Virtual Risk-informed Agile Maneuver Sustainment (VRAMS) - Fabrics of Artificial Intelligence-informed Technology for Holistic Sustainment (FAITHS)

Presented to:

Defense Advanced Research Project Agency (DARPA) Arlington, VA March 24, 2017

Dy D. Le, Director

Institute for Materials, Manufacturing, and Sustainment (IMMS)

Texas Tech University (TTU)

Defying "Impossibilities": U.S. Army Aviation Sustainment Vision

Envisioning Discoveries: A System Level Approach Perspective

operations

Material Damage Precursor - Failure Correlation

Science for Autonomous Prognosis and Healing for Longevity Sustainment

Human-Machine Longevity Sustainment

Science & Technology for "Bio-Inspired Living Aerial Platform - BiLAP

Cognitive Capability for Legacy-Future Aviation Platforms

Al Machine Learning Algorithm Suites

VRAMS Concept

Platform Sustainment and Survivability

Conceptualized

Need Developed

Real-Time Self-State Awareness

"Fatigue-Free & Zero-Maintenance

Concept & Tech Demonstrating

VRAMS Concept

VEHICLE STATE AWARENESS & CAPABILITY

AVIATION TACTICAL OPERATION PANEL (ATOP)

System Baseline

System Dynamics

Capturing Damage Precursor

Real-Time M/S Modeling

Risk Assessment

Maneuver Adaptation

FAITH: Model-based System of Systems (MSoS) Concept

FAITHS-VRAMS Core Engine Algorithm Architecture Modules

DESCRIPTIVE

 Aggregate data in a way that relationships, meaningful patterns, and/or insights of anomaly might emerge

PREDICTIVE

 Quantify, forecast, and prognosticate the likelihood of future events

PRESCRIPTIVE

 Optimize hindsight/insight into the past/future, assess effect of future decisions and projected outcomes, and inform course of actions

Hindsight into the Past-Insight into Current Operation-Foresight into Future Informed Course of Actions

Real-Time Data Stream

- Descriptive Module 1: Manage Automated Data Pipeline in Real Time -

Complex Prognostic Processing – Cognitive, Scalable, & Open Architecture 12 Predictive Modules 2-3: Perform Al-based Predictive Analytics in Real Times

Enabling Autonomous Prognostics Via Machine Leaning

Complex Solution Processing – Cognitive, Scalable, & Open Architecture Prescriptive Module 4: Learn Past, Aware Present, & Predict Future

Reaching to The Future of Self-Learning Aviation

FAITHS-VRAMS Technology

- Self-Sustaining -

- ✓ "Fatigue-free" (FF) structures
- ✓ Maintenance-Free Operating Period (MFOB) – "Zero-Maintenance" (ZM)
- Self-maintenance and optimization of large data ("Big Data")
- Expeditionary missions with smaller logistic footprint

- Self-Maneuvering -

- ✓ Reconfigurable controls technologies
- Self-autorotation (rotary-wing)
- Autonomous systems (manned/ unmanned) teaming
- ✓ Fully autonomous missions

Self-Adapting -

- ✓ Self-healing and repair
- ✓ Self-informed of parts replacement demands and schedules
- ✓ Self-informed of remaining capability to achieve demanding tasks or maneuvers

QUESTIONS?

