

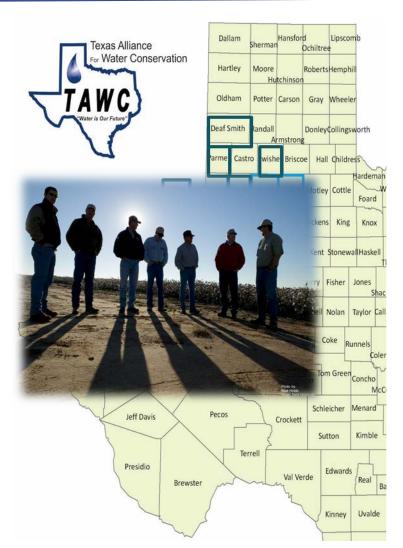
Cotton - Field to Gin

Yesterday Today Tomorrow

Texas Alliance for Water Conservation

Rick Kellison, Project Director Donna Mitchell, PhD.

College of Agricultural Sciences
& Natural Resources


Texas Alliance for Water Conservation

- Project established 2004 from a State of Texas grant administered through the Texas Water Development Board.
- Project is Producer Driven and Board Directed.

Project Objectives

- Develop and Demonstrate new technologies and management tools and strategies that result in less water being used with enhanced profitability.
- Identify effective crop and irrigation systems.
- Impact producer decision-making.

Ogallala Aquifer

- Aquifer covers 174,000 square miles across 8 states in the High Plains of the United States.
- Over 95% water pumped is for irrigated agriculture.

The Texas South Plains on the southern end of the aquifer is an intensive agricultural production area and the focus of this program.

Field to Gin

Texas Cotton Production

- Texas No. 1 Cash Crop
- > Statewide:
 - 65% of acres are rain-fed
 - 35% are irrigated
- > High Plains:
 - 60% of acres are rain-fed
 - 40% irrigated
- Weather (rainfall) is most influential factor in yield
 - Rain-fed: 250-650 lbs/ac
 - Irrigated: 500-1,500 lbs/ac
- Harvest Methods

Stripper: Lower purchase & maintenance cost **Picker**: Higher purchase & maintenance cost

Water: Doing More with Less

In 1980, the peak of irrigated acreage on the High Plains:


- 2.2 million acres of cotton planted
- 2 million acres harvested
- 1.59 million bales produced

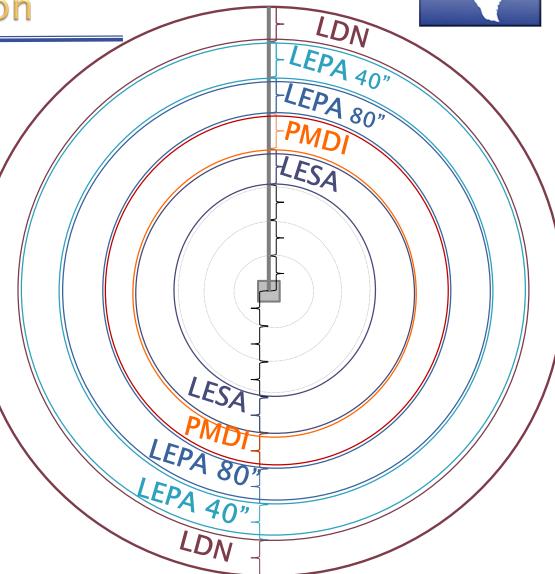
In 2010:

- 1.74 million acres of irrigated cotton planted (LESS than the peak)
- 1.68 million acres harvested
- > 3.5 million bales produced (120% increase in yield on LESS acreage)

More than fiber

Cotton Yield Increase

1980-2016


1980 1984 1988 1997 1996 2000 2004 2008 2017 2016
Year

Pivot Irrigation Technology

2016 Demonstration

- >LDN
 - Low drift nozzels
- **>LEPA**
 - **-40**"
 - **80**"
- >PMDI
 - Precision MobileDrip Irrigation
- **LESA**
 - Broadcast spray 80"

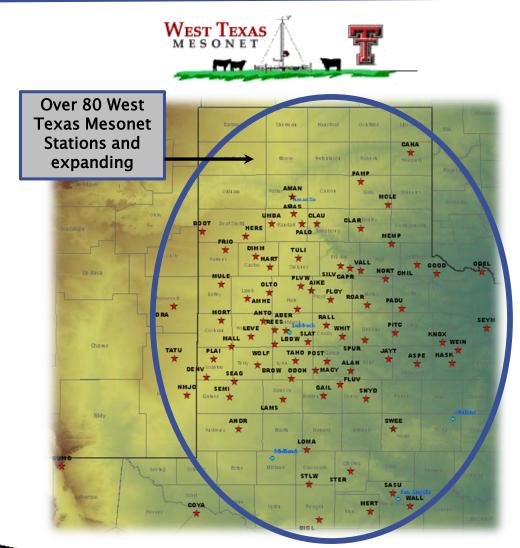
*450 gallon per minute from 3 wells

TAWC

LESA Broadcast Spray

LEPA 80"

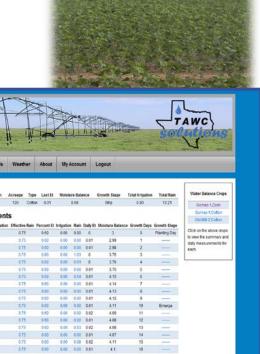
PMDI



Potential Evapotranspiration

TAWC-Solutions

ET Irrigation Scheduling Tool


Free web-based tool used to determine:

- When to apply water.
- How much water to apply.
- How to achieve specific management goals.


www.tawcsolutions.org

Irrigation Scheduler - In-season decisions

Crop Summary

Site	Weather Station	Acreage	Type	Last Et	Moisture Balance	Growth Stage	Total Irrigation	Total Rain
Old Mill-1	Abernathy	120	Cotton	0.01	0.69	Strip	0.00	12.21

Daily Measurements

Date	Effective Irrigation	Effective Rain	Percent Et	Irrigation	Rain	Daily Et	Moisture Balance	Growth Days	Growth Stage
0 2010-05-11	0.90	0.75	0.60	0.00	0.00	0	3	0	Planting Day
1 2010-05-12	0.90	0.75	0.60	0.00	0.00	0.01	2.99	1	
2 2010-05-13	0.90	0.75	0.60	0.00	0.00	0.01	2.98	2	
3 2010-05-14	0.90	0.75	0.60	0.00	1.03	0	3.75	3	
4 2010-05-15	0.90	0.75	0.60	0.00	0.01	0	3.76	4	
5 2010-05-16	0.90	0.75	0.60	0.00	0.00	0.01	3.75	5	
6 2010-05-17	0.90	0.75	0.60	0.00	0.54	0.01	4.15	6	
7 2010-05-18	0.90	0.75	0.60	0.00	0.00	0.01	4.14	7	
8 2010-05-19	0.90	0.75	0.60	0.00	0.00	0.01	4.13	8	
9 2010-05-20	0.90	0.75	0.60	0.00	0.00	0.01	4.12	9	
10 2010-05-21	0.90	0.75	0.60	0.00	0.00	0.01	4.11	10	Emerge
11 2010-05-22	0.90	0.75	0.60	0.00	0.00	0.02	4.09	11	
12 2010-05-23	0.90	0.75	0.60	0.00	0.00	0.01	4.08	12	
13 2010-05-24	0.90	0.75	0.60	0.00	0.03	0.02	4.08	13	
14 2010-05-25	0.90	0.75	0.60	0.00	0.00	0.01	4.07	14	
15 2010-05-26	0.90	0.75	0.60	0.00	0.08	0.02	4.11	15	

Water Balance Crops

Gomez-1,Corn

Gomez-1,Cotton

Old Mill-2, Cotton

Click on the above crops to view the summary and daily measurements for each.

Yesterday/Today/Tomorrow

Yesterday-

- Open ditch high pressure pivot
 - > 50% Efficiency

Today-

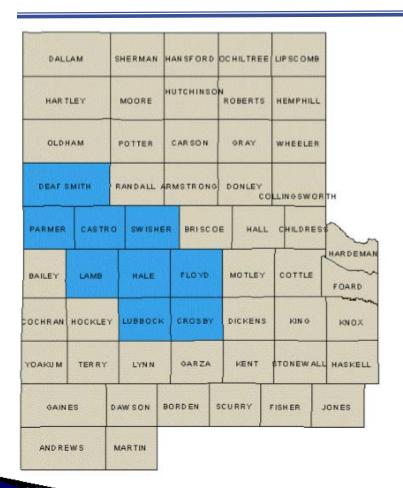
- > SDI
 - > 98% Efficiency
- Soil moisture monitoring
- PMDITM
- > VRI
- Ability to measure plant stress
- Water management tools

Tomorrow-

- ➤ Can we expect more of the same?
- **▶** Best Management Practices

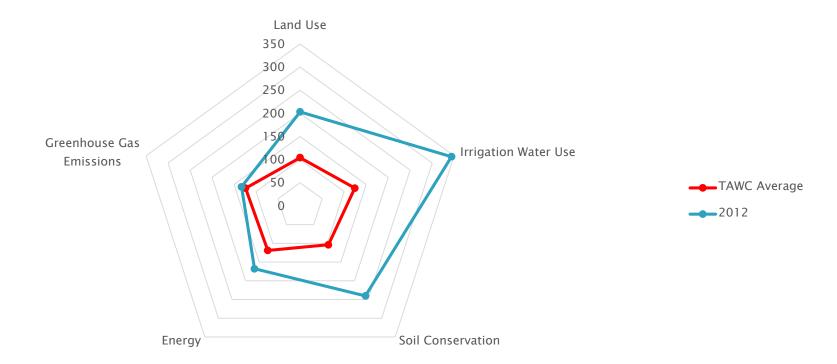
Fieldprint Calculator

- Analytical tool designed by Field to Market: The Alliance for Sustainable Agriculture
- Evaluates crop production operations and computes their sustainability and operational efficiency
- A producer's sustainability is evaluated based on metrics in the calculator


Metrics

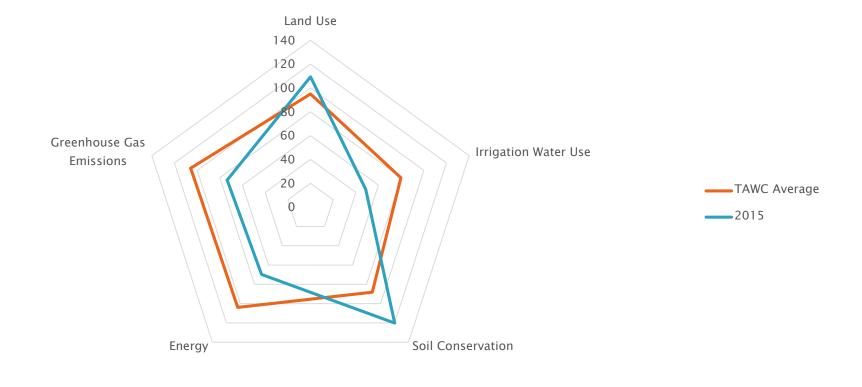
- > Land Use
- Irrigation Water Use
- Energy Use
- Greenhouse Gas Emissions
- Soil Conservation
- > Soil Carbon
- Water Quality Index

TAWC Pilot



- Years of Production:
 2007 2015
- > 26 Producers, 34 sites, 193 Observations
- > Field size: 13 398 acres
- Tillage Practices: No-till, Strip-Till, Conventional
- Irrigation: Furrow, Pivot, SDI

Lloyd Arthur – 2012



Lloyd Arthur – 2015

Research Results

- Analyzing the relationship between gross margin and sustainability
 - > Development of a profitability metric
- Evaluating specific production practices (tillage, irrigation systems) to determine the magnitude of their impact

Thank You!

Texas Alliance for Water Conservation

