Liu (2009) developed a decentralized approach to analyzing data dependencies

among concurrently executing processes in an SOA using PEXAs to control the exe-

cution of processes and to build local delta object schedules. At each execution site,

the PEXA contains a local PHCS which only captures the local deltas. A data de-

pendency graph is built at each PEXA according to the loacl delta object schedule.

PEXAs then communicate with each other about data dependencies in a peer-to-peer

manner.

Figure 3.2 shows the interleaved execution view of each process and operation from

a data access point of view when op12 fails at time t8. There are four processes

that are executing concurrently. Each process involves multiple operations and each

operation accesses a specific data object. In Figure 3.2, D1, D2, and D3 represent

30

Texas Tech University, Le Gao

three independent service providers. Each provider involves one or more data objects.

For instance, D1 has three data objects which are X1, Y1, and Z1. The global process

dependency graph for the four active processes is shown in the upper right part of

Figure 3.3, indicating that the process dependency graph is p1← p2← p3← p4. The

recovery process is invoked when op12 fails at site D1 and invokes the compensation of

p1, which is controlled by PEXA 1. Figures 3.2 and 3.3 together illustrate that PEXA

1 can detect that p2 is dependent on p1 due to modification of X1. PEXA 1 can also

detect that p4 is dependent on p3 due to modification of Y1, but PEXA 1 cannot

identify this dependency as part of the global graph for p1 because of the distributed

nature of the execution. As shown in Figure 3.3, p3 is not dependent on p1, p2, or p4

based on data access patterns at D1, but p3 is dependent on p2 based on data accessed

at D2. Disconnected graphs such as those in PEXA 1 of Figure 3.3 are referenced to

as hidden dependencies. Additional execution information must be recorded to link

together all distributed components of the graph and to identify hidden dependencies

within a single PEXA. Therefore, a PEXA that controls a process that invokes a

service at a different site must create a link object to record information about the

site where the service is executed. In Figure 3.3, PEXA 2 creates a link object to

indicate that op21 of process p2 is executed at the site of PEXA 1. PEXA 3 creates

two link objects to record the fact that op31 executes at PEXA 2 and op32 executes at

PEXA 1. Used in combination, link objects together with an indication of internal or

external process invocation can be used to dynamically discover global, distributed

process dependency graphs.

Two different algorithms for decentralized data dependency analysis were devel-

oped in (Z. Liu, 2009). The Lazy approach uses a passive method to build the data

dependency graph. When a process encounters an error, the PEXA where the failure

occurs starts to build the local data dependency graph and then communicates with

other PEXAs to recover the error. In contrast, the Eager approach builds the data

dependency graph at run time. Once an error occurs, PEXAs use the existing local

data dependency graphs and communicate with each other to recover the error.

31

Texas Tech University, Le Gao

but PEXA 1 cannot identify this dependency as part of the

	
 	 � 	 �	

� �

 � � �
 � �
 �� � � � �
� � �� �
� � � �

� � � � �
 � � � � � � � � � � � � �

� �

� �
� �

� �

� � � �

� � � �

Figure 3. Data Access View of Interleaved Execution

Figure 3.2. Data Access View of Interleaved Execution
(Urban, Liu, & Gao, 2009)

Figure 4: Global, Distributed Process Dependency Graph

Figure 3.3. Global, Distributed Process Dependency Graph
(Urban, Liu, & Gao, 2009)

3.1.2 The Assurance Points Model with Integration and Invariant Rules

Given that processes can execute in an environment where decentralizedPEXAs can

monitor data changes and communicate about data dependencies among concurrently

executing processes, the decentralized data dependency analysis project focuses on

how to enhance the ability to monitor data consistency in the failure and recovery

process. To illustrate this approach, the expanded view of P1 in Figure 3.1 shows

32

Texas Tech University, Le Gao

the use of assurance points (APs) and the different types of rules that have been

defined to support data consistency and process recovery. As shown for P1, APs can

be placed at strategic locations in a process, where an AP is a combined logical and

physical checkpoint that can be used to store execution data, alter program flow, and

support recovery activity.

In (Xiao & Urban, 2009), a process is hierarchically structured by several execution

entities. A process is denoted as pi, where p represents a process and the subscript i

represents a unique identifier of the process. An operation represents a service invo-

cation, denoted as opi,j , such that op is an operation, i identifies the enclosing process

pi, and j represents the unique identifier of the operation within pi. Compensation

(copi,j) is an operation intended for backward recovery, while contingency (topi,j) is an

operation used for forward recovery. Atomic groups and composite groups are logical

execution units that enable the specification of processes with complex control struc-

ture, facilitating service execution failure recovery by adding scopes within the context

of a process execution. An atomic group (denoted agi,j) contains an operation, an op-

tional compensation, and an optional contingency. A composite group (denoted cgi,k)

may contain multiple atomic groups, and/or multiple composite groups that execute

sequentially. A composite group can have its own compensation and contingency as

optional elements. A process is essentially a top-level composite group. Contingency

is always tried first upon the failure of a group. The compensation process will only

be invoked if there is no contingency or if the contingency fails.

Urban, Gao, Shrestha, and Courter (2010) extended the model by introducing

APs in the execution of a process, providing the capabilities of checking pre/post

conditions through the use of integration rules (IRs). An IR as shown in Figure 3.4,

which is based on the work in (Urban et al., 2001), is triggered by a process reaching

a specific AP during execution. Upon reaching an AP, the condition of an IR is

evaluated. If the condition evaluates to true, the action specification is executed to

invoke a recovery action. As part of the recovery process, there is a possibility for

the process to execute through the same pre or post condition a second time, where

action 2 is invoked rather than action 1.

Three different forms of backward recovery are described in (Urban, Gao, Shrestha,

& Courter, 2010), with the different forms supporting either full backward recovery or

33

Texas Tech University, Le Gao

a combination of backward and forward recovery. APRetry is used when the running

process needs to be backward recovered to a previously-executed AP. APRollback is

used when the overall process has more severe errors and must be recovered back to the

beginning of the process. APCascadedContingency is a hierarchical backward recovery

that continues to compensate nested processes, checking each AP that is encountered

for a possible contingent procedure that can be used to correct an execution error.

Figure 3.5 shows a portion of an online shopping process. In Figure 3.5, composite

group cg2 contains two atomic groups, shown as the solid line rectangles. The optional

compensations and contingencies are shown in dashed line rectangles, denoted as cop

and top. The two APs, which are OrderPlaced(orderId) and CreditCardCharged(orderId,

cardnumber, amount), are placed before and after cg2. The OrderPlaced AP has a

pre-condition IR that guarantees that the store must have enough goods in stock.

Otherwise, the process invokes the backOrderPurchase process. The CreditCardCharged

AP has a post-condition IR that further guarantees the in-stock quantity must be in

a reasonable status after the decInventory operation.

CREATE RULE ruleName::{pre | post | cond}
EVENT apId(apParameters)
CONDITION rule condition specification
ACTION action 1
[ON RETRY action 2]

Fig. 2. Integration Rule Structure
Figure 3.4. Integration Rule Structure

Another use of an AP is to activate invariant rules. As shown in Figure 3.1,

Invariants indicate conditions that must be true during process execution between

two different APs. As shown for P1 in Figure 3.1, an invariant is monitored during

the execution between AP2 and AP3, where the invariant represents a data condition

that is critical to the correct execution of P1. P1, however, may not be able to lock

the data associated with the invariant during the service executions between AP2

and AP3. Given that DEGS can be used to monitor data changes, P1 can activate

the invariant condition, but still allow concurrent processes to access shared data. P1

can then be notified if data changes violate the invariant condition. For example, if

P3 modifies data associated with the invariant of P1, P1 can re-evaluate the invariant

34

Texas Tech University, Le Gao

OrderPlaced (orderId)

Charge credit card

Dec inventory

cg2

ag21

ag22

CreditCardCharged (orderId, cardNumber, amount)

ag21.cop(creditBack)

ag22.cop(incInventory)

ag21.top(eCheckPay)

PRE CONDITION:

create rule QuantityCheck::pre

event: OrderPlaced (orderId)

condition: exists(select L.itemId from Inventory I,

LineItem L where L.orderId=orderId and
L.itemId=I.itemId and L.quantity>I.quantity)

action: backOrderPurchase(orderId)

POST CONDITION:

create rule QuantityCheck::post

event: CreditCardCharged (orderId, cardNumber,

amount)

condition: exists(select L.itemId from Inventory I,
LineItem L where L.orderId=orderId and

L.itemId=I.itemId and I.quantity<0)

action1: APRetry

action2: APRollback

Figure 3.5. APs in Online Shopping Process

condition and invoke recovery actions if needed.

3.1.3 Application Exception Rules

Application exception rules (AERs) are another type of rule used in combination

with APs (Ramachandran, 2011). AERs have a case-based structure and are specifi-

cally used to respond to interrupts caused by events external to the process. Within a

process, each AP represents the fact that a process has passed certain critical points

in the execution. Application exception rules are then written to respond to excep-

tions according to the AP status of a process. Based on the most recently passed AP,

a corresponding condition/action pair will be examined. Therefore, AERs enable a

process to dynamically respond to the event depending on its current execution sta-

tus. In Figure 3.1, P1 also illustrates the use of application exception rules at AP4. A

process should be capable of responding to external events that may affect execution

flow. The response to the event, however, may depend on the current status of the

process. For example, P1 may respond one way if the process has passed AP4, but

may respond differently if the process is only at AP1.

Figure 3.6 shows a basic use of AERs. Application exception rules have a case

35

Texas Tech University, Le Gao

structure, defining recovery actions based on APs. When an exception occurs, ap-

plication exception rules are triggered. The exception handling procedure to execute

varies according to the AP status of the process, where recovery actions can query the

execution state associated with the most previous AP. As shown in Figure 3.6, one

instance of process A executes recoveryAction1 since the process has passed AP1 but

not AP2. The other instance of process A executes recoveryAction2 since the process

has passed AP2.

��������

�	��
�
��
��

���������
�

�

�

���
�

�

�

���
�

�

�

���������

�����������

�

�
����

�

�����������

�

�����

�

�����

�

���������

��������	
���	�

��������	
���	�

�		"
��
���

����	
���#�"�

$��������

����

���%

��
���&

���%

��
���&

��������

Figure 3.6. The Use of Application Exception Rules

AERs also have an additional functionality. Since PEXAs can communicate about

data dependencies among concurrently executing processes, when a process Pj invokes

recovery procedures in response to integration rules, invariant conditions, or appli-

cation exception rules, event notifications can be sent through P2P communication

to dependent processes that are controlled by other PEXAs. Application exception

rules can be used by a process Pi to intercept such events, determine how the failure

and recovery of Pj potentially affects the correctness conditions of Pi, and respond

in different ways depending on the AP status of the process.

3.2 Research Challenges for Existing Work

There are still many challenges in the existing work described in the Section 3.1.

36

Texas Tech University, Le Gao

i) From an application point of view, a complete model must support sequence,

if-else, parallel, and loop control structures. In the current service composition

and recovery model, however, execution and recovery for processes with complex

control structures have not been fully developed. A full suite of control structures

will complicate the semantics of the service composition, especially for recovery

execution. In addition, assurance points and application exception rules will also

need further improvements to assure the correctness of execution with complex

control structures.

ii) Existing discussion of the semantics of APs and the different rule structures and

recovery actions is explained through prototyping and examples. The semantic

definition of the assurance point approach still needs formal specifications and

verifications. Petri Nets are good candidates to formally validate web service

compositions. Some high-level Petri Net theories, such as colored Petri Nets

(Jensen, 1987), timed Petri Nets (Ramchandani, 1973), the workflow net (Van

Der Aalst, 1998) and YAWL (Van Der Aalst & Ter Hofstede, 2005), can provide

a more concise way to describe the AP service composition model.

iii) The AP model can recover a single process but does not address consistency

issues for processes that are data dependent on the recovered process. Ideally, the

AP model should be integrated with the decentralized data dependency analysis

process. However, due to the partial recovery of a process in the AP model,

PEXAs must be able to build dependency graphs based on only the recovered

portion of a process.

3.3 Statement of Objectives

The global objective of this research is to formally define a hierarchical web ser-

vice composition and recovery model based on the use of assurance points, integration

rules and application exception rules. To provide a more robust model, the rule-based

failure recovery approach will be integrated with the decentralized data dependency

analysis algorithm, so that decentralized PEXAs can communicates about depen-

dencies associated with the partial process recovery. To achieve this objective, the

following sub-objectives will be investigated:

37

Texas Tech University, Le Gao

1) Fully define the execution and recovery semantics of the AP model with event-

driven and rule-triggered techniques in the context of programming control struc-

tures. The investigation will focus on the execution and recovery with if-else,

parallel, and loop control structures integrated with the use of APs, integration

rules and AERs.

2) Formalize the execution and recovery semantics of the AP approach by using high

level Petri Nets. The workflow language, YAWL (Van Der Aalst & Ter Hofst-

ede, 2005) will also be used to provide a more abstract view of the Petri Nets

specifications.

3) Investigate the integration of the decentralized data dependency analysis algorithm

with the AP recovery model. This investigation will involve the development of

an algorithm for building data dependency graphs based on the partial recovery

of a process and the use of AERs to trigger the write/read dependent events.

4) Evaluate the performance and functionality of the decentralized data dependency

analysis approach integrated with the AP model. A simulation environment for

the decentralized data dependency analysis approach will be developed to evaluate

the performance and functionality of the system.

The proposed research focuses on defining a new paradigm for service execution

that uses rule-based techniques for testing user-defined semantic conditions. With

the new web service model, a dynamic and intelligent approach can be developed

to monitoring failures, detecting data dependencies, and responding to failures and

exceptional events. The methodology for conducting this research is presented in the

next section.

38

Texas Tech University, Le Gao

CHAPTER 4

DISCUSSION OF RESEARCH OBJECTIVES

This chapter provides a more detailed discussion of the research objectives. Section

4.1 discusses recovery issues associated with the use of programming control structures

in the AP model. A Petri Net and YAWL formalization of the AP model is discussed

in Section 4.2. Section 4.3 discusses research issues for decentralized data dependency

analysis within the AP model.

4.1 The AP Model with Programming Control Structures

In the current web service composition model with APs, the execution and re-

covery semantics of if-else, parallel, and loop control structures have not been fully

defined. Furthermore, due to the complexity of the control structures, adequate and

meaningful points in the control structures for the placement of APs needs to be

investigated. This section first provides an overview of recovery actions in the AP

model. Extensions needed in the context of additional control structures are then

addressed.

4.1.1 Recovery Actions in the AP Model

Figure 4.1 shows an abstract view of a sample process definition, where the boxes

represent different components of the process composition. Ovals represent APs,

while the broad, curved arrows denote recovery actions. APs and recovery actions

will be addressed in the following paragraphs.

The main process in Figure 4.1 is the top-level composite group cg0. This composite

group is composed of three composite groups cg01, cg02, and cg03 followed by two

atomic groups ag04 and ag05. Similarly, cg01, cg02, and cg03 are composite groups

that contain atomic groups. Each atomic and composite group can have an optional

compensation plan and/or contingency plan. Some operations, such as ag05, can also

be marked as non-critical, meaning that the failure of the operation does not invoke

any recovery activity and that the process can proceed even if the operation fails.

Contingency is always tried first upon the failure of a group. The compensation

process will only be invoked if there is no contingency or if the contingency fails. For

39

Texas Tech University, Le Gao

Figure 4.1. Generic Process: Scenario 1 (APRollback)
(Urban, Gao, Shrestha, & Courter, 2010)

example in Figure 4.1, if ag021 fails, ag021.top will be executed.

Compensation is a recovery activity that is only applied to completed atomic and

composite groups. Shallow compensation involves the execution of a compensating

procedure attached to an entire composite group, while deep compensation involves

the execution of compensating procedures for each group within a composite group.

As an example in Figure 4.1, if the contingent procedure ag021.top fails, the recovery

process will first try to compensate cg01 using the associated compensating procedure,

cg01.cop. If the shallow compensation fails, deep compensation will be invoked by

executing ag011.cop. Note that ag012 is non-critical and does not require compensation.

After compensating cg01, the contingent procedure for the top-most composite group

(i.e., cg0.top) will be executed.

An AP is defined with a unique identifier, a set of parameters which list the critical

data items to be stored and checked, and a set of pre and post conditions defined as

integration rules (IRs). An IR is triggered by a process reaching a specific AP during

execution. The condition represents a user-defined constraint. If the constraint is

40

Texas Tech University, Le Gao

violated, the action is executed to trigger a recovery action. In its most basic form,

a recovery action simply invokes an alternative process. Recovery actions can also be

one of the following actions.

- APRollback. APRollback is used to logically reverse the current state of the entire

process using shallow and deep compensation.

Scenario 1 (APRollback): Assume that the post-condition fails at AP4 in Figure

4.1 and that the IR action is APRollback. Since APRollback is invoked, the pro-

cess compensates all completed atomic and/or composite groups. The APRollback

execution sequence is numbered in Figure 4.1. First the process invokes ag04.cop to

compensate ag04. Second, the APRollback process will deep compensate ag031 by

invoking ag031.cop since 1) there is no shallow compensation for cg03 and 2) ag032

is non-critical and therefore has no compensating procedure. Finally, APRollback

invokes shallow compensation cg02.cop and cg01.cop.

The APRollback procedure is a standard way of using compensation in past work.

The originality of the rollback process in our work is the way in which it is used

together with APs in the retry and cascaded contingency recover actions.

- APRetry. APRetry is used to recover to a specific AP and then retry the recovered

atomic and/or composite groups. If the AP has an IR that is a pre-condition,

then the pre-condition will be re-examined. If the pre-condition fails, the action of

the rule is executed, which either invokes an alternate execution path for forward

recovery or a recovery procedure for backward recovery. By default, APRetry will

go to the most recent AP. APRetry can also include a parameter to indicate the

AP that is the target of the recovery process.

Scenario 2 (APRetry-default): Assume that the post-condition of an IR fails at AP4

in Figure 4.2 and that the action of the IR is APRetry. This action compensates to

the most recent AP within the same scope by default. In Figure 4.2, APRetry first

invokes ag04.cop to compensate ag04 at step 1. The process then deep compensates

cg03 by executing ag031.cop at step 2. At this point, AP2 is reached and the pre-

condition of the IR is re-evaluated shown as step 3. If the pre-condition fails, the

process executes the recovery action of IR. If the pre-condition is satisfied or if

there is no IR, then execution will resume again from cg03. In this case, the process

41

Texas Tech University, Le Gao

Figure 4.2. CScenario 2 (APRetry-default)
(Urban, Gao, Shrestha, & Courter, 2010)

will reach AP4 a second time through steps 4, 5 and 6, where the post-condition is

checked once more. If failure occurs for the second time, the second action defined

on the rule is executed rather than the first action (IRs can specify multiple actions

for the case when a retry fails). If a second action is not specified, the default action

will be APRollback as steps 7 through 10.

- APCascadedContingency (APCC). The APCC process provides a way of

searching for contingent procedures in a nested composition structure, searching

backwards through the hierarchical process structure. When a pre or post con-

dition fails in a nested composite group, APCC will compensate its way to the

next outer layer of the nested structure. If the compensated composite group has

a contingent procedure, it will be executed. Furthermore, if there is an AP with a

pre-condition before the composite group, the pre-condition will be evaluated before

executing the contingency. If the pre-condition fails, the recovery action of the IR

will be executed instead of executing the contingency. If there is no contingency or

42

Texas Tech University, Le Gao

if the contingency fails, APCC continues by compensating the current composite

group back to the next outer layer of the nested structure and repeating the process

described above.

Figure 4.3. Scenario 4 (APCC)

Scenario 3 (APCC): Assume that the post-condition fails at AP4 in Figure 4.1

and that the IR action is APCC. The process starts compensating until it reaches

the parent layer. In this case, the process will reach the beginning of cg0 after

compensating the entire process through deep or shallow compensation through

the same steps as shown in Figure 4.1. Since there is no AP before cg0, cg03.top is

invoked.

Scenario 4 (APCC): Assume that the post-condition fails at AP3 in Figure 4.3 and

that the IR action is APCC. Since AP3 is in cg03, which is nested in cg0, the APCC

process will compensate back to the beginning of cg03, executing ag031.cop at step

1. The APCC process finds AP2 with an IR pre-condition for cg03 at step 2. As a

result, the pre-condition will be evaluated before trying the contingency for cg03. If

there is no pre-condition or if the pre-condition is satisfied, then cg03.top is executed

at step 3 and the process continues shown as step 4. Otherwise, the recovery action

of the IR pre-condition for AP2 will be executed and the process quits APCC mode.

43

Texas Tech University, Le Gao

If cg03.top fails at step 3, then the process will still be under APCC mode, where

the process will keep compensating through steps 5 and 6 until it reaches the cg0

layer, where cg0.top is executed at step 7.

4.1.2 Recovery Issues for Additional Control Structures

The recovery actions for the AP model will be extended for use in the context of

additional control structures, such as parallel, if-else, and loop control structures.

In BPEL, the parallel control structure is supported by the flow activity. The flow

activity specifies multiple threads that can execute in parallel. The flow activity com-

pletes when all threads have completed. For example, a loan application process can

contain a flow activity that sends the loan requests to two different banks simultane-

ously. In flow activity, all threads are running independently and do not need to wait

for others to complete.

The parallel control structure involves multiple concurrently running threads. In a

single process, concurrently running paths are normally data-independent. Therefore,

in this research, data-independence among concurrent paths is assumed in parallel

activity. A new group, known as a flow group, will be added to the service composition

model in addition to atomic and composite groups. A flow group can contain multiple

composite groups and atomic groups executed in parallel and independently. Figure

4.4 shows an example of a flow group that contains two composite groups and one

atomic groups. A flow group succeeds only when all groups have succeeded. A

flow group can also have optional shallow compensation (fg1.cop) and contingency

(fg1.top). A shallow compensation will compensate the effects done by all threads

involved in the flow group. A contingency will be used as an alternative execution

path to the entire flow group. Similar to a composite group, shallow compensation

of a flow group involves the execution of a compensating procedure attached to an

entire flow group, while deep compensation involves the execution of compensating

procedures for each group within a flow group.

An initial investigation of the flow group in the AP model has been presented in

(Friedman, Urban, Gao, & Shrestha, 2010). As shown in Figure 4.5, an AP can be

placed:

- immediately before the flow group (APn),

44

Texas Tech University, Le Gao

fg1

cg11 cg12

ag13

.

.

.

.

.

.

.

.

cg11.cop

cg12.copcg11.top

ag13.cop

fg1.cop

fg1.top

Figure 4.4. An Example of Flow Group

- inside of the flow group before the start of a specific composite group (APn1, ... ,

APni),

- or as the first element of a composite group (APn11, ..., APni1) within a flow group.

In a flow group, if a constraint violation or an execution failure occurs in a thread,

the thread will first try to recover the error inside of the thread by an APRetry or

APCC action. If the recovery action succeeds, all other threads in the flow group

will not be affected. However, if the failed thread cannot recover from the error, the

flow group will be under APCC mode and all threads must be recovered to invoke the

contingency of the entire flow group. In addition, if at any point a thread is marked

for APRollback as a form of recovery, all concurrent threads must also be flagged for

APRollback and the entire process will be recovered.

As describe in (Friedman et al., 2010), more than 10 execution and recovery cases

have been identified based on the placement of APs in Figure 4.5. As an example of

45

Texas Tech University, Le Gao

CG0

APn

APn.1 APn.i

APn.1.1

CGm.1.top

CGm.1.cop

FGm

CGm.1

APn.i.1

CGm.i.top

CGm.i.cop

CGm.i

FGm.top

FGm.cop

APn+1

CG0.top

Figure 4.5. General Flow Group with Possible AP Placement

the recovery issues that must be addressed, consider the following two cases:

- Case 1 Innermost AP only with APRetry

Assumptions: APn undefined, APni undefined, APni1 defined.

46

Texas Tech University, Le Gao

In the case where APn and APni do not exist and APni1 is present, if at some

point during the execution of CGmi, an APRetry is encountered, execution of CGmi

will halt and execute compensation procedures for completed tasks within CGmi,

returning the state to APni1 . There, the precondition of APni1 will be checked. If

it is still valid, the procedure will attempt to re-execute CGmi without affecting the

concurrent threads. Otherwise, the recovery action for APni1 will be performed,

which will require exiting to the outer scope of FGm to perform APRollback or

APCC. As a result, all other threads will also be compensated according to the

recovery action at APni1.

- Case 2 Middle and innermost APs with APCC

Assumptions: APn undefined, APni defined, APni1 defined.

Suppose a failure occurs in CGmi with a recovery action of APCC. In this case, all

of CGmi will be compensated, and the precondition at APni (i.e., APni1 in this case

is ignored) will be rechecked. If the condition is satisfied, a contingency for CGmi

will be attempted. In the event that CGmi has no contingency or the contingency

fails, recovery flow will reach the beginning of FGm, necessitating the compensation

of the remaining threads. Once all compensation is completed, a contingency for

FGm will be attempted. If that still fails, recovery will continue following the APCC

semantics, compensating the outer scope of FGm to find a contingent procedure in

the outer scope.

The cases in (Friedman et al., 2010) need to be further analyzed for conformance

to realistic scenarios. For example, in Figure 4.5, it may not be realistic for APn1 and

APn11 to both exist in a process. In the AP model, because the recovery procedure

is tightly associated with the APs enclosed in the process, an effective and efficient

way of using APs in the presence parallelism is important. The proposed research

will investigate rules for simplifying the use of APs with flow groups to reduce the

complexity of the recovery actions associated with flow groups.

This research will also address APs in the presence of if-else and looping control

structures. The if-else control structure defines two execution paths. Depending

on the selection condition, only one path will be executed. This naturally makes

the if-else control structure easy to address the recovery process. In the case of

47

Texas Tech University, Le Gao

compensation, the process should only need to recover the path which has been

executed. The loop control structure involves iterative execution. In BPEL, a scope

associated with a compensation handler can be enclosed in a loop structure, such as

a while activity. To compensate the completed while loop structure, the number of

times that the associated compensation handler is invoked must be the same as the

number of times of successfully completed scopes in the repeatable structure. Because

the recovery procedure in the AP model is based on the presence of APs in a process,

APs inside of a loop control structure can potentially complicate the recovery process.

In this research, the necessity and complexity of inserting APs in the loop control

structure will be investigated.

4.2 Formalization of the AP model

To precisely describe the execution semantics of the AP model, Petri Nets (Peter-

son, 1981) and YAWL (Van Der Aalst & Ter Hofstede, 2005) will be used to formalize

the AP model in this research. Petri Nets can present a precise definition of the ex-

ecution semantics of the AP model. YAWL is based on Petri Nets, but provides a

more abstract representation. Section 4.2.1 presents examples of a portion of the AP

model that has already been formalized by Petri Nets (Urban, Gao, Shrestha, Xiao,

et al., 2010). Section 4.2.2 addresses the work that will be done with YAWL.

4.2.1 Execution Semantics of Assurance Points by Petri Nets

The initial execution semantics of the AP approach to service composition and

recovery without if-else, looping, and parallel control structures have been defined in

(Urban, Gao, Shrestha, Xiao, et al., 2010) by using Petri Nets (Peterson, 1981). A

Petri Net is a directed, connected, and bipartite graph in which nodes represent places

and transitions, and tokens occupy places. A directed arc in a Petri Net connects a

place to a transition or a transition to a place. The places that have arcs running to a

transition are called input places of the transition. The places that have arcs coming

from a transition are called output places of the transition. A transition is enabled

when each of its input places has at least one token. After firing a transition, exactly

one token at each of its input places has been consumed, while one token at each of

its output places has been generated.

48

Texas Tech University, Le Gao

4.2.1.1 General Approach

In the Petri Net formalization of the service composition and recovery model, a

transition represents a basic task, such as invoking an operation of a process. A place

represents an execution status, a condition, or a resource. A token at the place of

an execution status corresponds to the thread of control in the flow. A token at the

place of a condition indicates that some condition regarding the current status of a

process instance is true. A token at the place of a resource indicates that the resource

is (or in some cases is not) available. For example, in the service composition model,

compensation is a resource associated with an atomic or composite group within a

process, so resource places are used to indicate whether compensation is or is not

available for a given group.

Before discussing the details of the Petri Net formalization, the notation used in

the Petri Net diagrams is introduced. All transitions are labeled as Tn inside a

transition node. Each place in a Petri Net has a short phrase beside the place node.

Short phrases are used to label places due to limited room in the Petri Net graph.

The complete set of all places that appear in the graphs that follow for atomic and

composite execution groups are shown in Table A.1 in Appendix A, while Table A.2

in Appendix A indicates the places that are associated with graphs for APs. The left

column of each table contains the short phrase of each place. The middle column

contains the actual meaning of places. The right-most column indicates the type of

the place, which is specified as status, condition, or resource.

4.2.1.2 AP Model Represented by Petri Nets

Figures 4.6 and 4.7 present the execution semantics of an atomic group and an

assurance point respectively. In Figure 4.6, the normal atomic group invocation

starts from place A and ends at either place S or places US and AP CC. The end

place S means execution success, while places US and AP CC indicate the execution

failure. Similarly, in Figure 4.7, a token at place A activates the AP and a token

generated at place P indicates the successful pass of the AP. Because of numerous

potential violations of pre/post condition, different recovery actions can be invoked

through transitions T11 to T22.

The semantics of a composite group is shown in Figure 4.8. The execution of a

49

Texas Tech University, Le Gao

��

�������

�� �	

�����

�

��

��

�

��

��

���������

��

��

���

����

����

��

���

��

���

���������

����

����

� ����!"#

�$"##�%��

���

���
���$"##�%��

����!"#

��	

Figure 4.6. Semantics of Atomic Group
(Urban, Gao, Shrestha, Xiao, et al., 2010)

composite group involves multiple sub-groups and APs. In Figure 4.8, specifically,

a dashed-line quadrilateral represents either an atomic or a composite group and a

dashed-arc connecting a transition and a place represents repeating the same token

movement pattern described at the current level.

The semantics of all three recovery actions defined in (Urban, Gao, Shrestha, &

Courter, 2010) were also transformed into Petri Nets. For example, Figure 4.9 repre-

sents the semantics of the default APRetry action which recovers the process back to

the most recent AP and checks the pre-condition before the re-execution. In Figure

4.9, when a status place AP RT at an AP is marked, the APRetry mode is triggered.

50

Texas Tech University, Le Gao

�

�

����

����
��

�	
��

�������

����

�	
��

��	����

�

�	
��

��

��

��

����

�������

����

����

��	�����

����

��

��

��

���

���

���

���

���

��

���

��!
�

����!

����

��

����

��

�����

���

�"#��

�$"�%

�����

$"�%

�"#�

&��"#�

���

&����

����'

�����

�����

�(�

���

���

���

���

�"#���

$"�#

�����$

"�#

Figure 4.7. Semantics of Assurance Point
(Urban, Gao, Shrestha, Xiao, et al., 2010)

Then transition T1 fires to start the recovery. The status place AP RT at a com-

pleted group is marked when the group is compensating. When the group just after

the most recent AP is compensated, transition T3 fires and the place APRT PRE at

51

Texas Tech University, Le Gao

�

�

�

�

�

�

�

�� �

�����

�����

���		

�

�� ��
�

��

	��

	���

�

�

���

��������	

����������	

Figure 4.8. Semantics of Composite Group
(Urban, Gao, Shrestha, Xiao, et al., 2010)

the most recent AP is marked. Then the pre-condition defined at the most recent AP

is re-checked. If the pre-condition is satisfied, the status place APRT P is marked and

transition T4 is enabled to start the retry process. If the pre-condition fails, another

action will take place depending on the action specified in the rule.

Petri Nets can provide a graphical and formal representation of the execution se-

mantics of the AP model. Besides the figures shown in Section 4.2.1.2, other diagrams

developed in (Urban, Gao, Shrestha, Xiao, et al., 2010) for the current Petri Net spec-

ification of the AP model without if-else, looping, and parallel control structures are

shown in Appendix A in Figures A.1-A.13 .

An obvious deficiency of Petri Nets is state explosion. Because there are many

conditions and resources in the model, many places are needed to precisely define the

semantics using regular Petri Nets, which makes the specification difficult to develop

and understand.

4.2.2 Semantics of AP model by YAWL

In the proposed research, YAWL (Van Der Aalst & Ter Hofstede, 2005) will be

adopted to improve the formalization of the AP model. In comparison with Petri

Nets, YAWL has several merits. For example, YAWL does not have the rule that a

place must exist between two transitions, which avoids state explosion.

52

Texas Tech University, Le Gao

�

�����

�����

�����

���

��� 	� �

�

���

�����

���

��

�

�����

���

�����

����

����

������

�

���

�����

���

��

��

���

����

������

Figure 4.9. Semantics of default AP-Retry
(Urban, Gao, Shrestha, Xiao, et al., 2010)

4.2.2.1 Introduction of YAWL

YAWL is inspired by Petri Nets, but it is not an extension of Petri Nets. YAWL

has its own symbols and independent semantics. The symbols used in a YAWL net

are shown in Table 4.1. Each YAWL net has one unique input and output condition.

Similar to the AP model, a task is either an atomic task or a composite task. In the

53

Texas Tech University, Le Gao

YAWL net, six join and split constructs may be associated with tasks.

* AND-join - A task is invoked when all of the incoming arcs have been enabled.

* OR-join - A task is invoked when either (1) all of the incoming arcs have been

enabled or (2) any incoming arcs that have not been enabled will never be enabled

at any future time with the current marking continuing to be fired.

* XOR-join - A task is invoked when one of the incoming arcs has been enabled.

* AND-split - When a task completes, the thread of control is passed to all of the

outgoing arcs.

* OR-split - When a task completes, the thread of control is passed to one or more

of the outgoing arcs depending on the evaluations of the conditions associated with

each arcs.

* XOR-split - When a task completes, the thread of control is passed to exactly one

outgoing arc depending on the evaluations of the conditions associated with each

arcs.

Additionally, YAWL introduces the notion of a cancellation region. A cancellation

region is connected to a specific task in a YAWL net. When the task completes

executing, all tasks currently executing in the corresponding cancellation region are

withdrawn. Any tokens that reside in the corresponding cancellation region are also

withdrawn.

4.2.2.2 Atomic Group Represented by YAWL

Figure 4.10 presents an example of a YAWL net to represent the execution seman-

tics of an atomic group in the AP model. The atomic group fires task Running to

execute. Depending on the condition evaluation, the thread of control may be passed

to different branches. If the task Running succeeds, the token is passed to condition

Successful. If the task Running fails and the contingency exists, task T Running fires

to execute the contingency. If the the task Running fails and no contingency exists,

conditions Unsuccessful and APCC are marked. Similarly, if task T Running fires,

54

Texas Tech University, Le Gao

Table 4.1. Symbols used in YAWL

Symbol Type

Condition

Input condition

Output condition

Atomic task

Composite task

Multiple instances of an atomic task

Multiple instances of a composite task

AND-split task AND-join task
AND-join task

XOR-split task XOR-join task
XOR-join task

OR-split task OR-join task
OR-join task

AND-split task

AND-split task

XOR-split task

XOR-split task

OR-split task

...
Cancellation region

depending on the execution result, either condition Successful or conditions Unsuc-

cessful and APCC are marked. The atomic group finalizes when condition Successful

is marked or conditions Unsuccessful and APCC are marked.

The compensation semantics of an atomic group is formalized by YAWL as shown

in Figure 4.11. After initializing of the compensation, different execution paths might

be invoked depending on the condition evaluation. If the atomic group is non-critical,

55

Texas Tech University, Le Gao

Figure 4.10. Atomic Group by YAWL

Figure 4.11. Compensation of Atomic Group by YAWL

the condition Cop Successful is marked directly. If the atomic group is critical and

the shallow compensation exists, the task Shallow Cop Running fires to execute the

shallow compensation. If the atomic group is critical and no shallow compensation

56

Texas Tech University, Le Gao

exists, the task Human Activity fires to manually compensate the group. The task

Shallow Cop Running also has two possible outputs. If the shallow compensation suc-

ceeds, the condition Cop Successful is marked. If the shallow compensation fails, the

task Human Activity fires. The compensation of an atomic group finalizes when the

condition Cop Successful is marked.

In comparison with Petri Nets, YAWL provides a more visualized representation

of the semantics in the AP model. YAWL also provides functionality to validate

the semantics by checking dead lock and reachability in the net. In this research,

YAWL will be used to formalize the complete AP model with if-else, looping, and

parallel control structures. The analysis of YAWL nets for the AP model will focus on

soundness property. A net is strictly sound if and only if the following requirements

are met:

* All instances of the net must eventually terminate.

* There must be exactly one token at the end place when a instance terminates.

* Any tasks in the net may be executed in some instances.

Since the AP model supports three different recovery actions, any YAWL net that

represents of the semantics of the AP model must terminate with an acceptable status.

4.3 Integration of the AP Model with Decentralized Data Dependency Analysis

The third component of this research is to integrate the decentralized data depen-

dency analysis algorithm with the AP model. The integration to be addressed in this

research will develop an intelligent event response environment that handles the data

dependency notifications between PEXAs. By responding to different events with

different actions, the impact caused by data dependencies between a failed process

and other concurrent executing processes will be minimized.

As presented in Section 3.1.1, decentralized data dependency analysis raises new

research challenges, such as discovering the hidden dependencies among concurrent

processes that are accessing data that is distributed throughout the SOA. In decentral-

ized data dependency analysis, process execution agents (PEXAs) are key components

57

Texas Tech University, Le Gao

that are responsible for controlling the execution of processes, building local depen-

dency graphs, and also sending and receiving notifications among PEXAs. However,

the initial version of the algorithms in (Urban, Liu, & Gao, 2009; Z. Liu, 2009) op-

erate in a naive manner and assume that all processes involved in the dependency

graphs need to be fully recovered.

Figure 4.12 provides an example to illustrate the integration of the AP model

and decentralized data dependency analysis. As shown in the figure, process P1 and

process P2 are controlled by PEXA 1 and PEXA 2, respectively. Process P1 is partial

recovered due to the APRetry action invoked at AP2. Since the recovered operations,

op12 and op13, are both executed at PEXA 1, PEXA 1 is responsible for building the

local data dependency graphs based on these two recovered operations. Unlike the

approach in (Urban, Liu, & Gao, 2009; Z. Liu, 2009) that builds the data dependency

graphs on a process level, decentralized data dependency analysis using the AP model

requires that a PEXA builds the local data dependency graphs based on the partial

recovery portion of a process, which means building the graphs at the operation level.

As shown in Figure 4.12, two data dependency graphs on the operation level are

formed in PEXA 1.

A major research challenge is the communication about data dependencies between

PEXAs. If a data dependency graph at PEXA 1 contains an operation that is an

external operation controlled by another PEXA, such as PEXA 2, a notification must

be sent from PEXA 1 to PEXA 2. It is important, however, for PEXA 2 to respond

to the data dependency notification in an intelligent way, rather than always doing a

total rollback as in (Urban, Liu, & Gao, 2009; Z. Liu, 2009).

Recall that AERs provide a case-based structure to dynamically respond to inter-

rupts caused by events external to the process. Different recovery actions are defined

under different APs in an AER. Based on the most recently passed AP, a corre-

sponding condition/action pair will be examined. This rule-based and event-driven

technique of the AP model can be used to dynamically respond to any execution

exceptions, including the data dependency interruptions. By using this event-driven

technique, the data dependency communications between PEXAs can also be recog-

nized as a external event. As a result, processes can design AERs that can respond to

data dependency events caused by certain critical data items and ignore events asso-

58

Texas Tech University, Le Gao

ciated with other less critical data items. Also with the help of the integration rules

and AERs, PEXAs can respond to the external data dependency events with differ-

ent actions based on the current process execution status or the constraint checking

results of the process.

AP1

AP2

OP12

OP13

P1 .

.

.

.

.

.

PEXA 1

DEGS 1
P1 op12 X1 In degs1 PEXA1

P2 op22 X1 Ex degs1 PEXA2

P1 op13 X2 In degs1 PEXA1

P2 op24 X2 Ex degs1 PEXA2

.

.

.

op12

op22

op13

op24

PEXA 2

.

.

.

DEGS 2

AER

On Write_Dep_P2(X1)

Case

AP1:

If (Constraint_rule)

Rollback;

Else

Ignore;

Endif

AP2:

Ignore;

End case

AP1

AP2

OP22

OP24

P2 .

.

.

.

.

.

.

.

.

Write_Dep_P2(X1)

Write_Dep_P2(X2)

APRetry

Figure 4.12. Dependent Event in Decentralized Data Dependency Analysis

In Figure 4.12, since operations op22 and op24 are external operations from PEXA

2, PEXA 1 must send the notifications to PEXA 2. The notifications are represented

in event formats. For the event Write Dep P2(X1), since the process p2 has an cor-

responding AER on this event, PEXA 2 might respond to it in different ways based

on the execution status of p2.

* if process p2 has passed AP1 but not AP2

- if the constraint rule returns true, rollback of process p2 will be performed. As

a result, PEXA2 will start to build its own dependency graphs based on the

rollback.

- if the constraint rule returns false, the event will be ignored.

* if process p2 has passed AP2, the event will be ignored.

59

Texas Tech University, Le Gao

For the other event Write Dep P2(X2), since the process p2 does not have an AER

on this event, this event will be ignored since this data item is not critical to the

successful execution of process p2.

In summary, this research will develop a decentralized data dependency analysis

approach that supports building data dependency graphs at the operation level based

on partial recovery of a process. This approach will also define data dependency

events as a communication method between PEXAs and use AERs to determine the

necessity of responding to data dependency events. A simulation environment for

the decentralized data dependency analysis approach will be developed to evaluate

the performance and functionality of the system. The evaluation will focus on the

efficiency of the algorithm with event-driven technique. Since AERs will be used to

respond to data dependency events, a comparison of recovery complexity between

approaches with and without AERs will be performed.

60

Texas Tech University, Le Gao

CHAPTER 5

DISSERTATION OUTLINE

Based on discussion of the research issues in previous sections, the dissertation will

be structured as follows:

1) Introduction

Present a general overview of the main research issues, the motivation for the

research, and a roadmap to the rest of the dissertation.

2) Related Work

Discuss the existing work in related areas, including advanced transaction models,

transactional workflow, data consistency approaches for web service composition,

dynamic modeling of business processes and failure recovery strategies for web

services.

3) Overview of the Assurance Point Model with Decentralized Data De-

pendency Analysis

Introduce the global view of the decentralized data dependency project, including

the concepts of APs, IRs, AERs and PEXAs.

4) The Assurance Point Web Service Model

Present the specification of the AP model in the context of programming control

structures, including the placement of APs, execution and recovery semantics with

the use of APs, IRs, and AERs.

5) Formalization of the Assurance Point Model

Present the formalization of execution and recovery semantics of the AP model by

using YAWL, including the graphical specifications and the analysis based on the

graphical specifications.

6) Integration of the Assurance Point Model with Decentralized Data De-

pendency Analysis

61

Texas Tech University, Le Gao

Present the integration of decentralized data dependency analysis with AP Model,

including the algorithms of building data dependency graph at operation level and

using AERs to respond to data dependency events.

7) Demonstration and Evaluation of Decentralized Data Dependency Anal-

ysis with Assurance Point Model

Present the prototype of decentralized data dependency analysis with AP Model.

Performance and complexity issues will also be addressed.

8) Summary and Future Work

Summarize the results of this research, highlight the main contributions of this

research, and discuss future directions based on the existing research result.

The timetable of the research is presented in the Table 5.1.

Table 5.1. Tentative Timeline of this Research

Task Number Task Start Date End Date

1
Investigate the AP model with

if-else, parallel and loop
control structures

Aug-2011 Oct-2011

2
Formalize and analyze

the semantics of AP model
by using YAWL

Oct-2011 Nov-2011

3
Integrate decentralized

data dependency analysis
with AP model

Nov-2011 Jan-2012

4
Prototype and test decentralized

data dependency
analysis with AP model

Jan-2012 Mar-2012

5 Dissertation Writing Mar-2012 May-2012
6 Dissertation Defense Jun-2012 Jun-2012

62

Texas Tech University, Le Gao

CHAPTER 6

SUMMARY

This proposal has presented plans for the development of a robust web service

composition model with decentralized data dependency analysis and rule-based failure

recovery capability. This research is expected to define a new paradigm for service

execution that uses rule-based techniques for testing user-defined semantic conditions.

With the AP model, a dynamic and intelligent approach can be used to monitor

failures, detect data dependencies, and respond to failures and exceptional events.

By integrating rule-based and event-driven techniques into web service composition,

process failures and exceptions can be maximumly forward recovered. Past work on

transactional workflows is inadequate for service composition since most techniques

that support relaxed isolation do not actively address the impact that the failure and

recovery of one process can have on other data dependent processes. The integration

of decentralized data dependency analysis with the AP model will not only provide

a way to detect the data dependency, but also minimize the impact caused by data

dependencies between a failed process and other concurrent executing processes.

63

Texas Tech University, Le Gao

References

Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F., et al. (2007).

Web services business process execution language version 2.0. OASIS Standard

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html, 11.

Anderson, T., & Lee, P. (1981). Fault tolerance: principles and practice. Prentice/Hall

International.

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., et al.

(2003). Business process execution language for web services, version 1.1. Stan-

dards proposal by BEA Systems, International Business Machines Corporation,

and Microsoft Corporation.

Baresi, L., Guinea, S., & Pasquale, L. (2007). Self-healing BPEL processes with

Dynamo and the JBoss rule engine. In International workshop on engineering

of software services for pervasive environments: in conjunction with the 6th

esec/fse joint meeting (pp. 11–20).

Blake, L. (2005). Design and Implementation of Delta-Enabled Grid Services. Un-

published master’s thesis, MS Thesis, Deptment of Computer Science and En-

gineering, Arizona State Univ.

Booch, G., Rumbaugh, J., & Jacobson, I. (2005). Unified Modeling Language User

Guide, The (Addison-Wesley Object Technology Series). Addison-Wesley Pro-

fessional.

Bpmn, O. (2009). BPMN 2.0 beta 1. http://www.omg.org/cgi-bin/doc?dtc/09-08-

14.pdf.

Cabrera, F., Copeland, G., Cox, B., Freund, T., Klein, J., Storey, T., et al. (2002).

Web services transaction (WS-transaction). joint specification by BEA, IBM,

and Microsoft.

Cabrera, F., Copeland, G., Freund, T., Klein, J., Langworthy, D., Orchard, D., et

al. (2002). Web services coordination (WS-Coordination). joint specification by

BEA, IBM, and Microsoft.

Cabrera, L., Copeland, G., Feingold, M., Freund, R., Freund, T., Joyce, S., et al.

(2005). Web services business activity framework (ws-businessactivity). joint

specification by BEA, IBM, and Microsoft.

Ceri, S., Grefen, P., & Sanchez, G. (1997). WIDE-a distributed architecture for

64

Texas Tech University, Le Gao

workflow management. In proceedings of 7th int. workshop on research issues

in data engineering (pp. 76–79).

Chafle, G., Chandra, S., Kankar, P., & Mann, V. (2005). Handling faults in decen-

tralized orchestration of composite web services. In (pp. 410–423). Springer.

Charfi, A., & Mezini, M. (2006). Aspect-oriented workflow languages. On the Move

to Meaningful Internet Systems 2006: CoopIS, DOA, GADA, and ODBASE,

183–200.

Charfi, A., & Mezini, M. (2007). Ao4bpel: An aspect-oriented extension to bpel.

World Wide Web, 10 (3), 309–344.

Chiu, D., Li, Q., & Karlapalem, K. (1999). Exception handling with workflow

evolution in ADOME-WFMS: a taxonomy and resolution techniques. ACM

Siggroup Bulletin, 20 (3), 8.

Chiu, D., Li, Q., & Karlapalem, K. (2000). Facilitating exception handling with re-

covery techniques in ADOME workflow management system. Journal of Applied

Systems Studies, 1 (3), 467–488.

Cichocki, A. (1998). Workflow and process automation: concepts and technology.

Kluwer Academic Pub.

Cichocki, A., & Rusinkiewicz, M. (1998). Migrating workflows. NATO ASI series.

Series F: computer and system sciences, 339–355.

Courter, A. (2010). Supporting Data Consistency in Concurrent Process Execution

with Assurance Points and Invariants. Unpublished master’s thesis, Master’s

Thesis, Texas Tech University.

Dayal, U., Hsu, M., & Ladin, R. (1991). A transactional model for long-running

activities. In Proceedings of the 17th international conference on very large

data bases (pp. 113–122).

Dialani, V., Miles, S., Moreau, L., De Roure, D., & Luck, M. (2002). Transparent

fault tolerance for web services based architectures. Euro-Par 2002 Parallel

Processing, 107–201.

Doğaç, A. (1998). Workflow management systems and interoperability. Springer

Verlag.

Eder, J., & Liebhart, W. (1995). The workflow activity model WAMO. In Proc. 3rd

international conference on cooperative information systems,vienna.

65

Texas Tech University, Le Gao

Elmagarmid, A. (1992). Database transaction models for advanced applications. Mor-

gan Kaufmann.

Elmagarmid, A., Leu, Y., Litwin, W., & Rusinkiewicz, M. (1990). A multidatabase

transaction model for interbase. In Proceedings of the 16th international con-

ference on very large data bases (pp. 507–518).

Engels, G., Förster, A., Heckel, R., & Thöne, S. (2005). Process modeling using UML.

Process Aware Information Systems: Bridging People and Software Through

Process Technology, 85–118.

Friedman, Z., Urban, S., Gao, L., & Shrestha, R. (2010). Extending the Assurance

Point Approach to Process Recovery for Use With Flow Groups (Tech. Rep.).

Texas Tech University.

Garcia-Molina, H., & Salem, K. (1987). Sagas. ACM SIGMOD Record, 16 (3),

249–259.

Greenfield, P., Fekete, A., Jang, J., & Kuo, D. (2003). Compensation is not enough

[fault-handling and compensation mechanism]. In Enterprise distributed object

computing conference, 2003. proceedings. seventh ieee international (pp. 232–

239).

Hagen, C., & Alonso, G. (2002). Exception handling in workflow management sys-

tems. Software Engineering, IEEE Transactions on, 26 (10), 943–958.

Halvorsen, O., & Haugen, O. (2006). Proposed notation for exception handling in

UML 2 sequence diagrams. In Software engineering conference, 2006. australian

(p. 10).

Herbst, H., Knolmayer, G., Myrach, T., & Schlesinger, M. (1994). The specification

of business rules: A comparison of selected methodologies. In Proceedings of

the ifip wg8 (Vol. 1, pp. 29–46).

Jang, J., Fekete, A., & Greenfield, P. (2007). Delivering Promises for Web Services

Applications. In Ieee international conference on web services, salt lake city,

utah, usa (pp. 599–606). IEEE Computer Society.

Jean, D., Cichock, A., & Rusinkiewicz, M. (1996). A database environment for

workflow specification and execution. In Proc. intl symposium on cooperative

database systems kyoto.

Jennings, N., Faratin, P., Norman, T., Odgers, B., & Alty, J. (2000). Implementing

66

Texas Tech University, Le Gao

a business process management system using ADEPT: A real-world case study.

Applied Artificial Intelligence, 14 (5), 421–463.

Jensen, K. (1987). Coloured petri nets. Petri nets: central models and their properties,

248–299.

Jensen, K. (1997). Coloured Petri nets: basic concepts, analysis methods, and practical

use. Springer.

Jordan, D., Evdemon, J., Alves, A., Arkin, A., Askary, S., Barreto, C., et al. (2007).

Web services business process execution language version 2.0. OASIS Standard,

11.

Kamath, M., & Ramamritham, K. (1998). Failure handling and coordinated execution

of concurrent workflows. In Proceedings of the international conference on data

engineering (pp. 334–341).

Kantere, V., Kiringa, I., Mylopoulos, J., Kementsietsidis, A., & Arenas, M. (2004).

Coordinating peer databases using ECA rules. Databases, Information Systems,

and Peer-to-Peer Computing, 108–122.

Kappel, G., Proll, B., Rausch-Schott, S., & Retschitzegger, W. (1995). TriGS/sub

flow: Active object-oriented workflow management. In Proc. of hicss (p. 727).

Karnath, M., & Ramamritham, K. (1998). Failure handling and coordinated execu-

tion of concurrent workflows. In Data engineering,. proceedings., 14th interna-

tional conference on (pp. 334–341).

Khalaf, R., Roller, D., & Leymann, F. (2009). Revisiting the behavior of Fault and

Compensation handlers in WS-BPEL. In (pp. 286–303). Springer.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., & Griswold, W. (2001).

An overview of AspectJ. In (pp. 327–354). Springer.

Kiepuszewski, B., Muhlberger, R., & Orlowska, M. (1998). FlowBack: providing

backward recovery for workflow management systems. ACM SIGMOD Record,

27 (2), 555–557.

Lakhal, N., Kobayashi, T., & Yokota, H. (2006). Dependability and flexibility cen-

tered approach for composite web services modeling. On the Move to Meaningful

Internet Systems 2006: CoopIS, DOA, GADA, and ODBASE, 163–182.

Liu, L., & Pu, C. (1997). Activity flow: Towards incremental specification and flexible

coordination of workflow activities. Conceptual ModelingER’97, 169–182.

67

Texas Tech University, Le Gao

Liu, Z. (2009). Decentralized Data Dependency Analysis for Concurrent Process

Execution. Unpublished master’s thesis, MS Thesis, Texas Tech University.

Lu, R., & Sadiq, S. (2007). A survey of comparative business process modeling

approaches. In Business information systems (pp. 82–94).

Luo, Z. (2000). Checkpointing for workflow recovery. In Proceedings of the 38th

annual on southeast regional conference (pp. 79–80).

Marzouk, S., Maalej, A., Rodriguez, I., & Jmaiel, M. (2009). Periodic checkpointing

for strong mobility of orchestrated web services. In 2009 congress on services-i

(pp. 203–210).

Mendling, J., Neumann, G., & Nüttgens, M. (2005). Yet another event-driven process

chain. Business Process Management, 428–433.

Mikalsen, T., Tai, S., & Rouvellou, I. (2002). Transactional attitudes: Reliable

composition of autonomous Web services. In Dsn 2002, workshop on dependable

middleware-based systems (wdms).

Modafferi, S., & Conforti, E. (2006). Methods for enabling recovery actions in WS-

BPEL. On the Move to Meaningful Internet Systems 2006: CoopIS, DOA,

GADA, and ODBASE, 219–236.

Modafferi, S., Mussi, E., & Pernici, B. (2006). SH-BPEL: a self-healing plug-in for

Ws-BPEL engines. In Proceedings of the 1st workshop on middleware for service

oriented computing (mw4soc 2006) (pp. 48–53).

Müller, R., Greiner, U., & Rahm, E. (2004). AW: a workflow system supporting rule-

based workflow adaptation. Data & Knowledge Engineering, 51 (2), 223–256.

Ouyang, C., Dumas, M., Aalst, W., Hofstede, A., & Mendling, J. (2009). From

business process models to process-oriented software systems. ACM transactions

on software engineering and methodology (TOSEM), 19 (1), 2.

Peltz, C. (2003). Web services orchestration and choreography. Computer, 46–52.

Peterson, J. (1981). Petri net theory and the modeling of systems. Prentice Hall PTR

Upper Saddle River, NJ, USA.

Petri, C. (1966). Communication With Automata: Volume 1 Supplement 1 (Tech.

Rep.). Applied Data Research Inc Princeton NJ.

Pintér, G., & Majzik, I. (2005). Modeling and analysis of exception handling by using

UML statecharts. Scientific Engineering of Distributed Java Applications, 58–

68

Texas Tech University, Le Gao

67.

Ramachandran, J. (2011). Integrating Exception Handling and Data Dependency

Analysis through Application Exception Rules. Unpublished master’s thesis,

Master’s Thesis, Texas Tech University.

Ramchandani, C. (1973). Analysis of asynchronous concurrent systems by timed Petri

nets. Unpublished doctoral dissertation, Massachusetts Institute of Technology.

Reichert, M., & Dadam, P. (1998). ADEPT flexsupporting dynamic changes of

workflows without losing control. Journal of Intelligent Information Systems,

10 (2), 93–129.

Rolf, A., Klas, W., & Veijalainen, J. (1997). Transaction management support for

cooperative applications. Kluwer Academic Pub.

Sadiq, W., & Orlowska, M. (1999). On capturing process requirements of workflow

based business information systems. In Proceedings of the 3rd international

conference on business information systems (bis99).

Scheer, A., Thomas, O., & Adam, O. (2005). Process modeling using event-driven

process chains. Process-aware information systems: bridging people and software

through process technology, 119–145.

Singh, M., & Huhns, M. (2005). Service-oriented computing: semantics, processes,

agents. John Wiley & Sons Inc.

Sycara, K., Paolucci, M., Ankolekar, A., & Srinivasan, N. (2003). Automated dis-

covery, interaction and composition of semantic web services. Journal of Web

Semantics, 1 (1), 27–46.

Tan, W., Fong, L., & Bobroff, N. (2010). Bpel4job: a fault-handling design for job

flow management. Service-Oriented Computing–ICSOC 2007, 27–42.

Urban, S., Dietrich, S., Na, Y., Jin, Y., Saxena, S., Urban, S., et al. (2001). The

irules project: using active rules for the integration of distributed software com-

ponents. In Proceedings of the 9th ifip 2.6 working conference on database se-

mantics: Semantic issues in e-commerce systems, hong kong (pp. 265–286).

Urban, S., Gao, L., Shrestha, R., & Courter, A. (2010). Achieving Recovery in Service

Composition with Assurance Points and Integration Rules. On the Move to

Meaningful Internet Systems: OTM 2010, 428–437.

Urban, S., Gao, L., Shrestha, R., & Courter, A. (2011). The dynamics of process

69

Texas Tech University, Le Gao

modeling: new directions for the use of events and rules in service-oriented

computing. The evolution of conceptual modeling, 205–224.

Urban, S., Gao, L., Shrestha, R., Xiao, Y., Friedman, Z., & Rodriguez, J. (2010). The

Assurance Point Model for Consistency and Recovery in Service Composition.

Book Chapter Under Review.

Urban, S., Liu, Z., & Gao, L. (2009). Decentralized data dependency analysis for con-

current process execution. In Enterprise distributed object computing conference

workshops, 2009. edocw 2009. 13th (pp. 74–83).

Urban, S., Xiao, Y., Blake, L., & Dietrich, S. (2009). Monitoring data dependencies in

concurrent process execution through delta-enabled grid services. International

Journal of Web and Grid Services, 5 (1), 85–106.

Vacuĺın, R., Wiesner, K., & Sycara, K. (2008). Exception handling and recovery

of semantic web services. In Networking and services, 2008. icns 2008. fourth

international conference on (pp. 217–222).

Van Der Aalst, W. (1998). The application of Petri nets to workflow management.

Journal of Circuits Systems and Computers, 8, 21–66.

Van Der Aalst, W., & Ter Hofstede, A. (2005). YAWL: yet another workflow language.

Information Systems, 30 (4), 245–275.

Wächter, H., & Reuter, A. (1991). The contract model. Universität, Fakultät Infor-

matik.

Weikum, G. (1991). Principles and realization strategies of multilevel transaction

management. ACM Transactions on Database Systems (TODS), 16 (1), 132–

180.

White, S., et al. (2004). Business Process Modeling Notation (BPMN) Version 1.0.

Business Process Management Initiative, BPMI. org.

Widom, J., & Ceri, S. (1996). Active database systems: Triggers and rules for

advanced database processing. Morgan Kaufmann Pub.

Wiesner, K., Vacuĺın, R., Kollingbaum, M., & Sycara, K. (2008). Recovery mecha-

nisms for semantic web services. In Distributed applications and interoperable

systems (pp. 100–105).

Wodtke, D., Weißenfels, J., Weikum, G., & Dittrich, A. (1996). The Mentor project:

Steps towards enterprise-wide workflow management. In Proceedings of the

70

Texas Tech University, Le Gao

twelfth international conference on data engineering (pp. 556–565).

Worah, D., & Sheth, A. (1997). Transactions in transactional workflows. In Trans-

actions in transactional workflows (pp. 3–34).

Xiao, Y. (2006). Using deltas to analyze data dependencies and semantic correctness

in the recovery of concurrent process execution. Unpublished doctoral disserta-

tion, Ph.D Dissertation, Arizona State University Tempe, AZ, USA.

Xiao, Y., & Urban, S. (2007). Process dependencies and process interference rules

for analyzing the impact of failure in a service composition environment. In

Business information systems (pp. 67–81).

Xiao, Y., & Urban, S. (2008). Using Data Dependencies to Support the Recovery

of Concurrent Processes in a Service Composition Environment. In Proceedings

of the cooperative information systems conference (coopis), monterrey, mexico

(pp. 139–156).

Xiao, Y., & Urban, S. (2009). The DeltaGrid Service Composition and Recovery

Model. International Journal of Web Services Research, 6 (3), 35–66.

Xiao, Y., Urban, S., & Dietrich, S. (2006). A process history capture system for

analysis of data dependencies in concurrent process execution. Data Engineering

Issues in E-Commerce and Services, 152–166.

Xiao, Y., Urban, S., & Liao, N. (2006). The DeltaGrid abstract execution model:

service composition and process interference handling. Conceptual Modeling-ER

2006, 40–53.

Zhang, X., Zagorodnov, D., Hiltunen, M., Marzullo, K., & Schlichting, R. (2004).

Fault-tolerant grid services using primary-backup: feasibility and performance.

In cluster (pp. 105–114).

Zhao, W., Moser, L., & Melliar-Smith, P. (2005). A reservation-based coordination

protocol for Web Services. In Ieee international conference on web services,

orlando, florida , usa (pp. 49–56). Published by the IEEE Computer Society.

71

Texas Tech University, Le Gao

APPENDIX A

FORMALIZATION USING PETRI NETS

Table A.1. Places in an Execution Group Petri Net

SHORT PHRASE MEANING TYPE

A Activate Status

S Group executes successfully Status

US Group executes unsuccessfully Status

AP CC AP Cascaded Contingency Status

AP RB AP Rollback Status

AP RT AP Retry Status

C A Compensation activates Status

Running Operation executing Status

Aborted Operation aborted Status

T Running Contingency executing Status

C Running Shallow compensation executing Status

C Error Shallow compensation failed Status

C S Compensation succeeds Status

Critical Critical atomic group Resource

N Critical Non-critical atomic group Resource

T Contingency exists Resource

N T Contingency does not exist Resource

Shallow C Shallow compensation exists Resource

N Shallow C Shallow compensation does not exist Resource

72

Texas Tech University, Le Gao

Table A.2. Places in an AP Petri Net

SHORT PHRASE MEANING TYPE

A Activate Status

P AP Passed Status

ALT Alternative Process Status

AP CC AP Cascaded Contingency Status

AP RB AP Rollback Status

AP RT AP Retry Status

APCC PRE Pre-condition re-check (AP-CC) Status

APCC P Pre-condition re-check passed (AP-CC) Status

APRT PRE Pre-condition re-check (AP-Retry) Status

APRT P Pre-condition re-check passed (AP-Retry) Status

POST VIO F First time post-condition violation Condition

PRE VIO F First time pre-condition violation Condition

POST VIO S Second time post-condition violation Condition

PRE VIO S Second time pre-condition violation Condition

POST Post condition exists Resource

N POST Post condition does not exist Resource

PRE Pre condition exists Resource

N PRE Pre condition does not exist Resource

POST-Checking Checking post condition Status

PRE-Checking Checking pre condition Status

POST-Passed Post condition passed Status

Pre-Passed Pre condition passed Status

POST-Violated Post condition violated Status

Pre-Violated Pre condition violated Status

73

Texas Tech University, Le Gao

Figure A.1. Petri Net of Deep Compensation

74

Texas Tech University, Le Gao

Figure A.2. Petri Net of Shallow Compensation

75

Texas Tech University, Le Gao

Figure A.3. Petri Net of APRollback

76

Texas Tech University, Le Gao

A

APCC_P

APCC_

PRE

T7

T6

T5

T8

T1

T2 T4T11

Pre-

Checking

Pre-

Passed

T3

Pre-

Violated

P

APRT_P

APRT_

PRE

POST_

VIO_S

PRE_VI

O_S

T9

T10

POST

N_POS

T

PRE

N_PRE

AP_RB

AP_RT

AP_CC

ALT

PRE_VI

O_F

Figure A.4. Petri Net of Re-checking Pre-condition (APCC)
77

Texas Tech University, Le Gao

A

APCC_P

APCC_

PRE

T7

T6

T5

T8

T1

T2 T4T11

Pre-

Checking

Pre-

Passed

T3

Pre-

Violated

P

APRT_P

APRT_

PRE

POST_

VIO_S

PRE_VI

O_S

T9

T10

POST

N_POS

T

PRE

N_PRE

AP_RB

AP_RT

AP_CC

ALT

PRE_VI

O_F

Figure A.5. Petri Net of Re-checking Pre-condition (APRT)

78

Texas Tech University, Le Gao

AP_RB

AP_RT

AP_CC

C

C_S US S

A

AP_CC

US

T1

C_S

AP_CC

C_S

AP_CC

C

C

T2

T3

T

T4

T6 T5

T7

N_T

N_Shallow_C

Shallow_C

Figure A.6. Petri Net of APCC (1)

79

Texas Tech University, Le Gao

C_S US S

A

AP_CC

US

T

T2

T_Running

T4 T3

T1

T5

AP_RB

AP_RT

AP_CC

N_Shallow

_C

Shallow_C

C

N_T

Figure A.7. Petri Net of APCC (2)

80

Texas Tech University, Le Gao

C_S US S

A

AP_CC

US

T

T2

T_Running

T4 T3

T1

T5

APCC_P

APCC_PRE

AP_RB

AP_RT

AP_CC

N_Shallow

_C

Shallow_C

C

N_T

Figure A.8. Petri Net of APCC (3)

81

Texas Tech University, Le Gao

AP_RB

AP_RT

AP_CC

C_S US S

A

AP_CC

US

T1

C_S

C_S

T2

T3

T

T4

T6 T5

APCC_P

APCC_PRE

T7

A_C

A_C

A_C

Shallo

w_C

N_Sha

llow_C

N_T

T_Running

AP_CC

AP_CC

Figure A.9. Petri Net of APCC (4)

82

Texas Tech University, Le Gao

AP_RB

AP_RT

AP_CC

C

C_S US S

A

C_S

AP_CC

C_S

AP_CC

C

C

T1

T2

T

T3

T5 T4

T6

N_Shallow_C

AP_CC

Shallow_C

N_T

Figure A.10. Petri Net of APCC (5)

83

Texas Tech University, Le Gao

C_S US S

A

T

T1

T2

T_Running

T4 T3

T5

AP_CC

AP_RB

AP_RT

AP_CC

N_Shallow

_C

Shallow_C

C

N_T

Figure A.11. Petri Net of APCC (6)

84

Texas Tech University, Le Gao

AP_RB

AP_RT

AP_CC

C

C_S US S

A

C_S

AP_CC

C_S

AP_CC

T2

T3

T

T1

T4

T6 T5

APCC_P

APCC_PRE

C

C

T7

AP_CC

N_T

N_Shallow

_C

Shallow_C

Figure A.12. Petri Net of APCC (7)

85

Texas Tech University, Le Gao

C_S US S

A

T

T1

T2

T_Running

T4 T3

T5

APCC_P

APCC_PRE

AP_CC

AP_RB

AP_RT

AP_CC

N_Shallow

_C

Shallow_C

C

Figure A.13. Petri Net of APCC (8)

86

