

Texas Produced Water Consortium

Tuesday, Sep 10, 2024

Summary of Standards & Guidelines Reviewed

Standards

Clean Water Act TX RRC Pilot Study Framework TCEQ TPDES TCEQ TLAP Other states: NM, OK, MT, PA, WY

Overview

Great opportunities for beneficial use of treated produced water in:

Industry Land application / agricultural irrigation Discharge to surface water

TPW applications may be subject to **standards** and/or **guidelines to protect humans** and the **environment**¹.

¹ Amy Hardberger. (2024) The Challenges and Opportunities of Beneficially Reusing Produced Water, *Duke Environmental Law & Policy Forum*, <u>https://scholarship.law.duke.edu/delpf/vol34/iss1/1</u>

Clean Water Act

Federal Water Pollution Control Act (FWPCA)

Codified in Code of Federal Regulations (CFR) **Title 33** U.S. Code § 1251 et seq¹ regulations

Title 40 CFR addresses Protection of the Environment Chapter I² Subchapters A – U, Parts 1 – 1099 *Outlines* Environmental Protection Agency (EPA)

Clean Water Act

Water Programs¹

40 CFR Chapter I, Subchapter D (Parts 100-149)

Parts 122 - 125 outline

NPDES National Pollutant Discharge Elimination System

§122.2 Definitions (discharge, pollutant, hazardous substances, etc.)

Part 123	State program requirements
Part 130	Water quality planning and management
Part 131	Water quality standards (WQS)
Part 144-147	Underground injection control
Part 148	Hazardous waste injection restrictions

Clean Water Act

40 CFR Chapter I, Subchapter N (Parts 400-471)

Effluent Guidelines and Standards¹ Part **401** General provisions **§401.1511 Toxic pollutants** *benzene, ethylbenzene, naphthalene, and toluene*

- Part **419** Petroleum refining
- Part 435 Oil and gas extraction
- Part 437 Centralized waste treatment category

¹<u>https://www.ecfr.gov/current/title-40/chapter-I/subchapter-N</u>

EPA Oil and Gas Extraction Effluent Guidelines

Agricultural and Wildlife Water Use Subcategory 40 CFR 435 Subpart E promulgated 1979

Allows for discharge of produced water from onshore facilities into navigable waters west of the 98th meridian if the produced water has a use in agriculture or wildlife propagation.

EPA *currently evaluating* whether affordable and available treatment technologies can reduce discharge of pollutants.

For additional information on the study please contact: Jesse Pritts <u>pritts.jesse@epa.gov</u> 202-566-1038

¹<u>https://www.epa.gov/eg/oil-and-gas-extraction-effluent-guidelines</u>

EPA Oil and Gas Extraction Effluent Guidelines

EPA Pollutant Concentration Tool for Agricultural and Wildlife Water Use

Tool provides pollutant concentration data reflecting various uses from the scientific literature.

Tool can be used by NPDES permitting authorities and others to inform what levels of pollutants contained in produced water may be protective of various beneficial uses.

Texas Railroad Commission (RRC)

Tx HB 3516 (87th Leg, 2021) encouraged recycling¹

RRC recycling authority from Natural Resources Code §122

RRC promulgated rules in 16 TAC §3.8 (d) (7) (A), (B), and (C) Recycling of produced water

RRC released the Produced Water Beneficial Reuse Framework for Pilot Study Authorization ("Pilot Study Framework") for land application

Requires monitoring of hundreds of WQ constituents, effluent limits on 38 parameters No ponding, no runoff

TCEQ TPDES

1998 EPA *authorized* **TCEQ** *to manage* **NPDES** program for Texas (named **TPDES**)

TCEQ Form 10055 Industrial Wastewater Permit Application required for a **TPDES** or **TLAP permit**

2019 Texas HB 2771 *directed* **TCEQ** *to seek primacy from* **EPA** for discharges of treated produced water into "water in the State"

2021 (Jan 15) **EPA** *approved, and upon delegation, the* **State** *program transferred from* **RRC to TCEQ TPDES**

TCEQ Form 20893 Industrial Wastewater Application Checklist for Oil and Gas *is required*

TCEQ TLAP

TLAPs *authorize* disposal of treated domestic and <u>non-oil-and-gas</u> wastewater at a property, not discharge into water in the State.

Types of TLAPs: evaporation (30 TAC 309), **surface irrigation** (30 TAC 309), **subsurface irrigation** (30 TAC 309), and **subsurface area drip dispersal system** (SADDS, 30 TAC 222).

TCEQ Form 10054 is required.

Application process involves review of site aspects including: Geologic- surface water, groundwater, wells, topography, etc.) and Agronomic- water application rate, average rainfall, evapotranspiration, nutrient application rate, cropping plan, dry matter production, etc.)

Per 30 TAC 222 and 309 All SADDS and subsurface drip systems have a max application rate of 0.1 gal/ft²/day (4.88 acre-feet/acre per year)

									Lowest Value	Next Group	Highest Group							
Constituent	CAS	Units 🗸	TX RRC	Corn	Sorghum	Cotton	Wheat 🗸	Std Fig 3	NMAC	GWPCLT	GWPC ST	NMAC2	MDEQ	MDEQ RRV	MDEQ Crit	Cattle	Livestock	GWPC LS
Alkalinity, tot	-	mg/Las CaCO3	100															
Boron	7440-42-8	mg/L	0.75	2	3	3	3		0.75	0.75	2		5			5	5	5
Chloride	16887-00-6	mg/L	100	533	710	710												
Chlorine	7782-50-5	mg/L										0.011						
Electrical Conductivity	-	µS/cm	1500	1100	1700	5100	4000											
Fluoride	16984-48-8	mg/L	1					1		1	15		3	0.2	2	2		2
Hardness, tot	-	mg/L	150															
рH	-		6.5-8.4										6.0-9.0					
Phosphorus	7723-14-0	mg/L	5															
Sodium	7440-23-5	mg/L	100	533	710	710												
Sodium Absorption Ratio	-	mg/L	4	10	10	10	13											
Sulfate	14808-79-8	mg/L												100				
Total Dissolved Solids	-	mg/L	1000	704	1088	3264	2200											
Turbidity	-	NTU	30															

		~	
	D		\sim
			-
LEADING.	TEXAS	EN.	Rein
011. & \$141	 CBHL • 	110	17615

Lowest Value Next Group Highest Group

Constituent	CAS	Units	T	TX RRC	Corn	Sorghum	Cotton	Wheat	Std Fig 3	NMAC	GWPC LT	GWPC ST	NMAC2	MDEQ	MDEQ RRV	MDEQ Crit	Cattle	Livestock	GWPC LS
Aluminum	7429-90-5	mg/L		5					5	5	5	20					0.5		5
Arsenic	7440-38-2	mg/L		0.1					0.1	0.1	0.1	2		0.5	0.001	0.5	0.05	0.2	0.2
Beryllium	7440-41-7	mg/L		0.1					0.1		0.1	0.5							
Cadmium	7440-43-9	mg/L		0.01					0.01	0.01	0.01	0.05			0.00003	0.08	0.005	0.05	0.05
Chromium	7440-47-3	mg/L		0.1					0.1	0.1	0.1	1			0.01	1		1	1
Cobalt	7440-48-4	mg/L		0.05					0.05	0.05	0.05	5			0.05	1	1	1	1
Copper	7440-50-8	mg/L		0.2					0.2	0.2	0.2	5		0.5	0.002	0.5	1	0.5	10.5
Iron	7439-89-6	mg/L		5					5		5	20							
Lead	7439-92-1	mg/L		5					5	5	5	10		0.1	0.0003	0.1	0.015	0.1	0.1
Lithium	7439-93-2	mg/L		2.5					2.5		2.5	2.5							
Manganese	7439-96-5	mg/L		0.2					0.2		0.2	10					0.05		
Mercury	7439-97-6	mg/L											0.00077				0.01	0.01	0.01
Molybdenum	7439-98-7	mg/L		0.01					0.01	1	0.01	0.05							
Nickel	7440-02-0	mg/L		0.2					0.2		0.2	2					0.25		
Selenium	7782-49-2	mg/L		0.02					0.02		0.02	0.02		0.05	0.001	0.05	0.05	0.05	0.05
Strontium (pCi/L)	7440-24-6	mg/L								8									
Total Metals		mg/L		10															
Vanadium	7440-62-2	mg/L		0.1					0.1		0.1	1					0.1		0.1

									Lowest Value	Next Group	Highest Group							
Constituent	CAS	Units 🔻	TX RRC	Corn	Sorghum 🔽	Cotton	Wheat 🔽	Std Fig 3	NMAC	GWPCLT	GWPC ST	NMAC2	MDEQ	MDEQ RRV	MDEQ Crit	Cattle	Livestock	GWPC LS
Zinc	7440-66-6	mg/L	2					2		2	10		25	0.008	25	5		24
Cyanide, tot	57-12-5	mg/L										0.0052						
Nitrite+Nitrate	14797-65-0 14797-55-8	mg/Las N															132	100
Nitrogen, ammonia	7664-41-7	mg/L as N	30															
Nitrogen, nitrate	14797-55-8	mg/Las N	45										100	0.02	100			
Nitrogen, nitrite	14797-65-0	mg/Las N	10										10	0.01	10			10
4-4'-DDT and derivatives	50-29-3	mg/L										0.000001						
Polychlorinated Biphenyls	1336-36-3	mg/L										0.000014						
Total Oil and Grease	-	mg/L	35										10					
Total Organic Carbon	-	mg/L	10															
Total Petroleum Hydrocarbons	-	mg/L	10															
Gross Alpha/Beta	-	pCi/L	15															
Radium 226	13982-63-3	pCi/L	30															

RRC Salinity limits

TDS Total Dissolved Solids**EC** Electrical conductivity

Ammonia RRC Limit as Nitrogen

N Nitrogen

1000 mg/L 1500 µS/cm = 1.5 dS/m suitable for most crops and soils

30 mg/L as nitrogen

Irrigating 48 inch/yr = 4 acre feet/yr = 326 pounds ammonia-nitrogen per acre

Some soil-crop combinations able to assimilate this mass loading, while others would not

Sodium Adsorption Ratio (SAR)

SAR		=	3.55 meq/L ^{0.5}
Hardness	150 mg/L as $CaCO_3$	=	3.0 meq/L
Sodium	100 mg/L	=	4.35 meq/L
Assuming max I	RRC limits for		

Assuming max RRC limit ofSodium100 mg/L=4.35 meq/LHardness at least119 mg/L as $CaCO_3 =$ 2.38 meq/LSAR<</td> $4.0 \text{ meq/L}^{0.5}$

Radionuclides

Considering Ra 226 half-life 1600 yr

decay emission mainly alpha particles with RRC Gross Alpha/Beta limit of **15 pCi/L**

RRC limit of 30 pCi/L for Ra 226 appears high

Ra 228half-life 5.75 yrdecay emission mainly alpha particles with
RRC Gross Alpha/Beta limit of 15 pCi/L

RRC limit of 30 pCi/L for Ra 228 appears high

USBR Report 157 (2011) p.60 "[Radium] (226+228) is regulated at a maximum concentration of 5 pCi/L in drinking water sources; therefore, most sources require treatment to lower levels in produced water to meet this standard"

Hazardous substances and toxic pollutants

Substance	Volatility	CAS	Hazardous Substance ¹ (40 CFR §116.4)	Toxic Pollutants ² (40 CFR §401.15)
Benzene	VOC	71432	\checkmark	\checkmark
Toluene	VOC	108883	\checkmark	\checkmark
Ethylbenzene	VOC	100414	\checkmark	\checkmark
Xylene (mixed)	VOC	1330207	\checkmark	
Naphthalene	S/VOC	91203	\checkmark	\checkmark
Phenol	SVOC	108952	\checkmark	\checkmark

¹ <u>https://www.ecfr.gov/current/title-40/chapter-I/subchapter-D/part-116/section-116.4</u>
 ² <u>https://www.ecfr.gov/current/title-40/chapter-I/subchapter-N/part-401/section-401.15</u>

Toxicity Tests

Whole Effluent Toxicity (WET) Tests¹

Acute vs chronic

Aquatic

EPA 1001.0 Fathead minnow, *Pimephales promelas*, larval survival and teratogenicity

EPA 1002.0 Daphnia, *Ceriodaphnia dubia*, survival and reproduction

EPA 1003.0 Green alga, Selenastrum capricornutum, growth (species is now known as *Raphidocelis subcapitata*)

Terrestrial

earthworm (*Eisenia fetida*)

Phytotoxicity

alfalfa (*medicago sativa*)

Northern wheatgrass (*Elymus lanceolatus*)

Methods for sub-lethal endpoints

Zebrafish embryo toxicity (ZFET)

¹ <u>https://www.epa.gov/cwa-methods/whole-effluent-toxicity-methods</u>

Reliability is built on redundancy, robustness, and resilience

¹ Pecson et al. (2015) Achieving Reliability in Potable Reuse: The Four Rs, *J. American Water Works Association*, http://dx.doi.org/10.5942/jawwa.2015.107.0047

FIGURE 5 (A) Four diverse chemical contaminants and (B) the effectiveness of treatment processes in removing chemical and microbial contaminants

Α

	17β-estradiol	Carbamazepine	NDMA	1,4-dioxane
Description	Synthetic sex hormone for birth control	Anticonvulsant/ mood stabilizer	Disinfection by-product	Stabilizer
Structure	HO H H	O NH ₂	`N ^{^N} *o 	\bigcirc°
Characteristics	Large MW Uncharged Biodegradable Low photolysis Sensitive to OH ⁻	Large MW Uncharged Low biodegradation Low photolysis Sensitive to OH [.]	Small MW Uncharged Low biodegradation High photolysis Low reaction to OH ⁻	Small MW Uncharged Low biodegradation Low photolysis Sensitive to OH ⁻

¹ Pecson et al. (2015) Achieving Reliability in Potable Reuse: The Four Rs, J. American Water Works Association, <u>http://dx.doi.org/10.5942/jawwa.2015.107.0047</u>

В

Compound	Cl ₂	Biological	MF	GAC	O ₃	UV/AOP	UV	RO					
Chemical contaminan	Chemical contaminants												
17β-estradiol	Excellent	Excellent	Poor	Excellent	Excellent	Excellent	Poor	Excellent					
Carbamazepine	Poor	Poor	Poor	Good	Excellent	Excellent	Poor	Excellent					
NDMA	Poor	Fair	Poor	Poor	Poor	Poor	Good	Fair					
1,4-dioxane	Poor	Poor	Poor	Poor	Fair	Good	Poor	Fair					
Microbial contaminan	Microbial contaminants												
Giardia	Fair	Unknown	Excellent	Poor	Good	Unknown	Excellent	Excellent					
Cryptosporidium	Poor	Unknown	Excellent	Poor	Fair	Unknown	Excellent	Excellent					
Virus	Excellent	Unknown	Poor	Poor	Good	Unknown	Good	Excellent					
Bacteria	Good	Unknown	Good	Poor	Good	Unknown	Excellent	Excellent					

AOP—advanced oxidation process, Cl_2 —chlorine, GAC—granular activated carbon, MF—microfiltration, MW—molecular weight, NDMA—*N*-nitrosodimethylamine, O₃—ozone, OH —hydroxide, RO—reverse osmosis, UV—ultraviolet irradiation

*UV doses applied in AOP settings (typically 500–1,000 mJ/cm²), which often are in great excess of the doses needed for pathogen inactivation (50–100 mJ/cm²).

¹ Pecson et al. (2015) Achieving Reliability in Potable Reuse: The Four Rs, J. American Water Works Association, <u>http://dx.doi.org/10.5942/jawwa.2015.107.0047</u>

FIGURE 6 Effectiveness of a robust advanced treatment train (MF/RO/UV/AOP) in the control of chemical contaminants and pathogens*

AOP—advanced oxidation process, Crypto—Cryptosporidium, NDMA—N-nitrosodimethylamine, RO—reverse osmosis, UV—ultraviolet irradiation

*Dotted lines show concentrations below public health thresholds.

¹ Pecson et al. (2015) Achieving Reliability in Potable Reuse: The Four Rs, J. American Water Works Association, <u>http://dx.doi.org/10.5942/jawwa.2015.107.0047</u>

Stream discharge

Salinity?

What is the basis for a <u>minimum</u> salinity for streamflow discharge (e.g., Red Bluff Reservoir or Pecos River)?

Why would there be any restriction of water that is of the same quality as rainwater to be a concern about entering any hydrologic system if mimicking rate and pace of historic patterns?