
 
 

 

 

 

 

 

 

 

 

ABSTRACT 

Aiming at reducing the train accidents and enabling the railway system 
maintenance-free vision, this paper outlines an artificial intelligence (AI)-machine 
learning-based monitoring technology framework, which is capable of 
autonomously providing the health state awareness of the wheel-track system and 
direct feedbacks for adaptive positive train control (PTC).   

INTRODUCTION 

The year of 2018 continues to present passengers and operators with depressing 
fatal train derailment and collision news. Whether the train derailments and 
collisions were caused by mechanical wheel-rail unmatched dynamic interactions; 
mechanical component failures; poor maintenance; or human errors, these accidents 
have caused severe safety and financial concerns and detrimental impacts on the 
public transportation perception. Train accidents can mostly be caused by 
derailments in which track and equipment failure are the primary cause of accident 
on the main tracks [1]. Additionally, according to the U.S. Department of 
Transportation (USDOT) Volpe Center-Innovation Research Program Office, 70% 
of railroad derailments were reported in the U.S. in 2016 [2]. Monitoring the 
behavior of the train and railway infrastructure elements is a complex task, 
particularly, when it is desirable to conduct it in real time. There is a wide range of 
sophisticated diagnostics systems that have been used to support the health 
monitoring of the wheel/track systems. These systems include track, overhead line, 
and vehicle dynamics measurement as well as vision system, video inspection, and 
other capabilities such as signal processing, railroad infrastructure kinematic 
analysis, and environmental temperature measurement.  

In fact, using those monitoring and measurement technologies, the railroad 
industry has been collecting a tremendous amount of data, and the concept of “big 
data” has become one of highly complicated research topics within the railroad 
community for the last decade.  
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Consequently, the research involved in “big data” with the railroad community 
has taken a big step in using the artificial intelligence (AI) and machine learning 
technology for the data mining and correlation tasks to potentially differentiate 
anomalies that may exist in complex patterns. With the advancement of the AI 
machine learning and the amount of data, which has already been collected, the 
railroad industry learns many techniques for fine tuning the data collection, 
processing, and reporting as well as visualization. The developed AI-machine 
learning technologies and their applications can potentially relieve the railroad 
maintainers and analysts from the inherent burden with time intensive tasks 
associated with engineering and analysis of a vast amount of data collected using 
monitoring methodologies. As a result, the health state awareness technology can 
now be developed to enable the automation of data fusion and analysis, 
minimization of required data for trending and analysis, and more effective 
operation and maintenance of trains and track infrastructures.  With appropriate 
physics-based models and intelligent adaptive controls, the health state awareness 
technology can also provide an automation capability to achieve the maintenance-
free vision for the railway systems. The maintenance-free vision for the mechanical 
systems has been pursued for quite a long time. The U.S. Army, for example, is 
currently planning to develop the next-generation helicopters with “fatigue-free” 
and “zero-maintenance” characteristics [3]. 

INTELLIGENT DIAGNOSTICS AND CONTROLS FRAMEWORK 

A framework has been developed for a proof-of-concept design for a machine 
learning-based health state awareness system that can be potentially installed on a 
rolling stock for testing and demonstrating its innovation and effectiveness. The 
methodology hereby called “intelligent Diagnostics and Controls”, or iDaC, is 
aimed at enabling the real-time monitoring and situation response applicable to 
railroad and train platforms, Figure 1.   

Particularly, the conceptualized system framework is focused on the vehicle-
track interactions, but can be modularly reconfigured to extract relevant data from a 
variety of existing monitoring systems including track, overhead line, and vehicle 
dynamics measurement as well as vision system, video inspection, and other 
sources such as signal processing, railroad infrastructure kinematic analysis, and 
environmental temperature measurements. 

The iDac system framework is envisioned to be reconfigurable to have the 
following automated operational functionalities: 

a. Ingest and transform real-time unsynchronized, unstructured/structured data 
from heterogeneous sources (e.g., sensor signals, on-board monitoring and control 
system, off-board inspections, and relevant information from 
maintenance/inspection databases) into recognized patterns. 

b. Using defined machine learning-based techniques, analyze patterns to detect 
anomalies (e.g., abnormal rolling vibration, vehicle dynamic unstable condition, 
derailment and failure precursor, fatigue crack, and operational damage) and assess 
the train decreased performance and mechanical element integrity (e.g., extreme 
angle of attack, inter-axle misalignment, hunting severity, poor brake performance, 
and defective components). 

 



 
 

 
 
 

 
Figure 1: Overall Machine Learning-based Diagnostics and Prognostics Framework 

 
 

c. Using defined machine learning-based techniques, analyze patterns to detect 
anomalies (e.g., abnormal rolling vibration, vehicle dynamic unstable condition, 
derailment and failure precursor, fatigue crack, and operational damage) and assess 
the train decreased performance and mechanical element integrity (e.g., extreme 
angle of attack, inter-axle misalignment, hunting severity, poor brake performance, 
and defective components). 

d. Identify a set of influential operating factors (e.g., derailment coefficient, 
lateral/vertical contact force, wheel load unbalance ratio, damping, critical speed, 
and track curving radius) and develop modified control parameters (e.g., speed and 
braking), which are autonomously fed into the PTC feedback loop to prevent 
derailment and other related catastrophic failures. When the identified influential 
operating factors combined with or integrated into appropriate physics-models, 
automation strategies can be potentially developed to reduce the maintenance 
frequency to minimum or zero within a desirable maintenance-free interval. 

e. Provide platforms and operators with options to manually or autonomously 
execute speed control authority accordingly to: (a) prevent derailment; decelerate or 
stop crack/damage growth; and mitigate other detected anomalies and (b) optimize 
in-situ operational performance. 



 
 

MACHINE LEARNING-BASED DIAGNOSTIC AND PROGNOSTIC 
METHODS 

Train-Rail Interaction Models and Monitoring Parameters 

To enable the machine learning training scheme and comprehensive vehicle 
dynamics analysis for the on-board intelligent system in real-time, a coupled multi-
body wheel-rail interaction physics-based model is developed to obtain the dynamic 
response and performance of the train interacting with the inner/outer rails. The 
modeling execution is automated (e.g., to receive data inputs from established on-
board sensing systems) to predict or project critical wheel-rail dynamic parameters 
in real time. These computed dynamic parameters are autonomously compared with 
established threshold values, which, if exceeded, will have a high probability of 
causing catastrophic accidents or component failures. Additionally, the computed 
parameters and dynamic information can also be autonomously fused to provide 
appropriate health indices (HIs), which are visible on the train dashboard for the 
train comprehensive health state awareness in real time.   

There are numerous wheel-rail dynamic models, which have been successfully 
developed by the railroad industry and academic community. A thorough study 
needs to be conducted to select appropriate sub-models, which have already been 
verified and validated. The selected wheel-rail interaction sub-models can then be 
modified and enhanced for coupling and real-time computation and analysis. 
Additionally, to accommodate the real-time computation, (e.g., less number of 
degrees of freedom, fast convergence, and high degree of accuracy), selected 
techniques such as cross iteration algorithm and relaxation method are needed for 
developing model algorithms [4].   

To monitor the interaction of the train components and track and predict the 
vibration characteristics, a coupled multi-body wheel-rail interaction physics-based 
model, as mentioned above, is required. This model consists of several sub-models 
coupled together to characterize the lateral, vertical, and longitudinal dynamics 
behavior of the entire train (e.g., several train wagons and bogies). Additionally, the 
track and its substructures (e.g., rails, sleepers, and ballasts) are modeled as elastic 
beams and coupled with the train dynamic sub-models to provide a whole wheel-
rail system response and behavior. The coupled wheel-rail interaction physics-based 
model is integrated with reduced-order mathematical equations for the real-time 
execution of modeling to track the dynamics of wheel-rail interactions and behavior 
white the train is passing through tracks.  

Sub-models, which are coupled together, address not only the performance and 
vibration characteristics of the wheel and rail in lateral, vertical, and longitudinal 
directions, but also the effect of braking system. The lateral dynamic model 
provides the vehicle dynamic behavior in the lateral displacement, roll, and yaw 
directions and is used to monitor the lateral stability including hunting, rail curving 
effect, and derailment. The vertical dynamic model provides the dynamic 
performance of suspension systems and wheel-rail as a whole. The longitudinal 
dynamic model can be used to monitor the performance of the train braking system 
on the dynamics of the whole train and potential derailment as the train is running 
through curve tracks.  



 
 

There are numerous critical dynamic parameters, produced by these models, 
which can be monitored while trains are running to ensure passenger safety and 
performance of the wheel-rail system. Critical dynamic parameters and data that 
may affect the safety and performance are:  

a. Maximum train vibrations induced by critical speed (e.g., natural 
frequency), which generates the resonance and instability of the wheel-rail system. 
When the train speed (TS) reaches a critical speed (CS), the amplitude of the train 
vibration grows exponentially with time.   

b. Derailment precursors can be predicted using the wheel-rail contact forces 
while trains are running on track. From the wheel-rail contact forces, the derailment 
coefficient (DC), which depends on many factors including track curve and 
lubrication/friction coefficient, can be computed or estimated. When the train 
running DC exceeds a safety limit, derailment can happen. Additionally, using the 
DC data and information generated by trains running on track in real time, 
maintenance actions can be planned for wayside lubrication on tracks to reduce the 
potential derailment effect. 

c. For those train bogies designed with semi-active suspension controls, the 
damping effect can change in real time. When the damping ratio (DR) reduction 
exceeds a threshold value, the train can reach its critical speed and become 
unstable. So, the influential relationship of critical speeds of trains and suspension 
stiffness and damping (SD) can be monitored and/or adjusted to ensure safety and 
better performance. 

d. The maximum and total amplitudes of acceleration for the rail and sub-
structures, bogies, primary/secondary suspension, and wheels increase with the 
increase of the train speed, which also has great influence on the wheel-to-rail 
contact forces. 

e. Wheel bearing temperature measurements. 

Train-Rail Machine Learning-based System Functionalities 

Figure 1 illustrates a framework for the machine learning-based diagnostics, 
prognostics, and adaptive controls designed to prevent the train catastrophic events. 
As the raw sensor data and information are being streamed, the envisioned machine 
learning-based system (e.g., hardware/software), when installed on trains, can 
perform the following essential tasks in real time:  

a. Execute the coupled multi-body wheel-rail interaction physics-based model 
(low fidelity): During the execution of the modeling and analysis, critical 
parameters based on actual operational data, are computed, derived, and 
consequently, fused into health condition indicators or indices. The computation 
and analysis are designed to be in real time with low fidelity models, but calibrated 
and optimized with off-wheel modeling solutions in near real-time using on-board 
gateway transmitter and receiver.  

b. Conduct machine-learning-based fault classifications: While the wheel-rail 
interaction computation is being done, the system simultaneously conducts the fault 
classification using the machine learning-based training models, which will be 
described in detail in the next section. If an anomaly were detected, the relevant 
wheel-track anomaly characteristics would be transmitted immediately to the train 
operation stakeholders including the notional Station Operation Control Center, 



 
 

Regional Safety and Maintenance Offices, and potentially National Railroad 
Enterprise. At a particular train station, a local high performing server system is 
also designed to receive real-time inputs from the running trains to perform the 
coupled multi-body wheel-rail interaction physics-based model but with 
significantly higher fidelity and more complicated neural network (more hidden 
layers). The results would be then automatically transmitted to the running train on-
board server system for calibration and optimization with real-time solutions. 

c. Modify influential parameters: Upon having computed and derived the 
health condition indices and/or fault characteristics, the on-wheel system will 
modify influential parameters (e.g., speed, braking, and/or other operational 
parameters), which have direct dynamic relationship between, for example, 
derailment and fault acceleration and provide direct inputs to the on-board adaptive 
PTC system. The notional adaptive PTC system, installed on trains, can have an 
on/off switch for train controls. If an “off” position is selected, upon having 
received modified parameters/inputs, the system can providing sensitive cueing 
signals and/or visual/audio warnings for operator’s prompt actions. If an “on” 
position is selected, the adaptive PTC system can take over the controls and 
immediately execute the appropriate actions to reduce the speed or stop the train 
completely. The notional Station Operation Control Center can also perform the 
envisioning adaptive PTC functionality, if adaptive PTC is not available on trains. 

Long Short-Term Memory and Auto-Encoder and Decoder Methods 

There has been a number of machine learning methods developed for various 
applications including fault diagnostics and prognostics for many mechanical 
platforms.  Taking advantage of the work, which has been substantially 
investigated, the iDaC framework can extend the Long Short-Term Memory 
(LSTM) method, Figure 2, and integrates it with Auto-Encoder and Decoder 
(AE/AD) models (e.g., to classify the train dynamic instability, derailment 
precursors, corrugated rail severity or irregularities, and other potential faults) [5-6].  

LSTM-AE/AD has been used in many applications including multi-sensor 
prognostics for the aviation platform systems [7].  
 

 

 

 

 

 

 

 

 
Figure 2: LSTM Cell 



 
 

LSTM is a machine learning method for sequence tasks, and its cells contain 
information outside the normal flow of the recurrent network in a gated cell, in 
which information can be stored in, written to, or read from. LSTM is a suited 
neural network for sequential sensor data and for discovering hidden patterns from 
multiple operation data and fault models developed from the sensor networks 
installed on-board of mechanical platforms. An LSTM cell makes decisions about 
what to store, and when to allow reads, writes and erasures, via gates that open and 
close. It uses input xt and hidden state activation ht-1, and memory cell activation ct-1 
to compute the hidden state activation ct at time t. LSTM cell uses the Input Gate it, 
Forget Gate ft, and Output Gate ot, to make a decision if: (1) an input needs to be 
remembered, (2) a previous memory needs to be retained, and (3) when a memory 
content needs to be output (ht).   

The envisioned iDaC framework, with appropriate interfaces communicating to 
on-board data buses and other monitoring systems, is designed to extract train-rail 
operational parameters, modify the control variables and determine the required 
time for action to prevent the potential derailment accident, if a high probability of 
derailment exists using HIs and limited critical operation parameters or COPs (e.g., 
DC, CS, DR, and wheel load unbalance ratio). During operation, the on-board 
system extracts, processes, and feeds collected data and information to the on-board 
LSTM neural network for deriving time-based mean and oscillatory parameters of 
COPs. Using on-board lookup tables, the on-board computation with low fidelity 
models will perform its computation and continue its iterations with real-time data 
until any calculated or operational COPs exceed the limit COPs. When this 
condition is first reached, the associate sub-system is identified and control 
parameters (e.g., speed, braking movements) are calculated. Modified control 
parameters are then fed into the notional adaptive PTC scheme, which can provide 
the platform and operator options to manually or autonomously execute the train 
control authority accordingly to prevent a potential derailment accident.  

During the operation of the trains, at a designated train operation center 
equipped with the high performing computing facility, the high fidelity-coupled 
multi-body wheel-rail interaction physics-based  model and neural network with 
additional hidden-layers are also running for providing the model calibration and 
increasing the computational accuracy in real time. Solutions are then updated into 
lookup parameter tables. These tables, together with other relevant information 
including the train-rail diagnostics and prognostics data, are automatically uploaded 
onto the on-board system at the end of service via on-board wireless gateway 
transmitter and receiver. However, if anomalies are detected during operation, a set 
of relevant data and information for a specific faulted sub-system or low (or high) 
fidelity solutions can be immediately transmitted to or received from the local train 
operation center and enterprise server using available wireless capabilities such as 
Global System for Mobile Communication (GSM) and Global Position System 
(GPS). 

CONCLUSION 

Aiming at reducing the train accidents and enabling the railway system 
maintenance-free vision, an AI-machine learning-based health monitoring 
framework, which is capable of autonomously providing the health state awareness 



 
 

of the wheel-track system and direct feedbacks for PTC, is presented. This 
framework cannot be effectively designed without the integration of the AI-inspired 
machine learning technology and physics models. When the identified influential 
operating factors combined with or integrated into the appropriate physics-models, 
automation strategies can be potentially developed to reduce the maintenance 
frequency to minimum or zero within a desirable maintenance-free interval. For 
several decades, the research community has developed the rule and statistical 
learning-based AI technologies. However, there are challenges, particularly in the 
machine learning and training where issues with sparse data exist. Even when a vast 
amount of data is available, noisy data can pose a significant problem. Additionally, 
a realistic complex operation of the railway system can introduce an unstructured 
environment and hide many critical system characteristics, which might not be able 
to uncover unless physics-based models are integrated into an AI-inspired machine 
learning framework. In addition to the prior knowledge, the envisioned intelligent 
diagnostics and controls framework introduces the next-generation AI capability 
that can acquire the essential knowledge from many hidden states of complex 
operations and unstructured domains [8]. 
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