
Intelligent Health State Awareness System Framework for Maintenance-Free 
Railway System Vision 

Abstract 
To increase safety significantly and make the train and its track infrastructure substantially less expensive 
to operate and maintain, a paradigm shift with respect to the overall operational sustainment is needed.  
Additionally, to reduce train accidents and enable the railway system maintenance-free vision, an 
artificial intelligence (AI)-machine learning-based monitoring technology, which is capable of 
autonomously providing the health state awareness of the entire wheel-track system and direct feedbacks 
for adaptive positive train control (PTC), is needed. Automated health state awareness and adaptive PTC 
system cannot be effectively designed and implemented without the integration of AI-related technologies 
including machine learning, which are computer intensive and highly parallelized.  As new central 
processing unit architectures customized for AI applications have been evolving at exponential speeds, 
the accurate and critical complex mechanical system’s health state awareness information, extracted from 
heterogeneous sources, can be autonomously derived with the use of the machine learning in real-time or 
near real-time environment. As a result, the health state awareness technology can now be developed to 
enable the automation of data fusion and analysis, minimization of required data for trending and 
analysis, and more effective operation and maintenance of trains and track infrastructures. This paper 
outlines a framework for a machine learning-based health state awareness system to address the railway 
safety and provide potentials for achieving the maintenance-free vision.
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1.0 INTRODUCTION 

The year of 2018 continues to present 
passengers and operators with depressing fatal 
train derailment and collision news. Whether the 
train derailments and collisions were caused by 
mechanical wheel-rail unmatched dynamic 
interactions; mechanical component failures;

poor maintenance; or human errors, these 
accidents have caused severe safety and 
financial concerns and detrimental impacts on 
the public transportation perception.   

Train accidents can mostly be caused by
derailments in which track and equipment 
failure are the primary cause of accident on the 
main tracks [1]. Additionally, according to the 
U.S. Department of Transportation (USDOT) 
Volpe Center-Innovation Research Program 
Office, 70% of railroad derailments were 
reported in the U.S. in 2016 [2]. As a result, the 
Federal Railroad Administration (FRA) is 
pursuing numerous research efforts to monitor
the critical behavior of the wheel-track
interactions to assess adverse conditions of the 
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wheel and/or track that may affect the train 
safety and performance.  

Monitoring the behavior of the train and railway 
infrastructure elements is a complex task, 
particularly, when it is desirable to conduct it in 
real time. There is a wide range of sophisticated 
diagnostics systems that have been used to 
support the health monitoring of the wheel/track 
systems. These systems include track, overhead 
line, and vehicle dynamics measurement as well 
as vision system, video inspection, and other 
capabilities such as signal processing, railroad 
infrastructure kinematic analysis, and 
environmental temperature measurement. In 
fact, using those monitoring and measurement 
technologies, the railroad industry has been 
collecting a tremendous amount of data, and the 
concept of “big data” has become one of highly 
complicated research topics within the railroad 
community for the last decade. Consequently, 
the research involved in “big data” with the 
railroad community has taken a big step in using 
the artificial intelligence (AI) and machine 
learning technology for the data mining and 
correlation tasks to potentially differentiate 
anomalies that may exist in complex patterns. 
With the advancement of the AI machine 
learning and the amount of data, which has 
already been collected, the railroad industry 
learns many techniques for fine tuning the data 
collection, processing, and reporting as well as 
visualization. The developed AI-machine 
learning technologies and their applications can 
potentially relieve the railroad maintainers and 
analysts from the inherent burden with time 
intensive tasks associated with engineering and 
analysis of a vast amount of data collected using 
monitoring methodologies. This “big data” 
analysis burden, if not addressed, can limit the 
U.S. railroad operational effectiveness, impede 
their safety improvement, and make them 
expensive to operate and maintain. 

To increase safety significantly and make the 
train and its track infrastructure substantially 

less expensive to operate and maintain, a 
paradigm shift with respect to the overall 
operational sustainment is needed.  Additionally, 
to reduce train accidents and enable the railway 
system maintenance-free vision, an artificial 
intelligence (AI)-machine learning-based 
monitoring technology, which is capable of 
autonomously providing the health state 
awareness of the entire wheel-track system and 
direct feedbacks for adaptive positive train 
control (PTC), is needed. Automated health state 
awareness and adaptive PTC system cannot be 
effectively designed and implemented without 
the integration of AI-related technologies 
including machine learning, which are computer 
intensive and highly parallelized.  As new 
central processing unit architectures customized 
for AI applications have been evolving at 
exponential speeds, the accurate and critical 
complex mechanical system’s health state 
awareness information, extracted from 
heterogeneous sources, can be autonomously 
derived with the use of the machine learning in 
real-time or near real-time environment. As a 
result, the health state awareness technology can 
now be developed to enable the automation of 
data fusion and analysis, minimization of 
required data for trending and analysis, and 
more effective operation and maintenance of 
trains and track infrastructures.  With 
appropriate physics-based models and intelligent 
adaptive controls, the health state awareness 
technology can also provide an automation 
capability to achieve the maintenance-free vision 
for the railway systems. The maintenance-free 
vision for the mechanical systems has been 
pursued for quite a long time. The U.S. Army, 
for example, is currently planning to develop the 
next-generation helicopters with “fatigue-free” 
and “zero-maintenance” characteristics [3]. 

2.0 INTELLIGENT DIAGNOSTICS AND 
CONTROLS FRAMEWORK 

A framework has been developed for a proof-of-
concept design for a machine learning-based 



health state awareness system that can be 
potentially installed on a rolling stock for testing 
and demonstrating its innovation and
effectiveness.  The methodology hereby called 
“intelligent Diagnostics and Controls”, or iDaC,
is aimed at enabling the real-time monitoring
and situation response applicable to railroad and 
train platforms.   

Particularly, the conceptualized system 
framework is focused on the vehicle-track 
interactions, but can be modularly reconfigured
to extract relevant data from a variety of existing 
monitoring systems including track, overhead 
line, and vehicle dynamics measurement as well 
as vision system, video inspection, and other 
sources such as signal processing, railroad 
infrastructure kinematic analysis, and 
environmental temperature measurements. 

The iDac system framework is envisioned to be 
reconfigurable to have the following automated 
operational functionalities: 

• Ingest and transform real-time
unsynchronized, unstructured/structured 
data from heterogeneous sources (e.g.,
sensor signals, on-board monitoring and 
control system, off-board inspections, 

relevant information from 
maintenance/inspection databases) into 
recognized patterns. 

• Using defined machine learning-based
techniques, analyze patterns to detect 
anomalies (e.g., abnormal rolling vibration, 
vehicle dynamic unstable condition, 
derailment and failure precursor, fatigue 
crack, and operational damage) and assess 
the train decreased performance and 

Figure 1: Overall Machine Learning-based Diagnostics and Prognostics Concept 



	
 

	

mechanical element integrity (e.g., extreme 
angle of attack, inter-axle misalignment, 
hunting severity, poor brake performance, 
and defective components). 

• Identify a set of influential operating factors 
(e.g., derailment coefficient, lateral/vertical 
contact force, wheel load unbalance ratio, 
damping, critical speed, and track curving 
radius) and develop modified control 
parameters (e.g., speed and braking), which 
are autonomously fed into the PTC feedback 
loop to prevent derailment and other related 
catastrophic failures. When the identified 
influential operating factors combined with 
or integrated into appropriate physics-
models, automation strategies can be 
potentially developed to reduce the 
maintenance frequency to minimum or zero 
within a desirable maintenance-free interval. 

• Provide platforms and operators options to 
manually or autonomously execute speed 
control authority accordingly to: (a) prevent 
derailment; decelerate or stop crack/damage 
growth; and mitigate other detected 
anomalies, and (b) optimize in-situ 
operational performance. 

To achieve the above capabilities, combined 
approaches, which integrate the state-of-the-art, 
commercial-of-the-shelf (COTS) high 
performance neural enabled hardware and novel 
machine learning algorithms to provide the 
vehicle-track health state awareness in real-time 
or near-real-time, are needed. It is envisioned 
that the iDaC system framework, with future 
interface upgrades and modifications, will be 
capable of extracting sensor signals from many 
other diverse heterogeneous sources for 
automated data analytics and analysis using the 
machine learning techniques. Figure 1 illustrates 
the overall concept framework, where its 
functionalities can be extended to be integrated 
into existing or next-generation train platforms 

with PTC to increase safety and reduce 
operation and sustainment costs substantially. 

2.1 CURRENT STATE-OF-THE-ART 
MACHINE LEARNING  

Machine learning with the use of the deep neural 
network is becoming a powerful tool for any 
aspect of modern systems involving health care, 
business, social issues, engineering etc. 
Regardless of what business sector we are in, the 
amount of data collected has become 
astronomically large to the point that human is 
no longer able to manage the manually-
extensive and time-consuming analysis.  

For more than a decade, FRA has been involved 
in the research and development efforts 
including AI neural networks and machine 
learning to hopefully bring automation to 
inspection and maintenance as well as train 
operations and performance monitoring. 
However, many research and development 
efforts, particularly in the machine learning, so 
far have been mainly theoretical and not yet 
been fully matured for practical applications in 
the railroad operation and sustainment. As the 
railroad industry has also been accelerating in 
collecting a vast amount of data on railroad 
behaviors including the wheel-track interactions, 
a strong demand exists for a machine learning 
capability to automate the data mining process 
and information discovery to provide relevant 
information for making intelligent maintenance 
and safety-related decisions. 

In the railroad maintenance area, numerous 
research in the past showed that the AI-machine 
learning could predict the rate of rail wear by 
learning the characteristics of the rail track 
including degree of curvature, deviation of 
curvature, superelevation, and lubrication etc. 
For the railroad operational situation awareness, 
the AI technology can analyze real-time data 
from the running trains to provide real-time 
locations of trains and their respective systems 
and sub-systems in each train, insight into the 



	
 

	

operational performance of trains, and inter-
relationship of various systems across the entire 
railroad fleet. 

However, today there is no matured machine 
learning-based technology that can be integrated 
into trains to provide the health state awareness 
with direct feedbacks to the PTC system for 
appropriate speed controls to prevent 
catastrophic failures or collisions.    

2.2 DATA STREAMING  

As we are facing with interoperability issues, the 
iDaC framework takes advantage of matured 
open-source technologies and widely used 
standards as building blocks for the future 
innovation and technology advancement and 
easy upgrades at low costs.   

Additionally, complex systems including trains, 
with existing embedded sensors; on-board 
monitoring devices; train integrated 
management system; and data buses, provide 
operators with large volumes of heterogeneous 
data. To achieve the commonality goal and 
address data heterogeneity issues, the iDaC 
framework integrates key open-source methods 
to enable the automated data streaming, 
ingestion, aggregation, and transformation while 
applying the machine learning and knowledge 
discovery from data (KDD) techniques to enable 
in-memory computation and provide the 
necessary diagnostics and prognostics. 

To enable the real-time or near real-time state 
awareness and adaptive positive train controls, a 
continuous streaming of data generated by 
embedded sensors or other monitoring systems 
on-board of trains is required. This can be done 
by tapping into the appropriate data buses and 
interfaces used in the existing sensing and 
monitoring systems, many of which are capable 
of converting the analog signal inputs, generated 
from embedded sensors and transducers, into 
digital forms. Once sensor signal inputs are in 
digital forms, selected data stream processing 
techniques are used to move large volumes of 

data from different sources on-board of trains, 
which provide the iDaC with continuously 
updated state of complex systems and data while 
trains are in operation.   

The envisioned iDaC suite of data stream 
processing techniques is built using open-source 
applications including a data handling tool, to 
convert unstructured data into structured and 
standardized formats containing data models and 
content characteristics (metadata). Specified in 
the data handling tool configuration file is a list 
of possible data formats and schema, e.g., 
structure of an observation and data type of each 
field of an event. Data formats, used to describe 
structured data and serialize objects, include 
Column-Separate Value (CSV), JavaScript 
Object Notation (JSON), and Extensible Markup 
Language (XML). XML format is Standard 
Generalized Markup Language (SGML) 
compliant, e.g., independent of any proprietary 
software, and widely used in many applications. 
The data handling tool extracts and performs 
formatting on the incoming data stream in real-
time or near real-time and provides data files 
readable by other applications integrated within 
the iDaC data streaming and pipeline 
architecture. 

Apache Kafka is a distributed streaming 
platform used to build real-time streaming data 
pipeline and allow reliable access of processed 
data between applications in the envisioned 
“IDaC” framework. Kafka is also used to build 
real-time streaming applications that can 
transform or react to the stream of data. Kafka 
allows storing and processing of historical data 
from the past and real-time data as it arrives. It is 
a scalable publish-subscribe messaging system 
that stores streams of Records in categories 
called topics and is consisted of four 
components or Application Program Interfaces 
(APIs): Producer, Consumer, Stream, and 
Connector APIs. Through Kafka, multiple 
applications (Consumer) can consume Topics 
(processed data) independently to perform data 



	
 

	

mining and analytics or machine learning 
techniques [4]. 

To enable the real-time or near real-time 
distributed processing of incoming data, Apache 
Storm is used to analyze smaller clusters of data, 
which are dynamically changing or being 
digested into the data pipeline at high velocity. 
Apache Storm enables the capability for in-
memory computing, which allows the 
application to move working datasets and 
perform calculations within the computer 
Random Access Memory or RAM. Apache 
Storm forms a topology, which takes input 
streams or Spouts and processes them to provide 
output modules called Bolts [5].  

As the train platform sensor data streams come 
in and are processed by the data handling tool, 
the processed data are collected and handled by 
Apache Kafka cluster where Spouts are tasked to 
read or subscribe to Topics and then push the 
sensor data into the Data Preprocessing Bolt. 
Within the Storm cluster, Bolt preprocessing 
operations including data transformation and 
filtering are performed on the sensor data and 
then send it to the Data Mining Bolt for 
performing prediction of outcome using the fault 
classifier developed and trained from historical 
sensor data.   

2.3 MACHINE LEARNING-BASED 
DIAGNOSTIC AND PROGNOSTIC 
METHODS 

Train-Rail Interaction Models and Monitoring 
Parameters: For the machine learning training 
scheme and comprehensive vehicle dynamics 
analysis for the on-board hybrid intelligent 
system in real-time, a coupled multi-body 
wheel-rail interaction physics-based model is 
developed to obtain the dynamic response and 
performance of the train interacting with the 
inner/outer rails. The modeling execution is 
automated (e.g., to receive data inputs from 
established on-board sensing systems) to predict 
or project critical wheel-rail dynamic parameters 

in real time. These computed dynamic 
parameters are autonomously compared with 
established threshold values, which, if exceeded, 
will have a high probability of causing 
catastrophic accidents or component failures. 
Additionally, the computed parameters and 
dynamic information can also be autonomously 
fused to provide appropriate health indices, 
which are visible on the train dashboard for the 
train comprehensive health state awareness in 
real time.   

There are numerous wheel-rail dynamic models, 
which have been successfully developed by the 
railroad industry and academic community. A 
thorough study needs to be conducted to select 
appropriate sub-models, which have already 
been verified and validated. The selected wheel-
rail interaction sub-models can then be modified 
and enhanced for coupling and real-time 
computation and analysis. Additionally, to 
accommodate the real-time computation, (e.g., 
less number of degrees of freedom, fast 
convergence, and high degree of accuracy), 
selected techniques such as cross iteration 
algorithm and relaxation method are needed for 
developing model algorithms [6].   

To monitor the interaction of the train 
components and track and predict the vibration 
characteristics, a coupled multi-body wheel-rail 
interaction physics-based model, as mentioned 
above, is required. This model consists of 
several sub-models coupled together to 
characterize the lateral, vertical, and longitudinal 
dynamics behavior of the entire train (e.g., 
several train wagons and bogies). Additionally, 
the track and its substructures (e.g., rails, 
sleepers, and ballasts) are modeled as elastic 
beams and coupled with the train dynamic sub-
models to provide a whole wheel-rail system 
response and behavior. The coupled wheel-rail 
interaction physics-based model is integrated 
with reduced-order mathematical equations for 
the real-time execution of modeling to track the 



	
 

	

dynamics of wheel-rail interactions and behavior 
white the train is passing through tracks.  

Sub-models, which are coupled together, address 
not only the performance and vibration 
characteristics of the wheel and rail in lateral, 
vertical, and longitudinal directions, but also the 
effect of braking system. The lateral dynamic 
model provides the vehicle dynamic behavior in 
the lateral displacement, roll, and yaw directions 
and is used to monitor the lateral stability 
including hunting, rail curving effect, and 
derailment. The vertical dynamic model 
provides the dynamic performance of suspension 
systems and wheel-rail as a whole. The 
longitudinal dynamic model can be used to 
monitor the performance of the train braking 
system on the dynamics of the whole train and 
potential derailment as the train is running 
through curve tracks.  

There are numerous critical dynamic parameters, 
produced by these models, which can be 
monitored while trains are running to ensure 
passenger safety and performance of the wheel-
rail system. Critical dynamic parameters and 
data, that may affect the safety and performance, 
are:  

a. Maximum train vibrations induced by 
critical speed (e.g., natural frequency), 
which generates the resonance and 
instability of the wheel-rail system. When 
the train speed (TS) reaches a critical speed 
(CS), the amplitude of the train vibration 
grows exponentially with time.   

b. Derailment precursors can be predicted 
using the wheel-rail contact forces while 
trains are running on track. From the wheel-
rail contact forces, the derailment coefficient 
(DC), which depends on many factors 
including track curve and lubrication/friction 
coefficient, can be computed or estimated. 
When the train running DC exceeds a safety 
limit, derailment can happen. Additionally, 
using the DC data and information generated 

by trains running on track in real time, 
maintenance actions can be planned for 
wayside lubrication on tracks to reduce the 
potential derailment effect. 

c. For those train bogies designed with semi-
active suspension controls, the damping 
effect can change in real time. When the 
damping ratio (DR) reduction exceeds a 
threshold value, the train can reach its 
critical speed and become unstable. So, the 
influential relationship of critical speeds of 
trains and suspension stiffness and damping 
(SD) can be monitored and/or adjusted to 
ensure safety and better performance. 

d. The maximum and total amplitudes of 
acceleration for the rail and sub-structures, 
bogies, primary/secondary suspension, and 
wheels increase with the increase of the train 
speed, which also has great influence on the 
wheel-to-rail contact forces. 

e. Wheel bearing temperature measurements. 

Train-Rail Machine Learning-based System 
Functionalities. Figure 1 illustrates a framework 
for the machine learning-based diagnostics, 
prognostics, and adaptive controls designed to 
prevent the train catastrophic events. As the raw 
sensor data and information are being streamed, 
the envisioned machine learning-based system 
(e.g., hardware/software), when installed on 
trains, can perform these essential tasks in real 
time:  

a) Execute the coupled multi-body wheel-rail 
interaction physics-based model (low 
fidelity): During the execution of the 
modeling and analysis, critical parameters 
based on actual operational data, are 
computed, derived, and consequently, fused 
into health condition indicators or indices. 
The computation and analysis are designed 
to be in real time with low fidelity models, 
but calibrated and optimized with off-wheel 
modeling solutions in near real-time using 
on-board gateway transmitter and receiver.  



b) Conduct machine-learning-based fault 
classifications: While the wheel-rail 
interaction computation is being done, the 
system simultaneously conducts the fault 
classification using the machine learning-
based training models, which will be 
described in detail in the next section. If an 
anomaly were detected, the relevant wheel-
track anomaly characteristics would be 
transmitted immediately to the train 
operation stakeholders including the 
notional Station Operation Control Center, 
Regional Safety and Maintenance Offices, 
and potentially National Railroad Enterprise.
At a particular train station, a local high 
performing server system is also designed to 
receive real-time inputs from the running 
trains to perform the coupled multi-body 
wheel-rail interaction physics-based model
but with significantly higher fidelity and 
more complicated neural network (more 
hidden layers). The results would be then 
automatically transmitted to the running 
train on-board server system for calibration 
and optimization with real-time solutions. 

c) Modify influential parameters: Upon having 
computed and derived the health condition 
indices and/or fault characteristics, the on-
wheel system will modify influential 
parameters (e.g., speed, braking, and/or 
other operational parameters), which have 
direct dynamic relationship between, for 
example, derailment and fault acceleration 
and provide direct inputs to the on-board 
adaptive PTC system. The notional adaptive 
PTC system, installed on trains, can have an 
on/off switch for train controls. If an “off” 
position is selected, upon having received 
modified parameters/inputs, the system can 
providing sensitive cueing signals and/or
visual/audio warnings for operator’s prompt 
actions. If an “on” position is selected, the 
adaptive PTC system can take over the 
controls and immediately execute the 

appropriate actions to reduce the speed or 
stop the train completely. The notional 
Station Operation Control Center can also 
perform the envisioning adaptive PTC 
functionality, if adaptive PTC is not 
available on trains. 

Machine Learning-based Diagnostics and 
Prognostics Method. There has been a number 
of machine learning methods developed for 
various applications including fault diagnostics 

and prognostics for many mechanical platforms. 
Taking advantage of the work, which has been 
substantially investigated, the iDaC framework
can extend the Long Short-Term Memory 
(LSTM) method, as described in [7] and 
integrates it with Auto-Encoder and Decoder 
(AE/AD) models (e.g., to classify the train 
dynamic instability, derailment precursors, 
corrugated rail severity or irregularities, and 
other potential faults).  

LSTM-AE/AD has been used in many 
applications including multi-sensor prognostics 
for the aviation platform systems [8-9]. LSTM is 
a machine learning method for sequence tasks, 
and its cells contain information outside the 
normal flow of the recurrent network in a gated 
cell, in which information can be stored in, 
written to, or read from. LSTM is a suited neural 
network for sequential sensor data and for 
discovering hidden patterns from multiple 
operation data and fault models developed from 
the sensor networks installed on-board of 
mechanical platforms. An LSTM cell makes 
decisions about what to store, and when to allow 

               Figure 2: LSTM Cell 



reads, writes and erasures, via gates that open 
and close. A typical LSTM cell is shown in 
Figure 2. It uses input xt and hidden state 
activation ht-1, and memory cell activation ct-1 to 
compute the hidden state activation ct at time t. 
LSTM cell uses the Input Gate it, Forget Gate ft, 
and Output Gate ot, to make a decision if: (1) an 

input needs to be remembered, (2) a previous 
memory needs to be retained, and (3) when a 
memory content needs to be output (ht). Detail 
explanations of the LSTM neural network can be 
found in [7]. 

Figure 3 depicts a framework of classifying 
potential faults, which have direct relationships 
with critical operation parameters or COPs (e.g., 
derailment coefficient (DC), critical speed (CS), 
damping ratio (DR), wheel load unbalance ratio

(WLUR)). The mentioned parameters are a few 
examples, and more influential COPs can be 
defined. In the envisioned machine learning 
approach, LSTM-AE/AD models can be
continuously trained using generated data from 
historical accident analyses and/or results from 
the modeling and simulation including using the 

original coupled multi-body wheel-rail 
interaction physics-based model. Using the 
Principal Component (PC) Analysis (PCA) 
technique, we transform the historical or 
simulated data/information with and without 
faults or anomaly into new time models and 
principal components (PCs) with minimized 
linear relationship among data Yt

(u). LSTM-AE 
then maps these input sequences to a fixed-
dimensional vector (FDV) representation Y’t

(u). 
LSTM-AE then tries to learn abstract of the Y’t

(u)

Figure 3: Train-Rail Machine Learning-based Method 



function and estimate the same input patterns as 
its output. LSTM-AD learns from this FDV 
model to reconstruct the time-series of the train 
model in reverse order using the predicted 
values from the last time step in the current 
hidden LSTM layer Y”t

(u). The error (et
(u)) 

presented at each step is minimized, until a 
desirable error set point is met (e.g., 1%), 
normalized, and used to establish the Health 
Index (HI) for each event, it

(u), in which eM
(u) is 

the maximum and em
(u) minimum values of 

reconstruction errors for an event u over a time 
period t. Using HIs, curves of HIs for each sub-
system can be plotted and its required time for 
action (RTFA) can be derived.

To obtain real-time sub-system-specific it
(u) and 

HI curves for estimating RFTA, trained 
weighting and errors and standard linear 
regression-based index estimation are applied to 
the on-board LSTM AE/AD neural net (with 
fewer hidden layers) using extracted data from 
actual operational conditions and matching them 
with the trained HI curves. Healthy and faulty 

sub-system may have a value from 0 and 1. 
Continued operations with HI of 1 or greater can 
cause catastrophic failures. HIs have been used 
successfully on many mechanical system 
monitoring applications including aviation. A 
typical Health Indicator versus flight cycles 
curve is shown in Figure 4 [10]. A modified HI 
curve will be developed to provide the health 

indication for train-track systems. RFTA can be 
derived by using the HI predicted time to 
catastrophic event, if fault were detected and 
trains would continue to run at the current 
operational instance.   

2.4 MODIFIED CONTROL PARAMETERS
FOR NOTIONAL ADAPTIVE PTC 

The envisioned iDaC framework, with 
appropriate interfaces communicating to on-
board data buses and other monitoring systems,
is designed to extract train-rail operational 
parameters, modify the control variables and 
determine the required time for action to prevent 
the potential derailment accident, if a high 
probability of derailment exists using HIs and 
limited COPs. During operation, the on-board 
system extracts, processes, and feeds collected 
data and information to the on-board LSTM 
neural network for deriving time-based mean 
and oscillatory parameters of COPs. Using on-
board lookup tables, the on-board computation
with low fidelity models will perform its 
computation and continue its iterations with 
real-time data until any calculated or operational 
COPs exceed the limit COPs. When this 
condition is first reached, the associate sub-
system is identified and control parameters (e.g., 
speed, braking movements) are calculated. 
Modified control parameters are then fed into 
the notional adaptive PTC scheme, which can 
provide the platform and operator options to 
manually or autonomously execute the train 
control authority accordingly to prevent a 
potential derailment accident, Figures 1 and 3.    

During the operation of the trains, at a
designated train operation center equipped with
the high performing computing facility, the high 
fidelity-coupled multi-body wheel-rail 
interaction physics-based  model and neural 
network with additional hidden-layers are also 
running for providing the model calibration and 
increasing the computational accuracy in real 
time. Solutions are then updated into lookup 
parameter tables. These tables, together with 

Figure 4: Health Indicator Curve 



other relevant information including the train-
rail diagnostics and prognostics data, are 
automatically uploaded onto the on-board 
system at the end of service via on-board 
wireless gateway transmitter and receiver. 
However, if anomalies are detected during 
operation, a set of relevant data and information 
for a specific faulted sub-system or low (or high) 
fidelity solutions can be immediately transmitted 
to or received from the local train operation
center and enterprise server using available 
wireless capabilities such as Global System for 

Mobile Communication (GSM) and Global 
Position System (GPS). 

2.5 STATE-OF-THE-ART 
MICROPROCESSOR AND HARDWARE 
CONFIGURATION  

Numerous tech giants (e.g., IBM, INTEL, and 
Google) have been working on very ambitious 
initiatives to create processor cores, which can 

mimic human neurons and synapses, to 
accommodate the demands for high-throughput 
CPU and Graphic Processing Unit (GPU) 
designed for neural engines, machine learning 
algorithm, and other AI tasks. These CPUs and 
GPUs (e.g., for use in state-of-the-art computers, 
which go beyond the standard John von 
Newman computer architecture paradigm), are 
designed for the real-time power efficiency,
highly complicated neural networks, and at 
massive scales. These microprocessors take into 
account of localized information processing 

architecture for the real-time computation 
communication and extremely efficient data-
storage and data-crunching tasks.  

While waiting for the high-end CPU/GPU prices 
to become less expensive, low-hanging-fruits of 
the powerful and highly parallel CPUs/GPUs 
can be configured to enable the development of 
the envisioned “iDaC” system for the machine

Figure 5: Machine Learning-Based Health State Awareness Scheme for Train-Rail System
 



	
 

	

learning tasks. A general outline of the core 
microprocessors and functionalities is provided 
for developing a working prototype system to be 
installed on a rolling stock for extensive testing 
and demonstration. The configuration is 
envisioned to allow both simplified high level 
programing and hardware-in-the-loop taking 
advance of the enhanced field-programmable 
field array (FPGA) for parallel processing. 

An on-wheel machine learning-based computer-
server system is envisioned to include: (1) a 
train mini-server system (TMSS) and (2) sub-
data acquisition boxes (SDAB). This system, 
with appropriate interfaces, can be connected to 
other monitoring systems installed on the 
existing trains to process incoming data for real-
time health monitoring. The envisioned iDaC 
system assumes data are coming from sensors, 
which have already been installed on all bogies 
in trains. In the envisioned system, the number 
of SDABs is proportional to the number of the 
train bogies. These boxes will collect data and, 
using the data communication scheme (e.g., 
consistent with the International Union of 
Railway (UIC) 568 standard for transmitting a 
variety of data between TMSS and SDABs), 
send it to TMSS for processing and analysis. 
Each SDAB, which is a standalone unit with the 
industry standard communication, is capable of 
converting the train signal information into a 
data stream sent to TMSS via wiring or wireless 
communication scheme. Figure 5 illustrates the 
envisioned machine learning-based health state 
awareness scheme for the train-rail system. 

The TMSS configuration is a mini-server 
integrated with a microprocessor and generic 
board configuration to include a COTS dual-
processor 32 bit (or at least 16 bit) architecture, 
in which each processor (e.g., one for the 
coupled multi-body wheel-rail interaction 
physics-based modeling and a second one for the 
AI machine learning tasks) resides on its own 
board. Communications between processors are 
done via data transmission interfaces or buses, 

where APIs will facilitate the assignment of 
software tasks to the appropriate processors. The 
modeling microprocessor board handles the 
tasks configured with FPGA for synchronizing 
speed controls with the notional adaptive PTC. 
The AI microprocessor board handles machine 
learning and health monitoring tasks. Since the 
AI board is used for complicated tasks, it is 
configured with much higher clock speed and 
large memory system and equipped with the 
universal asynchronous receivers and 
transmitters (UARTs) for communications with 
the Operation Control Center (OCC).  

TMMS provides: (1) communication links 
between OCC, server, and users, (2) perform the 
AI machine learning diagnostics and prognostics 
tasks, (3) modify controls variables and 
determine the required time for action, and 
communicate the results to notional adaptive 
PTC for execution. TMMS can be installed in an 
isolated section in the operator section. 

As the new central processing unit architectures, 
designed for AI applications, and reliable open 
source software are tremendously evolved, the 
cost for the envisioned machine learning-based 
health state awareness configuration for the 
train-rail system can be significantly affordable, 
easily upgradable, and flexibly scalable. 

3.0 CONCLUSION 

The automated and intelligent health state 
awareness and adaptive controls railway system 
cannot be effectively designed and implemented 
without the integration of the artificial 
intelligence-inspired machine learning 
technology. When the identified influential 
operating factors combined with or integrated 
into the appropriate physics-models, automation 
strategies can be potentially developed to reduce 
the maintenance frequency to minimum or zero 
within a desirable maintenance-free interval. For 
several decades, the research community has 
developed the rule and statistical learning-based 
AI technologies. However, there are challenges, 



	
 

	

particularly in the machine learning and training 
where issues with sparse data exist. Even when a 
vast amount of data is available, noisy data can 
pose a significant problem. Additionally, a 
realistic complex operation of the railway 
system can introduce an unstructured 
environment and hide many critical system 
characteristics, which might not be able to 
uncover unless physics-based models are 
integrated into an AI-inspired machine learning 
framework. In addition to the prior knowledge, 
the envisioned intelligent diagnostics and 
controls framework introduces the next-
generation AI capabilities that can integrate the 
physics-based models and acquire the essential 
knowledge from many hidden states of complex 
operations and unstructured domains [11]. 
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