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Defying “Impossibilities”: U.S. Army Aviation Sustainment Vision
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Envisioning Discoveries: A System Level Approach Perspective

O&S Costs

Virtual Risk-informed

 Empower Army with “breakthrough” technologies &
capabilities to conduct expeditionary maneuvers with
substantial reduction in operation & sustainment costs

Agile Maneuver Sustainment
(VRAMS) Capability

* Benefits to Soldiers:

Self-Healing/Material State Awareness

- Moving beyond Condition-based
Maintenance (CBM) to mission-
informed material state-based

“Digital Nanomaterial Architecture”- Additive Manufacturing awareness

- Unburden hardware-level
concern focus on higher-
level/mission-relevant

Material Damage Precursor - Failure Correlation operations

- Immediate vehicle health/capability state
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Science for Autonomous Prognosis and Healing

for Longevity Sustainment

Human-Machine Longevity Sustainment
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Science & Technology for “Bio-Inspired Living

Aerial Platform - BiLAP
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Cognitive Capability for Legacy-Future Aviation Platforms

Al Machine Learning

Algorithm Suites
Real-Time Self-State

VRAMS Concept Awareness
Platform Sustainment and “Fatigue-Free &
Survivability Zero-Maintenance

Concept & Tech

Conceptualized Demonstrating
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Core Engine: Virtual Risk-informed Agile Maneuver Sustainment (VRAMS)



FAITH: Model-based System of Systems (MSoS) Concept
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FAITHS-VRAMS Core Engine Algorithm Architecture Modules
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Informed Course of Actions
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Complex Data Processing — Cognitive, Scalable, & Open Architecture
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Complex Prognostic Processing — Cognitive, Scalable, & Open Architecture

12Predictive Modules 2-3: Perform Al-based Predictive Analytics in Real Time

Regression Regression Signal Detection &  Risk & Probability Multi-Scale Modeling ~ Remaining Useful
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Knowledge Discovery in Databases
Ref: Statistical Analytics System (SAS) Institute
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Enabling Autonomous Prognostics Via Machine Leaning



Complex Solution Processing — Cognitive, Scalable, & Open Architecture

13 Prescriptive Module 4: Learn Past, Aware Present, & Predict Future
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Reaching to The Future of Self-Learning Aviation



FAITHS-VRAMS Technology

- Self-Sustaining -
v' “Fatigue-free” (FF) structures
v" Maintenance-Free Operating Period

(MFOB) - “Zero-Maintenance” (ZM)
v" Self-maintenance and optimization of

large data (“Big Data”)
v" Expeditionary missions with smaller

logistic footprint

- Self-Maneuvering -
v" Reconfigurable controls technologies
v" Self-autorotation (rotary-wing) Missions
v" Autonomous systems (manned/
~ unmanned) teaming d Reality

v" Fully autonomous missions

Past & Present

Automated
v’ Self-healing and repair Logistic

v' Self-informed of parts replacement Planning

demands and schedules
v Self-informed of remaining capability to Smaller Logistics Footprint
achieve demanding tasks or maneuvers

FAITHS: VRAMS Cognitive Capability for Legacy and Future Aviation Platforms
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