WATER SUPPLY & DEMAND DAN KRIEG CROP PHYSIOLOGIST

SOUTHERN HIGH PLAINS

INCHES

GROWING SEASON RAIN LUBBOCK TEXAS

IRRIGATION WATER SUPPLY

- ONE CUBIC FOOT OF WATER= 7.48 GALLONS
- ONE ACRE=43560 SQUARE FEET
- ONE ACRE FOOT OF WATER = 325,829 GALLONS
- ONE ACRE INCH= 27,152 GALLONS
- 1 GPMA= 1440GPAD/27152GPACIN
 = 0.053 AC IN DAY⁻¹

IRRIGATION WATER SUPPLY 27,225 gallons/acre inch

Gallons/Min/Acre	Acre Inches/Day
1.0	0.053
2.0	0.107
3.0	0.160
4.0	0.214
5.0	0.267
6.0	0.320
7.0	0.373

IRRIGATION APPLICATION RATES 125 acre pivot

VOLUME GPMA	0.5in	1.0 in	1.5 in	Acre Inches/hour
3	80 hrs	160 hrs	240 hrs	0.78
4	57 hrs	113 hrs	170 hrs	1.10
5	45 hrs	90 hrs	136 hrs	1.39
6	38 hrs	75 hrs	113 hrs	1.65

SOIL WATER DATA

TEXTURE	FIELD CAPACITY Inches/foot	PERMANENT WILTING POINT Inches/foot	PLANT AVAILABLE WATER Inches/foot	INITIATION OF STRESS 60% depletion of PAW	INFILTRATION RATE Inches/hour
PULLMAN CLAY LOAM	4.38	3.05	1.33	0.80	0.21
OLTON LOAM	3.86	2.36	1.50	0.90	0.77
ACUFF LOAM	3.25	2.03	1.22	0.73	1.28
AMARILLO FINE SANDY LOAM	2.88	1.90	0.98	0.59	1.84
PATRICIA & AMARILLOL OAMY FINE SAND	2.60	1.62	0.98	0.59	5.79

POTENTIAL EVAPOTRANSPIRATION

ET_o

f(u)

С

W R_n

MODIFIED PENMAN EQUATION

 $ET_o = c[W-R_n + (1-w) - f(u) - (e_a-e_d)]$

- = potential crop evapotranspiration (mm/day)
- = temperature-related weighting factor
- = net radiation in equivalent evaporation (mm/day)
 - = wind related function
- (e_a-e_d) = vapor pressure deficit of the air at mean air temperature
 - = adjustment factor to compensate for the effect of day and night weather conditions

2013 DAILY PET BY LOCATION

2013 SEASONAL PET BY LOCATION

CROP COEFFICIENTS

 $\mathbf{Kc} = \mathbf{ET}_{\mathbf{c}} / \mathbf{ET}_{\mathbf{p}}$

Kc = crop specific, varies with stage of development amount of ground cover, and soil water availability

CROP COEFFICIENTS-COTTON

ACCUMULATED HEAT UNITS

2013 COTTON WATER USE

Joe Hurst 2013 | Drip | PCPB02B300066 06-10-2013 (0:00 AM) to 10-01-2013 (11:59 PM) - America/Chicago

Sensors: All, Use Interpolation: Yes, Show Zeros: No

Joe Hurst 2013 | Drip | PCPB02B300066 06-10-2013 (0:00 AM) to 10-01-2013 (11:59 PM) - America/Chicago

Sensors: All, Use Interpolation: No, Show Zeros: No

JOE HURST DRIP COTTON

2012

- COTTON YIELD = 1850 POUNDS/ACRE
- RAIN=5.6 INCHES
- IRRIGATION = 18.5 INCHES
- @ 4 GPM
- TOTAL WATER USE EFFICIENCY = 76.8 POUNDS/ACRE INCH

2013

- COTTON YIELD = 1920 POUNDS/ACRE
- RAIN = 8.75 INCHES
- IRRIGATION = 14.8 INCHES
- @ 4 GPM
- TOTAL WATER USE EFFICIENCY = 81.4 POUNDS/ACRE INCH

CORN & SORGHUM CROP WATER USE

TTU - Eddie Teeter 2013 | Drip | PCPB02B301545 05-20-2013 (0:00 AM) to 09-15-2013 (11:59 PM) - America/Chicago

Sensors: All, Use Interpolation: Yes, Show Zeros: No

TTU - Eddie Teeter 2013 | Drip | PCPB02B301545 05-20-2013 (0:00 AM) to 09-20-2013 (11:59 PM) - America/Chicago Sensors: All, Use Interpolation: No, Show Zeros: No

EDDIE TEETER CORN-2013

DRIP IRRIGATED	PIVOT IRRIGATED
RAIN = 13 INCHES	RAIN = 12.5 INCHES
IRRIGATION = 16.9 INCHES	IRRIGATION = 16.0 INCHES
TOTAL WATER = 29.9 INCHES	TOTAL WATER = 28.5 INCHES
GRAIN YIELD = 240.5 BU/ACRE	GRAIN YIELD = 239.5 BU/AC
WATER USE EFF = 8.04 BU/AC IN	WATER USE EFF = 8.4 BU/AC IN

DAILY & SEASONAL CROP WATER USE

CROP	MAXIMUM DAILY WATER USE (Inches)	VOLUME REQUIREMENT (GPMA)	DURATION (Days)	SEASONAL WATER USE (Inches)
COTTON	0.25	5	40	22-24
CORN	0.35	7	60	32-35
SORGHUM	0.30	6	40	28-30
WHEAT	0.25	5	75	20-22
PEANUTS	0.30	6	70	30-32

Critical Developmental Stages

- **Corn:** Two weeks prior to tasseling is the most critical period when establishing number of rows and kernels/row Tasseling & Silking, Water Stress and High Temperature desynchronize pollen shed and silk receptivity Early seed fill, Reduced supply of photosynthate results in kernel abortion
- Cotton: First square to first flower establishes number of harvestable fruit. First flower through fourth week of flowering establishes harvestable boll number Bolls less than 5 days old are sensitive to water and nutrient stress causing abortion
- Sorghum: Panicle initiation through boot and heading affects seed/head, Water Stress during early grain fill through dough stage affects seed size
- Peanuts: Dry surface soil at pegging affects pod number, Water Stress during Pod Fill affects kernel number and size

Regression Coefficients For Yield Components and Water Supply at Various Developmental Stages

Stage of Development	Boll Number/Acre	Lint/Boll	Lint Yield/Acre
TWS	0.34	0.35	0.12
SI-FF	0.58	0.65	0.73
FF-PB	0.55	0.04	0.52
PB-M	-0.45	-0,56	-0.43

TWS= Total Water Supply; SI=Square Initiation; FF=First Flower; PB= Peak Bloom; M=Maturity

COTTON WATER USE EFFICIENCY TEXAS HIGH PLAINS

BIOLOGICAL-ECONOMIC WATER USE EFFICIENCY

CROP	INTERCEPT	SLOPE	\$/INCH
COTTON	4	160 SEED COTTON (65-70 Lint)	~50
CORN	10	600	~50
SORGHUM	6	480	~35
WHEAT	4	200	~27
PEANUTS	6	250	~50

Water – Nutrient Interactions FERTIGATION

- Nitrogen-Quantity and Source
- NO₃⁻ Losses to leaching
- Increase Supply as Yield Potential Increases
- NH₄+Prefered Source by Crops

NITROGEN REQUIREMENTS/INCH OF IRRIGATION WATER

CORN=10bu/in at 1.0-1.25 #N/bu =10-12#N/Inch SORGHUM= 8 bu/in at 0.81#N/bu =6-7#N/Inch

COTTON = 65-75# Lint/in at 3-4 #N/100[#]

=5-7 #N/Inch

PEANUTS = 250 #/in at 3-4#N/100# = 7-10#N/Inch WHEAT = 3 bu/in at 1.25#N/bu = 3-4#N/Inch

CROP PREFERENCE N SOURCE

- \succ Nitrate –NO₃
- Predominant form of plant available Nitrogen within relatively short time after application
- Movement of NO₃ into plant tissues requires metabolic energy
- Reduction of NO₃ to NH₄ requires 8 electrons of reducing power; This is equivalent to ½ mole of glucose

> Ammoniacal Nitrogen – NH₄

- Rapidly moves into plant tissue
- No cost to reduce prior to incorporation into amino acid

Cotton Response to Nitrogen Source

GRAIN SORGHUM RESPONSE NITROGEN SOURCE

NITROGEN:P2O5 RATIO

COTTON RESPONSE TO ZINC APPLICATIONS

TREATMENT	Fine Sandy Loam 0.28 PPM Zn	Clay Loam 0.65 PPM Zn
Control	1120	1240
Soil Applied - Zinc Sulfate (1.0# Zn/ac) Preplant with N & P Application	1190	1270
Foliar Applied-NZn (0.5 pint/acre) Two Applications	1250	1350

Tests conducted for 3 years (1985,1986, & 1987) at Brownfield and New Deal Texas

SUMMARY

- Lack of an adequate water supply throughout the life of most crop plants is the primary cause of yields being only a fraction of the genetic yield potential
- When the water supply is adequate, the availability of adequate essential nutrients is responsible for less than optimum growth rates and development of reproductive organs
- Understanding the needs and management of rate limiting nutrient supplies will greatly increase yield and quality of product within the limits of the water supply