Energetic Materials Research Combustion at Texas Tech

Prof. Michelle Pantoya, Brandon Weeks, Jeremy Marston, Louisa Hope-Weeks, Carol Korzenski, Adelia Aquino, Bill Hase, Andreas Neuber, Mohammad Saed, Sukylan Bhattacharia, Jordan Berg,

 Back Row: Michelle Pantoya, Todd Dutton, Jena McCollum, Ralph Anthenien, Dylan Smith, Billy Clark, Phoebe Lin Front Row: Eric Bukowski, Ethan Zepper, Michael Bello, Richa Padhye, Evan Vargas
 Texas Tech University Energetic Materials Combustion Group February 2015

ONR, ARO, DTRA, AFRL, NSF, INL, Sandia, LANL, Industry

Acknowledgements

Dr. Valery Levitas Iowa State University

Dr. Rebecca Wilson Dr. Jason Jouet Dr. Jillian Horn Indian Head NSWC

Dr. Nobumichi Tamura, Advanced Light Source-Lawrence Berkeley National Lab

Dr. Keerti Kappagantula Ohio University

Dr. Emily Hunt West Texas A&M

Scott Iacono Air Force Academy

Combustion Lab at Texas Tech

- □ Vision Promote cleaner, safer, and more effective energetic composites through an understanding of basic combustion behaviors.
- □ Since 2000 -15 PhD students and 30 MS students! Over 100 journal publications, 4 books, 3 book chapters, 2 patents

Overview

- Synthesis of new materials $_{TN}$
- Ignition sensitivity and safety
- Energy generation and transport
- Modeling reaction mechanisms

Al Powder Production < 25 microns

- □ High purity Al introduced to a heated ceramic (2000 C) with an inert (Ar) gas flow.
- □ Vapor phase Al travels, nucleates, and coagulates
 - □ Cools and crystalizes as a solid
- □ Oxygen introduced after solidification (<660 C).
 - □ Typically in amorphous phase (~440 C ambient)

Pellets: ignition time and burn rate measurements

High-Speed Imaging up to 150,000 fps Image 0 0.0 s 1109 0.03465625 s 1110 0.03468750 s 1111 0.03471875 s 1112 0.03475000 s

- Ignition starts in the center (hot spot formed)
- Propagation both radially and axially

Granier et al, *Combustion Science and Technology* (2003) Granier et al, *Combustion and Flame* (2004).

Al+MoO₃ ignition as a function of Al particle diameter

pressure and light intensity measurements

□ Acrylic tubing

- 10.0 cm length
- Instrumented with detectors spaced 1 cm apart
 - 6 photo-detectors
 - 6 pressure sensors

"The Bockmon Tube" Bockmon et al, *J of Applied Physics* 2005

Flame Speeds of confined AI + MoO₃

- Flame speed optic signals & high speed camera
- Pressure history mode of propagation & τ_{rxn}

Bockmon et al, Journal of Applied Physics 2005

New Mechanism for Fast Reactions of Al Nanoparticles During Fast Heating

Alumina shell virtually free of **Melt-Dispersion Mechanism** imperfections

Aluminum core

Spallating alumina	Atomic size molten aluminum clusters
shell	disperse from an
	unloading wave at high
Time	velocity

Characteristic Time

•The tensile pressure in an unloading wave disperses the Al droplet into small clusters which fly at high velocity

Oxidation is not limited by classical diffusion.

•For nanoparticles with the ratio of particle radius to shell thickness $M=R/\delta<20$, the oxide shell fractures after Al melting

•Melting is accompanied by a volume increase of 6% and generates large pressure in the melt (0.5-1.5 GPa)

•Dynamic spallation of shell results in complete exposure of the liquid Al droplet and creates an unloading wave with a tensile pressure up to 3-8 GPa.

V. I. Levitas, B. W. Asay, S. F. Son and M. L. Pantoya, *Appl. Physics Letters*, **89**, 071909 (2006).
 V. I. Levitas, B. W. Asay, S. F. Son and M. L. Pantoya, *J. Applied Physics*, **101**, 083524 (2007).
 V. I. Levitas, M. L. Pantoya, and B. Dikici, *Applied Physics Letters*, **91**, 011921 (2008).
 V. I. Levitas, M. L. Pantoya, and K. Watson, *Applied Physics Letters*, **92**, 201917 (2008).
 Levitas V. I. Combustion and Flame, 2009, **156**, 543.

Pressure in AI core and hoop stress in oxide shell

$$p = \frac{12(m^3 - 1)(\varepsilon_2^i - \varepsilon_1^i)G_2K_1K_2}{H} + \frac{2K_1(4G_2 + 3m^3K_2)\Gamma_1}{RH} + \frac{(2\Gamma_2 + p_gR)m^2K_1(4G_2 + 3K_2)}{RH},$$
(1)

$$\sigma_{h} = -\frac{6(m^{3}+2)(\varepsilon_{2}^{i}-\varepsilon_{1}^{i})G_{2}K_{1}K_{2}}{H} + \frac{4(m^{3}+2)G_{2}K_{2}\Gamma_{1}}{RH} + \frac{(2\Gamma_{2}+p_{g}R)m^{2}(-2G_{2}K_{1}+3(2G_{2}+K_{1})K_{2})}{RH}, \quad (2)$$

$$\begin{split} \boldsymbol{\varepsilon}_1^i &= -\left(\alpha_1^s(T_m - T_0) + (1 - f)\alpha_1^s(T - T_m) \right. \\ &+ f\alpha_1^m(T - T_m) + f\boldsymbol{\varepsilon}^m); \end{split}$$

$$\varepsilon_2^i = -\alpha_2(T-T_0),$$

DSC /(mW/mg) TG /% Our early work explored ↑ exo 104 40 102 unique kinetics of Al + 100 30 fluorine reactions 98 20 96 \Box DSC – TGA analysis 94 10 92 100 200 300 500 600 700 400 Temperature /°C Teflon 10 mg samples 50nm Al x40.0K 750nm 000022 20KV Osborne et al. Comb Sci Tech 2007

Exothermic Surface Chemistry AI-F

50nm Al / Teflon (70/30)

PIR effects on Teflon degradation

1004

80

60

40

20

- PIR causes Teflon to degrade at lower temperatures
- \Box In case of 15nm γ - $Al_2O_3/Teflon, 60^{\circ}C$ lower onset temperature.
- Stripping fluoride ions from polymer during PIR causes chain to become unstable, requiring less energy to degrade.

TG /% Al₂O₃/Teflon **Teflon** 700 100 200 300 400 500 600

Temperature /°C

Mass change

60°C

Hydroxyl bonding

Given FT-IR of γ -Al₂O₃ - Hydroxyl groups bound to surface in many ways

- Tetrahedrially coordinated aluminum (I)
- Two alumina ions with one in the tetrahedral coordination and the other in octahedral coordination (II)
- Three octahedrally coordinated aluminum ions (III)

Polymer Coated AI particles

DSC of Polymer Coated AI Mixtures

Flame Propagation Results

Sequential images of the flame propagating along the tube

Same chemistry, but different locations of PFTD acid creates difference in burning and thus, different flame velocities.

Al-PFTD/MoO₃ 18 Kappagantula et al. SCT 2013

Residual Stress Development & Treatment

- □ Thermally induced stress affect mechanical properties
- Cooling from 440 C to ambient will induce shrinkage in the core while the shell remains rigid
 - $\Box \alpha_{ox} = 5 \ge 10^{-6} \text{ K}^{-1} \& \alpha_m = 23 \ge 10^{-6} \text{ K}^{-1}$
- □ Shell Core interface is in a state of tension

Creating compressive stress in shell and tensile stress in core will delay fracture of shell and promote shell spallation and smaller fragmentation

은 Annealing Ouenching

 Stress relief can be achieved with thermal treatment: annealing and quenching – apply to particles to effect reactivity

 Uniform heating to a prescribed temperature (< 660 °C) Recovery
 Particles experience a zero-stress state at 300 °C (Zachariah JPC 2012)
 Holding at prescribed temperature
 Cool to control stress development and improve

 ²⁰ mechanical properties.

Results: Synchrotron X-ray Diffraction

Dr. Nobumichi Tamura – Lawrence Berkeley Laboratory

21

Al+CuO Flame Speeds

- Flame speeds negligibly effected by annealing to 100 and 200 °C

 – 2-3% increase
- Al annealed to 300 °C shows a 24% increase from the untreated Al
- Synchrotron XRD shows considerable increase in dilatational strain for 300 °C annealing.

Levitas et al. *Scientific Reports* 2015 Levitas et al. *Journal of Applied Physics* 2015 McCollum et al. *Acta Materialia* In Press

22

Objectives

□ Synthesize flexible free standing thermite films

- New approach using blade casting
- Thermite + binder + solvent + additive
- Reinforcement fabric included in film
- □ Study multiple properties of synthesized films
 - Examine combustion of films using high speed imaging techniques
 - \circ Determine maximum strength and stress of films

Meeks et al. *Comb Flame*Meeks et al. *Comb Flame* In Press Clark et al. *AIP Advances*Clark et al. *Surf. Coatings & Tech*

> Sandia INL

Materials

\Box Why Al + MoO₃

- \circ Al+MoO₃ is a well characterized energetic material
- Previous study coated substrates¹
 - Mg+MnO₂+PVDF+NMP
- \Box Why KClO₄ as an additive
 - \circ KClO₄ enables consistent self propagation
 - Adds heat and increases reaction temp
 - High oxygen content
- □ Why carbon fiber as a reinforcement fabric
 - Well characterized reinforcement fabric
 - Used in applications needing high strength and low weight

Materials

Material name	Supplier	Average characteristic size (µm)
Al	Nova Centrix (Austin, Tx)	0.080
MoO ₃	Alfa Aesar (Ward Hill, Ma)	14.0
KClO ₄	Sigma Aldrich (St. Louis, Mo)	151.0
Mold Max 30	Smooth-On (Easton, Pa)	liquid
Xylene	Macron Fine Chemicals (Center Valley, Pa)	liquid
Carbon Fiber	ACP Composites (Livermore, Ca)	N/A

²/₅ Mold Max 30

Potassium Perchlorate

Synthesis procedure

- □ Slurry is mixed using a planetary mixer
- De-aerated in vacuum chamber
- □ Loaded into the blade casting machine and draw across MylarTM substrate
- □ Film is allowed to dry for 24 hours at room temperature
- □ Film is separated from substrate

6 Meeks et al. Combustion and Flame 2014

Mechanical property testing

- 20 mm x 63 mm samples cut for mechanical testing
- Films loaded into testing jig on a SATEC
 60HVL Universal Testing Machine
- □ Samples were loaded until taught
- Tensile load of 444.82 N/min applied to samples

Mechanical property testing

Sample name	Maximum Load (N)	Sigma Maximum (kPa)
Film B	22	861
Film C	709	168420

□Film B failed upon initial loading
 □Inclusion of reinforcement fabric increases strength by ≈3200%
 □Sigma maximum values change drastically due to two factors
 □Increased maximum load held by Film C
 □Decreased cross sectional area

Combustion characterization

Combustion characterization

Future Directions

□ New formulations that exploit optimum reactivity

- Chemistry issues
- Engineered properties
- Support scalability mg \rightarrow g \rightarrow kg quantities

□ Safety testing

- Single lab/facility for standardized tests
- Single lab/facility for environmental impact studies

□ Characterization

- Performance per application
 - Reaction kinetics
 - Gas generation
 - Heat of combustion
 - Flame temperature