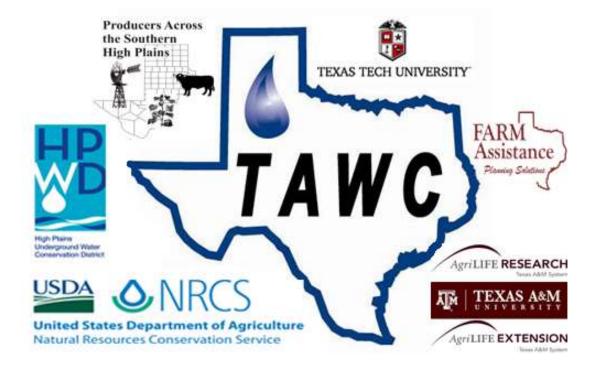

# 'AN INTEGRATED APPROACH TO WATER CONSERVATION FOR AGRICULTURE IN THE TEXAS SOUTHERN HIGH PLAINS'


## 11th Annual Comprehensive Report 2005-2015

to the Texas Water Development Board



**OCTOBER 20, 2016** 

## **Texas Alliance for Water Conservation participants:**



C. West, P. Brown, R. Kellison, P. Johnson, J. Pate, S. Borgstedt

## Appreciation is expressed to Texas Water Development Board



With their vision for the future of Texas and their passion for the protection of our Water Resources this project is made possible.

The future of our region and our state depends on the protection and appropriate use of our water resources.

## Table of Contents

| List of Tables                                                                                 | iv |
|------------------------------------------------------------------------------------------------|----|
| List of Appendix Tables                                                                        | iv |
| List of Figures                                                                                | v  |
| List of Appendix Figures                                                                       |    |
| Water Conservation Demonstration Producer Board                                                | 1  |
| Texas Alliance for Water Conservation 2015 Participants                                        | 2  |
| An Integrated Approach to Water Conservation for Agriculture in the Texas Southern High Plains | 3  |
| Objective                                                                                      |    |
| Background                                                                                     | 3  |
| Overall Summary of Years 2005-2015                                                             | 5  |
| Water Use and Profitability                                                                    |    |
| 2015 Project Year                                                                              |    |
| Project years 1 through 11 (2005-2015)                                                         | 13 |
| Water Use and Efficiency Discussion                                                            | 15 |
| Overall Discussion                                                                             |    |
| 2015 Weather data (See Appendix for 2005-2014 data)                                            | 20 |
| 2015 Supplementary Grants to Project (See Appendix for 2005-2014 data)                         | 22 |
| 2015 Donations to project (See Appendix for 2005-2014 data)                                    |    |
| TAWC Water College Sponsors                                                                    |    |
| TAWC Field Day Sponsors                                                                        | 23 |
| 2015 Visitors to the Demonstration Project sites                                               | 23 |
| 2015 Presentations (See Appendix for 2005-2014 data)                                           | 23 |
| 2015 Related Non-refereed Publications (See Appendix for 2005-2014 data)                       | 24 |
| 2015 Related Refereed Journal Articles (See Appendix for 2005-2014 data)                       |    |
| 2015 Popular Press (See Appendix for 2005-2014 data)                                           |    |
| 2015 Theses and Dissertations (See Appendix for 2005-2014 data)                                | 26 |
| Site Descriptions (See Appendix for 2005-2014 data and terminated sites)                       |    |
| Phase II Changes and Alterations                                                               | 27 |
| Site 4                                                                                         | 30 |
| Site 5                                                                                         | 33 |
| Site 6                                                                                         |    |
| Site 7                                                                                         |    |
| Site 8                                                                                         |    |
| Site 9                                                                                         |    |
| Site 10                                                                                        |    |
| Site 11                                                                                        |    |
| Site 14                                                                                        |    |
| Site 15                                                                                        |    |
| Site 17                                                                                        |    |
| Site 19                                                                                        |    |
| Site 21                                                                                        |    |
| Site 22                                                                                        |    |
| Site 24                                                                                        |    |
| Site 26                                                                                        |    |
| Site 28                                                                                        |    |
| Site 30                                                                                        |    |
| Site 31                                                                                        |    |
| Site 32                                                                                        |    |
| Site 33                                                                                        |    |
| Site 34                                                                                        |    |
| Site 35                                                                                        |    |
| Site C37                                                                                       | 99 |

| Site C38                                                                              | 102 |
|---------------------------------------------------------------------------------------|-----|
| Site C39                                                                              | 105 |
| Site C50                                                                              | 108 |
| Site C51                                                                              | 111 |
| Site C52                                                                              | 114 |
| Site C53                                                                              | 117 |
| Site C54                                                                              |     |
| Site C56                                                                              |     |
| Site C57                                                                              |     |
| Site C58                                                                              |     |
| Site C59                                                                              |     |
| Site C60                                                                              |     |
| Phase II Economic Summaries of Results from Monitoring Producer Sites in 2014-2015    |     |
| Phase II - Economic assumptions of data collection and interpretation                 |     |
| Economic Term Definitions                                                             |     |
| Phase II - Assumptions of energy costs, prices, fixed and variable costs (Tables 4-6) |     |
| Reports by Specific Task                                                              |     |
| TASK 2: Administration and Support                                                    |     |
| 2.1: Project Director: Rick Kellison, Project Director (TTU)                          | 144 |
| 2.2: Administrative Coordinator: Christy Barbee, Unit Coordinator (TTU)               |     |
| TASK 3: FARM Assistance Program                                                       |     |
| Project Collaboration                                                                 |     |
| FARM Aggiston of Stratogic Analysis Comics                                            |     |
| FARM Assistance Strategic Analysis Service                                            |     |
| Economic Study Papers                                                                 |     |
| Continuing Cooperation<br>Field Walks                                                 |     |
| Field Days                                                                            |     |
| Water College                                                                         |     |
| TASK 4: Economic Analysis                                                             |     |
| Major achievements for 2015:                                                          |     |
| Proceeding papers related to the TAWC in 2015:                                        |     |
| Grant funding received in 2015:                                                       |     |
| Fieldprint Calculator: Results from the Texas High Plains                             |     |
| TASK 5 & 7: Plant Water Use and Water Use Efficiency                                  |     |
| Field Experiments                                                                     |     |
| Remote Sensing of Soil Moisture                                                       |     |
| Irrigation Scheduling Tool                                                            |     |
| Retirement of Dr. Maas                                                                |     |
| PUBLICATIONS AND PRESENTATIONS DURING 2015                                            |     |
| PEER-REVIEWED PUBLICATIONS:                                                           |     |
| PRESENTATIONS:                                                                        |     |
| TASK 6: Communications and Outreach                                                   |     |
| Awards                                                                                |     |
| Forage and Livestock Field Day - July 2015                                            | 157 |
| Trade Shows, Meetings and Events Attended                                             |     |
| September 2015 TAWC Field Day                                                         | 158 |
| Outreach Materials                                                                    | 158 |
| 2016 Water College                                                                    | 158 |
| Graduate Student Assistants                                                           |     |
| TASK 7: Producer Assessment of Operation                                              |     |
| TASK 8: Integrated Crop/Forage/Livestock Systems and Animal Production Evaluation     |     |
| TASK 9: Equipment, Site Instrumentation and Data Collection for Water Monitoring      |     |
| Water and Crop Use Efficiency Summaries                                               |     |
| Total Irrigation and Water Use Efficiency (WUE)                                       | 164 |

| Crop Water Use Efficiency - 2015                                                         | 169 |
|------------------------------------------------------------------------------------------|-----|
| Systems Management for Water Savings - 2015                                              | 172 |
| TAWC Solutions: Management Tools to aid Producers in conserving Water                    | 173 |
| Phase II - Budget                                                                        |     |
| Appendix - Archives                                                                      | 175 |
| Phase I Changes and Alterations                                                          | 175 |
| Acres and Crops 2005-2014                                                                | 177 |
| Phase I Economic Summaries of Results from Monitoring Producer Sites in 2005-2013        |     |
| Phase I - Economic assumptions of data collection and interpretation                     |     |
| Phase I - Assumptions of energy costs, prices, fixed and variable costs (Tables A10-A13) |     |
| Terminated Site Data (2005-2014)                                                         |     |
| Site 1 – Terminated 2007                                                                 |     |
| Site 2 – Terminated 2013                                                                 |     |
| Site 3 - Terminated 2013                                                                 | 207 |
| Site 12 – Terminated 2013                                                                |     |
| Site 13 – Terminated 2007                                                                |     |
| Site 16 – Terminated 2007                                                                |     |
| Site 18 – Terminated 2013                                                                |     |
| Site 20 - Terminated 2014                                                                |     |
| Site 23 – Terminated 2011                                                                |     |
| Site 25 – Terminated 2006                                                                |     |
| Site 27 - Terminated 2014                                                                |     |
| Site 29 – Terminated 2014                                                                |     |
| Weather Data (Phase I - 2005-2013/Phase II – 2014-2015)                                  |     |
| 2005                                                                                     |     |
| 2006                                                                                     |     |
| 2007                                                                                     |     |
| 2008                                                                                     |     |
| 2009                                                                                     |     |
| 2010                                                                                     |     |
| 2011                                                                                     |     |
| 2012                                                                                     |     |
| 2013                                                                                     |     |
| 2014                                                                                     |     |
|                                                                                          |     |
| Supplementary Grants To Project (Phase I - 2005-2013/Phase II - 2014-2015)               |     |
|                                                                                          |     |
| 2007                                                                                     |     |
| 2008                                                                                     |     |
| 2009                                                                                     |     |
| 2010                                                                                     | _   |
| 2011                                                                                     | _   |
| 2012                                                                                     |     |
| 2013                                                                                     |     |
| 2014                                                                                     |     |
| Donations to Project (Phase I - 2005-2013/Phase II - 2014-2015)                          |     |
| 2005                                                                                     |     |
| 2008                                                                                     |     |
| 2010                                                                                     |     |
| 2011                                                                                     |     |
| 2012                                                                                     |     |
| 2013                                                                                     | _   |
| 2014                                                                                     | _   |
| Visitors to the Demonstration Project Sites (Phase I - 2005-2013/Phase II - 2014-2015)   |     |
| 2005                                                                                     |     |
| 2006                                                                                     | 252 |

| 2007                                                                                                                                                                                                      | 252   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 2008                                                                                                                                                                                                      |       |
| 2009                                                                                                                                                                                                      | 252   |
| 2010                                                                                                                                                                                                      | 252   |
| 2011                                                                                                                                                                                                      | 252   |
| 2012                                                                                                                                                                                                      |       |
| 2013                                                                                                                                                                                                      |       |
| 2014                                                                                                                                                                                                      |       |
| Presentations (Phase I - 2005-2013/Phase II - 2014-2015)                                                                                                                                                  |       |
| 2005                                                                                                                                                                                                      |       |
| 2006                                                                                                                                                                                                      |       |
| 2007                                                                                                                                                                                                      |       |
| 2008                                                                                                                                                                                                      |       |
| 2009                                                                                                                                                                                                      |       |
| 2011                                                                                                                                                                                                      |       |
| 2012                                                                                                                                                                                                      |       |
| 2013                                                                                                                                                                                                      |       |
| 2014                                                                                                                                                                                                      |       |
| Related Non-Refereed Publications (Phase I - 2005-2013/Phase II - 20014-2015)                                                                                                                             |       |
| Related Refereed Journal Articles (Phase I - 2005-2013/Phase II - 2014-2015)                                                                                                                              |       |
| Popular Press (Phase I - 2005-2013/Phase II – 2014-2015)                                                                                                                                                  |       |
| Theses and Dissertations (Phase I - 2005-2013/Phase II 2014-2015)                                                                                                                                         |       |
| Phase I - Budget                                                                                                                                                                                          |       |
| Phase I - Cost Sharing                                                                                                                                                                                    | 286   |
| Table 1. Description of cropping system and current irrigation type used for sites plotted in Figure 5 which meet criteria of 15 or fewer inches of irrigation and \$300 or more gross margin/acre        |       |
| Table 2. Precipitation (inches) at each site in the demonstration area during 2015                                                                                                                        |       |
| Table 3. Irrigation type and total acres, by site, of crops, forages, and acres grazed by cattle, 2015                                                                                                    |       |
| Table 4. Electricity irrigation cost parameters for Phase II 2014-2015                                                                                                                                    |       |
| Table 5. Commodity prices for Phase II 2014-2015                                                                                                                                                          |       |
| Table 6. Other variable and fixed costs for Phase II 2014-2015                                                                                                                                            | 140   |
| Table 7. Summary of results from monitoring 32 of the 36 producer sites, 2015 (Year 11)                                                                                                                   |       |
| Table 8. Summary of crop production, irrigation and economic returns, Phase I and Phase II 2014-15                                                                                                        | 142   |
| Table 9. Results of Regression Equation with Gross Margin as the Dependent Variable                                                                                                                       |       |
| Table 10. Derived Estimates of Gross Margin.                                                                                                                                                              |       |
| Table 11. Total water use efficiency (WUE) summary by various cropping and livestock systems, 2015  Table 12. Average season rainfall, total irrigation, crop water demand, crop water demand provided by |       |
| irrigation/total crop water and total water conserved summary, 2005-2015                                                                                                                                  |       |
| Table 13. Crop water use efficiency (WUE) summary by various cropping and livestock systems, 2015 Table 14. Task and expense budget for Phase II Year 1-2 of the demonstration project                    |       |
| Table 14. Task and expense budget for Fhase II Tear 1-2 of the demonstration project.                                                                                                                     | 1 / 4 |
|                                                                                                                                                                                                           |       |
| List of Appendix Tables                                                                                                                                                                                   |       |
| Table A 1. Irrigation type and total acres, by site, of crops, forages, and acres grazed by cattle, 2005                                                                                                  | 177   |
| Table A 2. Irrigation type and total acres, by site, of crops, forages, and acres grazed by cattle, 2006                                                                                                  |       |
| Table A 3. Irrigation type and total acres, by site, of crops, forages, and acres grazed by cattle, 2007                                                                                                  |       |
| Table A 4. Irrigation type and total acres, by site, of crops, forages, and acres grazed by cattle, 2008                                                                                                  |       |
|                                                                                                                                                                                                           | 100   |

| Table A 6. Irrigation type and total acres, by site, of crops, forages, and acres grazed by cattle, 2010      | 182 |
|---------------------------------------------------------------------------------------------------------------|-----|
| Table A 7. Irrigation type and total acres, by site, of crops, forages, and acres grazed by cattle, 2011      |     |
| Table A 8. Irrigation type and total acres, by site, of crops, forages, and acres grazed by cattle, 2012      |     |
| Table A 9. Irrigation type and total acres, by site, of crops, forages, and acres grazed by cattle, 2013      |     |
| Table A 10. Irrigation type and total acres, by site, of crops, forages, and acres grazed by cattle, 2014     |     |
| Table A 11. Electricity irrigation cost parameters for 2005-2013                                              |     |
| Table A 12. Commodity prices for 2005-2013                                                                    |     |
| Table A 13. Other variable and fixed costs for 2005-2013.                                                     | 189 |
| Table A 14. Summary of results from monitoring 26 producer sites in 2005 (Year 1)                             |     |
| Table A 15. Summary of results from monitoring 26 producer sites in 2006 (Year 2).                            |     |
| Table A 16. Summary of results from monitoring 26 producer sites in 2007 (Year 3).                            |     |
| Table A 17. Summary of results from monitoring 25 producer sites in 2008 (Year 4)                             | 193 |
| Table A 18. Summary of results from monitoring 26 producer sites in 2009 (Year 5).                            | 194 |
| Table A 19. Summary of results from monitoring 26 producer sites in 2010 (Year 6)                             | 195 |
| Table A 20. Summary of results from monitoring 29 producer sites in 2011 (Year 7).                            | 196 |
| Table A 21. Summary of results from monitoring 29 producer sites in 2012 (Year 8).                            | 197 |
| Table A 22. Summary of results from monitoring 30 producer sites in 2013 (Year 9).                            | 198 |
| Table A 23. Phase II Summary of results from monitoring 36 producer sites during 2014 (Year 1)                | 199 |
| Table A 24. Phase I summary of crop production, irrigation, and economic returns during 2005-2013             | 200 |
| Table A 25. Precipitation by each site in the Demonstration Project 2005                                      |     |
| Table A 26. Precipitation by each site in the Demonstration Project 2006                                      |     |
| Table A 27. Precipitation by each site in the Demonstration Project 2007                                      | 232 |
| Table A 28. Precipitation by each site in the Demonstration Project 2008                                      | 234 |
| Table A 29. Precipitation by each site in the Demonstration Project 2009                                      | 236 |
| Table A 30. Precipitation by each site in the Demonstration Project 2010.                                     | 238 |
| Table A 31. Precipitation by each site in the Demonstration Project 2011.                                     | 240 |
| Table A 32. Precipitation by each site in the Demonstration Project 2012.                                     |     |
| Table A 33. Precipitation by each site in the Demonstration Project 2013.                                     |     |
| Table A 34. Precipitation by each site in the Demonstration Project 2014                                      |     |
| Table A 35. Final task and expense budget for Phase I Years 1-9 of the demonstration project                  |     |
| Tuble 17 50. I mai cost sharing figures for I hase I rears 1 7 of the demonstration project                   | 200 |
| L'at a CE' a san                                                                                              |     |
| List of Figures                                                                                               |     |
| Figure 1. Average precipitation (inches), irrigation applied (inches), returns above all costs (\$/acre), and | 1   |
| gross margin (\$/acre) for irrigated sites only                                                               |     |
| Figure 2. Average precipitation (inches), irrigation applied (inches), returns above all costs (\$/acre), and |     |
| gross margin (\$/acre) for all sites, irrigated and dryland (there were no dryland sites in 2015)             |     |
| Figure 3. Number of acres of various crops and cattle enterprises. Sites were located in two counties thro    |     |
| 2013 (Phase I) and in nine counties in 2015 (Phase II)                                                        |     |
| Figure 4. Number of sites located in the demonstration project. Sites were located in two counties through    |     |
| 2013 (Phase I) and in nine counties in 2015 (Phase II)                                                        |     |
| Figure 5. Gross margin per acre in relation to inches of applied irrigation averaged over 2005 to 2015        |     |
| Figure 6. Net returns per acre for seven irrigated-only cropping systems in 2015                              | 11  |
| Figure 7. Net returns per acre-inch irrigation water, and inches of irrigation applied, 2015                  | 12  |
| Figure 8. Pounds per acre of nitrogen applied in fertilizer by cropping system, 2015                          | 12  |
| Figure 9. Net returns per system acre, average of 2005-2015.                                                  |     |
| Figure 10. Net returns per acre-inch of irrigation water, and inches of irrigation applied, 2005-2015         | 14  |
| Figure 11. Pounds of nitrogen per acre applied in fertilizer, 2005-2015.                                      | 15  |
| Figure 12. Original TAWC project area for determining water in storage                                        |     |
| Figure 13. Change in water storage in TAWC project area from 2003 to 2016.                                    |     |
| Figure 14. Temperature and precipitation by month for 2015.                                                   |     |
| Figure 15. Original project area and new county expansion for Phase II of the demonstration project           | 28  |

## List of Appendix Figures

| Figure A 1. Temperature and precipitation for 2005  | 227 |
|-----------------------------------------------------|-----|
| Figure A 2. Temperature and precipitation for 2006  | 229 |
| Figure A 3. Temperature and precipitation for 2007  | 231 |
| Figure A 4. Temperature and precipitation for 2008  | 233 |
| Figure A 5. Temperature and precipitation for 2009  | 235 |
| Figure A 6. Temperature and precipitation for 2010  | 237 |
| Figure A 7. Temperature and precipitation for 2011  |     |
| Figure A 8. Temperature and precipitation for 2012  |     |
| Figure A 9. Temperature and precipitation for 2013  |     |
| Figure A 10. Temperature and precipitation for 2014 |     |
|                                                     |     |

### **Water Conservation Demonstration Producer Board**

Glenn Schur, Chair

Boyd Jackson, Co-Chair

Eddie Teeter, Secretary

**Keith Phillips** 

Mark Beedy

Jeff Don Terrell

**Jody Foster** 

Lanney Bennett

Louis (Bubba) Ehrlich

Rick Kellison (ex-officio), Project Director

The Producer Board of Directors is composed of producer representatives within the focus area of Hale and Floyd Counties and is specifically charged to:

- 1) Ensure the relevance of this demonstration project to meet its objectives;
- 2) Help translate the results into community action and awareness;
- 3) Ensure the credibility and appropriateness of work carried out under this project;
- 4) Assure compatibility with and sensitivity to producer needs and concerns; and
- 5) Participate in decisions regarding actions that directly impact producers.

The Board elects their chair, co-chair, and secretary. Individuals serving on this board include representation of, but are not limited to producers cooperating in specific demonstration sites. The Chair serves as a full voting member of the Management Team. The Project Director serves in an *ex officio* capacity on the Producer Board. Meetings of the Producer Board of Directors are on an as-needed basis to carry out the responsibilities of the project and occur at least once annually in conjunction with the overall Management Team.

The value of this Board to the project continues to be a key factor in its success.

#### TEXAS ALLIANCE FOR WATER CONSERVATION 2015 PARTICIPANTS

Texas Tech University

Dr. Chuck West, Project Administrator\* Mr. Rick Kellison, Project Director\*

Mr. Philip Brown\* Dr. Phillip Johnson\* Dr. Stephan Maas\*

Dr. Steve Fraze\*

Dr. Rudy Ritz\*

Ms. Samantha Borgstedt, Communications Director\*

Ms. Christy Barbee, Secretary/Bookkeeper

Texas A&M AgriLife Extension

Dr. Steven Klose Mr. Jeff Pate\* Dr. Will Keeling\* Dr. Nithya Rajan\*

Texas Department of Agriculture

Matt Williams\*

<u>High Plains Underground Water</u> Conservation District No. 1

Mr. Jason Coleman\* Mr. Keith Whitworth

\* Indicates Management Team member

<u>USDA - Natural Resources</u> <u>Conservation Service</u> Mr. Monte Dollar (retired)\*

Producer Board Chairman

Mr. Glenn Schur\*

Swetha Dorbala

**Graduate Research Assistants** 

Morgan Newsom Jarrott Wilkinson Rachel Oates Jennifer Zavaleta Nichole Sullivan Miranda Gillum Mallory Newsom

Nellie Hill

Melissa Murharam Sanaz Shafian Victoria Xiong Lisa Baxter Krishna Bhandari Madhav Dhakal Libby Durst Cassie Godwin

Producers of the TAWC Project

| Ronnie Aston   | Jody Foster  | Charles Nelson | Dan Smith        |
|----------------|--------------|----------------|------------------|
| Mark Beedy     | Scott Horne  | Danny Nutt     | Eddie Teeter     |
| Lanney Bennett | Boyd Jackson | Keith Phillips | Jeff Don Terrell |
| Troy Bigham    | Jimmy Kemp   | Glenn Schur    | Aaron Wilson     |
| Bob Meyer      | Loyd Arthur  | Blake Davis    | Jerry Don Glover |
| Barry Evans    | Randy McGee  |                |                  |

The dedication of all these participants is gratefully acknowledged.

## AN INTEGRATED APPROACH TO WATER CONSERVATION FOR AGRICULTURE IN THE TEXAS SOUTHERN HIGH PLAINS

#### **Objective**

To conserve water in the Texas Southern High Plains while continuing agricultural activities providing the needed productivity and profitability for producers, communities, and the region.

#### **Background**

The Texas High Plains generates a combined annual economic value of crops and livestock that exceeds \$9.9 billion (\$2.4 crops; \$7.5 livestock; Texas Agricultural Statistics, Texas Department of Agriculture, 2012). Such productivity is highly dependent on water from the Ogallala Aquifer. Groundwater supplies have been declining significantly in the South Plains region (average depth to water during 2006-2016 declined 9.29 feet in High Plains Underground Water Conservation District No. 1¹, while costs related to pumping the water (energy, system infrastructure, maintenance) have escalated. Improved irrigation technologies including low energy precision application (LEPA) and subsurface drip irrigation (SDI) have increased irrigation efficiencies to over 95% but have not necessarily led to decreased water use. TAWC provides information on efficient irrigation systems and guidelines for matching water supply to crop needs as a means of reducing risk. There is increasing importance of diversifying the crop choice to include low-water demanding crops, concentrating irrigation rates onto the most profitable crops, and reducing tillage to protect soil quality,

Diversified systems that include both crops and livestock have long been known for complementary effects that increase productivity. Research conducted at Texas Tech over the past 15 years has shown that an integrated cotton/forage/beef cattle system, compared with a continuous cotton monoculture, lowered irrigated water use by about 25%, increased profitability per unit of water invested, diversified income sources, reduced soil erosion, reduced nitrogen fertilizer use by about 40%, and decreased needs for other chemicals, while maintaining similar cotton yields per acre between the two systems (Allen et al., 2005; 2012). Profitability was found to be similar for the integrated system as compared to the cotton monoculture system (Johnson et al., 2013). Furthermore, soil health was improved, more carbon was sequestered, and soil microbial activities were higher in the integrated system compared with the cotton monoculture (Acosta-Martinez et al., 2004; 2008; 2010). This and other research on crop production, agricultural climatology, economics, and communication dynamics provided basic information for designing the demonstration project. Results from the demonstration sites serve to validate the research and inform approaches to current and future research.

No single technology will successfully address water conservation. Rather, the approach must be an integration of agricultural systems, best irrigation technologies, improved plant genetics, and management strategies that reduce water demand, optimize water use and

<sup>&</sup>lt;sup>1</sup> High Plains Water District 2016 Water Level Report source: http://www.hpwd.org/reports/

value, and maintain an appropriate level of productivity and profitability. Water conservation must become both an individual goal and a community ethic. Educational programs are needed at all levels to raise awareness of the necessity for water conservation to prolong the regional economic benefits of agriculture. As state and global populations increase with an increasing demand for agricultural products, the future of the Texas High Plains, and indeed the State of Texas and the world, depends on our ability to protect and appropriately use our water resources. Nowhere is there greater opportunity to demonstrate the implications of successfully meeting these challenges than in the High Plains of west Texas.

A multidisciplinary and multi-university/agency/producer team, coordinated though Texas Tech University, assembled during 2004 to address these issues. In September of 2004 the project 'An Integrated Approach to Water Conservation for Agriculture in the Texas Southern High Plains' was approved by the Texas Water Development Board and funding was received in February, 2005 to begin the demonstration project conducted in Hale and Floyd Counties. A producer Board of Directors was elected to oversee all aspects of this project. The purpose of this project was to understand where and how water conservation could be achieved while maintaining acceptable levels of profitability. Results of this study assist area producers in meeting the challenges of declining water supplies and reduced pumping capacities by demonstrating various production systems and water-saving technologies.

The first nine years of the Texas Alliance for Water Conservation (TAWC) project are considered Phase I of our effort to demonstrate and compare irrigation systems and crop types for agronomic and economic water use efficiencies. In Phase I, 26 producer sites were identified to represent 26 different 'points on a curve' that characterize cropping and livestock grazing system monocultures with integrated cropping systems and integrated crop/livestock approaches to agriculture in this region. All data from Phase I are contained in the Appendix section of this report.

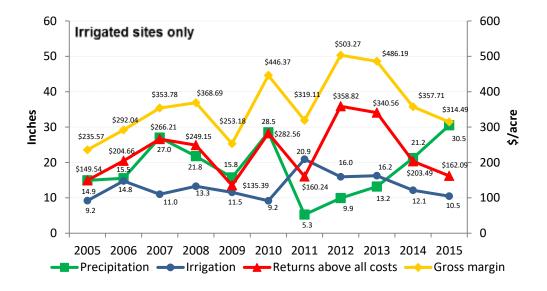
In 2013, continuing under the infrastructure of Phase I, a new source of funding via the Texas Water Development Board for TAWC was approved by the Texas Legislature. This allowed TAWC to expand its impact area and establish Phase II during the 2014-2018 cropping seasons. In the first year, Phase II dropped four original sites and added 10 sites in six new counties, namely Bailey, Crosby, Deaf Smith, Lamb, Lubbock, and Parmer. An additional site in Castro county was added in 2015, bringing the total project area to 9 counties. The number of sites and producers vary across years as new sites are added and some of the original sites replaced. This is to facilitate the time and effort toward the new expanded area in order to focus on a larger more diverse group of agricultural producers in Phase II. Many of the additional farms were formerly participants in a Conservation Incentive Grant program funded by the United States Department of Agriculture Natural Resources Conservation Service, aimed at transferring technologies for conserving irrigation.

A key strategy of this project is that all sites are producer-owned and producer-managed. The producers make all decisions about their agricultural practices, management strategies, and marketing decisions. Thus, practices and systems at any specific site were subject to change from year to year as producers addressed changes in market

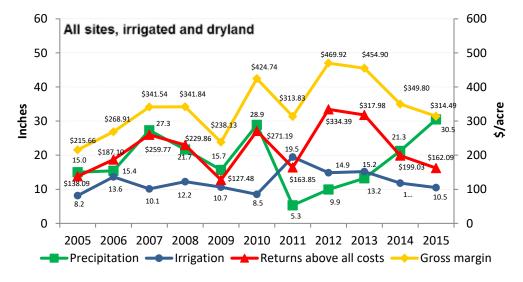
opportunities, weather, commodity prices, and other factors. This project allowed us to measure, monitor, and document the effects of these decisions. The same producers did not all participate every year. A small number withdrew participation, and they were replaced in subsequent years at the discretion of Producer Board. Nonetheless, the project provided a valuable survey of changes in agricultural practices in this region and the information to interpret what is driving these changes.

Sites were originally selected by the Producer Board of Directors in response to the request for sites that would represent a range of practices from high-input, intensive management systems to low-input, less intensive practices. The sites represented a range from monoculture cropping practices (one type or species of annual crop at the site per year), multi-cropping systems (more than one crop species per year on a field), integrated crop and livestock systems (part of the site produced annual crops and part forage-based livestock production), and all-forage/livestock systems. Irrigation practices included subsurface drip, center pivot, furrow, and dryland systems.

It is important to note that these data and their interpretations are based on certain assumptions which are critical to objectively compare information across different sites. We adopted constants for productivity and efficiency calculations, such as pumping depth of wells, in order to make unbiased economic and agronomic comparisons (see p. 138 for detailed assumptions). Therefore, the economic data for an individual site are valid for comparisons of systems but do not represent the actual economic results of that farm. Actual economic returns for each site were calculated and confidentially shared with the individual producer but are not a part of this report. Likewise, the identity of the participating producers is not matched to the demonstration sites.


This is the second annual report of Phase II of TAWC, and also is a compendium of data over the life of the project. Data collection technologies gradually changed over time as better equipment became available and were installed. As each annual report updates each previous year, the current year's annual report is the most correct and comprehensive accounting of results to date and will contain revisions and additions for the previous years. This report contains numerous corrections of data from previous years with all previous yearly data contained in the Appendix section of this report.

### Overall Summary of Years 2005-2015 Chuck West, Philip Brown (TTU)


For 2015, Sites 7, 8, 34, C37 and C38 (totaling 1,520 acres) had no data collected due to various circumstances and are not included in these summaries; however, they remain a part of the project. With 11 years completed of this study, we see substantial annual variations in economic returns and water received irrigation and precipitation (Figure 1). Each year's results are highly influenced by weather, availability of irrigation water, input costs, actual and anticipated prices for crops and livestock, and previous years' experiences. Amount and distribution of precipitation and irrigation water to buffer inadequate precipitation are key drivers of production and profit. During the 11 years, annual precipitation ranged from 5.3 inches (2011) to 30.5 inches (2015) (Figure 1), averaging 18.5 inches, which matches exactly the long-term mean for the region. Six of 11 years exhibited below-average rainfall, with 2011-2013 substantially below average.

Consequently, average irrigation applied was greatest in 2011 through 2013 (Figure 1). Precipitation for 2015 averaged 30.5 inches across all sites, with 20.5 inches occurring from May through September, which was 7.5 inches above the long-term average for those months (Figure 14; Table 2).

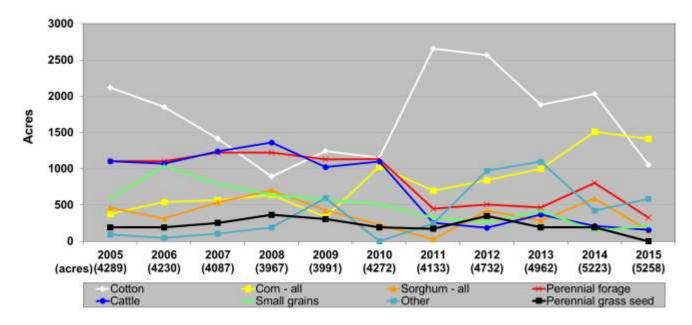
Figures 1 and 2 show annual changes in economic returns above all costs and gross margins (red and blue lines) in relation to precipitation and irrigation (green and red lines). Gross margin equals total revenue less total variable costs. Returns above all costs equals gross margin less fixed costs and is the same as net returns.



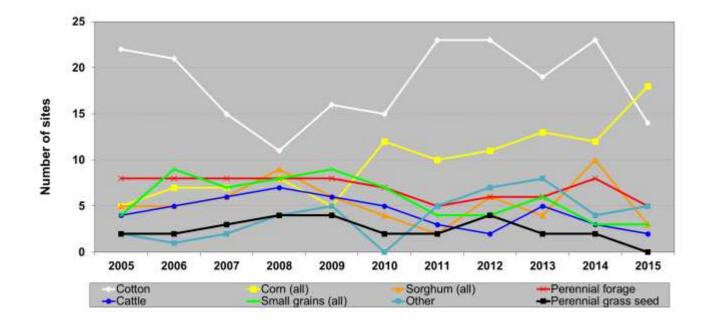
**Figure 1.** Average precipitation (inches), irrigation applied (inches), returns above all costs (\$/acre), and gross margin (\$/acre) for irrigated sites only.



**Figure 2.** Average precipitation (inches), irrigation applied (inches), returns above all costs (\$/acre), and gross margin (\$/acre) for all sites, irrigated and dryland (there were no dryland sites in 2015).


Amount of irrigation applied averaged over 11 years on the irrigated sites only (Figure 1) was 13.2 inches, with a range of 9.2 to 20.9 inches. Average irrigation plus average rainfall (18.5 inches) equaled 31.7 inches of water received per year. This suggests that 32 inches of total annual water input is a general norm for typical crop production in this region. In the four "wet" years (rainfall exceeding 20 inches), total water received ranged from 33.1 to 41.0 inches. In such years, excessive rains were concentrated in particular weeks or months. This meant that irrigation was still required in the drier months of those years to buffer the loss of rainwater from runoff and deep drainage. The extreme dry year of 2011 was a test of how much irrigation could buffer the precipitation. Irrigation supplied 20.9 inches for a total water input of 26.2 inches. In 2011, irrigation rates generally were inadequate to meet crop demand. As well-output declines over time, the expectation is that even in less severe droughts than that of 2011, irrigation will fall short of meeting crop water demand. When all sites including the non-irrigated fields (Figure 2) are included in the means, average irrigation applied declines from 13.2 to 12.3 inches.

Two basic strategies can be used alone or in combination to stretch water supplies as well output declines: a) apply less water per acre to a level that still maintains profitable yields (70-80% of crop ET demand); and b) apply available water to fewer acres. Both approaches have merit depending on the crop species and variety, how water is allocated over the cropland, and the timing of precipitation within a year. Both strategies require careful planning and monitoring of crop water use, skills which are supported by information and decision tools offered by TAWC.

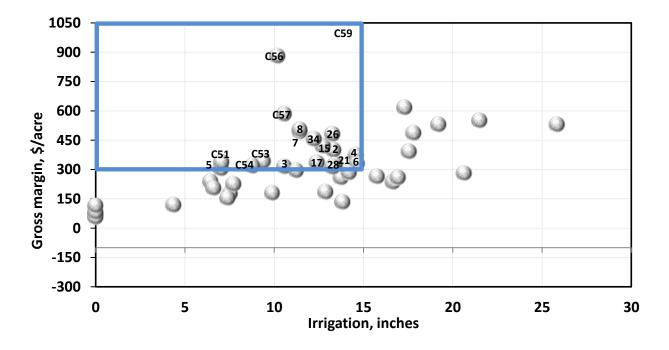

Yearly trends in gross margin and returns above all costs fluctuated tremendously owing to variable commodity prices and crop yields (Figures 1 and 2). The trends were apparently parallel with the difference between them reflecting fixed costs. Closer inspection reveals that the difference doubled over the years from \$77/acre in 2005 to \$153/acre in 2015. Profitability in 2005 and 2009 was negatively impacted by high production costs in relation to values of crops and livestock. Low profitability during the 2011 drought reflected reduction in livestock numbers and yield losses in crops, but was buffered somewhat by insurance payments. Profitability in 2014 showed a steep drop from 2013, which was the one of the highest of all years. The low returns in 2014 and 2015 are attributed largely to low commodity prices, but also to decreased crop yields resulting from heavy spring rains setting back crop planting and early-fall rains hampering harvest.

Producers in the TAWC project make their own decisions each season on enterprise selection and production practices. Land use reflects current crop and livestock prices, contracts, expected profitability, water supply, and decisions to terminate leases, sell property, or retire. Therefore, the number of acres and number of sites of the enterprise choices have varied. Figures 3 and 4 show the acreages and number of sites, respectively, that were devoted to cotton, corn, sorghum, perennial forages, cattle, small grains, and other crops. The total of enterprise acres exceeds total acres in the project in any given year because of double cropping and multi-use for livestock, e.g. harvesting a seed crop followed by harvesting hay from the regrowth in the same field. All crop acreages

decreased in 2015 from the previous year with the exception of the "other" category (Figure 3).



**Figure 3.** Number of acres of various crops and cattle enterprises. Sites were located in two counties through 2013 (Phase I) and in nine counties in 2015 (Phase II).




**Figure 4.** Number of sites located in the demonstration project. Sites were located in two counties through 2013 (Phase I) and in nine counties in 2015 (Phase II).

The trends in number of sites where different production systems were practiced (Figure 4) generally followed the trends in acreage distribution (Figure 3). A notable exception in 2015 was that corn acreage decreased slightly from 2014 while the number of corn production sites increased. Perennial grass seed production did not occur in 2015 because of no seed harvest of the two sites by that producer (Figures 13 and 14).

#### **Water Use and Profitability**

Patterns are emerging with respect to profitability in relation to irrigation applied. This is important because of the constant need to increase water use efficiency by the crops and prolong the groundwater supply, while maintaining or even increasing profitability of agricultural production in the High Plains. To examine systems for meeting criteria of relatively low water use and high profitability, we arbitrarily selected a maximum of 15 inches of irrigation and a minimum of \$300 gross margin per acre as a desired target for performance (Figure 5). Please note that these levels were selected only to identify whether certain sites and cropping systems consistently performed to those criteria and *not* to relate system performance to pumping restrictions nor to state a minimum amount of revenue required for economic viability.

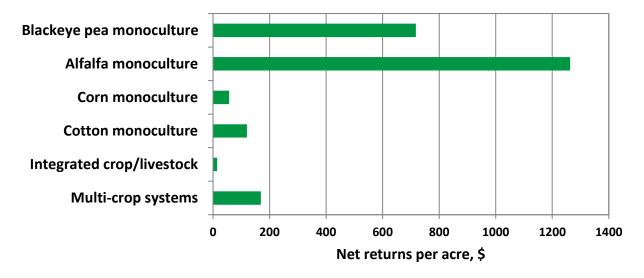


**Figure 5.** Gross margin per acre in relation to inches of applied irrigation averaged over 2005 to 2015. Each point represents one site, of which all were irrigated averaged across all years in which they appear. Site C59 alfalfa site in 2015 is not charted because of an off-scale value (\$1717/acre at 14.7 in. water). The blue box brackets those sites which met the arbitrary criteria of 15-inch maximum irrigation and \$300 minimum gross margin per acre. Sites within the box are described in Table 1.

**Table 1.** Description of cropping system and current irrigation type used for sites plotted in Figure 5 which meet criteria of 15 or fewer inches of irrigation and \$300 or more gross margin/acre. Descriptions of cropping systems (as categorized across years within which they appear) by site from 2005-2015 are shown. Site numbers with "C" indicate new Phase II sites.

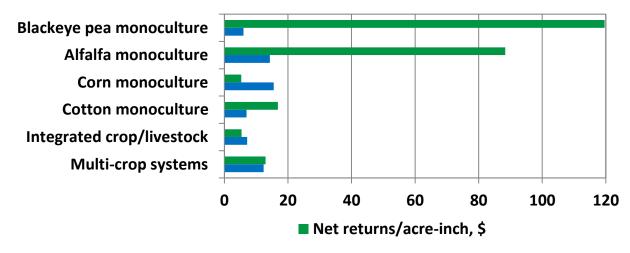
| Site | Cropping system                             | Irrigation type                  |
|------|---------------------------------------------|----------------------------------|
| 2    | Multi-crop, cotton/corn/sunflower           | Subsurface drip                  |
| 3    | Multi-crop, cotton/grain sorghum/wheat      | Mid elevation spray application  |
| 4    | Multi-crop, livestock/cotton/grain          | Low elevation/Low energy spray   |
|      | sorghum/wheat/alfalfa/millet/haygrazer      | application                      |
| 5    | Livestock Only through 2010; Multi-crop,    | • •                              |
|      | cotton/wheat/sunflower/millet               | Low elevation spray application  |
| 6    | Multi-crop, cotton/corn/wheat               | Low elevation spray application  |
| 7    | Continuous sideoats grama grass seed        | Low elevation spray application  |
| 8    | Continuous sideoats grama grass seed        | Subsurface drip                  |
| 15   | Multi-crop, cotton/grain sorghum/corn       | Subsurface drip                  |
| 17   | Multi-crop, livestock/cotton/corn/sunflower | Mid elevation spray application  |
|      | /perennial grass                            |                                  |
| 21   | Multi-crop, livestock, cotton/corn/small    | Low energy precision application |
|      | grain/forage sorghum/grass seed/hay grazer  | G. 1                             |
| 26   | Multi-crop, cotton/corn/small               | Low elevation spray application  |
|      | grains/sunflower/millet                     |                                  |
| 28   | Multi-crop, cotton/corn                     | Subsurface drip                  |
| 34   | Multi-crop, cotton/corn/sunflower (3 year)  | Low elevation spray application  |
| C51  | Cotton monoculture (2 year)                 | Subsurface drip                  |
| C53  | Cotton monoculture (2 year)                 | Subsurface drip                  |
| C54  | Cotton monoculture (2 year)                 | Subsurface drip                  |
| C56  | Multi-crop, corn/blackeye pea (2 year)      | Low elevation spray application  |
| C57  | Corn monoculture (2 year)                   | Low elevation spray application  |
| C59  | Alfalfa monoculture (2 year)                | Subsurface drip                  |

Nineteen sites met the arbitrary criteria of 15 or fewer inches of irrigation and \$300 or more gross margin/acre, when averaged over 2005-2015 (Figure 5). Eight sites that met the \$300 gross margin per acre criterion but with average irrigation over 15 inches (points located to the right of the blue box in Figure 5) were mostly multi-crop corn/cotton rotations, with one site being multi-crop cotton/sorghum/small grain/alfalfa and another multi-crop with cotton/grain sorghum and millet. Inclusion of corn in multi-cropping systems can produce high gross margins, but requires more irrigation than cotton. Sites 2, 6, 17, 21, 26, 28, and 34 all included corn in the multi-crop rotations, indicating that inclusion of corn in the cropping system can result in high return at low water use, averaged over years. Corn in site C56 and C57 were for silage, but only represent 2 years of data. Sites C51, C53 and C54 (2-year data) were the only cotton monoculture that met the


double criteria. The two sites with grass seed production (7 and 8) were the highest ranked sites during the Phase I years.

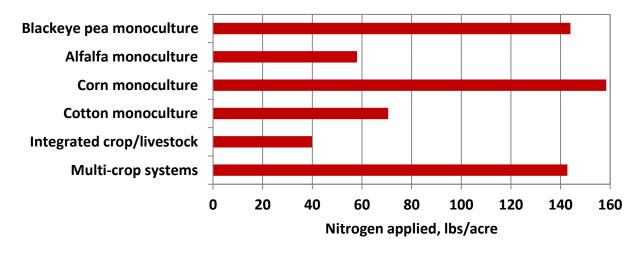
#### 2015 Project Year

Producer sites can be categorized according to type of farming system insofar as a site represents a conceptual farm. The system categories in use in 2015 were corn monoculture (entire site in corn only), cotton monoculture (entire site in cotton only), alfalfa monoculture (entire site in alfalfa only), sorghum monoculture (entire site in grain sorghum), integrated crop/livestock (site included cattle on pasture plus an annual crop and/or hay), multi-cropping (more than one annual crop species harvested in the reporting year). Systems not occurring in years after 2012 included cow-calf pasture and dryland multi-cropping. A site categorized in one system is re-categorized each year that the crop choice changes. The "Other" category is a catch-all of minor annual crops and fallow whose makeup changes from year to year. In 2015, blackeye pea was added, seed millet and fallow acreage was increased, while sunflower acreage declined.


In 2015, corn monoculture accounted for 19% of the 31 sites from which yield data were collected, while integrated crop/livestock occupied 10%, cotton monoculture occupied 29%, multi-cropping occupied 35%, alfalfa monoculture occupied 3% and other (blackeye pea) 3%. Sunflower and seed millet were part of multi-crop systems.

This section compares the cropping systems for net returns per acre and per acre-inch of irrigation, and usage of irrigation and nitrogen fertilizer for 2015. Low commodity prices in 2015 continued to drive lower net returns as compared to the peak years of 2012 and 2013 (Figures 1 and 2). As in 2014, alfalfa monoculture in 2015 had by far the highest net return followed by the newly added blackeye pea monoculture. For the systems that have been monitored over many years, the highest-return system was multi-crop, followed by cotton monoculture, corn monoculture, and finally the integrated crop/livestock system (Figure 6).

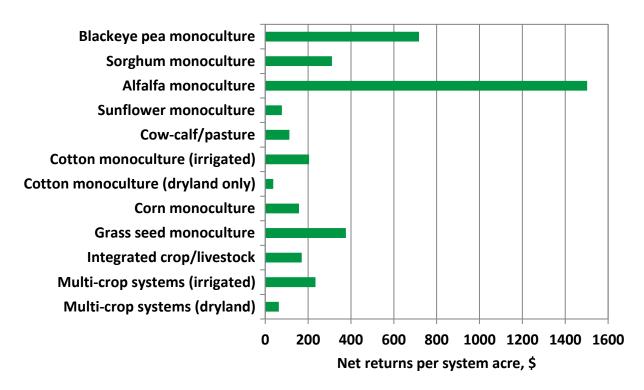



**Figure 6.** Net returns per acre for seven irrigated-only cropping systems in 2015.

When these systems were examined in terms of net returns per acre-inch of irrigation applied (Figure 7, green bars), corn monoculture and integrated crop/livestock were lowest and blackeye pea and alfalfa monocultures were highest, while multi-crop and cotton monoculture were intermediate. The blue bars in Figure 7 indicate average inches of irrigation applied per system. Blackeye pea monoculture had the lowest application (6.0 inches) and corn monoculture had the highest (16.5 inches).



**Figure 7.** Net returns per acre-inch irrigation water (green bars), and inches of irrigation applied (blue bars), 2015.

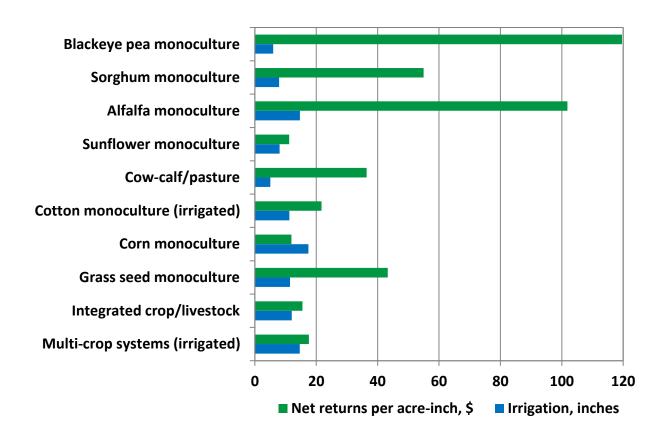

Corn monoculture, blackeye pea monoculture, and multi-cropping had the highest application rates of nitrogen (N) fertilizer at 158, 144 and 143 lbs/system acre, respectively (Figure 8). The lowest N applied was to the integrated crop/livestock at 40 lbs/system acre. The significance of N fertilizer application is that it constitutes a major input cost and therefore greatly influences the calculation of net return. High net return of blackeye pea occurred despite the high application of N fertilizer.



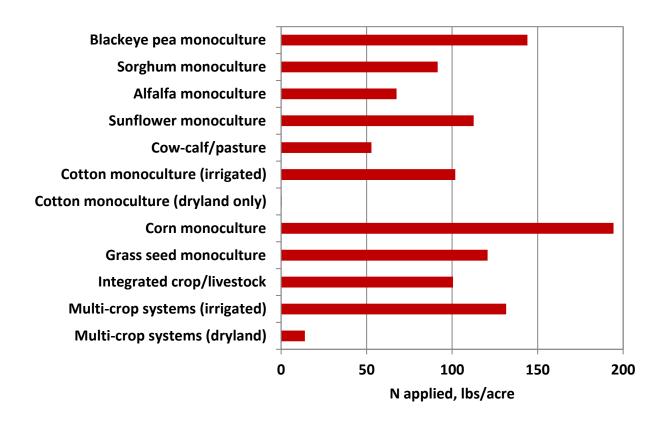
**Figure 8.** Pounds per acre of nitrogen applied in fertilizer by cropping system, 2015.

#### **Project years 1 through 11 (2005-2015)**

Figure 9 summarizes net returns per acre by system over the life of the project so far. Note the extremely high value for alfalfa monoculture, which benefited from timely late-spring rains and whose harvest was sold as a cash crop. We cannot generalize from this situation because 2015 was only its second year in the project. Similarly, blackeye pea exhibited high return with only one year's data. Apart from those two newer crops in the project, grass seed monoculture was the most profitable system in the long term at \$376/acre, with sorghum monoculture next (\$311/acre) (Figure 9). While multi-cropping and cotton monoculture yielded similar average net returns per acre (\$235 and \$205/acre, respectively), integrated crop-livestock was at \$170 and corn monoculture was around \$158/acre (Figure 9).




**Figure 9.** Net returns per system acre, average of 2005-2015, or for those years which those systems occurred. Data for cow-calf includes 2005-2010 data only, for alfalfa monoculture 2014-2015 only, for blackeye pea 2015 only, sorghum monoculture in 2014 only.


Irrigation amount applied annually (Figure 10, blue bars) was greatest for corn monoculture (17.5 inches), followed by alfalfa (14.7 inches). Irrigated cotton monoculture received about the same amount of irrigation (11.2 inches) as grass seed (11.4 inches) and the integrated crop-livestock system (12.0 inches). Net returns per acre-inch (Figure 10, green bars) of irrigation applied were highest for blackeye pea, alfalfa, then sorghum monoculture, for which the number of years of data is very limited. Net returns for irrigated cotton monoculture averaged \$21.72/acre-inch, about twice as great as the net return for corn monoculture (\$11.91). Corn monocultures were not present in some of the

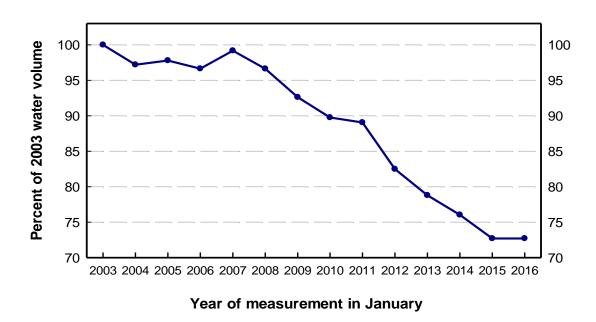
earlier years of this project and thus their means reflect fewer years. The droughts of 2011 and 2012 hit corn yields particularly hard, therefore with fewer years in the mean, the effects of drought have a proportionally greater effect on this crop's performance. Dryland systems have always had the lowest average net returns in this project.

Dryland cotton and multi-cropping systems received the least nitrogen fertilizer per system acre, followed by cow-calf operations on perennial grass pastures (Figure 11). For warm-season pasture grasses, 50 to 60 lbs of N/acre annually is generally considered adequate. In contrast, corn monocultures represented the other extreme with 194 lbs N/acre received annually. Blackeye pea was second highest, receiving 144 lbs N/acre. All other systems received from about 67 to 132 lbs/acre of N.



**Figure 10.** Net returns per acre-inch of irrigation water (green bars), and inches of irrigation applied (blue bars), average of 2005-2015. Data for cow-calf/pasture includes 2005-2010 only, for alfalfa monoculture 2014-2015 only, for blackeye pea 2015 only, sorghum in 2014 only.




**Figure 11.** Pounds of nitrogen per acre applied in fertilizer, average of 2005-2015. Data for cow-calf/pasture includes 2005-2010 only, for alfalfa monoculture 2014-2015 only, for blackeye pea 2015 only, sorghum in 2014 only.

#### Water Use and Efficiency Discussion

Depth to water in the Ogallala Aquifer has been monitored annually by the High Plains Underground Water Conservation District for many years. The District used those measurements and saturated thickness data to calculate the amount of water stored in an area defined by a perimeter around the TAWC producer sites taking part in Phase I in Floyd and Hale Counties (see Figure 12 for map of the sampled area). The graph in Figure 13 tracks the amounts of water storage in that area as a percentage of the 2003 measurement. The measurement time was January; therefore, the values reflect the change that occurred over the previous calendar year. Starting in 2007, water storage declined at a fairly constant rate over 8 years to 73% of the initial amount in 2003. The small decline in 2011 reflected the above-normal rainfall during 2010. Subsequently, the sharp drop at the 2012 reading was a response to the severe drought of 2011, which intensified the demand for irrigation. The high rainfall amount in 2015 reduced the amount of irrigation that year, leading to no net change in the 2016 reading. The purpose of this graph is to illustrate the steady decline in water supply in the region where TAWC is operating.



**Figure 12.** Original TAWC project area for determining water in storage (area encompassed within solid black line; 97,900 total acres) and cooperator demonstration sites (areas in blue symbols).



**Figure 13.** Change in water storage in TAWC project area from 2003 to 2016 expressed as percentage of the volume in 2003 (1,748,630 acre-feet).

Delivering water more precisely to the crop roots by using improved irrigation equipment, and timing that water delivery according to actual crop needs (based on monitoring soil moisture and ET) results in conservation of the aquifer. We have calculated the amount of groundwater potentially saved for each year of the TAWC project. It is calculated as the difference between the total amount of water required to replace 100% of crop ET water demand and the amount which was provided by rainfall (assuming 50% effectiveness), stored soil water from before the growing season, and irrigation, summed over all sites. Details of those calculations are found in Water and Crop Use Efficiency Summaries (p. 164-171) and in Tables 11-13. The amount of irrigation water potentially conserved was 4,429 acre-feet, and for all water sources was 962 acre-feet.

Saving water involves reducing unnecessary irrigations and targeting total water received to less than 100% crop water demand. The reason to aim short of 100% is that most crops can achieve near maximum yield when water is provided at 70% of crop ET water demand. In 2015, irrigation provided an average of 43% of crop water demand. Total crop water supply ranged from 39% to 184% among the sites. Breaking that down by irrigation delivery system, we found that the LEPA system provided an average of 80%, subsurface drip 81%, LESA 96%, MESA 114%, and furrow averaged 130%. Supplying water at greater than 100% crop water demand indicates excessive water application. The 80% rate achieved by using subsurface drip and LEPA systems illustrates the potential for increasing water savings in this region. Greater use of the TAWC online irrigation scheduling tool and equipment demonstrated by this project can help reduce irrigation needs.

#### **Overall Discussion**

Over the 11 years of the project we have observed a number of system configurations under varied environmental conditions, irrigation technologies, and market conditions. Management is the key to how these systems behave under the extreme year to year variations experienced. Producers make strategic and tactical production decisions to maintain economic viability and utilize available resources efficiently. Strategic decisions relate to crop and livestock enterprise selection, whether it is year to year crop selection or longer term planning. Planting perennial grasses for seed and pasture production, integrating livestock into an operation, and the selection of irrigation technologies are examples of strategic decisions. Tactical decisions relate to enterprise management within the growing season, such as variety selection, fertilizer management, irrigation scheduling and harvest timing.

There are a number of irrigation management technologies such as SmartField<sup>TM</sup>, AquaSpy® and NetIrrigate®, which aid specifically in the tactical decision process. We have provided some of these technologies to producers within the TAWC project. Information received from these technologies in conjunction with measurement of evapotranspiration (ET) on a field by field basis has helped producers gain insight into better irrigation management techniques. Feedback from producers who have used these technologies has helped us formulate tools to address the short-term and long-term irrigation management challenges

facing the region. Continual adoption of water-saving technologies and monitoring will contribute to advances in the efficiency of water applied and amounts of water saved.

Two management tools were developed and made available to producers in the region through the TAWC Solutions web site (<a href="http://www.tawcsolutions.org">http://www.tawcsolutions.org</a>) in early 2011. Use of these tools by producers within and outside TAWC has grown. The Irrigation Scheduling Tool, and the Resource Allocation Analyzer are the practical tools available on this web site. These tools are free of charge to any producer.

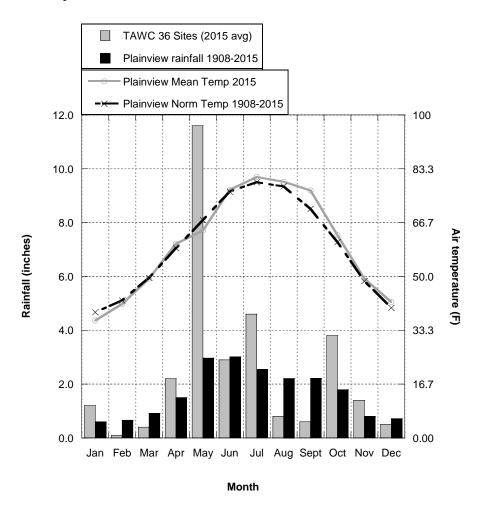
The dissemination of results and information from the project through various outreach efforts is an important part of the project. The TAWC Annual Winter Field Day from previous years was modified and became the first TAWC Water College to promote education in water conservation and held in January 2015 at Lubbock, TX. See page 19 for Water College program.

Field walks were also continued at a participating farm in June-September to demonstrate how to schedule irrigation in relation to meeting crop needs and the performance of a technology called precision mobile drip irrigation (PMDI). See Task 6 beginning on page 157 for more detailed information. These field days allowed attendees to visit several project sites and observe the technologies that are currently being demonstrated within the project to better manage and monitor irrigation use and timing. In addition to the field days, the project was represented at several farm shows within the region, which allowed further dissemination of findings and information regarding the project and demonstrations and producer interaction on the management tools that are being provided on the TAWC Solutions website. Detailed listings of outreach presentations, articles and activities are listed on pages 23-26 and beginning on 253 of appendix.

The long term ability of this project to observe and monitor a variety of crop and integrated crop/livestock systems under various environmental conditions is now allowing us to provide valuable information on irrigation management and water conservation techniques to producers in the area. The management of the Ogallala water resource is critical to the continued economic success of agriculture in the region. Producers face many technical and climatic challenges. The information we are providing from this project will assist producers in meeting these challenges and allow the region to continue to lead in agricultural production through innovation.

## **TAWC Water College**

January 21, 2015
Bayer Museum of Agriculture
1121 Canyon Lake Drive, Lubbock, TX


| 8:30 am  | Registration & Refreshments         |                                                                             |
|----------|-------------------------------------|-----------------------------------------------------------------------------|
| 8:50 am  | Welcome & Introductions             | Cameron Turner, Texas Water Development Board                               |
| 9:00 am  | Soil and Water Relationships K      | 'elly Attebury, Natural Resources Conservation Service                      |
| 9:30 am  | Understanding Soil Moisture Probe D | ata Rad Yager, Certified Agronomist                                         |
| 10:00 am | Texas A&M AgriLife Extension Water  | Management Research Dana Porter, Texas A&M<br>AgriLife Extension            |
| 10:45 am | Understanding ET and how to use its | data Dan Krieg, Plant Physiologist<br>Bob Glodt, Crop Consultant Specialist |
| 11:45 am | Lunch and Keynote Speaker           | Tom Sell, Combest, Sell & Associates                                        |
| 1:00 pm  | Grain Sorghum Water & Fertility Man | agement Cody Daft, Pioneer Hi-Bred                                          |
| 1:45 pm  | Corn Water & Fertility Management   | Jeff Miller, Pioneer Hi-Bred                                                |
| 2:45 pm  | Cotton Water & Fertility Managemer  | Glen Ritchie, Texas Tech University &<br>Texas A&M AgriLife Research        |
| 3:30 pm  | Weed Resistance for our Crops       | Wayne Keeling, Texas A&M AgriLife Extension                                 |
| 4:30 pm  | Close                               |                                                                             |

**Thanks to our Sponsors:** Bayer Crop Science, Sorghum Checkoff, Cotton Inc., DuPont Pioneer, Eco-Drip, Texas Sorghum Producers, Texas Corn Producers, AgTexas Farm Credit, Plains Cotton Growers, Capital Farm Credit, Diversity D Irrigation Services, Zimmatic Irrigation Services, Lubbock Electric, Hurst Farm Supply, Watermaster Irrigation, Texas Tech University Agricultural & Applied Economics, High Plains Underground Water District

The TAWC project was made possible through a grant from the Texas Water Development Board

#### 2015 WEATHER DATA (SEE APPENDIX FOR 2005-2014 DATA)

The 36 project sites received above-average rainfall in 2015 with an overall mean of 30.1 inches, using Plainview, TX for the long-term average (Figure 12). This year also showed a change of +0.37-foot (4.44 inches) water level of the Ogallala as measured and reported by the High Plains Underground Water Conservation District No. 1 (published in the 2016 Water Level Report (<a href="http://www.hpwd.org/reports/">http://www.hpwd.org/reports/</a>). This increase was an unusual occurrence given the steady decline in the aquifer observed over previous years. Precipitation in May, July, and October was substantially above average with the May rainfall being 4 times normal, resulting in flooding and difficulty in planting on time. The May and July rainfall events resulted in water saved on irrigation needs throughout the growing season. August and September were substantially below normal rainfall and required supplemental irrigation. Mean temperatures ran about normal through June but were above normal the remainder of the growing season. Rainfall by site (Table 2) indicates relative uniformity in rainfall events, though with a larger project area more variation is to be expected.



**Figure 14.** Temperature (lines) and precipitation (bars) by month for 2015 near the demonstration area (Plainview, TX) compared with long term averages.

**Table 2.** Precipitation (inches) at each site in the demonstration area during 2015.

| Site       | Jan        | Feb | Mar        | Apr        | May         | Jun        | Jul        | Aug        | Sep        | Oct        | Nov        | Dec        | Total        |
|------------|------------|-----|------------|------------|-------------|------------|------------|------------|------------|------------|------------|------------|--------------|
| 4          | 1.0        | 0.1 | 0.3        | 1.8        | 12.1        | 2.8        | 4.9        | 1.1        | 0.2        | 4.4        | 1.1        | 0.4        | 30.2         |
| 5          | 1.2        | 0.1 | 0.3        | 2.1        | 13.6        | 1.8        | 3.7        | 0.7        | 0.4        | 3.7        | 1.2        | 0.6        | 29.4         |
| 6          | 1.0        | 0.1 | 0.2        | 2.2        | 12.4        | 3.0        | 5.0        | 0.3        | 0.4        | 3.6        | 1.6        | 0.5        | 30.3         |
| 7          | 1.2        | 0.1 | 0.3        | 2.6        | 10.1        | 2.2        | 3.7        | 0.5        | 0.0        | 0.5        | 1.8        | 0.3        | 23.3         |
| 8          | 1.2        | 0.1 | 0.3        | 2.6        | 10.1        | 2.2        | 3.7        | 0.5        | 0.0        | 0.5        | 1.8        | 0.3        | 23.3         |
| 9          | 1.1        | 0.0 | 0.2        | 1.9        | 10.9        | 3.1        | 5.7        | 0.4        | 0.5        | 3.5        | 1.5        | 0.3        | 29.1         |
| 10         | 1.1        | 0.1 | 0.2        | 2.7        | 12.8        | 4.1        | 5.5        | 0.5        | 0.5        | 3.4        | 1.8        | 0.3        | 33.0         |
| 11         | 1.2        | 0.1 | 0.2        | 2.6        | 12.3        | 3.2        | 5.5        | 0.5        | 0.5        | 3.9        | 2.0        | 8.0        | 32.8         |
| 14         | 1.1        | 0.1 | 0.4        | 2.8        | 13.0        | 2.7        | 5.1        | 0.9        | 0.7        | 3.7        | 1.3        | 0.4        | 32.2         |
| 15         | 1.4        | 0.1 | 0.4        | 3.3        | 14.1        | 3.3        | 5.6        | 0.7        | 0.6        | 3.4        | 1.0        | 0.7        | 34.6         |
| 17         | 1.4        | 0.1 | 0.3        | 3.9        | 15.5        | 3.5        | 5.5        | 0.9        | 1.0        | 3.9        | 1.0        | 0.5        | 37.5         |
| 19         | 1.3        | 0.1 | 0.3        | 2.3        | 14.0        | 0.0        | 5.7        | 1.2        | 0.6        | 4.9        | 8.0        | 0.6        | 31.8         |
| 21         | 1.2        | 0.2 | 0.2        | 2.3        | 13.1        | 2.8        | 4.7        | 0.9        | 0.8        | 4.7        | 1.8        | 0.5        | 33.2         |
| 22         | 1.1        | 0.1 | 0.3        | 2.9        | 13.4        | 3.8        | 4.5        | 1.0        | 0.2        | 4.4        | 1.0        | 0.5        | 33.2         |
| 24         | 1.0        | 0.1 | 0.3        | 2.7        | 11.8        | 3.2        | 3.6        | 0.9        | 0.2        | 3.7        | 0.9        | 0.0        | 28.4         |
| 26         | 1.2        | 0.1 | 0.3        | 2.1        | 13.6        | 1.8        | 3.7        | 0.7        | 0.4        | 3.7        | 1.2        | 0.6        | 29.4         |
| 28         | 1.1        | 0.1 | 0.2        | 2.7        | 12.8        | 4.1        | 5.5        | 0.5        | 0.5        | 3.4        | 1.8        | 0.3        | 33.0         |
| 30         | 1.2        | 0.1 | 0.3        | 2.1        | 13.6        | 1.8        | 3.7        | 0.7        | 0.4        | 3.7        | 1.2        | 0.6        | 29.4         |
| 31         | 1.0        | 0.1 | 0.3        | 1.8        | 12.1        | 2.8        | 4.9        | 1.1        | 0.2        | 4.4        | 1.1        | 0.4        | 30.2         |
| 32         | 1.4        | 0.1 | 0.4        | 3.3        | 14.1        | 3.3        | 5.6        | 0.7        | 0.6        | 3.4        | 1.0        | 0.7        | 34.6         |
| 33         | 1.4        | 0.1 | 0.4        | 3.3        | 14.1        | 3.3        | 5.6        | 0.7        | 0.6        | 3.4        | 1.0        | 0.7        | 34.6         |
| 34         | 1.3        | 0.2 | 0.0        | 2.2        | 12.4        | 3.0        | 5.0        | 0.4        | 0.4        | 3.6        | 1.5        | 0.4        | 30.4         |
| 35         | 1.2        | 0.2 | 0.2        | 2.3        | 13.1        | 2.8        | 4.7        | 0.9        | 0.8        | 4.7        | 1.8        | 0.5        | 33.2         |
| C37        | 1.8        | 0.1 | 0.2        | 1.7        | 12.3        | 3.4        | 2.0        | 1.1        | 0.7        | 4.8        | 1.5        | 0.2        | 29.8         |
| C38        | 1.8        | 0.1 | 0.2        | 1.7        | 12.3        | 3.4        | 2.0        | 1.1        | 0.7        | 4.8        | 1.5        | 0.2        | 29.8         |
| C39        | 1.1        | 0.2 | 0.3        | 1.6        | 7.9         | 1.6        | 8.0        | 2.0        | 0.6        | 5.3        | 2.4        | 0.4        | 31.4         |
| C50        | 1.3<br>1.3 | 0.0 | 0.5        | 1.7<br>1.7 | 11.6        | 2.8<br>2.8 | 3.9        | 0.0        | 0.8        | 3.0<br>3.0 | 2.1<br>2.1 | 1.3        | 29.0<br>29.0 |
| C51<br>C52 | 0.9        | 0.0 | 0.5<br>0.7 | 1.7        | 11.6<br>5.8 | 3.3        | 3.9<br>2.9 | 0.0<br>1.4 | 0.8<br>1.4 | 5.2        | 1.1        | 1.3<br>0.5 | 24.5         |
| C52        | 0.9        | 0.2 | 0.7        | 1.1        | 5.8         | 3.3        | 2.9        | 1.4        | 1.4        | 5.2        | 1.1        | 0.5        | 24.5<br>24.5 |
| C54        | 0.9        | 0.2 | 0.7        | 1.1        | 5.8         | 3.3        |            | 1.4        | 1.4        | 5.2        | 1.1        | 0.5        | 24.5<br>24.5 |
| C56        | 1.6        | 0.2 | 0.7        | 1.1        | 6.8         | 3.4        | 4.6        | 1.4        | 0.5        | 1.4        | 0.3        | 0.3        | 22.8         |
| C57        | 1.3        | 0.3 | 0.8        | 1.7        | 8.1         | 2.2        | 7.6        | 1.0        | 1.8        | 4.9        | 0.9        | 0.2        | 31.1         |
| C58        | 1.3        | 0.0 | 0.7        | 1.7        | 11.6        | 2.8        | 3.9        | 0.0        | 0.8        | 3.0        | 2.1        | 1.3        | 29.0         |
| C59        | 1.3        | 0.0 | 0.5        | 1.7        | 11.6        | 2.8        | 3.9        | 0.0        | 0.8        | 3.0        | 2.1        | 1.3        | 29.0         |
| C60        | 1.4        | 0.0 | 0.5        | 2.2        | 11.6        | 4.2        | 5.2        | 1.3        | 0.3        | 4.1        | 1.1        | 0.0        | 32.2         |
| Avg        | 1.2        | 0.1 | 0.4        | 2.2        | 11.6        | 2.9        | 4.6        | 0.8        | 0.6        | 3.8        | 1.4        | 0.5        | 30.1         |

#### 2015 SUPPLEMENTARY GRANTS TO PROJECT (SEE APPENDIX FOR 2005-2014 DATA)

Supplementary grants and grant requests were obtained or attempted through leveraging of the base platform of TAWC and the Texas Coalition for Sustainable Integrated Systems (TeCSIS), and therefore represent added value to the overall TAWC effort.

- USDA-SARE. C. West. Long term agroecosystems research and adoption in the Texas Southern High Plains. \$100,000. This is a renewal grant for pasture research at the New Deal Research Field Station.
- USDA-NIFA-AFRI. C. West in collaboration with 40 scientists from 8 universities and the USDA-ARS. Sustaining Agriculture through Adaptive Management to Preserve the Ogallala Aquifer under a Changing Climate. \$218,000 is the Texas Tech portion of a \$2.5 million grant, to be renewed at that level for an additional 3 years.
- USDA Southern SARE Graduate Student Grant Program. L. Baxter (West advisee), and C.P. West. Evaluation of winter annual cover crops under multiple residue managements: Impacts on land management, soil water depletion, and cash crop productivity. \$9,511.

#### 2015 DONATIONS TO PROJECT (SEE APPENDIX FOR 2005-2014 DATA)

#### **TAWC Water College Sponsors**

| Bayer                   | \$ 2,000.00 |
|-------------------------|-------------|
| Cotton Inc.             | \$ 2,000.00 |
| Sorghum Checkoff        | \$ 2,000.00 |
| Eco-Drip                | \$ 2,000.00 |
| DuPont Pioneer          | \$ 2,000.00 |
| Texas Corn Producers    | \$ 1,000.00 |
| Texas Sorghum Producers | \$ 1,000.00 |
| AgTexas                 | \$ 1,000.00 |
| AAEC                    | \$ 500.00   |
| Hurst Farm Supply       | \$ 500.00   |
| Lubbock Electric        | \$ 250.00   |
| Plains Cotton Growers   | \$ 500.00   |
| Diversity D             | \$ 250.00   |
| Zimmatic                | \$ 250.00   |
| Watermaster Irrigation  | \$ 250.00   |
| Capital Farm Credit     | \$ 250.00   |
| Total                   | \$15,750.00 |

### TAWC Field Day Sponsors

| Plains Land Bank        | \$ 250.00   |
|-------------------------|-------------|
| Sorghum Checkoff        | \$ 250.00   |
| Eco-Drip                | \$ 250.00   |
| Texas Corn Producers    | \$ 250.00   |
| Texas Sorghum Producers | \$ 250.00   |
| Hurst Farm Supply       | \$ 250.00   |
| Plains Cotton Growers   | \$ 250.00   |
| Netafim                 | \$ 250.00   |
| _AquaSpy                | \$ 250.00   |
| Total                   | \$ 2,250.00 |

#### 2015 VISITORS TO THE DEMONSTRATION PROJECT SITES

| Total Number of Visitors at Demonstration Sites                | 250+ |  |
|----------------------------------------------------------------|------|--|
| Total Number of attendees Water College/Field Days/Field Walks | 350+ |  |

### 2015 Presentations (See Appendix for 2005-2014 data)

| <u>Date</u>   | <u>Presentation</u>                                    | Spokesperson(s)         |
|---------------|--------------------------------------------------------|-------------------------|
| 2/15/2015     | Agriculture and Climate Change. Amsterdam, Netherlands | S. Angadi, C. West      |
| 3/3/2015      | HPACC, Lubbock, TX                                     | R. Kellison             |
| 3/11/2015     | Marketing 101, Muncy, TX                               | J. Pate                 |
| 3/12/2015     | Ogallala Aquifer Program, Manhattan, KS                | Y. Xiong, C. West       |
| 3/18/2015     | Farm Budgeting, Lubbock, TX                            | J. Pate                 |
| 3/19/2015     | Nebraska Water Symposium, Lincoln, Nebraska            | R. Kellison, G. Schur   |
| 4/8/2015      | Briscoe County Ag Days, Silverton, TX                  | R. Kellison             |
| 4/17/2015     | Kingpins 2029, Amsterdam                               | R. Kellison             |
| 5/2015        | National AAAE Research Conference, San Antonio, TX     | L. Durst, C. Myers      |
| 5/18/2015     | World Environ. Water Resources Conference, Austin, TX  | C. West, R. Kellison    |
|               |                                                        | C. West, P. Brown,      |
| 7/9/2015      | Texas Tech TeCSIS Field Day, New Deal, TX              | R. Kellison, V. Allen   |
| 8/3/2015      | Nebraska Water Balance Field Day, Sutherland, Nebraska | R. Kellison             |
| 8/17/2015     | Texas Soil and Water, Lubbock, TX                      | R. Kellison             |
| 8/19/2015     | Floydada Rotary Club, Floydada, TX                     | R. Kellison             |
| 11/15-18/2015 | ASA-CSSA-SSSA Annual Meeting, Minneapolis, MN          | C. West, P. Brown       |
| 11/15-18/2015 | ASA-CSSA-SSSA Annual Meeting, Minneapolis, MN          | S. Sharma, S. Maas      |
|               |                                                        | S. Sharma, N. Rajan, S. |
| 11/15-18/2015 | ASA-CSSA-SSSA Annual Meeting, Minneapolis, MN          | Maas                    |
|               |                                                        | N. Rajan, S. Sharma,    |
| 11/15-18/2015 | ASA-CSSA-SSSA Annual Meeting, Minneapolis, MN          | K.D. Casey, S. Maas     |

|               |                                                    | N. Rajan, S. Sharma, S. |
|---------------|----------------------------------------------------|-------------------------|
| 11/15-18/2015 | ASA-CSSA-SSSA Annual Meeting, Minneapolis, MN      | Maas                    |
| 1/12/2016     | Crop Profitability, Lubbock, TX                    | J. Pate                 |
| 1/19/2016     | Crop Profitability, Lubbock, TX                    | J. Pate                 |
| 1/22/2016     | Crop Profitability, Lubbock, TX                    | J. Pate                 |
| 2/17/2016     | Regional SCS Group Presentation, PYCO, Lubbock, TX | P. Brown                |

#### 2015 Related Non-refereed Publications (See Appendix for 2005-2014 data)

Pate, Jeff, and Donna Mitchell: "Profitability of 2 and 2 Skip-Row Planted Cotton". Poster presented in the Economics and Marketing Session at the 2015 Beltwide Cotton Conferences, January 2015, New Orleans, LA. Published in 2015 Proceedings.

#### 2015 RELATED REFEREED JOURNAL ARTICLES (SEE APPENDIX FOR 2005-2014 DATA)

Cui, S., C.J. Zilverberg, V.G. Allen, C. P. Brown, J. Moore-Kucera, D.B. Wester, M. Mirik, S. Chaudhuri, and N. Phillips. 2014. Carbon and nitrogen responses of three old world bluestems to nitrogen fertilization or inclusion of a legume. Field Crops Research 164:45–53.

Zilverberg, Cody, Phil Brown, Paul Green, Vivien Allen, and Michael Galyean. 2015. Forage performance in crop-livestock systems designed to reduce water withdrawals from a declining aquifer. Rangelands 37:55-61.

Rajan, N., S. J. Maas, R. Kellison, M. Dollar, S. Cui, S. Sharma, and A. Attia. 2015. Emitter uniformity and application efficiency for center-pivot irrigation systems. Irrigation and Drainage 64:353-361.

Shafian, S., and S. J. Maas. 2015. Index of soil moisture using raw Landsat image digital count data in Texas High Plains. Remote Sensing 7:2352-2372.

Shafian, S., and S.J. Maas. 2015. Improvement of the trapezoid method using raw Landsat image digital count data for soil moisture estimation in the Texas (USA) High Plains. Sensors 15(1):1925-1944.

#### 2015 POPULAR PRESS (SEE APPENDIX FOR 2005-2014 DATA)

Texas Tech's Kellison chosen for presentation during Amsterdam Denim Days – Redraiders.com, April 13, 2015. http://redraiders.com/filed-online/2015-04-13/texas-techs-kellison-chosen-presentation-during-amsterdam-denim-days#.V070nZErLRY

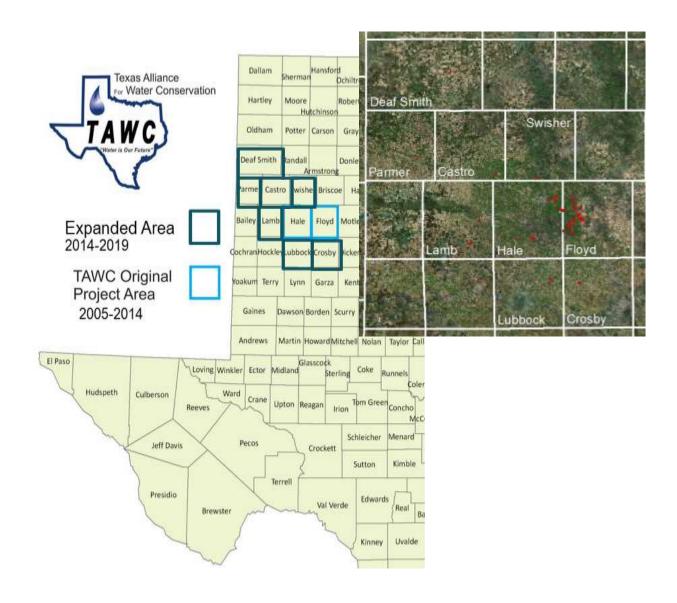
- Texas Conservation Project Helps Farmers Manage Finite Water Resources -Farm Policy Facts, October 21, 2015. http://www.farmpolicyfacts.org/2015/10/texas-conservation-project-helps-farmers-manage-finite-water-resources/
- Water conservation alliance hosting field day at Muncy Plainview Daily Herald, September 11, 2015. http://www.myplainview.com/agriculture/article\_7ea95cfe-5892-11e5-8268-5b1c99163bf3.html
- Agriculture irrigation main focus of water project, Texas Alliance for Water Conservation researches irrigation, soil probe technologies Lubbock Avalanche-Journal, September 18, 2015. http://lubbockonline.com/agriculture/2015-09-18/agriculture-irrigation-main-focus-water-project#.V07xwpErLRY
- TAWC Water College Wednesday in Lubbock. Fox 34, January 2016. http://www.fox34.com/story/31000868/tawc-water-college-wednesday-in-lubbock
- Water College features ag commissioner, TWDB chair Plainview Daily Herald, January 21, 2016. http://www.myplainview.com/agriculture/article\_fb9915ae-bbb3-11e5-8518-6f36ab361974.html
- TAWC Improves Water Management Through Education PCCA Commentator, Winter 2016. https://www.pcca.com/Publications/Commentator/2016/Winter/page06.asp
- Agriculture irrigation main focus of water project. Texas Alliance for Water Conservation researches irrigation, soil probe technologies Lubbock Avalanche-Journal, September 18, 2015. http://lubbockonline.com/agriculture/2015-09-18/agriculture-irrigation-main-focus-water-project#.Vqfoh5orL0M
- Texas Alliance For Water Conservation Water College Set For Jan. 20 Texas Tech Today, January 2016. http://today.ttu.edu/posts/2015/12/texas-alliance-for-water-conservation-water-college
- Ag. Commissioner Miller among speakers set for water conservation event in Lubbock Miller to speak at conservation event Lubbock Avalanche-Journal, January 14, 2016. http://lubbockonline.com/local-news/2016-01-14/ag-commissioner-miller-among-speakers-set-water-conservation-event-lubbock#.VqfpVporL0M
- Agriculture Commissioner seeks federal disaster declaration for Goliath-hurt livestock producers Lubbock Avalanche Journal, January 20, 2016. http://m.lubbockonline.com/local-news/2016-01-20/agriculture-commissioner-seeks-federal-disaster-declaration-goliath-hurt#gsc.tab=0
- Aquifer levels up for first time in a decade Lubbock Avalanche Journal, May 14, 2016. http://lubbockonline.com/filed-online/2016-05-14/aquifer-levels-first-time-decade#.V07mKpErLRZ

- Texas Tech part of consortium studying sustainability of Ogallala Aquifer CASNR News Center, March 2016. http://www.depts.ttu.edu/agriculturalsciences/news/?p=6662
- Tech researchers take part in sustainability study of Ogallala Aquifer Fox 34 News, March 24, 2016. http://www.fox34.com/story/31561952/tech-researchers-take-part-in-sustainability-study-of-ogallala-aquifer
- Tech collaborates with other universities to examine sustainability of Ogallala Aquifer Lubbock Avalanche Journal, March 24, 2016. http://m.lubbockonline.com/filed-online/2016-03-24/tech-collaborates-other-universities-examine-sustainability-ogallala-aquifer#gsc.tab=0
- Farmers Teaching Farmers How to Manage Water Like Money Sustainable Agriculture Research & Education, July 2016. http://www.southernsare.org/Educational-Resources/Topic-Rooms/Water-Conservation-on-the-High-Plains/Sustainable-High-Plains-Contents/Water-Conservation/Texas-Alliance-for-Water-Conservation
- Bringing Technology And Innovation To Farming & Fracturing Texas CEO Magazine, April 25, 2015. http://texasceomagazine.com/departments/future-water-solutions/
- TCEQ to award local water conservation program- Plainview Daily Herald, May 2015 http://www.myplainview.com/news/article\_bf08c460-d87c-11e4-a3c1-4b339e3aed51.html
- Environmental excellence award goes to Texas Alliance for Water Conservation CASNR News Center, May 2015. http://www.depts.ttu.edu/agriculturalsciences/news/?p=5956
- Texas Tech agricultural communications project aims to develop critical thinkers CASNR News Center, March 2016. http://www.depts.ttu.edu/agriculturalsciences/news/?p=6707

#### 2015 THESES AND DISSERTATIONS (SEE APPENDIX FOR 2005-2014 DATA)

Durst, Libby. 2015. "Working with Water: An Exploration of Texas High Plains Agricultural Producers' Adoption of Water Conservation Practices in Irrigation Management." M.S. Thesis, Texas Tech University, Lubbock, TX.

#### Phase II Changes and Alterations


Phase II (See Appendix for Phase I Background) was started in 2014 with an additional 5 years of funding by the Texas Water Development Board and expanded the impact area to include a total of 8 counties in the Texas High Plains (Figure 3) with an additional county site location to be added in 2015.

Total number of Phase II acres devoted to each crop and livestock enterprise and management type in 2015 are given in Table 3. Previous year system information for both Phase I and Phase II of this project is provided in the Appendix, Tables A1-A10.

In Phase II year 1 (2014), sites 2, 3, 12 and 18 were dropped from the project, and 10 new sites in six new counties were added (Crosby, Deaf Smith, Lamb, Lubbock, Parmer, Swisher). The 10 new sites are numbered C50-C54 and C56-C60. Total net acres for the project increased from 4,962 in 2013 to 5,223 in 2014 as a result of these changes (Table A10).

In Phase II year 2 (2015), Sites 20, 27 and 29 were dropped and Sites C37, C38 and C39 were added with Site 17 dropping the perennial grass field of 112 acres from the original system acres. This resulted in a net increase in project acres from 5,223 acres in 2014 to 5,258 acres in 2015. While total sites in the project remained the same at 36, data was only collected on 31 producer sites in 2015 and the impact area covered by the project has significantly increased. As Phase II of our project outreach has expanded to include additional counties, some of the original project sites within Hale and Floyd counties are being replaced to facilitate the time and effort toward the new expanded area sites in order to focus on a broader impact area. With the addition of site 39 in Castro county the project area has increased from 2 counties in Phase I to a total of 9 counties in Phase II for 2015.

All numbers in this report continue to be checked and verified. <u>THIS REPORT SHOULD BE</u> <u>CONSIDERED A DRAFT AND SUBJECT TO FURTHER REVISION</u>. However, each year's annual report reflects completion and revisions made to previous years' reports as well as the inclusion of additional data from previous years. Thus, the most current annual report will contain the most complete and correct report from all previous years and is an overall summarization of the data to date.



**Figure 15.** Original project area and new county expansion for Phase II of the demonstration project.

**Table 3.** Irrigation type and total acres, by site, of crops, forages, and acres grazed by cattle in 36 producer sites in the project during 2015. Sites 6, 7, 34, C37 and C38 had no data collected for 2015. (See Appendix for 2005-2014)

| Site             | Irrigation<br>type     | System<br>acres | Cotton              | Corn<br>grain | Corn<br>silage | Fallow | Grain<br>sorghum | Seed<br>sorghum | Forage<br>sorghum | Alfalfa | Grass<br>seed | Нау | Perennial<br>forage | Cattle<br>grazed | Wheat<br>for grain | Wheat<br>silage | Grazed<br>wheat | Sunflower | Blackeye<br>pea | Seed<br>millet |
|------------------|------------------------|-----------------|---------------------|---------------|----------------|--------|------------------|-----------------|-------------------|---------|---------------|-----|---------------------|------------------|--------------------|-----------------|-----------------|-----------|-----------------|----------------|
| 4                | LESA/LEPA              | 123.0           | 77.4                |               |                |        |                  |                 |                   | 16      |               |     |                     |                  | 29.6               |                 | 29.6            |           |                 |                |
| 5                | LESA                   | 484.1           |                     | 122.9         |                |        |                  |                 |                   |         |               |     |                     |                  | 119.4              |                 |                 | 85.8      |                 | 156.0          |
| 6                | LESA                   | 122.7           | 60.6                | 62.1          |                |        |                  |                 |                   |         |               |     |                     |                  |                    |                 |                 |           |                 |                |
| 7                | LESA                   | 130.0           |                     |               |                |        |                  |                 |                   |         |               |     |                     |                  |                    |                 |                 |           |                 |                |
| 8                | SDI                    | 61.8            |                     |               |                |        |                  |                 |                   |         |               |     |                     |                  |                    |                 |                 |           |                 |                |
| 9                | MESA                   | 237.7           | 136.9               |               |                |        |                  |                 |                   |         |               |     | 100.8               | 100.8            |                    |                 |                 |           |                 |                |
| 10               | LESA                   | 173.6           | 59.2                | 59.2          |                |        |                  |                 |                   |         |               |     | 57.7                | 57.7             |                    |                 |                 |           |                 |                |
| 11               | FUR/SDI                | 82.6            | 10                  | 37.6          |                |        | 35.0             |                 |                   |         |               |     |                     |                  |                    |                 |                 |           |                 |                |
| 14               | MESA                   | 124.1           | 62.1                |               |                | 62.0   |                  |                 |                   |         |               |     |                     |                  |                    |                 |                 |           |                 |                |
| 15               | SDI                    | 101.1           | 101.1               |               |                |        |                  |                 |                   |         |               |     |                     |                  |                    |                 |                 |           |                 |                |
| 17               | MESA                   | 108.9           |                     | 54.5          |                |        |                  |                 |                   |         |               |     |                     |                  |                    |                 |                 | 54.4      |                 |                |
| 19               | LEPA                   | 120.4           | 60.2                |               |                | 60.2   |                  |                 |                   |         |               |     |                     |                  |                    |                 |                 |           |                 |                |
| 21               | LEPA                   | 120.7           |                     | 60.1          |                |        |                  |                 |                   |         |               |     |                     |                  | 60.6               |                 |                 |           |                 |                |
| 22               | LEPA                   | 145.0           | 145.0               | 145.0         |                |        |                  |                 |                   |         |               |     |                     |                  |                    |                 |                 |           |                 |                |
| 24               | LESA                   | 129.7           |                     | 65.1          |                |        |                  |                 |                   |         |               |     |                     |                  |                    |                 |                 | 64.6      |                 |                |
| 26               | LESA                   | 125.1           |                     | 62.9          |                |        |                  |                 |                   |         |               |     |                     |                  |                    |                 |                 |           |                 | 62.2           |
| 28               | SDI                    | 51.5            |                     | 51.5          |                |        |                  |                 |                   |         |               |     |                     |                  |                    |                 |                 |           |                 |                |
| 30               | SDI                    | 21.8            |                     | 21.8          |                |        |                  |                 |                   |         |               |     |                     |                  |                    |                 |                 |           |                 |                |
| 31               | LEPA/LESA/<br>LDN/PMDI | 121.9           |                     | 66.8          |                |        | 55.1             |                 |                   |         |               |     |                     |                  |                    |                 |                 |           |                 |                |
| 32               | LEPA                   | 70.0            |                     | 70.0          |                |        |                  |                 |                   |         |               |     |                     |                  |                    |                 |                 |           |                 |                |
| 33               | LEPA                   | 70.0            |                     | 70.0          |                |        |                  |                 |                   |         |               |     |                     |                  |                    |                 |                 |           |                 |                |
| 34               | LESA                   | 726             |                     |               |                |        |                  |                 |                   |         |               |     |                     |                  |                    |                 |                 |           |                 |                |
| 35               | SDI                    | 230.0           |                     | 230.0         |                |        |                  |                 |                   |         |               |     |                     |                  |                    |                 |                 |           |                 |                |
| C37              | VR-LESA                | 121.1           |                     |               |                |        |                  |                 |                   |         |               |     |                     |                  |                    |                 |                 |           |                 |                |
| C38              | VR-LESA                | 481.0           |                     |               |                |        |                  |                 |                   |         |               |     |                     |                  |                    |                 |                 |           |                 |                |
| C39              | LEPA                   | 120.0           |                     | 60.0          |                |        | 60.0             |                 |                   |         |               |     |                     |                  |                    |                 |                 |           |                 |                |
| C50              | LESA                   | 120.6           | 120.6               |               |                |        |                  |                 |                   |         |               |     |                     |                  |                    |                 |                 |           |                 |                |
| C51              | SDI                    | 45.7            | 45.7                |               |                |        |                  |                 |                   |         |               |     |                     |                  |                    |                 |                 |           |                 |                |
| C52              | LESA                   | 130             | 130.0               |               |                |        |                  |                 |                   |         |               |     |                     |                  |                    |                 |                 |           |                 |                |
| C53              | SDI                    | 50              | 50.0                |               |                |        |                  |                 |                   |         |               |     |                     |                  |                    |                 |                 |           |                 |                |
| C54              | SDI                    | 80              | 80.0                |               |                |        |                  |                 |                   |         |               |     |                     |                  |                    |                 |                 |           |                 |                |
| C56              | LESA                   | 40              |                     |               |                |        |                  |                 |                   |         | -             |     |                     |                  |                    |                 |                 |           | 40.0            |                |
| C57              | LESA                   | 115             |                     | 115.0         |                |        |                  |                 |                   |         |               |     |                     |                  |                    |                 |                 |           |                 |                |
| C58              | LESA                   | 120             |                     | 60.0          |                |        |                  |                 |                   | 60.0    |               |     |                     |                  |                    |                 |                 |           |                 |                |
| C59              | SDI                    | 93              |                     |               |                |        |                  |                 |                   | 93.0    |               |     |                     |                  |                    |                 |                 |           |                 |                |
| C60              | LESA                   | 59.5            | 59.5                |               |                |        |                  |                 |                   |         |               |     |                     |                  |                    |                 |                 |           |                 |                |
| Total acres 2015 |                        | 5,258           | 1,053.3 (harvested) | 1,414.5       | 0              | 122.2  | 150.1            | 0               | 0                 | 169.0   | 0             | 0   | 158.5               | 158.5            | 209.6              | 0               | 29.6            | 204.8     | 40.0            | 218.2          |
| 1                | # of Sites             | 36              | 14                  | 18            | 0              | 2      | 3                | 0               | 0                 | 3       | 0             | 0   | 2                   | 2                | 3                  | 0               | 1               | 3         | 1               | 2              |

PIV = pivot irrigation SDI = subsurface drip irrigation FUR = furrow irrigation DRY = dryland, no irrigation

<sup>\*\*</sup>Red denotes field crop failure/Insurance claim, Yellow denotes original purpose altered, Brown denotes fallowed, Grey denotes no field data for this year.



#### **Description:**

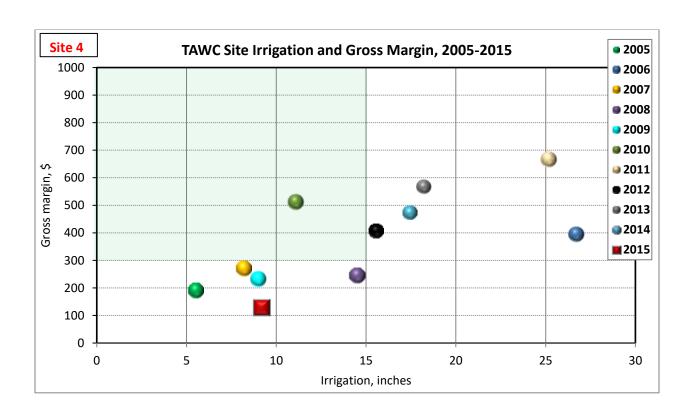
Site acres: 123.0

Soil types:

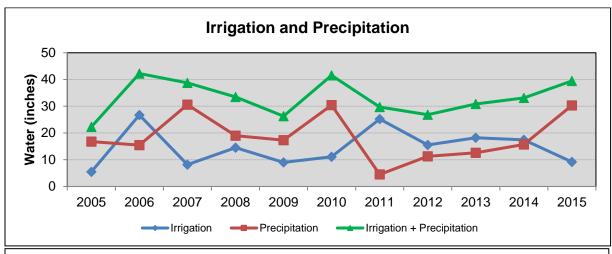
PuA-Pullman clay loam, 0 to 1%

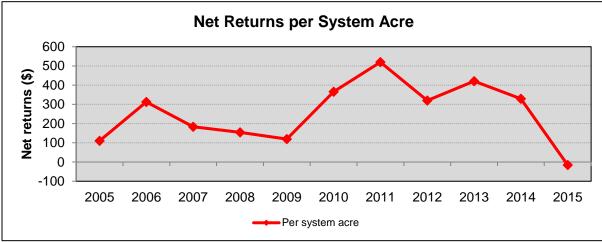
DsD-Drake soils, 3 to 8%

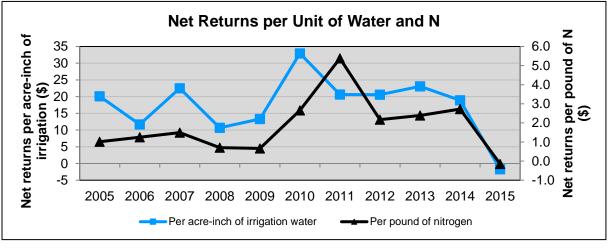
EsB-Estacado loam, 1 to 3%


Lo-Lofton clay loam, 0 to 1%

Irrigation:

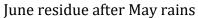

Center Pivot (LESA) 500 gpm


Number of wells: 3


Fuel Source: 1 Natural gas,



Site 4








Site 4







June wheat



Cattle grazing



Alfalfa



Cotton



LEPA Irrigated wheat

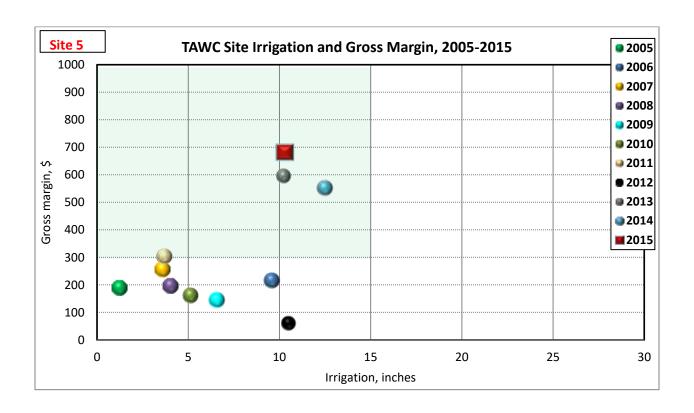
Comments: In 2015 this pivot LEPA/LESA irrigated site was planted to wheat, cotton and continued with alfalfa.



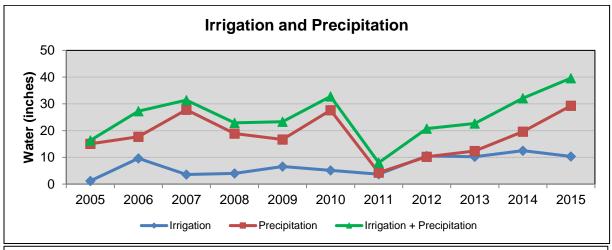
#### **Description:**

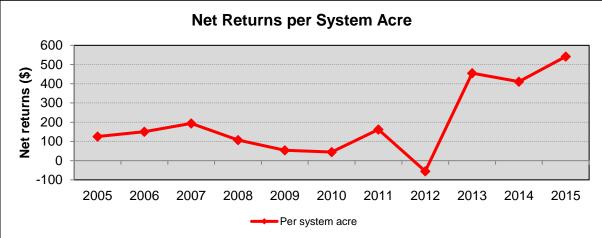
Site acres: 484.1

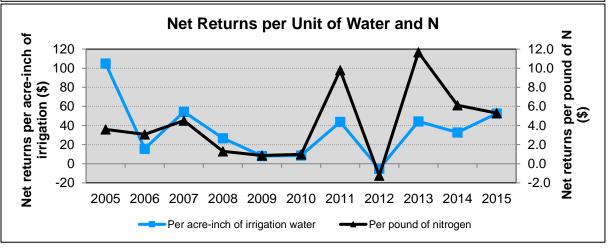
Soil types:


BpA-Bippus loam, 0 to 1%
MkB/MkC-Mansker loam, 0 to 3 and
3 to 5%

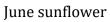
OtA/OtB-Olton loam, 0 to 1% and 1 to 3%


Irrigation:


Center Pivot (MESA) 1100gpm


Number of wells: 4




Site 5













August sunflower



Seed millet



August corn



September corn



Sunflower planted

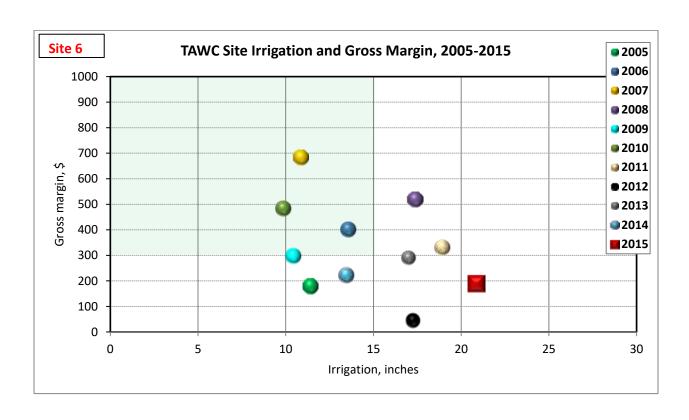
Comments: In 2015 this pivot irrigated site was planted to wheat, millet, sunflower and corn. The sunflower on 30 inch centers and was no-till planted.



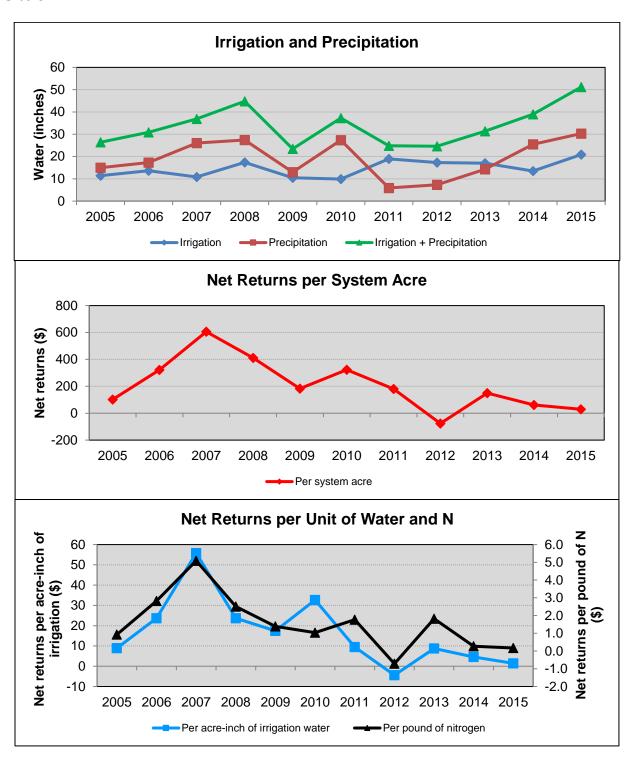
### **Description:**

Site acres: 122.7

Soil types:


PuA-Pullman clay loam, 0 to 1% PuB-Pullman clay loam, 1 to 3% LoA-Lofton clay loam, 0 to 1%

Irrigation:


Center Pivot (LESA) 500 gpm

Number of wells: 4

Fuel Source: Natural gas



Site 6





Planted cotton



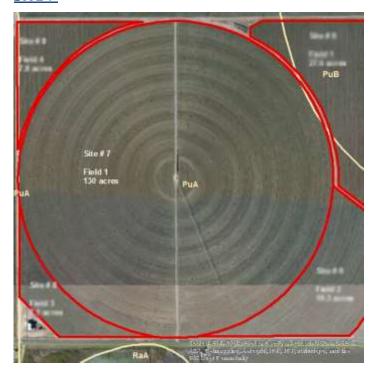
September cotton



Irrigated cotton



Irrigating corn




September corn



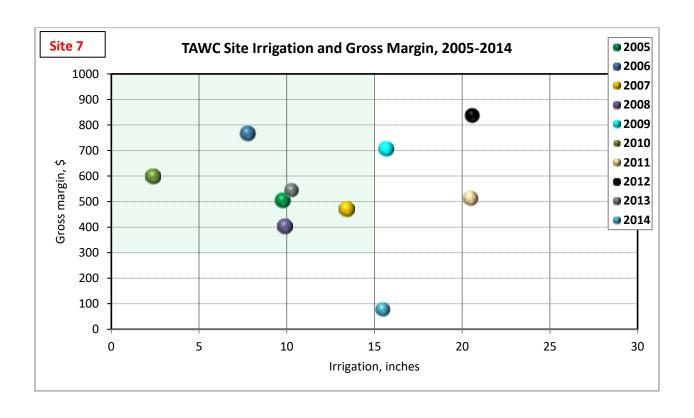
Harvested corn

Comments: In 2015 this pivot irrigated site was planted to corn and cotton. The corn was planted strip-till and the cotton was planted no-till.

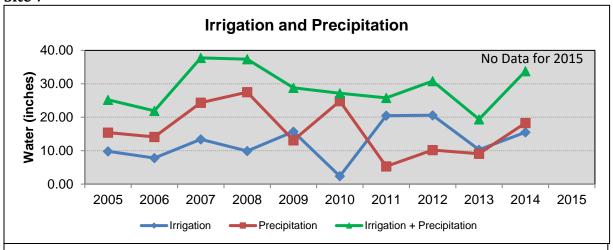


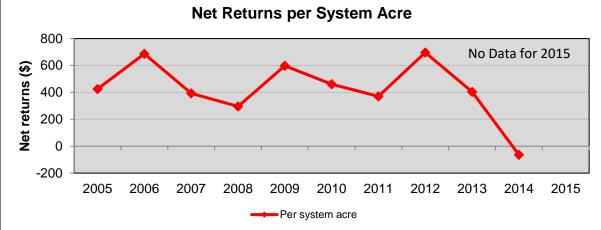
### **Description:**

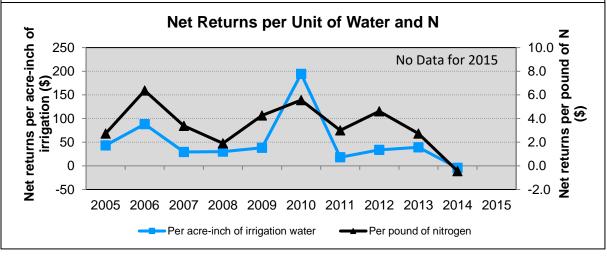
Site acres: 130


Soil types:

PuA-Pullman clay loam, 0 to 1% PuB-Pullman clay loam, 1 to 3%


Irrigation:


Center Pivot (LESA) 500 gpm


Number of wells: 4



Site 7



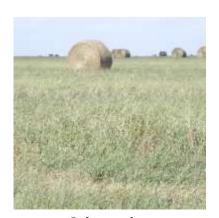






Burned residue




Field of Sideoats grama



Sideoats grama



Sideoats ready for harvest



Sideoats hay



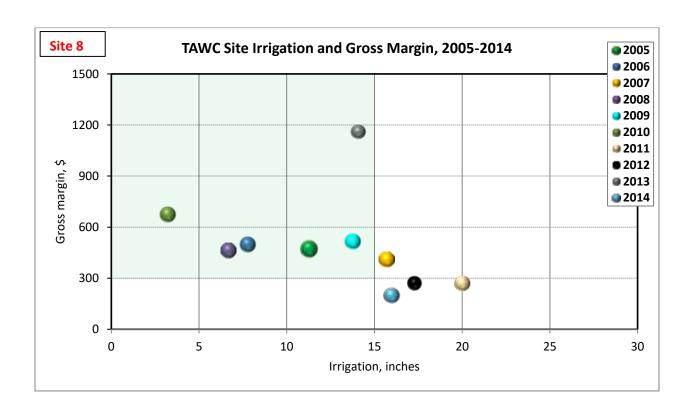
Baled following seed harvest

Comments: In 2015 this pivot irrigated site continued as a grass seed monoculture of sideoats grama. Due to producer family health issues no data was collected in 2015.

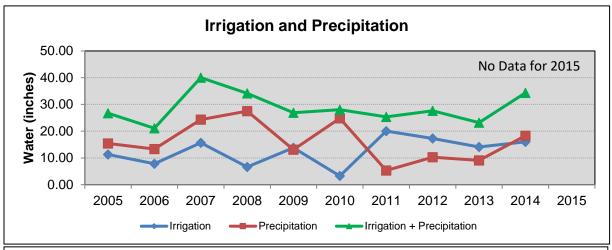


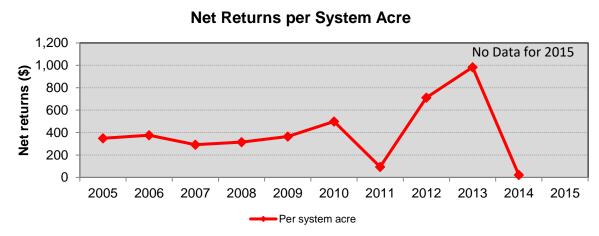
### **Description:**

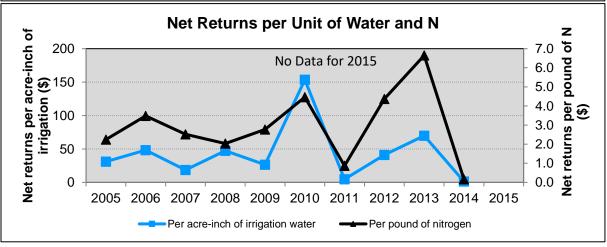
Site acres: 61.8


Soil types:

PuA-Pullman clay loam, 0 to 1% PuB-Pullman clay loam, 1 to 3%


Irrigation:

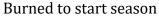

Sub-surface drip (SDI) 360 gpm


Number of wells: 4



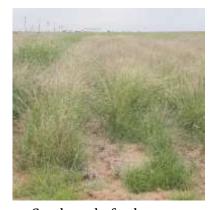
Site 8











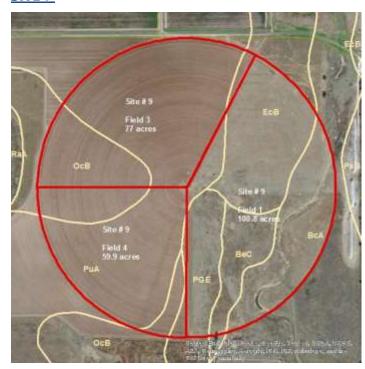



Field of sideoats grama

Sideoats over SDI








Seed ready for harvest

Laid down for thrashing

Residue round baled

Comments: In 2015 this SDI irrigated site continues to be managed as a grass seed monoculture. Due to producer family health issues no data was collected in 2015.



#### **Description:**

Site acres: 237.7

# Soil types:

PuA-Pullman clay loam; 0 to 1%

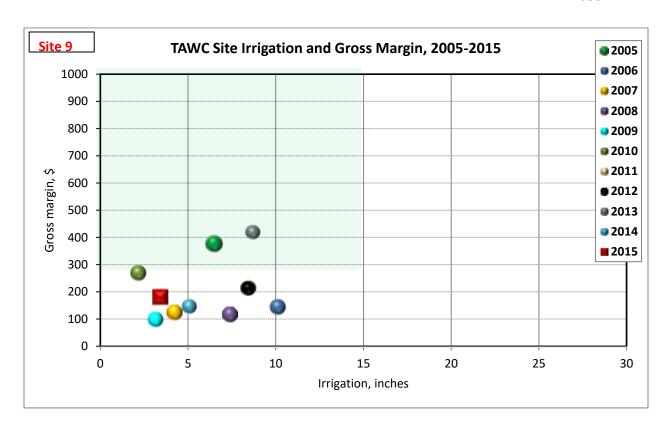
OcB-Olton clay loam, 1 to 3%

EcB-Estacado clay loam; 1 to 3%

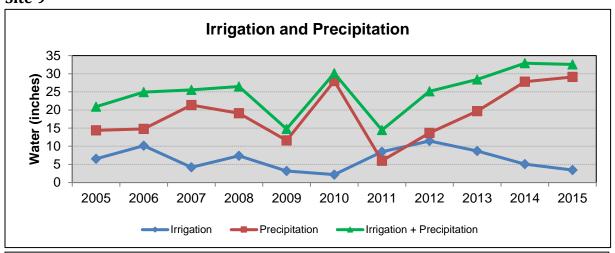
BcA-Bippus clay loam; 0 to 2%

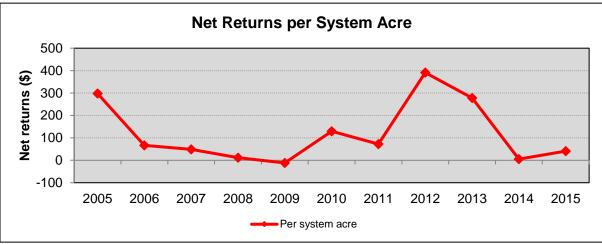
BeC-Berda loam, 3 to 5%

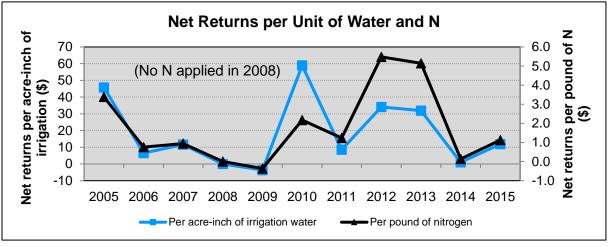
PGE-Potter soil, 3 to 20%


### Irrigation:

Center Pivot (MESA) 900 gpm


Number of wells: 4


Fuel Source: 2 Natural gas,


2 Diesel



Site 9







Site 9



Perennial grass



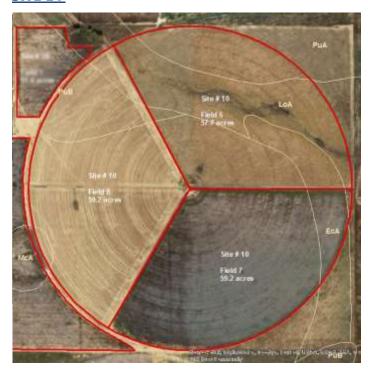
July cotton



Cattle grazing grass



Perennial grass for grazing




calves from momma cows



Cotton ready for harvest

Comments: In 2015 this pivot irrigated site was planted to cotton. The perennial grass mix was grazed by cows with calves.

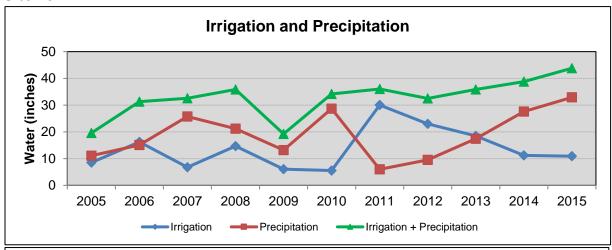


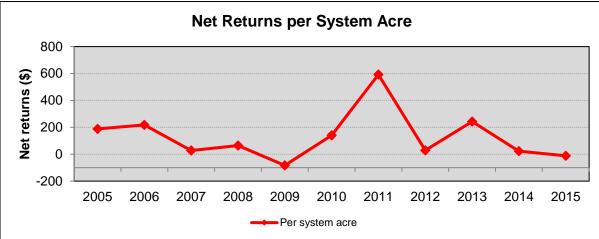
#### **Description:**

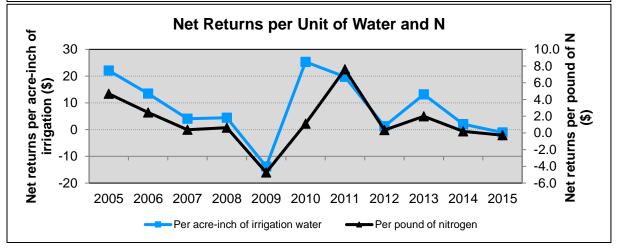
Site acres: 173.6

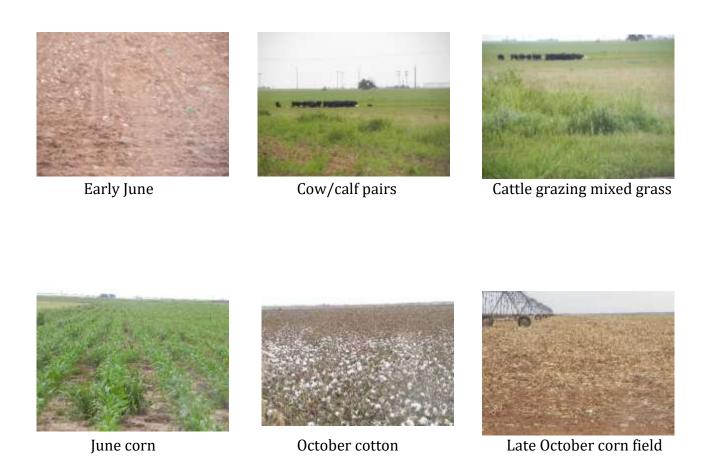
#### Soil types:

PuA-Pullman clay loam; 0 to 1% PuB-Pullman clay loam, 1 to 3% EcA-Estacado clay loam; 0 to 1% LoA-Lofton clay loam; 0 to 1%


Irrigation:


Center Pivot (LESA) 800 gpm


Number of wells: 2




**Site 10** 







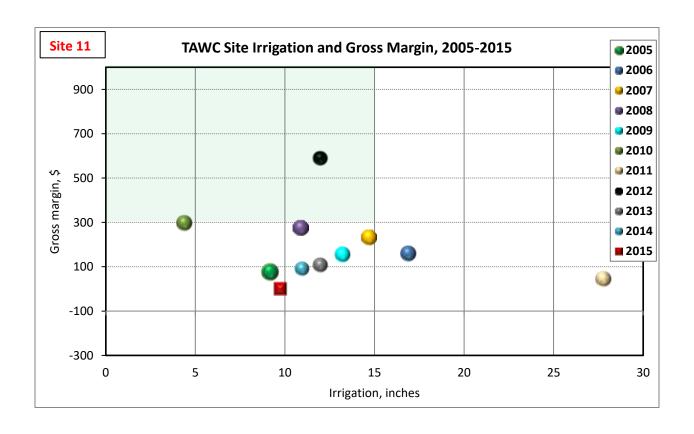


Comments: In 2015 this pivot LESA irrigated site was planted to conventional tillage corn and cotton and continued in perennial grass. The perennial grass was grazed.

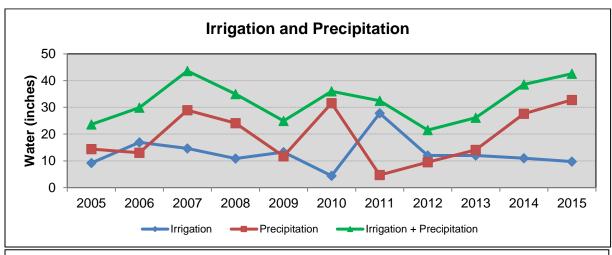


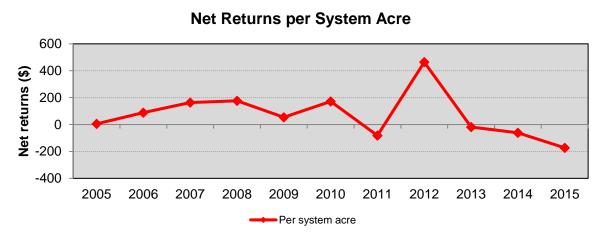
#### **Description:**

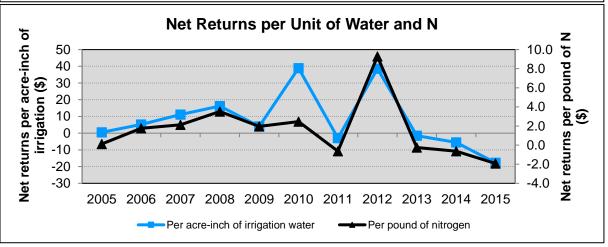
Site acres: 82.6


#### Soil types:

PuA-Pullman clay loam; 0 to 1% LoA-Lofton clay loam; 0 to 1% EcB-Estacado clay loam; 1 to 3% OcB-Olton clay loam; 1 to 3%


# Irrigation:


Furrow/Drip (FUR/SDI) 490 gpm


Number of wells: 1



**Site 11** 













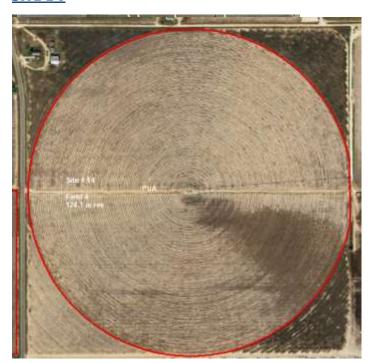
Water meter on system



SDI filtration system



July cotton




June corn



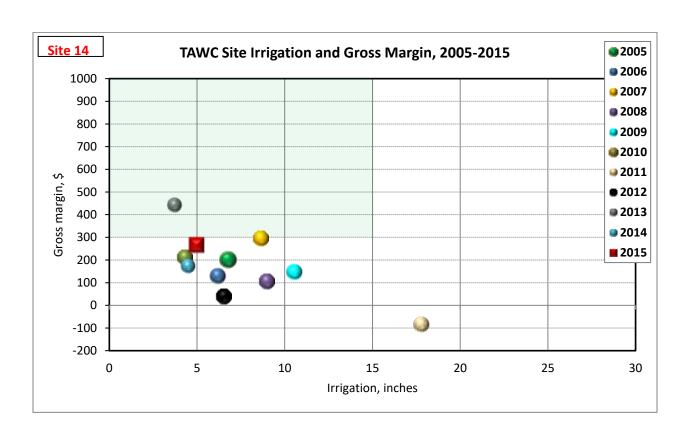
Moisture probe installation

Comments: In 2015 this SDI/FUR irrigated site was planted to cotton and corn. The corn and cotton were planted on 40-inch centers under conventional tillage.

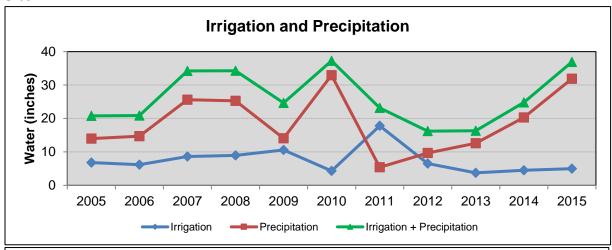


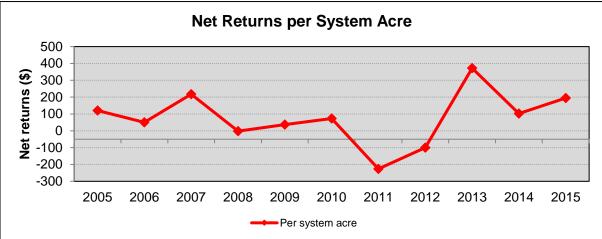
#### **Description:**

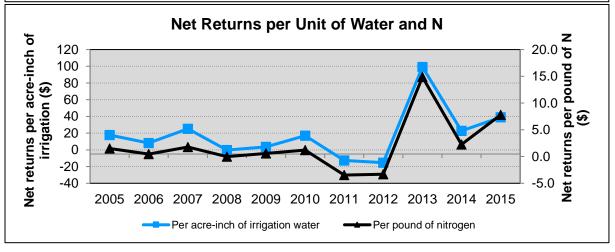
Site acres: 124.1


Soil types:

PuA-Pullman clay loam; 0 to 1%


Irrigation:


Center Pivot (LESAA) 300 gpm


Number of wells: 3



**Site 14** 









May rains



Early June cotton



Early August cotton



Cotton planted 2 in- 2 out



Cotton ready for harvest



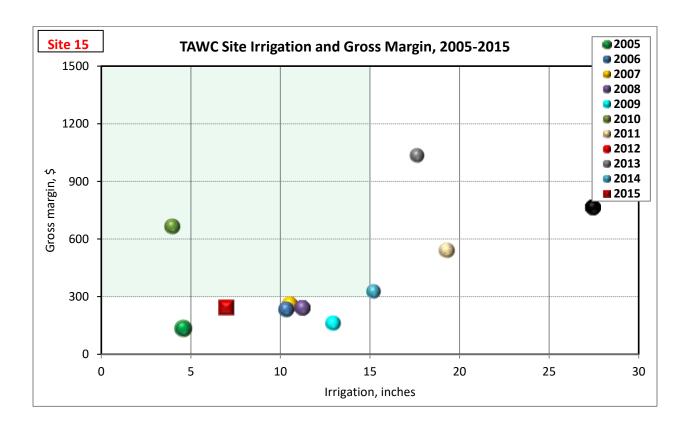
MESA/LEPA irrigation

Comments: In 2015 this pivot MESA/LEPA irrigated site was planted to cotton monoculture in a 2 in 2 out tillage system.

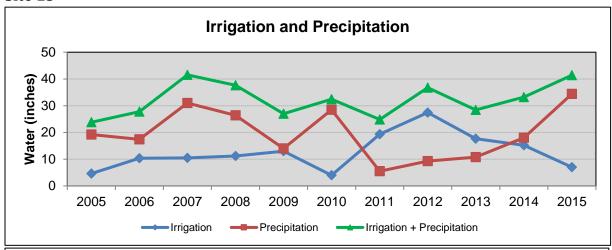


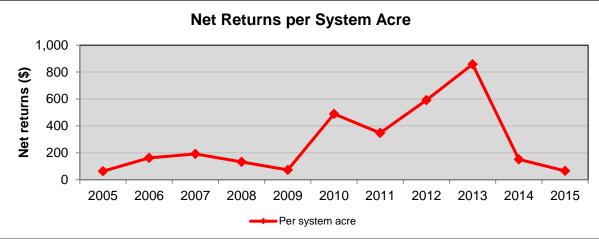
**Description:** 

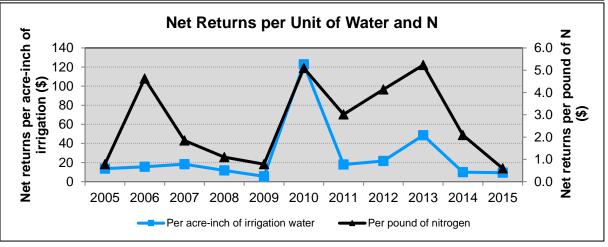
Site acres: 101.1


Soil types:

PuA-Pullman clay loam; 0 to 1%


Irrigation:


Sub-Surface Drip (SDI) 290 gpm


Number of wells: 1



**Site 15** 









May rains delay planting



June emergence cotton



July cotton



SDI Drip station



Well pad for irrigation



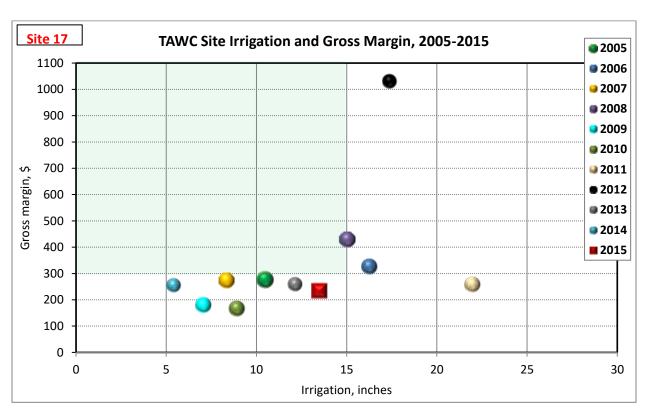
October cotton

Comments: In 2015 this SDI irrigated site was planted to cotton monoculture. The cotton was planted on 40-inch centers with strip-till planting.

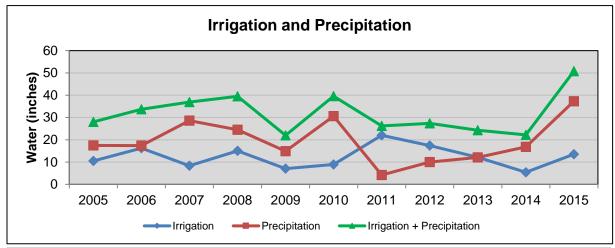


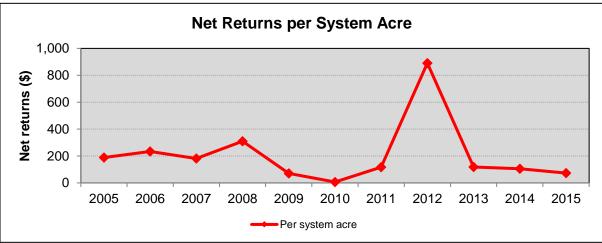
#### **Description:**

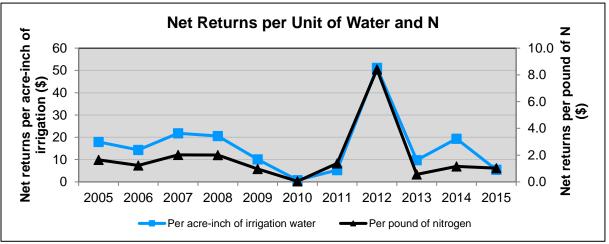
Site acres: 108.9


Soil types:

PuA-Pullman clay loam; 0 to 1% OcB-Olton clay loam; 1 to 3%


Irrigation:


Center Pivot (MESA) 900 gpm


Number of wells: 8



**Site 17** 









April Dormant Dahl



June W.W. B-Dahl pasture



July sunflowers



Sunflower nearing harvest



June Corn



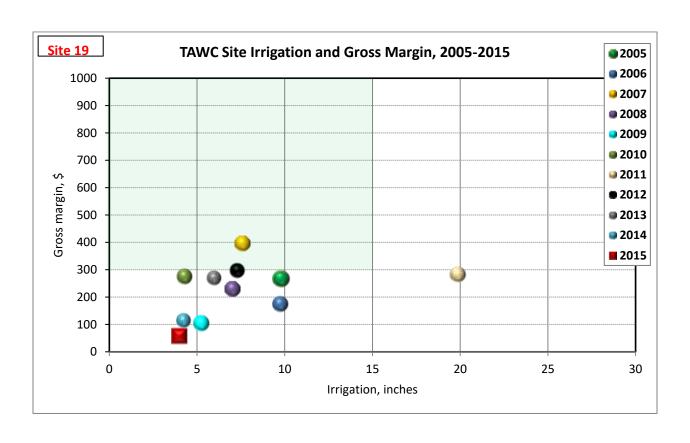
Corn ready for harvest

Comments: In 2015 this pivot irrigated site was planted to food grade corn and sunflower. The W.W. B-Dahl perennial grass was fallowed again in this year.

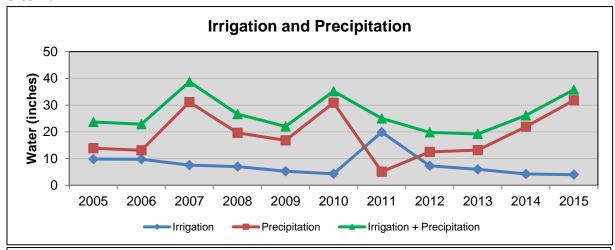


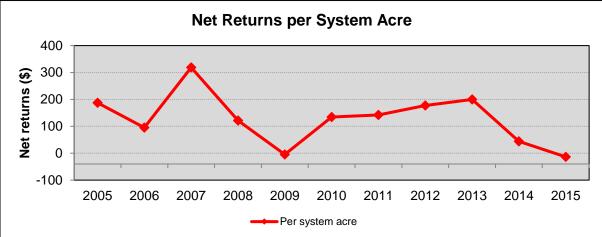
# **Description:**

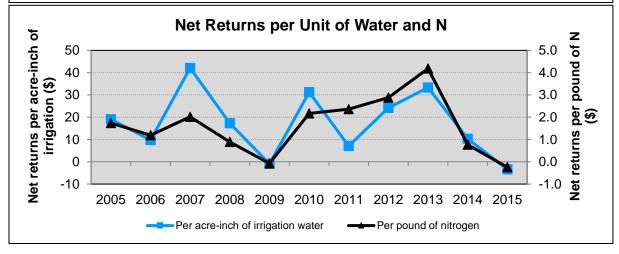
Site acres: 120.4


Soil types:

PuA-Pullman clay loam; 0 to 1%


Irrigation:


Center Pivot (LEPA) 400 gpm


Number of wells: 3



**Site 19** 







**Site 19** 

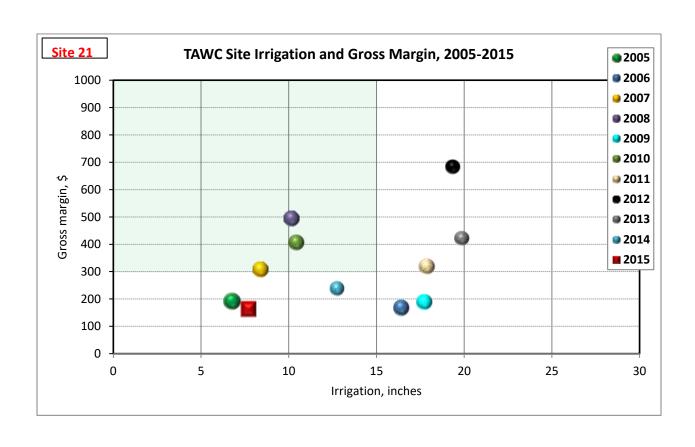


Comments: In 2015 this pivot LEPA irrigated site was planted to cotton monoculture in a  $2\ \text{in}$ ,  $2\ \text{out}$  system.

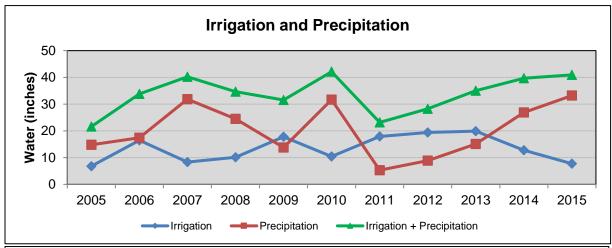


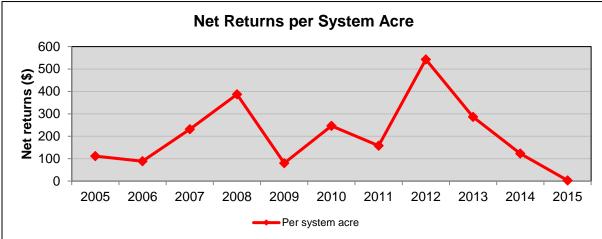
### **Description:**

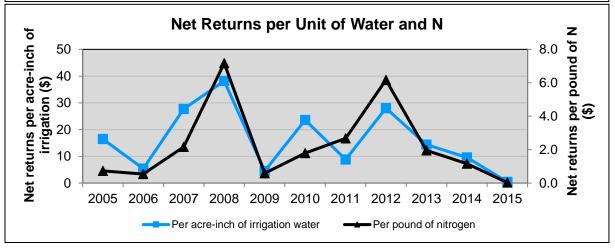
Site acres: 120.7


Soil types:

PuA-Pullman clay loam; 0 to 1% LoA-Lofton clay loam; 0 to 1%


Irrigation:


Center Pivot (LEPA) 500 gpm


Number of wells: 1



**Site 21** 













April pre-water

April wheat

Wheat harvest







May rains flooded turnrow

Mid-July corn

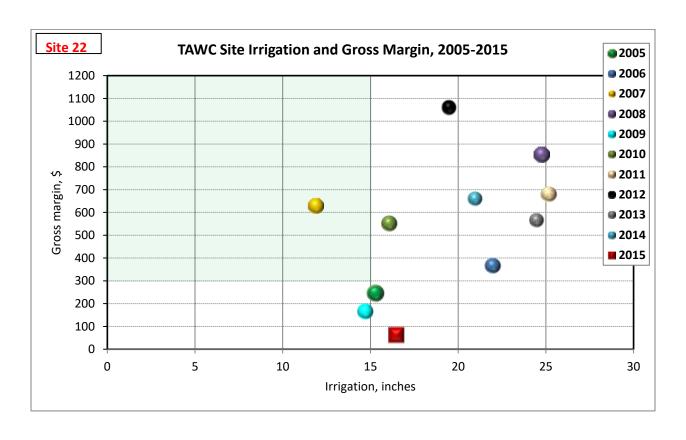
August corn

Comments: In 2015 this pivot LEPA irrigated site was planted to wheat, and corn. Prewater could have been saved if May rains could have been predicted.

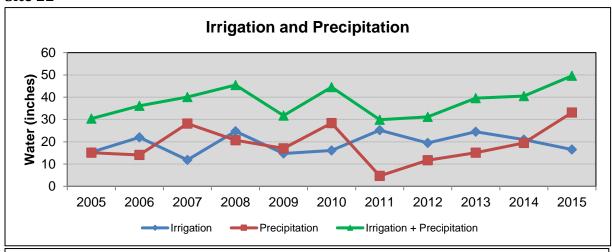


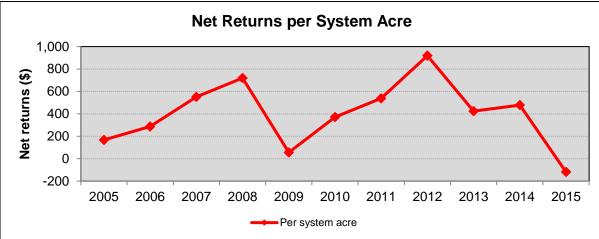
### **Description:**

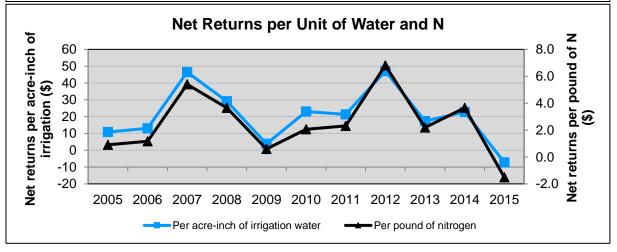
Site acres: 145.0


Soil types:

PuA-Pullman clay loam; 0 to 1% EsB-Estacado loam; 1 to 3%


Irrigation:


Center Pivot (LEPA) 800 gpm


Number of wells: 4



**Site 22** 









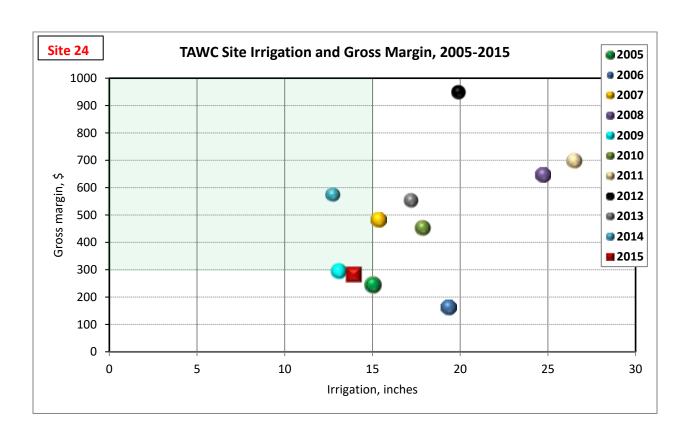
Comments: In 2015 this pivot LEPA irrigated site was planted to corn. The corn was strip till planted on 30-inch centers.



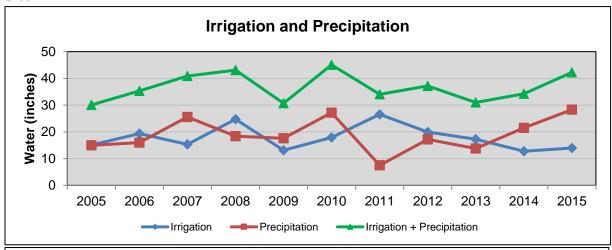
## **Description:**

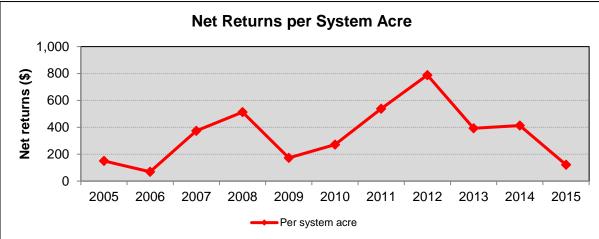
Site acres: 129.7

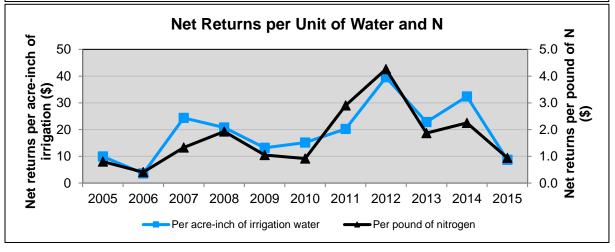
Soil types:


PuA-Pullman clay loam; 0 to 1%

Irrigation:


Center Pivot (LESA) 700 gpm


Number of wells: 1


Fuel Source: Diesel



**Site 24** 








Site 24



Comments: In 2015 this pivot LESA irrigated site was planted to food corn and sunflower on 30 inch centers.

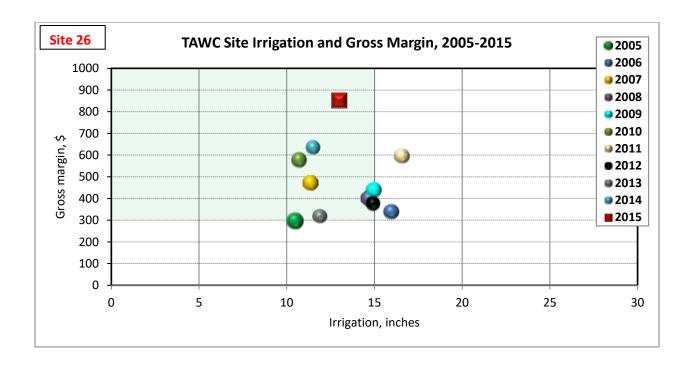


#### **Description:**

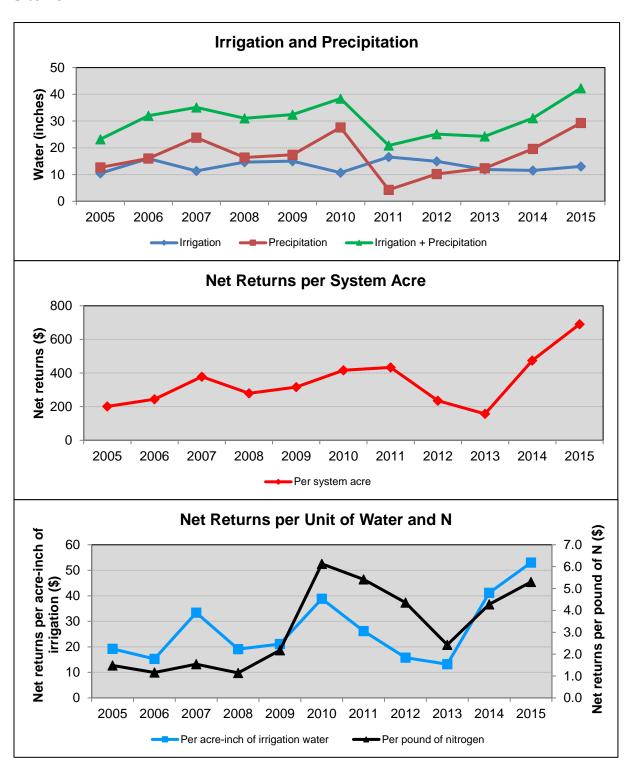
Site acres: 125.1

Soil types:

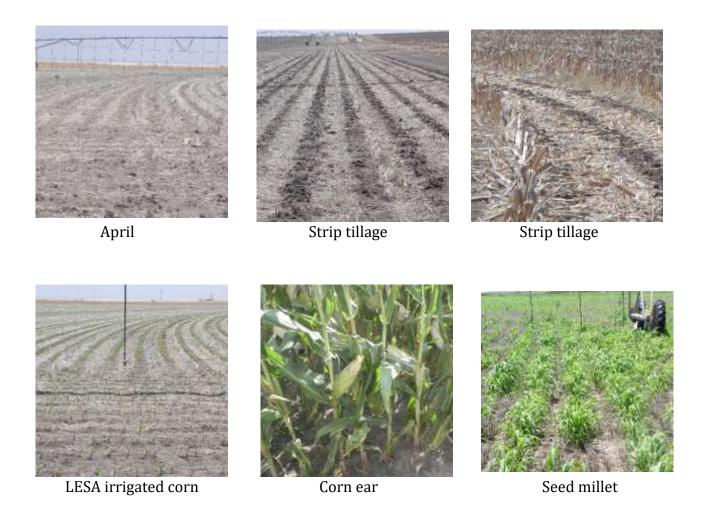
BpA-Bippus loam; 0 to 1% MkC-Mansker loam; 3 to 5% OtA-Olton loam; 0 to 1%


Irrigation:

Center Pivot (LESA) 600 gpm


Number of wells: 2

Fuel Source: 1 Electric,


1 Diesel



**Site 26** 



Site 26

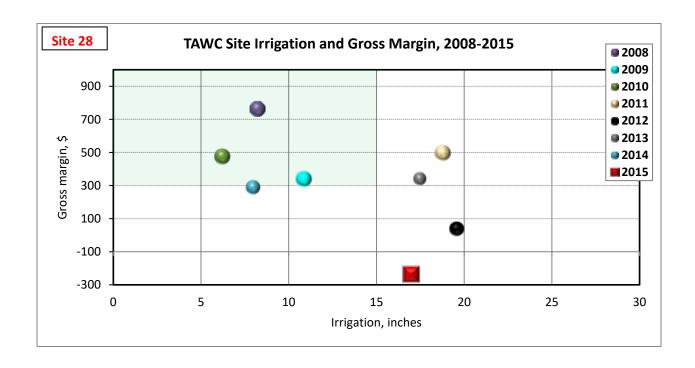


Comments: In 2015 this pivot LESA irrigated site was strip-till planted to food corn and seed millet.

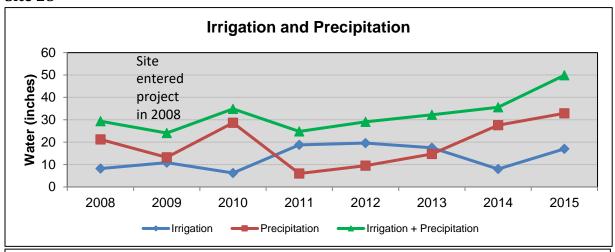


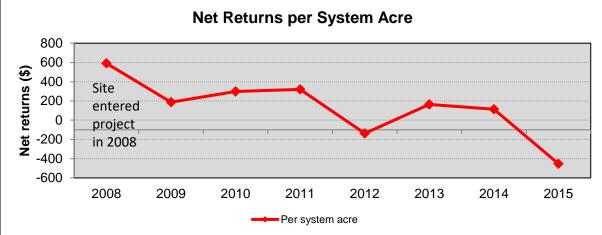
#### **Description:**

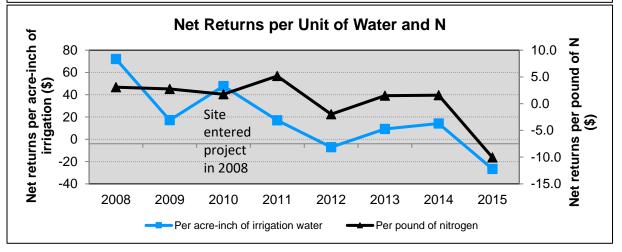
Site acres: 51.5


Soil types:

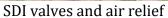
PuA-Pullman clay loam; 0 to 1% PuB-Pullman clay loam; 1 to 3% OtA-Olton loam; 0 to 1% McA-McLean clay, 0 to 1%


Irrigation:


Sub-Surface Drip (SDI) 300 gpm


Number of wells: 1




**Site 28** 













September cotton



Flagging soil moisture probe

Comments: In 2015 this SDI irrigated site was planted to cotton. The cotton was planted on 40-inch centers with conventional tillage.

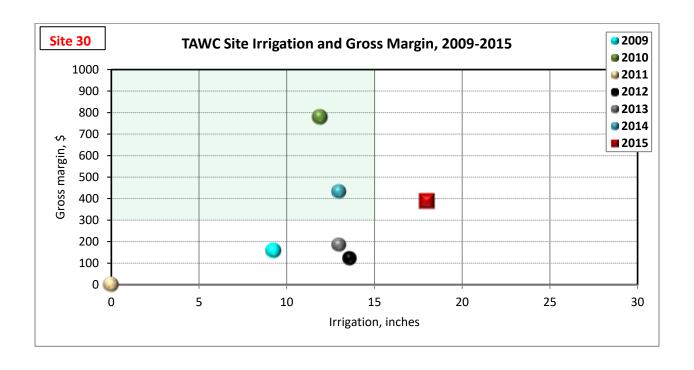


### **Description:**

Site acres: 21.8

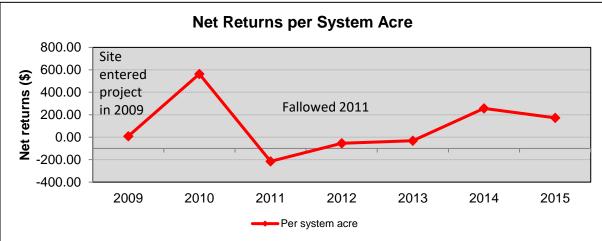
Soil types:

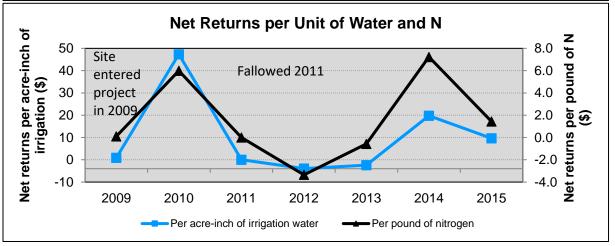
OtA-Olton loam; 0 to 1%


BpA-Bippus loam; 0 to 1%

BfB-Bippus fine sandy loam; 1 to 3%


Irrigation:

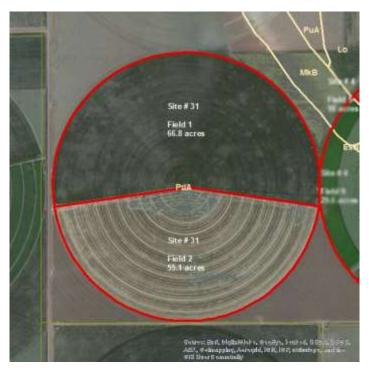

Sub-Surface Drip (SDI)150 gpm


Number of wells: 1



**Site 30** 








Site 30



Comments: In 2015 this SDI irrigated site was planted to all corn. The cotton was planted on 30-inch centers and minimum tilled.

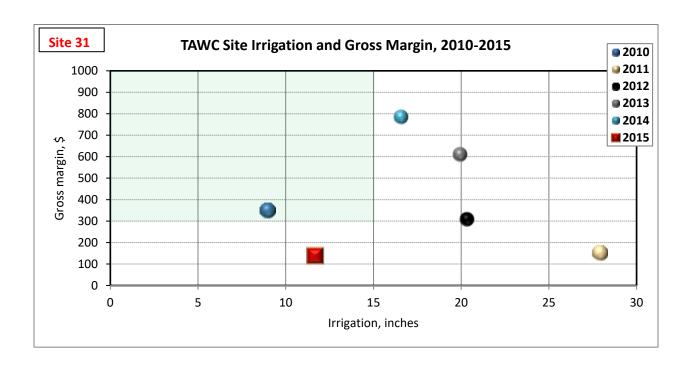


## **Description:**

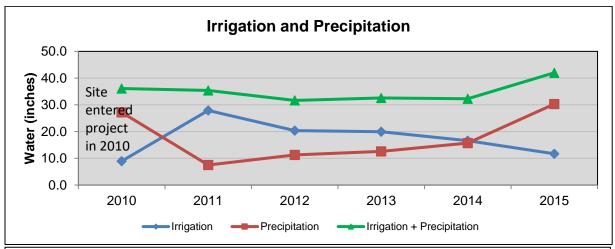
Site acres: 121.9

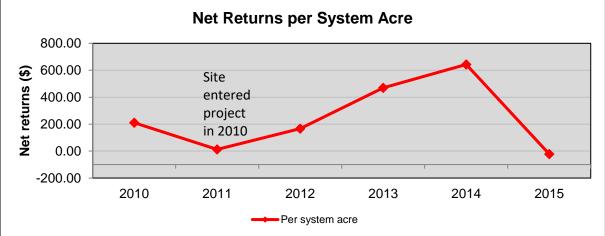
Soil types:

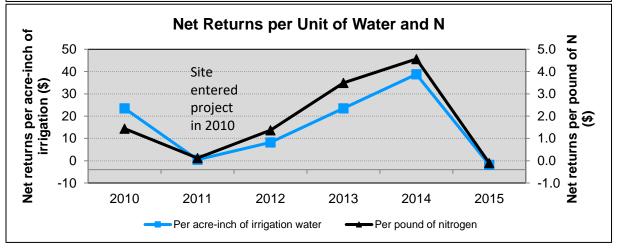
PuA-Pullman clay loam, 0 to 1%


Irrigation:

Center Pivot (LEPA) 450 gpm


Number of wells: 2


Fuel Source: 1 Natural Gas,


1 Electric



**Site 31** 













PMDI installed on span



LEPA Irrigation head



PMDI drag line



Grain sorghum



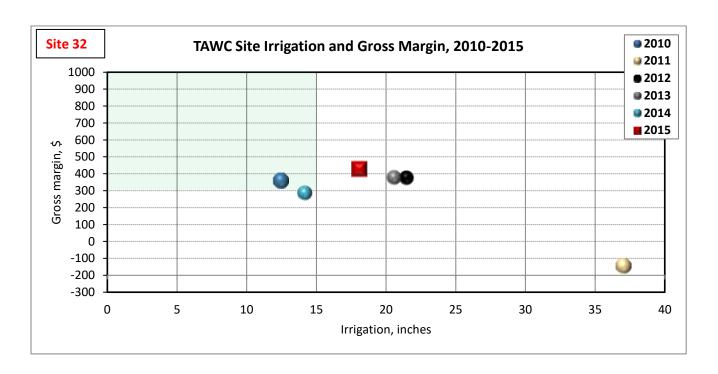
Corn

Comments: In 2015 this pivot irrigated site was established as an irrigation technology site and fitted with LESA, LEPA 40, LEPA 80, LDN and PMDI technologies for demonstration and comparison. The site was planted to corn and grain sorghum.

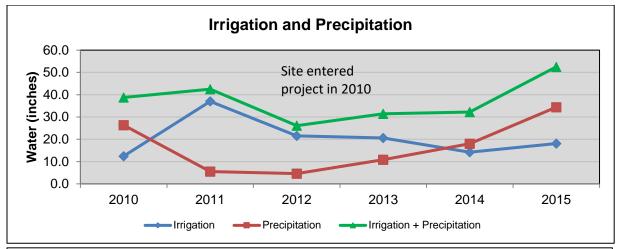


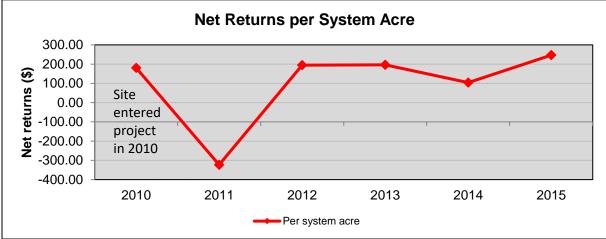
### **Description:**

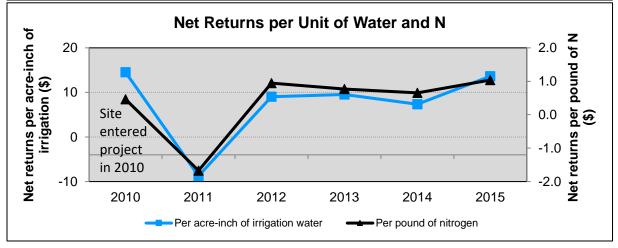
Site acres: 70


Soil types:

PuA-Pullman clay loam, 0 to 1%


Irrigation:

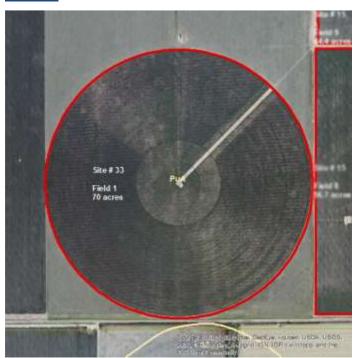

Center Pivot (LEPA) 350 gpm


Number of wells: 2



**Site 32** 








Site 32

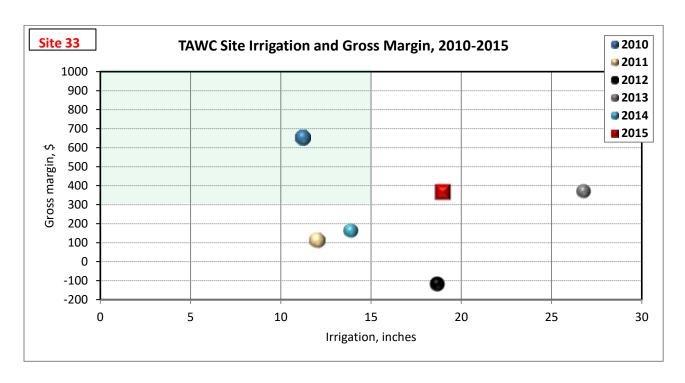


Comments: In 2015 this pivot LEPA irrigated site was conventional planted to corn.

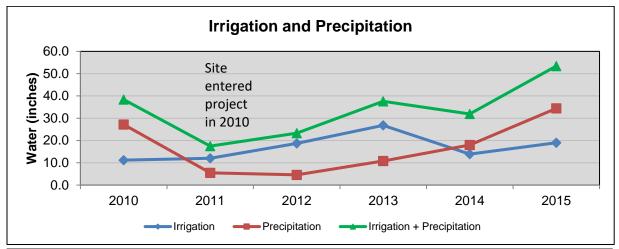


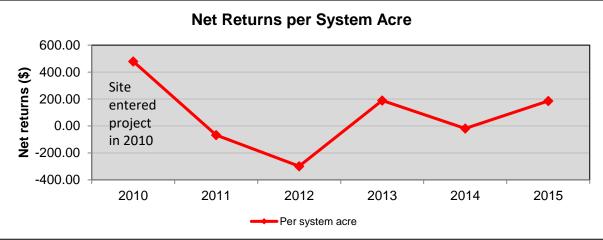
## **Description:**

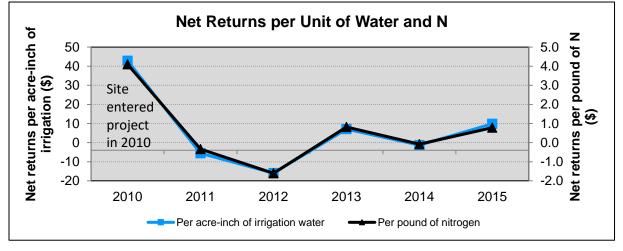
Site acres: 70


Soil types:

PuA-Pullman clay loam, 0 to 1%


Irrigation:


Center Pivot (LEPA) 350 gpm


Number of wells: 2



**Site 33** 













June planting

Early August corn

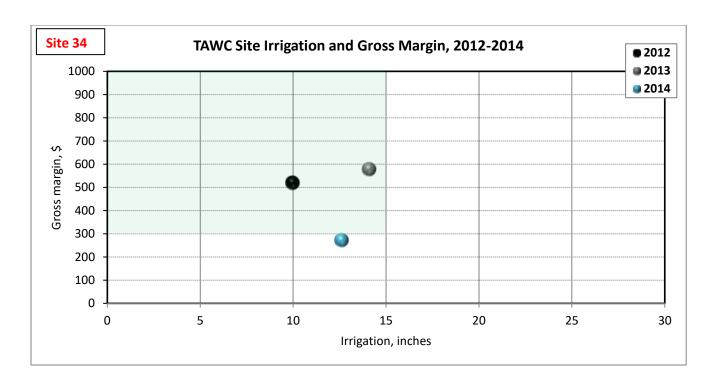
Late October residue

Comments: In 2015 this pivot LEPA irrigated site was planted to conventional corn on 40 inch centers.

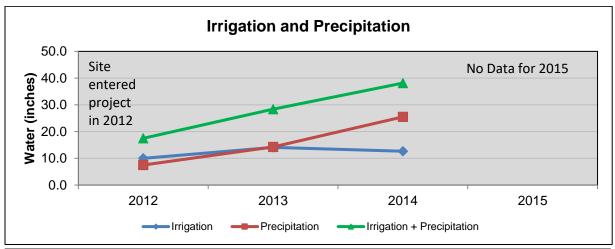


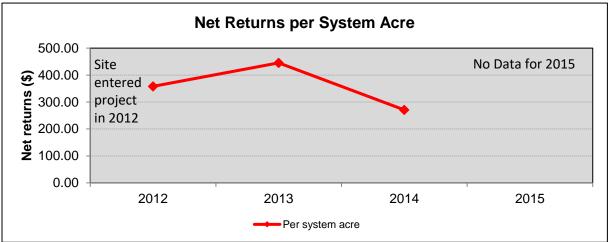
### **Description:**

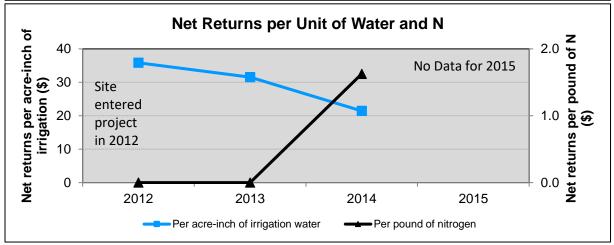
Site acres: 726


Soil types:

PuA-Pullman clay loam, 0 to 1% LoA-Lofton clay loam, 0 to 1% McA-McLean clay, 0 to 1%


Irrigation:


Center Pivot (LESA) 1600 gpm


Number of wells: 2



**Site 34** 







Site 34



February snow in residue



February snow no residue



Preparing to water



June corn





July cotton

Comments: No crop information was collected in 2015.

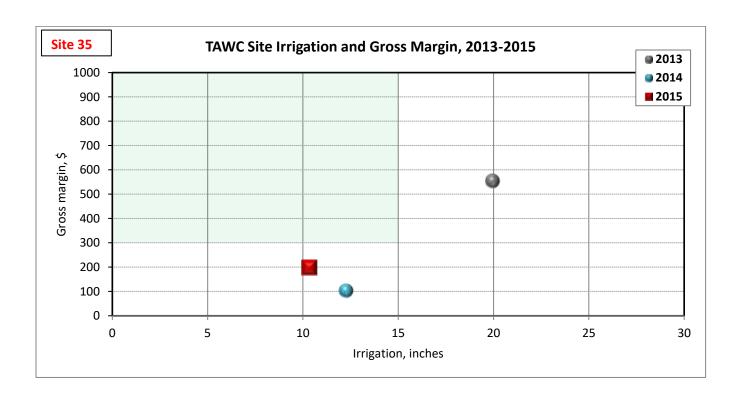
# <u>SITE 35</u>



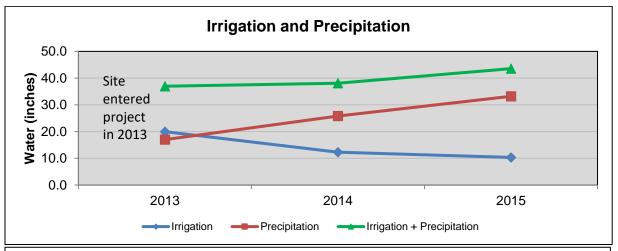
### **Description:**

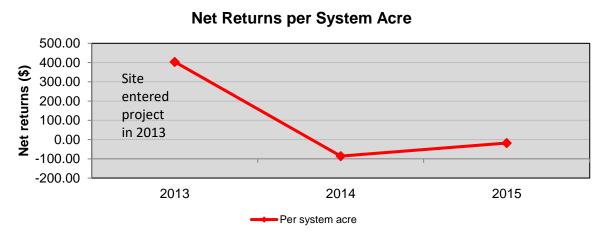
Site acres: 230.0

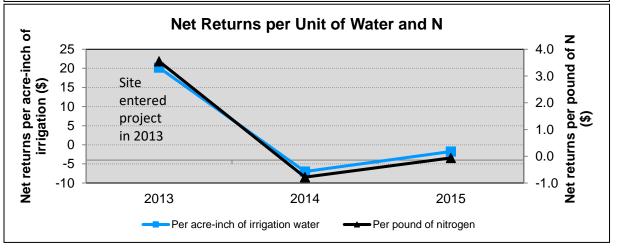
Soil types:


PuA-Pullman clay loam, 0 to 1% LoA-Lofton clay loam, 0 to 1%

Irrigation:


Sub-Surface Drip (SDI) 650


gpm


Number of wells: 2



**Site 35** 







**Site 35** 







May corn

June corn

July corn







Corn being harvested



October residue

Comments: In 2015 this SDI irrigated site was planted to corn. All crops were planted on 40-inch centers with conventional tillage.

# **SITE C37**

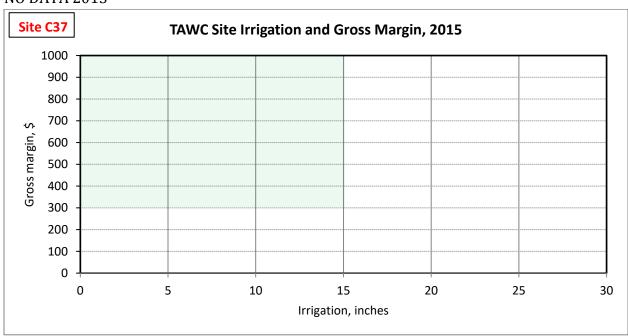


### **Description:**

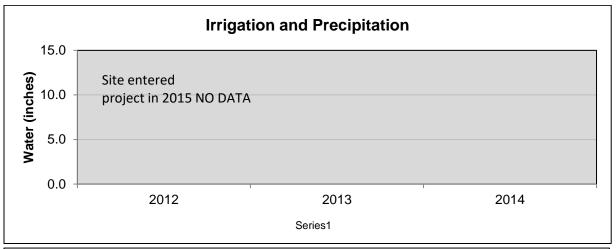
Site acres: 121.1

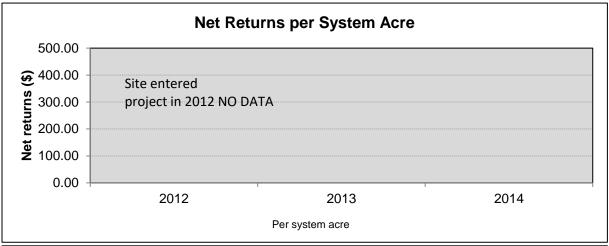
### Soil types:

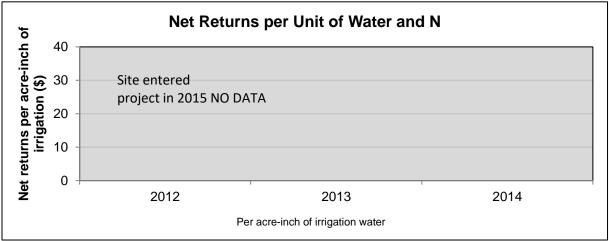
PuA-Pullman clay loam, 0 to 1% AcB-Acuff loam, 1 to 3% EsB-Estacado loam, 1 to 3% Mkc-Mansker loam, 3 to 5% Ra-Randal clay, 0 to 1%


## Irrigation:

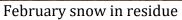
Center Pivot (VR) 450 gpm


Number of wells: 2


Fuel Source: Electric


#### NO DATA 2015




#### Site C37











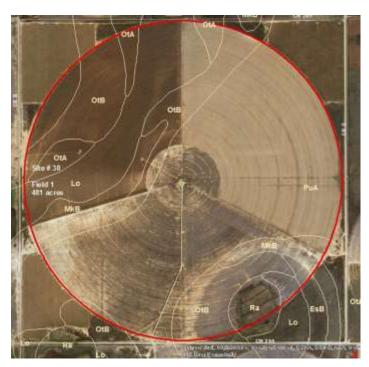


February snow no residue



Preparing to water




June corn





July cotton

Comments: No field data was collected for 2015 in this newly added site.

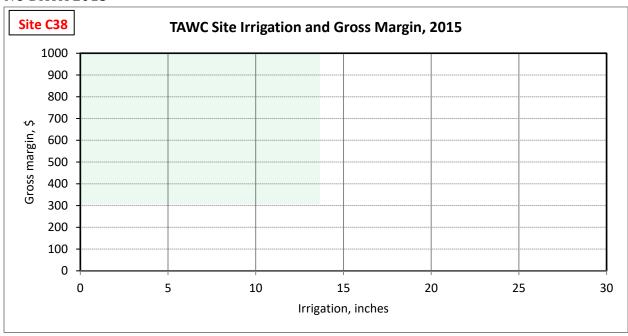


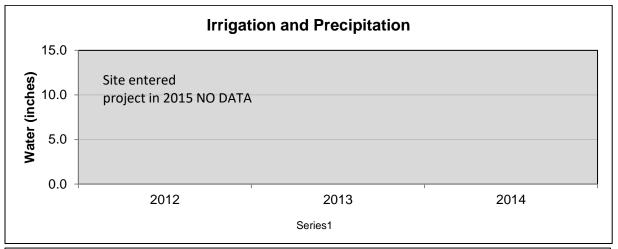
### **Description:**

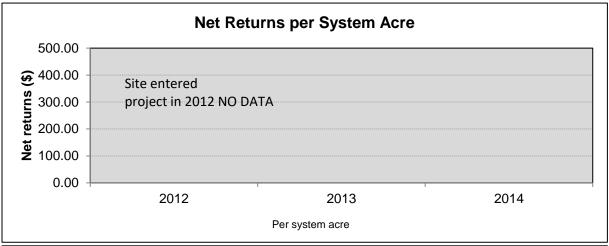
Site acres: 481

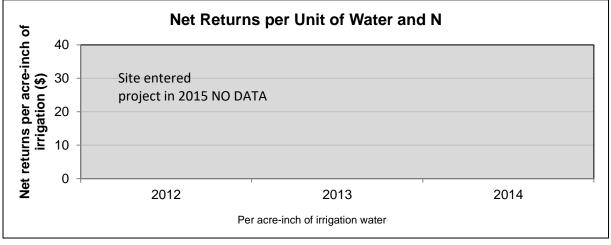
#### Soil types:

PuA-Pullman clay loam, 0 to 1% Lo-Lofton clay loam, 0 to 1% MkB-Mansker loam, 0 to 3% OtA-Olton loam, 0 to 1% OtB-Olton loam, 1 to 3% Ra-Randall clay, 0 to 1% EsB-Estacado loam, 1 to 3%

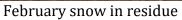

Irrigation:


Center Pivot (VR) 750 gpm


Number of wells: 3


Fuel Source: Electricity

#### **NO DATA 2015**
















February snow no residue



Preparing to water



June corn



Fertilize injection



July cotton

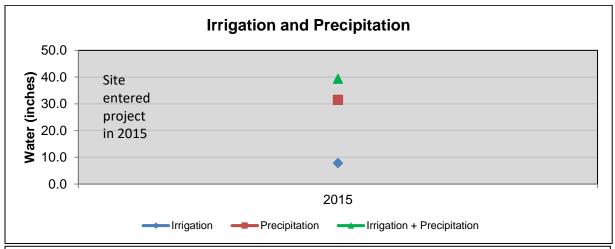
Comments: No field data was collected for 2015 in this newly added site.

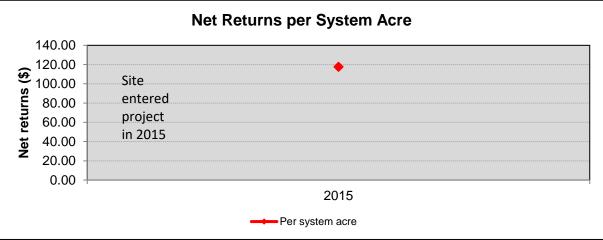
# **Description:**

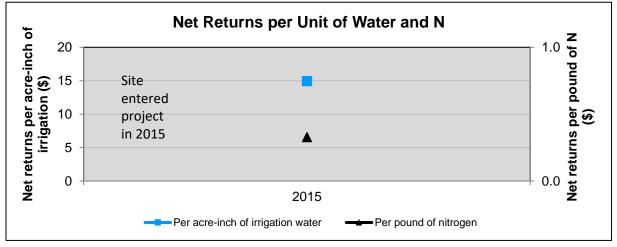


Site acres: 120.0


Soil types:


PuA-Pullman clay loam, 0 to 1% OcB-Olton clay loam, 1 to 3% EcB-Estacado clay loam, 1 to 3%


Irrigation:


Center Pivot (LESA) 650 gpm

Number of wells: 1



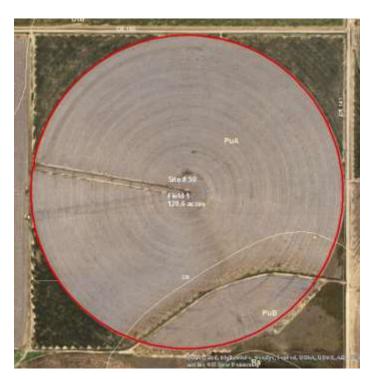













June corn

Fertilize injection

July cotton

Comments: In 2015 this pivot LEPA irrigated site was planted to corn and grain sorghum. The grain sorghum and corn were both planted on 20-inch centers.

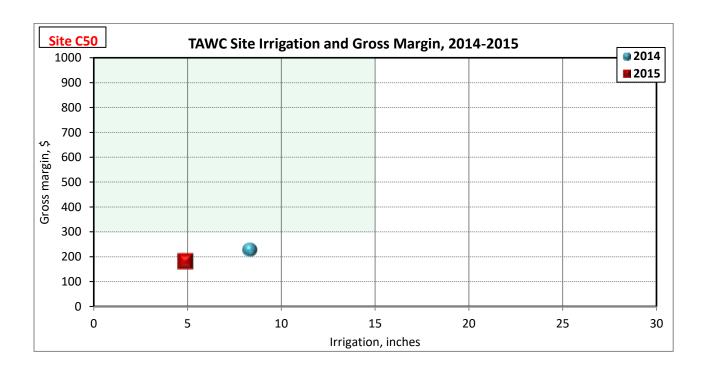


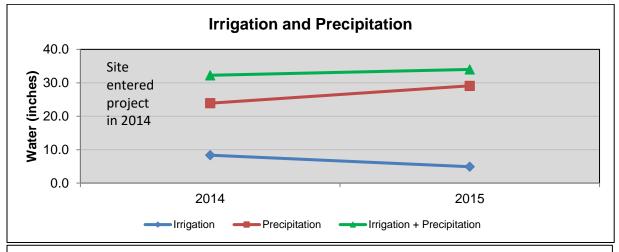
### **Description:**

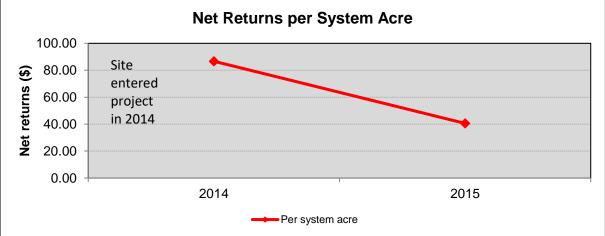
Site acres: 120.6

Soil types:

PuA-Pullman clay loam, 0 to 1% PuB-Pullman clay loam, 1 to 3%


Irrigation:


Low Elevation Spray Application (LESA) 265 gpm


Number of wells: 1

Depth: 300 feet

Fuel Source: Natural gas

















Surface turbine irrigation well

Comments: In 2015 this LESA irrigated site was planted to monoculture cotton. All crops were planted on 40-inch centers with limit tillage.



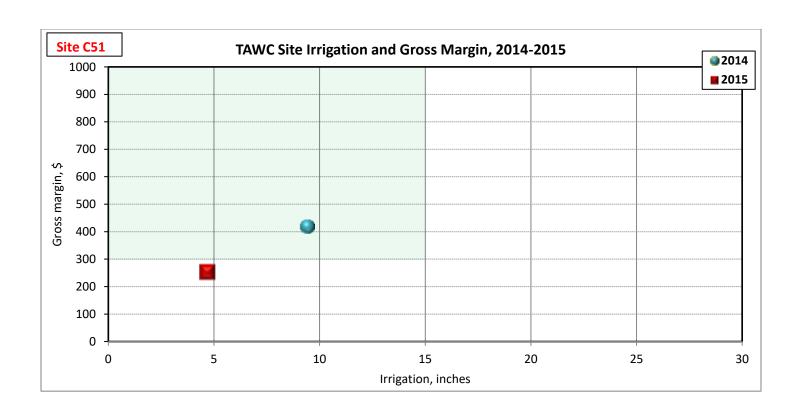
### **Description:**

Site acres: 45.7

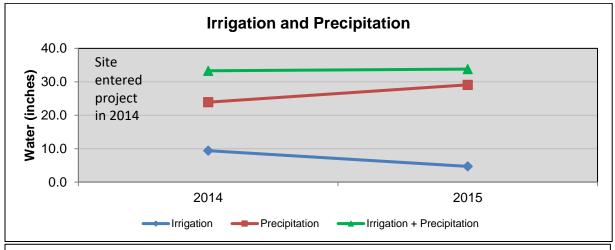
Soil types:

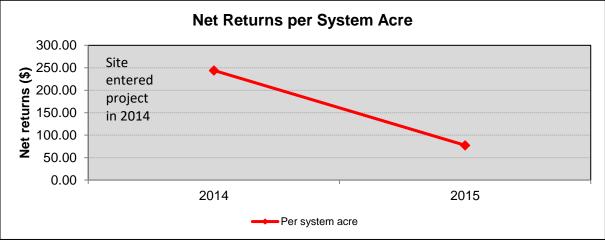
OtA-Olton loam; 0 to 1% OtB-Olton loam; 1 to 3%

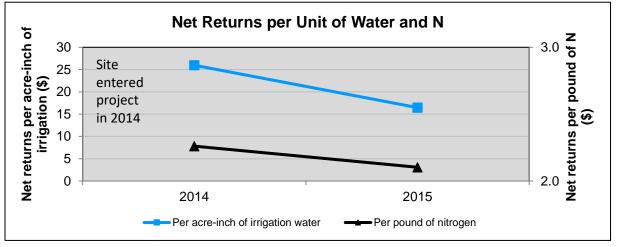
Irrigation:


Sub-surface Drip

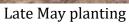
(SDI) 175 gpm


Number of wells: 1


Depth: 350 feet


Fuel Source: Natural gas




**Site C51** 









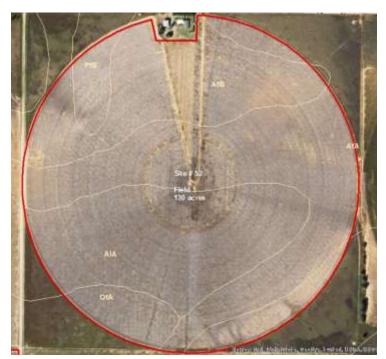




Furrow irrigation to establish



Early August cotton




Checking crop maturity



October cotton

Comments: In 2015 this SDI irrigated site was planted to monoculture cotton. All crops were planted on 40-inch centers with limit tillage.



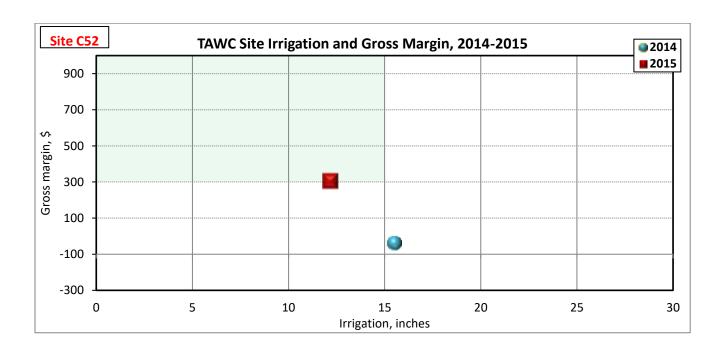
### **Description:**

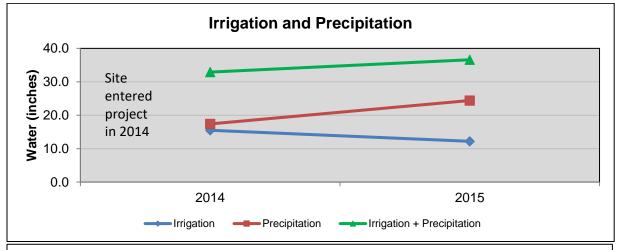
Site acres: 130

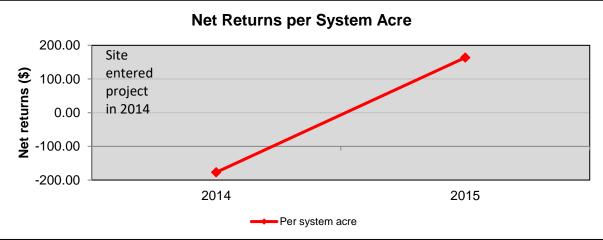
### Soil types:

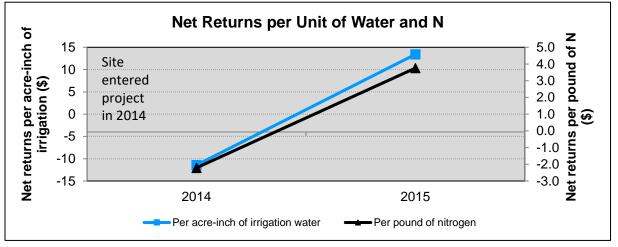
AfA-Amarillo fine sandy loam, 0 to 1% AfB-Amarillo fine sandy loam; 1 to 3%

AlA- Acuff loam, 0 to 1% OtA-Olton loam, 0 to 1%


PfB- Portales fine sandy loam, 1 to 3%


#### Irrigation:

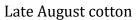

Low Elevation Spray Application (SDI) 410 gpm


Number of wells: 3

Depth: 300 feet



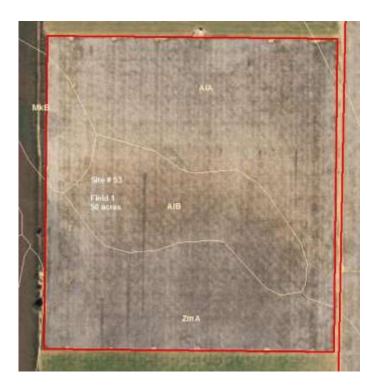















Electronic flow meter

 $Comments: \ In\ 2015\ this\ LESA\ irrigated\ site\ was\ planted\ to\ monoculture\ cotton.\ All\ crops\ were$ planted on 40-inch centers with limit tillage.



### **Description:**

Site acres: 50

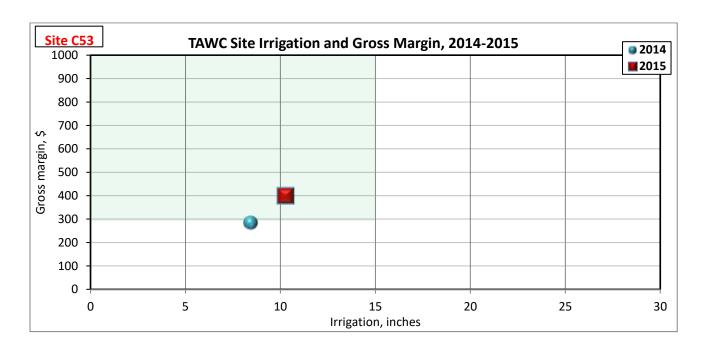
Soil types:

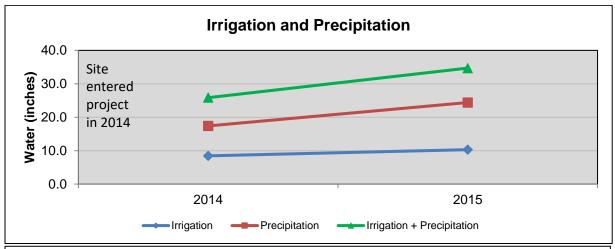
AlA - Acuff loam; 0 to 1%

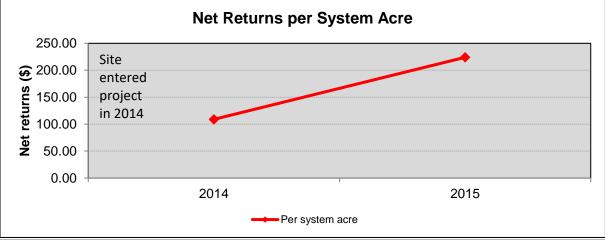
AlB - Acuff loam, 1 to 3%

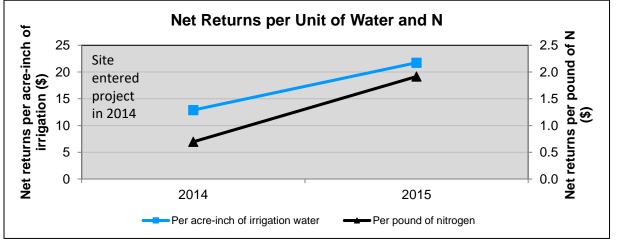
MkB - Mansker loam 0 to 3%

ZmA - Zita loam, 0 to 1%

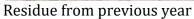

Irrigation:


40" Sub-surface Drip


(SDI) 160 gpm


Number of wells: 3

Depth: 300 feet
















Valve bank with air relief

Comments: In 2015 this SDI irrigated site was planted to monoculture cotton. All crops were planted on 40-inch centers with limit tillage.

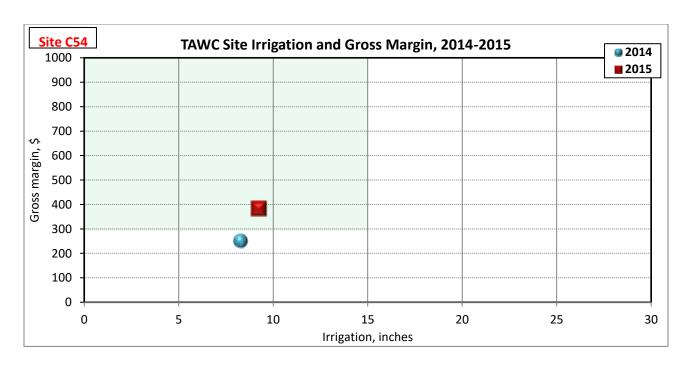


### **Description:**

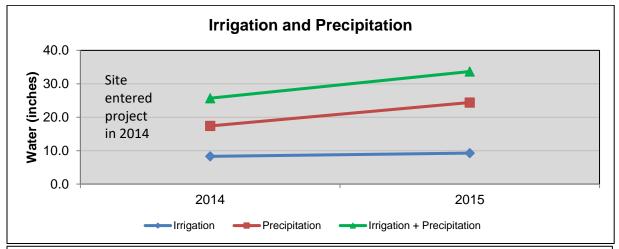
Site acres: 80

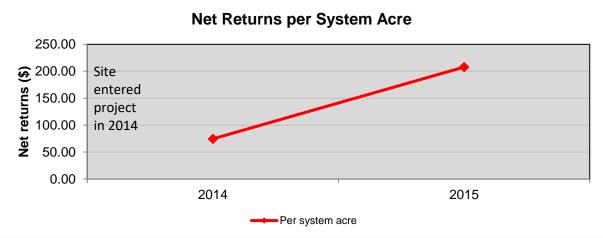
Soil types:

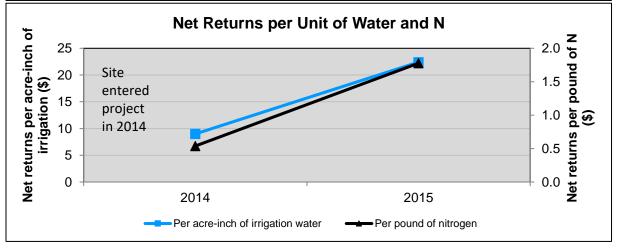
OtA - Olton loam, 0 to 1% AlA - Acuff loam, 0 to 1% ZmA - Zita loam, 0 to 1%


Irrigation:

80" Sub-surface Drip


(SDI) 180 gpm


Number of wells: 2


Depth: 300 feet



Site C54













Meter on SDI drip system

Comments: In 2015 this SDI irrigated site was planted to monoculture cotton. All crops were planted on 40-inch centers with limit tillage.



#### **Description:**

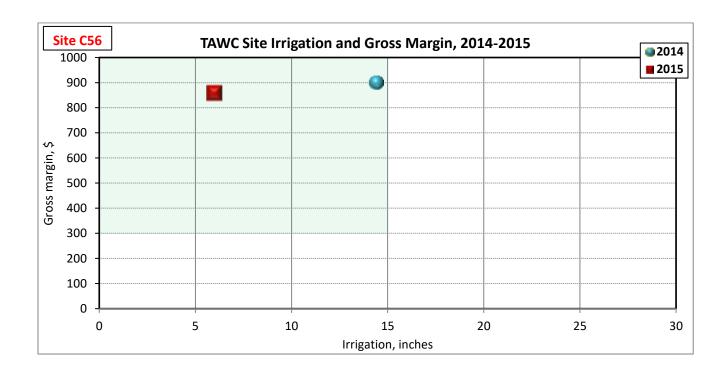
Site acres: 40

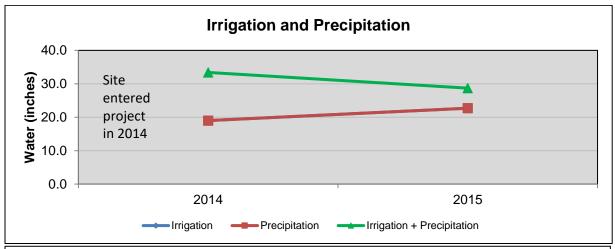
### Soil types:

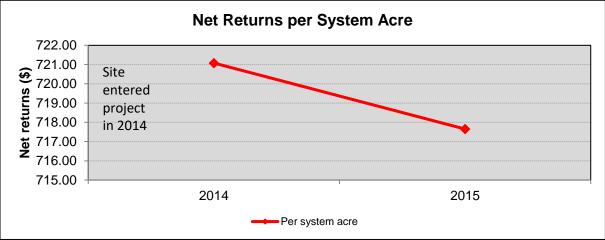
OcA - Olton clay loam, 0 to 1%

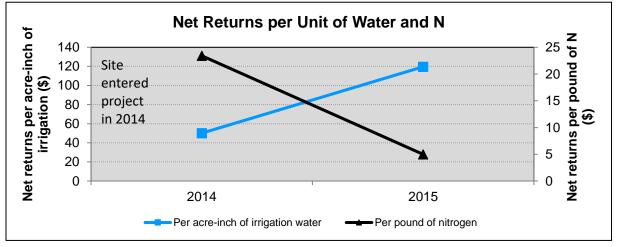
AcA - Acuff loam; 0 to 1%

AcB - Acuff loam; 1 to 3%


AfA - Amarillo fine sandy loam, 0 to 1%


#### Irrigation:


Low Eleveation Spray Application (LESA) 450 gpm


Number of wells: 3

Depth: 300 feet











Early January

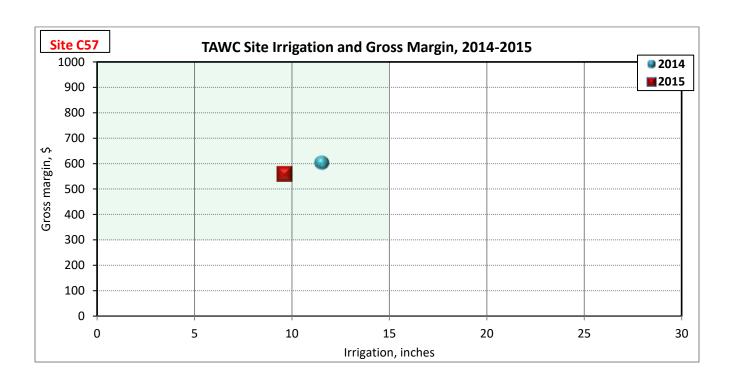
 $Comments:\ In\ 2015\ this\ LESA\ irrigated\ site\ was\ planted\ to\ blackeye\ peas\ on\ 30-inch\ centers\ with\ strip-till\ tillage.$ 



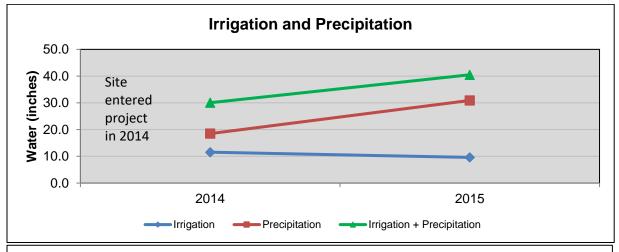
### **Description:**

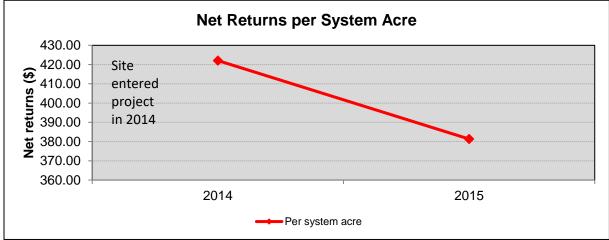
Site acres: 115

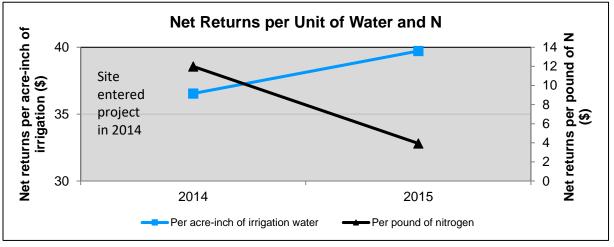
Soil types:


PuA - Pullman clay loam; 0 to 1% PcB - Pep clay loam; 1 to 3%

Irrigation:


Low Eleveation Spray Application (LESA) 750 gpm


Number of wells: 4


Depth: 300 feet



Site C57













July corn

LESA irrigated corn

Hail damaged corn

Comments: In 2015 this LESA irrigated site was planted to corn for grain, but was hail damaged and was eventually harvested for grain at reduced yields. Corn planted on 30-inch centers using strip-tillage.



# **Description:**

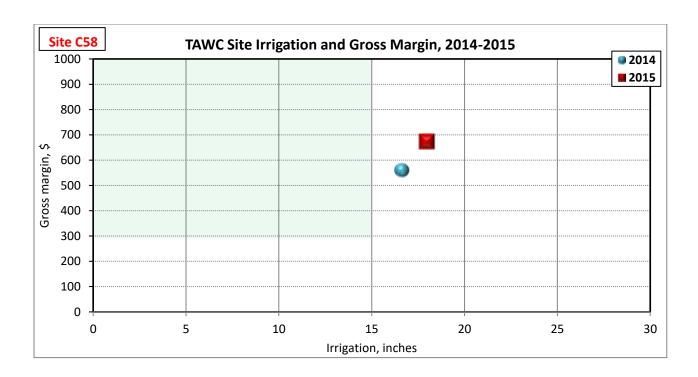
Site acres: 120.0

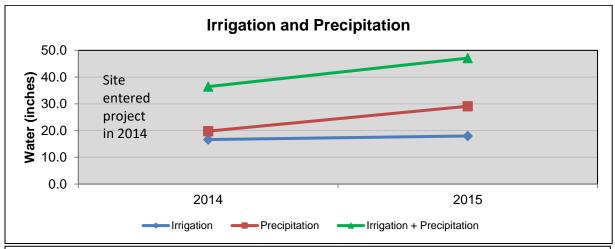
# Soil types:

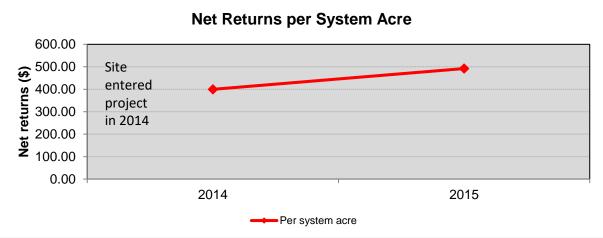
30 - Olton clay loam, 0 to 1%

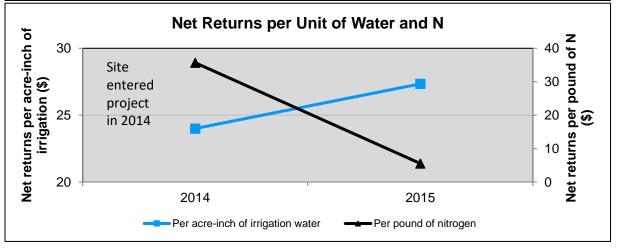
41 - Pullman clay loam, 0to 1%

46 - Zita loam, 0 to 1%


#### Irrigation:


Low Elevation Spray Application


(LESA) 450 gpm

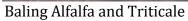

Number of wells: 2

Depth: 300 feet

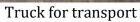


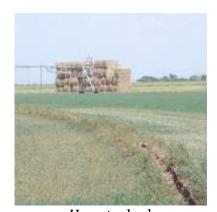







Large square bales









Hay stacked

Comments: In 2015 this LESA irrigated site was used for corn grain and alfalfa hay production.



## **Description:**

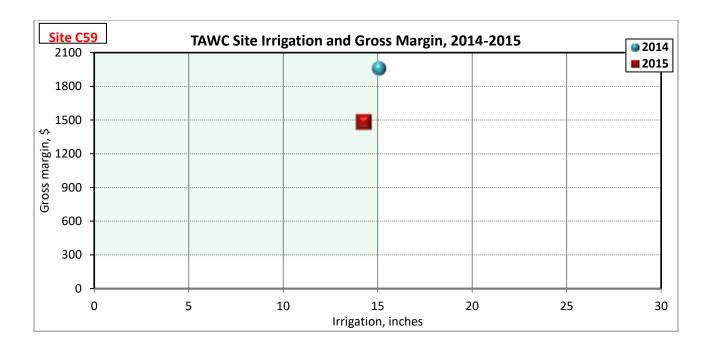
Site acres: 93

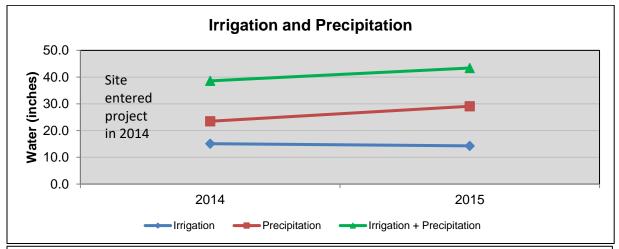
Soil types:

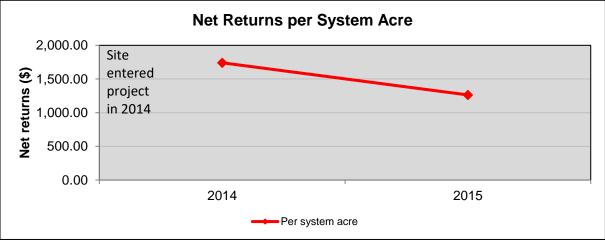
30 - Olton clay loam, 0 to 1%

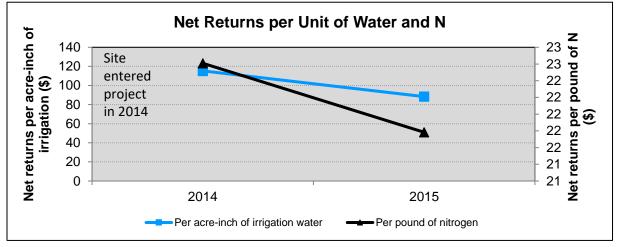
31 - Olton clay loam, 1 to 3%

41 - Pullman clay loam, 0 to 1%


Irrigation:


Sub-surface Drip


(SDI) 350 gpm


Number of wells: 2

Depth: 300 feet















May alfalfa over drip

August alfalfa ready for harvest

Alfalfa field following hay

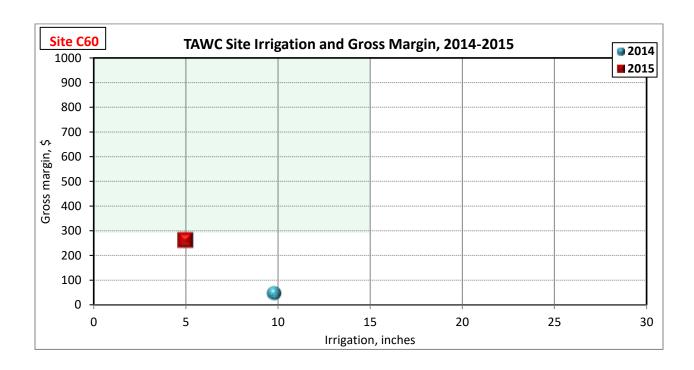
Comments: In 2015 this SDI irrigated site was used for alfalfa hay production.

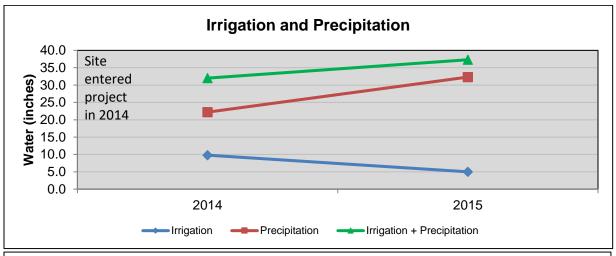


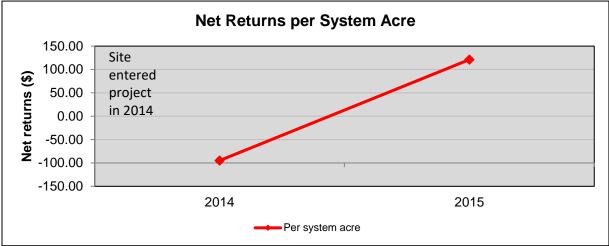
### **Description:**

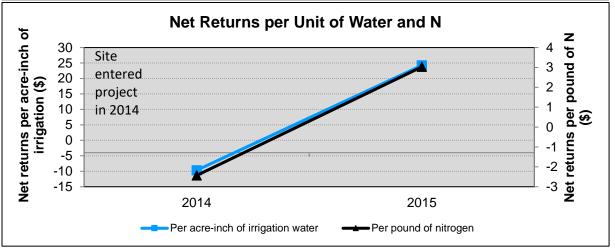
Site acres: 59.5

Soil types:


PuA - Pullman clay loam, 0 to 1% LoA - Lofton clay loam, 0 to 1%

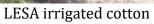

Irrigation:


Low Elevation Spray Application (LESA) 290 gpm


Number of wells: 3

Depth: 280 feet










## Site C60







September cotton



October residue

Comments: In 2015 this LESA irrigated site was planted to cotton. Sorghum was planted on 40-inch centers with conventional tillage.

# Phase II Economic Summaries of Results from Monitoring Producer Sites in 2014-2015.

#### Phase II - Economic assumptions of data collection and interpretation

- 1. Although actual depth to water in wells located among the producer sites varies, a pumping depth of 303 feet is assumed for all irrigation points. The actual depth to water influences costs and energy used to extract water but has nothing to do with the actual functions of the system to which this water is delivered. Thus, a uniform pumping depth is assumed.
- 2. All input costs and prices received for commodities sold are uniform and representative of the year and the region. Using an individual's actual costs for inputs would reflect the unique opportunities that an individual could have for purchasing in bulk or being unable to take advantage of such economies and would thus represent differences between individuals rather than the system. Likewise, prices received for commodities sold should represent the regional average to eliminate variation due to an individual's marketing skill.
- 3. Irrigation system costs are unique to the type of irrigation system. Therefore, annual fixed costs were calculated for each type of irrigation system taking into account the average cost of equipment and expected economic life.
- 4. Variable cost of irrigation across all systems was based on a center pivot system using electricity as the energy source. Variable costs are nearly constant across irrigation systems, according to Amosson et al. (2011)², so this assumption has negligible effect on the analysis. The estimated cost per acre-inch includes the cost of energy, repair and maintenance cost, and labor cost. The primary source of variation in variable cost from year to year is due to changes in the unit cost of energy and repair and maintenance costs.
- 5. Mechanical tillage operations for each individual site were accounted for with the cost of each field operation being based on typical custom rates for the region. Using custom rates avoids the variations among sites in the types of equipment owned and operated by individuals.

#### **Economic Term Definitions**

**Gross Income** - The total revenue received per acre from the sale of production

<u>Variable Costs</u> – Cash expenses for production inputs including interest on operating loans.

**Gross Margin** – Total revenue less total variable costs

<u>Fixed Costs</u> – Costs that do not change with a change in production. These costs are incurred regardless of whether or not there was a crop produced. These include land rent charges and investment costs for irrigation equipment.

**Net Returns** – Gross margin less fixed costs.

<sup>&</sup>lt;sup>2</sup> Amosson, L. et al. 2011. Economics of irrigation systems. Texas A&M AgriLife Extension Service. B-6113.

## Phase II - Assumptions of energy costs, prices, fixed and variable costs (Tables 4-6)

1. Irrigation costs were based on a center pivot system using electricity as the energy source.

**Table 4.** Electricity irrigation cost parameters for Phase II 2014-2015.

| Item                                  | 2014    | 2015    |
|---------------------------------------|---------|---------|
| Gallons per minute (gpm)              | 450     | 250     |
| Pumping lift (feet)                   | 303     | 310     |
| Discharge pressure (psi)              | 15      | 15      |
| Pump efficiency (%)                   | 60      | 60      |
| Motor efficiency (%)                  | 88      | 88      |
| Electricity cost per kWh              | \$ 0.14 | \$ 0.10 |
| Cost of electricity per acre-inch     | \$ 8.26 | \$ 5.93 |
| Cost of maint. & repairs per acre-in. | \$ 3.87 | \$ 3.15 |
| Cost of labor per acre-inch           | \$ 1.10 | \$ 1.10 |
| Total cost per acre-inch              | \$13.23 | \$10.18 |

2. Commodity prices are reflective of the production year; however, prices were constant across sites.

**Table 5.** Commodity prices for Phase II 2014-2015.

| Commodity                      | 2014    | 2015    |
|--------------------------------|---------|---------|
| Cotton lint (\$/lb)            | \$0.65  | \$0.63  |
| Cotton seed (\$/ton)           | \$175   | \$190   |
| Grain sorghum - Grain (\$/cwt) | \$7.10  | \$3.45  |
| Grain sorghum - Seed (\$/lb)   | -       | -       |
| Corn-grain (\$/bu)             | \$5.00  | \$4.76  |
| Corn-food (\$/bu)              | \$5.99  | \$5.10  |
| Barley (\$/cwt)                | -       | -       |
| Wheat - grain (\$/bu)          | \$6.85  | \$4.25  |
| Sorghum silage (\$/ton)        | \$24.00 | \$24.00 |
| Corn silage (\$/ton)           | \$30.60 | \$30.60 |
| Wheat silage (\$/ton)          | \$26.59 | \$26.59 |
| Oat silage (\$/ton) -          | \$14.58 | \$14.58 |
| Millet seed (\$/lb)            | \$0.38  | \$0.50  |
| Sunflower (\$/lb)              | \$0.38  | \$0.25  |
| Alfalfa (\$/ton)               | \$264   | \$205   |
| Hay (\$/ton)                   | \$60    | \$60    |
| WW-BDahl hay (\$/ton)          | \$40    | \$40    |
| Haygrazer (\$/ton)             | \$80    | \$80    |
| Sideoats seed (\$/lb)          | \$8.12  | \$8.12  |
| Sideoats hay (\$/ton)          | \$35    | \$35    |
| Triticale silage (\$/ton)      | \$45    | \$45    |
| Triticale forage (\$/ton)      | \$140   | \$140   |
| Black Eyed Peas (\$/cwt)       | -       | \$40.00 |

- 3. Fertilizer and chemical costs (herbicides, insecticides, growth regulators, and harvest aids) are reflective of the production year; however, prices were constant across sites for the product and formulation.
- 4. Other variable and fixed costs are given for Phase II 2014-2015 in Table 6.

**Table 6.** Other variable and fixed costs for Phase II 2014-2015.

| VARIABLE COSTS                   | 2014    | 2015    |
|----------------------------------|---------|---------|
| Boll weevil assessment: (\$/ac)  |         |         |
| Irrigated cotton                 | \$1.00  | \$1.00  |
| Dryland cotton                   | \$1.00  | \$1.00  |
| Crop insurance: (\$/ac)          |         |         |
| Irrigated cotton                 | \$40.00 | \$40.00 |
| Dryland cotton                   | \$32.00 | \$32.00 |
| Irrigated corn                   | \$15.50 | \$15.50 |
| Irrigated corn silage            | \$15.50 | \$15.50 |
| Irrigated wheat                  | \$19.50 | \$19.50 |
| Irrigated sorghum grain          | \$29.00 | \$29.00 |
| Dryland sorghum grain            | \$16.50 | \$16.50 |
| Irrigated sorghum silage         | \$29.00 | \$29.00 |
| Irrigated sunflowers             | \$17.00 | \$17.00 |
| Cotton harvest – strip and       | \$0.08  | \$0.08  |
| module (\$/lint lb)              |         |         |
| Cotton ginning (\$/cwt)          | \$2.20  | \$2.20  |
| Bags, ties, & classing (\$/bale) | \$14.63 | \$14.63 |
|                                  |         |         |
| FIXED COSTS                      | 2014    | 2015    |
| Irrigation system:               |         |         |

| FIXED COSTS                 | 2014     | 2015     |
|-----------------------------|----------|----------|
| Irrigation system:          |          |          |
| Center pivot system         | \$40.00  | \$40.00  |
| Drip system                 | \$75.00  | \$75.00  |
| Flood system                | \$25.00  | \$25.00  |
| Cash rent:                  |          |          |
| Irrigated cotton, grain     | \$100.00 | \$100.00 |
| sorghum, sun-               |          |          |
| flower, grass, pearl        |          |          |
| millet, and sorghum         |          |          |
| silage.                     |          |          |
| Irrigated corn silage, corn | \$140.00 | \$140.00 |
| grain, and alfalfa.         |          |          |
| Dryland cropland            | \$30.00  | \$30.00  |
|                             |          |          |

5. The custom tillage and harvest rates used for 2014 were based on rates reported in Texas A&M AgriLife Extension, 2013 Texas Agricultural Custom Rates, May 2013.

**Table 7.** Summary of results from monitoring 31 of the 36 producer sites during 2015 (Year 11).

| System                                             | Site<br>No. | Acres | Irrigation<br>Type <sup>1</sup> | System inches | \$/system acre | \$/inch<br>water | Gross margin<br>per inch<br>irrigation |
|----------------------------------------------------|-------------|-------|---------------------------------|---------------|----------------|------------------|----------------------------------------|
| Monoculture systems                                |             |       |                                 |               |                |                  |                                        |
| Cotton (2 in 2 out)                                | 14          | 124.1 | MESA                            | 5.0           | 194.55         | 38.91            | 52.92                                  |
| Cotton                                             | 15          | 101.1 | SDI                             | 7.0           | 65.96          | 9.42             | 34.42                                  |
| Cotton (2 in 2 out)                                | 19          | 120.4 | LEPA                            | 4.0           | -13.58         | -3.40            | 14.12                                  |
| Corn                                               | 22          | 145.0 | LEPA                            | 16.5          | -118.51        | -7.18            | 3.73                                   |
| Corn                                               | 28          | 51.5  | SDI                             | 17.0          | -452.80        | -26.64           | -13.99                                 |
| Corn                                               | 30          | 21.8  | SDI                             | 18.0          | 173.18         | 9.62             | 21.57                                  |
| Corn                                               | 32          | 70.0  | LEPA                            | 18.1          | 246.70         | 13.63            | 23.57                                  |
| Corn                                               | 33          | 70.0  | LEPA                            | 19.0          | 185.90         | 9.78             | 19.26                                  |
| Corn                                               | 35          | 230.0 | SDI                             | 10.4          | -17.99         | -1.74            | 19.03                                  |
| Cotton                                             | C50         | 120.6 | LESA                            | 4.9           | 40.57          | 8.28             | 36.85                                  |
| Cotton                                             | C51         | 45.7  | SDI                             | 4.7           | 77.43          | 16.47            | 53.71                                  |
| Cotton                                             | C52         | 130.0 | LESA                            | 12.2          | 163.60         | 13.41            | 24.89                                  |
| Cotton                                             | C53         | 50.0  | SDI                             | 10.3          | 223.99         | 21.75            | 38.74                                  |
| Cotton                                             | C54         | 80.0  | SDI                             | 9.3           | 207.78         | 22.41            | 41.29                                  |
| Blackeye pea                                       | C56         | 40.0  | LESA                            | 6.0           | 717.65         | 119.61           | 142.94                                 |
| Corn                                               | C57         | 115.0 | LESA                            | 9.6           | 381.32         | 39.72            | 58.47                                  |
| Alfalfa                                            | C59         | 93.0  | SDI                             | 14.3          | 1263.41        | 88.35            | 103.39                                 |
| Cotton                                             | C60         | 59.5  | LESA                            | 5.0           | 121.17         | 24.23            | 52.23                                  |
| Multi-crop systems                                 |             |       |                                 |               |                |                  |                                        |
| Alfalfa/Wheat/Cotton                               | 4           | 123.0 | LESA/LEPA                       | 9.2           | -15.82         | -1.73            | 14.11                                  |
| Wheat/Millet/Sunflower/Corn                        | 5           | 484.1 | LESA                            | 10.3          | 541.62         | 52.49            | 66.06                                  |
| Corn/Cotton                                        | 6           | 122.7 | LESA                            | 20.9          | 29.51          | 1.42             | 9.10                                   |
| Grain Sorghum/Cotton/Corn                          | 11          | 82.6  | FUR/SDI                         | 9.8           | -172.78        | -17.70           | -0.08                                  |
| Corn/Sunflower                                     | 17          | 108.9 | MESA                            | 13.5          | 73.67          | 5.45             | 17.30                                  |
| Wheat/Corn                                         | 21          | 120.7 | LEPA                            | 7.7           | 3.34           | 0.43             | 21.14                                  |
| Corn grain/Sunflower                               | 24          | 129.7 | LESA                            | 14.0          | 121.51         | 8.69             | 20.15                                  |
| Corn/Seed Millet                                   | 26          | 125.1 | LESA                            | 13.0          | 690.17         | 53.02            | 65.32                                  |
| Corn/Grain Sorghum                                 | 31          | 121.9 | LEPA/LESA/<br>LDN/PMDI          | 11.7          | -21.51         | -1.84            | 11.68                                  |
| Grain Sorghum/Corn grain                           | C39         | 120.0 | LÉPA                            | 10.4          | -17.99         | -1.74            | 19.03                                  |
| Corn/Alfalfa                                       | C58         | 120.0 | LESA                            | 18.0          | 492.12         | 27.34            | 37.34                                  |
| Crop-Livestock systems                             |             |       |                                 |               |                |                  |                                        |
| Perennial grass: contract<br>grazing/Cotton        | 9           | 237.7 | MESA                            | 3.5           | 40.98          | 11.86            | 52.37                                  |
| Perennial grass: contract grazing,<br>/Corn/Cotton | 10          | 173.6 | LESA                            | 10.9          | -12.00         | -1.10            | 12.99                                  |

<sup>&</sup>lt;sup>1</sup>SDI – Subsurface drip irrigation; MESA – Mid elevation spray application; LESA – Low elevation spray application; LEPA – Low energy precision application; LDN – Low drift nozzle; FUR – furrow irrigation; DL – dryland

**Table 8.** Summary of crop production, irrigation and economic returns within all production sites for Phase I (See Appendix for detailed list by year) and Phase II 2014-15.

| Item                                           |                       |                           | Average<br>Phase I<br>2005-<br>2013 | Phase II<br>2014  | Phase II<br>2015  | 2005-2014 Crop<br>Year Average |
|------------------------------------------------|-----------------------|---------------------------|-------------------------------------|-------------------|-------------------|--------------------------------|
| Crop                                           |                       |                           |                                     |                   |                   |                                |
|                                                | Cotton                |                           |                                     |                   |                   |                                |
|                                                |                       | Lint, lbs                 | 1,300                               | 1,138 (20)        | 1,258 (16)        | 1,281                          |
|                                                |                       | Seed, tons                | 0.9                                 | 0.8 (20)          | 0.9 (16)          | 0.9                            |
|                                                | Corn                  |                           |                                     |                   |                   |                                |
|                                                |                       | Grain, lbs                | 10,680                              | 11,538 (8)        | 10,452 (19)       | 10,738                         |
|                                                |                       | Silage, tons              | 26.8                                | 16.4 (4)          | -                 | 25.7                           |
|                                                | Sorghum               | 0 1                       |                                     | ( ( = ( = )       |                   |                                |
|                                                |                       | Grain, lbs                | 5,231                               | 6,675 (7)         | 3,944 (3)         | 5,254                          |
|                                                |                       | Silage, tons<br>Seed, lbs | 18.5                                | 3,742 (1)         | -                 | 18.5                           |
|                                                | 7A71                  | Seed, IDS                 | 3,438                               | 3,/42 (1)         | -                 | 3,539                          |
|                                                | Wheat                 | Grain, lbs                | 2.450                               | 1,333 (1)         | 2 (52 (2)         | 2.465                          |
|                                                |                       | Silage, tons              | 2,458<br>8.6                        | -                 | 3,652 (3)         | 2,465<br>8.6                   |
|                                                |                       | Hay, tons                 | 1.5                                 | -                 | -                 | 1.5                            |
|                                                | Oat                   | nay, tons                 | 1.5                                 | -                 | -                 | 1.5                            |
|                                                | Oat                   | Silage, tons              | 8.7                                 | -                 | _                 | 8.7                            |
|                                                |                       | Hay, tons                 | 1.8                                 | -                 | -                 | 1.8                            |
|                                                | Barley                |                           |                                     |                   |                   |                                |
|                                                |                       | Grain, lbs                | 3,133                               | -                 | -                 | 3,133                          |
|                                                |                       | Hay, tons                 | 5.5                                 | -                 | -                 | 5.5                            |
|                                                | Triticale             | Hay, tons                 | 2.0                                 |                   |                   | 2.0                            |
|                                                |                       | Silage, tons              | 3.0<br>13.3                         | -<br>-            | -                 | 3.0<br>13.3                    |
|                                                | Sunflower             | Shage, tons               | 13.3                                |                   | _                 | 13.3                           |
|                                                |                       | Seed, lbs                 | 2,182                               | 2,867 (4)         | 1,790 (3)         | 2,231                          |
|                                                | Pearl millet for seed |                           | ,                                   |                   |                   | ,                              |
|                                                |                       | Seed, lbs                 | 2,840                               | 3,800 (1)         | 3,350 (2)         | 3,003                          |
|                                                | 1.0                   |                           |                                     |                   |                   |                                |
| Perennia                                       | WW-BDahl              |                           |                                     |                   |                   |                                |
|                                                | WW-bDalli             | Seed, PLS lbs             | 58.6                                | _                 | _                 | 58.6                           |
|                                                |                       | Hay, tons                 | 2.5                                 | -                 | -                 | 2.5                            |
|                                                | Sideoats              | Truy) toric               | 2.0                                 |                   |                   |                                |
|                                                |                       | Seed, PLS lbs             | 257.2                               | 184 (2)           | -                 | 250                            |
|                                                |                       | Hay, tons                 | 1.7                                 | 1.3 (2)           | -                 | 1.7                            |
|                                                | Other                 |                           |                                     |                   |                   |                                |
|                                                |                       | Hay, tons                 | 2.3                                 |                   | -                 | 2.3                            |
|                                                | A16-16-               |                           |                                     |                   |                   |                                |
|                                                | Alfalfa               | Hay, tons                 | 9.1                                 | 8.2 (3)           | 7.8 (3)           | 8.9                            |
| Annual f                                       | l<br>forage           | iiay, wiis                | 7.1                                 | 0.2 (3)           | 7.0 (3)           | 0.7                            |
| Iuul I                                         | Forage sorg.          |                           |                                     |                   |                   |                                |
|                                                |                       | Hay, tons                 | 3.5                                 | 5.5 (1)           |                   | 4.0                            |
|                                                |                       |                           |                                     |                   |                   |                                |
|                                                | ition, inches         |                           |                                     | 2                 | 25 -              |                                |
|                                                | (including all sites) |                           | 16.9                                | 21.3              | 30.5              | 18.6                           |
| By <u>System</u>                               |                       |                           | inches<br>applied                   | inches<br>applied | inches<br>applied | inches<br>applied              |
| <u>Total irrigation</u> water (system average) |                       |                           | 13.6                                | 12.1(39)          | 10.3 (31)         | 13.1                           |
| By Crop                                        |                       |                           | inches                              | inches            | inches            | inches                         |
| , <u></u>                                      |                       | crop                      | applied                             | applied           | applied           | applied                        |
|                                                | Cotton                | lint                      | 13.6                                | 9.8 (20)          | 9.3 (16)          | 12.8                           |
|                                                | Corn                  | grain                     | 19.1                                | 15.2 (8)          | 16.4 (19)         | 18.5                           |
|                                                | Corn                  | silage                    | 22.8                                | 13.2 (4)          | -                 | 21.7                           |
|                                                | Sorghum               | grain                     | 12.0                                | 11.6 (7)          | 6.2 (3)           | 11.5                           |

|               |                       |                |                | 1             | 1        | I I            |
|---------------|-----------------------|----------------|----------------|---------------|----------|----------------|
|               |                       |                | Average        |               |          |                |
|               |                       |                | Phase I        |               |          |                |
|               |                       |                | 2005-          | Phase II      | Phase II | 2005-2015 Crop |
| Item          |                       |                | 2013           | 2014          | 2015     | year average   |
| 100111        |                       |                | inches         | inches        | inches   | inches         |
| By Crop       |                       |                | applied        | applied       | applied  | applied        |
| · <del></del> | Sorghum               | silage         | 12.6           |               | -        | 12.6           |
|               | Wheat                 | grain          | 6.4            | 10.5 (1)      | 5.3 (3)  | 6.7            |
|               | Wheat                 | silage         | 11.3           | -             | -        | 11.3           |
|               | Oat                   | silage         | 10.0           | -             | -        | 10.0           |
|               | Oat                   | hay            | 4.9            | -             | -        | 4.9            |
|               | Triticale             | silage         | 10.8           | -             | -        | 10.8           |
|               | Barley                | grain          | 12.8           | -             | -        | 12.8           |
|               | Small grain           | (grazing)      | 0.0            | 16.8 (1)      | -        | 4.2            |
|               | Small grain           | (grains)       | 6.4            | 10.5 (1)      | 5.3 (3)  | 6.7            |
|               | Small grain           | (silage)       | 10.9           | -             | -        | 10.9           |
|               | Small grain           | (hay)          | 11.3           |               | -        | 11.3           |
|               | Small grain           | (all uses)     | 7.0            | 13.7 (2)      | 5.3 (3)  | 7.5            |
|               | Sunflower             | seed           | 10.4           | 8.9 (4)       | 5.3 (3)  | 9.4            |
|               | Millet                | seed           | 14.9           | 14 (1)        | 11 (2)   | 14.4           |
| Dahl          |                       |                |                |               |          |                |
|               | hay                   |                | 3.7            | -             |          | 3.7            |
|               | seed                  |                | 7.6            | -             |          | 7.6            |
|               | grazing               |                | 8.5            | 0 (1)         | 0 (1)    | 6.8            |
| Sideoats      |                       |                |                |               |          |                |
|               | seed                  |                | 11.2           | 15.8 (2)      | -        | 11.7           |
| Bermuda       |                       |                |                |               |          |                |
|               | grazing               |                | 7.4            | -             | 0 (1)    | 6.3            |
| Other Per     | ennial/Annuals        |                |                |               |          |                |
|               | hay                   |                | 9.6            | 5.0 (1)       | -        | 9.1            |
| _             | grazing               | •>             | 5.9            | 8.0 (3)       | 0 (1)    | 5.6            |
| Perennial     | grasses (group        | ed)            | 40.4           | 450(0)        |          | 10.0           |
|               | seed                  |                | 10.4           | 15.8 (2)      | -        | 10.9           |
|               | grazing               |                | 6.2            | 2.3 (3)       | 0 (2)    | 5.3            |
|               | hay                   |                | 1.2            | 0 (2)         | - 0.(2)  | 1.0            |
| A16-16-       | all uses              |                | 6.4            | 5.5 (5)       | 0 (2)    | 5.8            |
| Alfalfa       | all uses              |                | 23.2           | 20.1 (2)      | 15.3 (3) | 22.2           |
|               | an uses               |                | 23.2           | 20.1 (3)      | 15.3 (3) | 22.2           |
|               |                       |                | Income 0 I     | Ermanaa ¢/a   |          |                |
| D : . 1       | D :                   |                |                | Expense, \$/s |          | #007.64        |
| Projected     |                       |                | \$895.46       | \$989.38      | \$826.62 | \$897.64       |
|               | Costs<br>Total varia  | phlo costs     |                |               |          |                |
|               |                       |                | \$554.28       | \$639.58      | \$512.13 | \$558.20       |
|               | (all si<br>Total fixe |                | <b>ФЈЈ4.40</b> | \$U37.30      | φ314.13  | φ330.2U        |
|               | (all s                |                | \$115.56       | \$154.63      | \$152.41 | \$122.46       |
|               | Total al              |                | Ψ113.30        | Ψ131.03       | Ψ132.T1  | Ψ1ΔΔ.10        |
|               | (all si               |                | \$669.81       | \$790.35      | \$664.53 | \$680.29       |
|               | Gross margin          |                |                |               |          |                |
|               | Per syste             |                |                |               |          |                |
|               | (all si               | ites)          | \$341.05       | \$349.80      | \$314.49 | \$339.43       |
|               | Per acre-inch ir      | rigation water |                |               |          |                |
|               | (irrigatio            | on only)       | \$34.07        | \$29.74       | \$33.03  | \$33.58        |
| Ne            | t returns over al     |                |                |               |          |                |
|               | Per syste             |                |                |               |          |                |
|               | (all si               |                | \$225.52       | \$199.03      | \$162.09 | \$217.35       |
|               | Per acre-inch ir      |                |                |               |          |                |
|               | (irrigatio            |                | \$21.53        | \$15.79       | \$16.66  | \$20.57        |
|               | Per pound o           |                | <b>#4.</b> 05  | 40.74         | 44.04    | 40.04          |
|               | (all si               | ites)          | \$1.86         | \$3.76        | \$1.84   | \$2.04         |

## **Reports by Specific Task**

## TASK 2: ADMINISTRATION AND SUPPORT

#### Annual Report ending February 29, 2016

#### 2.1: Project Director: Rick Kellison, Project Director (TTU)

After record rainfall in May, July through October brought a very dry period. Again from one extreme to another. Our last measurable rainfall in the demonstration area came on July 9th, which caused irrigation requirements to go up in July and August. The additional heat unit accumulation for mid to late summer helped the cotton crop catch up on maturity. December brought yet another record weather event to the Texas Panhandle. Snow fall amounts in excess of twenty inches with wind gust up to sixty miles per hour for over twenty-four hours caused dangerous travel conditions. This really had no effect on crops other than additional moisture, but the livestock industry was very hard hit. It was estimated that ten thousand beef cattle and thirty thousand head of dairy cattle were lost to this storm. We haven't seen any additional moisture in January or February, 2016.

TAWC was included again at the High Plains Agriculture Consultants Conference held in Lubbock on March 3<sup>rd</sup> and 4<sup>th</sup>. Our team made five presentations pertaining to crop and water management. TAWC has been asked to partner with HPACC each year to bring the most recent information about irrigation management and new technologies. This year board member Bech Bruun also made a presentation on behalf of the Texas Water Development Board.

On March 19, 2015, Glenn Schur and I attended the Nebraska Water Symposium in Lincoln, Nebraska where we made presentations and sat on a six-member panel. We gained a lot of insight about issues facing that region.

I made a TAWC presentation at the Briscoe County Ag Days on April 8, 2015. There were approximately thirty producers in attendance. On April 17, 2015 I made a TAWC presentation and was a panel member at the Kingpins 2029 Trade show and Conference in Amsterdam. There were over five hundred companies that attended the three-day event. The focus of the conference was the new technologies being used to reduce the amount of water in the production of denim. My presentation focused on the adoption of water management technologies by cotton producers. This was a great opportunity to share our project information.

TAWC received the Environmental Excellence Award presented by TCEQ in Austin on May 6, 2015. While in Austin, we had the opportunity to meet with the Commissioner of Agriculture, Sid Miller. The commissioner has agreed to help us share our information to a larger portion of the state.

Texas Tech University Forage Field Day at New Deal, Texas was held on July 9 and cohosted by TAWC with the USDA Southern SARE program. Even though it was raining and the fields were wet the attendance was very good. I made a presentation on managing WW-B. Dahl bluestem grass for seed production. Texas Tech Chancellor Robert Duncan

made the opening remarks, Dr. Vivien Allen (ret.) presented a history of sustainable water use efforts that gave rise to TAWC, and we had Texas water Development Board director Kathleen Jackson in attendance.

On July 29th, TAWC hosted two "Field Walks" in Floyd and Castro counties. The Floyd County "Field Walk" was held on the Keith Phillips and Eddie Teeter farms. Speakers discussed using the TAWC ET program and soil moisture probes to manage irrigation on cotton and corn, as well as fertility management in relation to crop water needs. The Castro County "Field Walk" was held on the Scott Clevenger farm east of Hart, and Bob Glodt's research farm. The same topics were discussed along with corn disease and grain sorghum varieties. Late August brought on new problems for the area. The majority of grain sorghum acres required insecticide treatments for the Yellow Sugarcane Aphid.

On August 3<sup>rd</sup>, Glenn Schur and I traveled to Sutherland, Nebraska to attend the Nebraska Water Balance Alliance field day held at the Roric Paulman Farm. Glenn and I served as panel members and made presentations about TAWC Demonstration Project. We are working on how TAWC and the Nebraska group can work together in the future.

TAWC hosted its tenth annual summer field day on September 16 at Muncy, Texas. We had good attendance considering some of the producers were finishing up corn harvest. Several producers in attendance commented on the quality of the presentations.

On October 8<sup>th</sup>, I helped host Kathleen Jackson with her visit to Lubbock. We met at Plains Cotton Growers office with several of the commodity leaders from the region. Our objective was to discuss how TWDB can engage producers to apply for SWIFT funding.

Much of my time in December and January was dedicated to preparing for TAWC's second annual Water College. I met with all of the commodity leaders to discuss possible presenters and current issues that their commodity group would like to have covered. I also spent considerable time calling on industry leaders for their input and to ask for their financial support. We were very pleased with our attendance this year at around two hundred. This year we had two keynote speakers with Texas Water Development Board Chairman, Bech Bruun addressing our morning session and Texas Commissioner of Agriculture, Sid Miller speaking to the afternoon session. The responses we received from attendees was very positive and some excellent suggestions for our 2017 Water College. We are considering a different venue for 2017 to allow for more space for both people attending and vendors.

In November, I received and accepted an invitation from Governor Abbott's office to participate in the 2016 Blue Ribbon Committee for the Texas Environmental Excellence Award. Also in November, I received a request from Skylar Sowder, Legislative Assistant for the U.S. House Committee on Agriculture to determine our interest in testifying before subcommittee on Conservation and Forestry. I was unable to attend because of a previous commitment. The purpose of the testimony was to highlight some of the technologies that producers across the nation were implementing to conserve water. Skylar indicated we would be considered in the future.

We have held twelve monthly meeting this year, as listed below.

#### Presentations this year:

| 03-03-2015       | HPACC                            | Lubbock, Texas       |
|------------------|----------------------------------|----------------------|
| 03-19-2015       | Nebraska Water Symposium         | Lincoln, Nebraska    |
| 04-08-2015       | Briscoe County Ag Days           | Silverton, Texas     |
| 04-17-2015       | Kingpins 2029                    | Amsterdam            |
| 07-09-2015       | Texas Tech Field Day             | New Deal, Texas      |
| 08-03-2015       | Nebraska Water Balance Field Day | Sutherland, Nebraska |
| 08-17-2015       | Texas Soil and Water             | Lubbock, Texas       |
| 08-19-2015       | Floydada Rotary Club             | Floydada, Texas      |
| 09-10-2015       | TAIA                             | Lubbock, Texas       |
| Tours this year: |                                  |                      |
| 09-01-2015       | Roric Paulman                    | Sutherland, Nebraska |

We have held our monthly management team meetings this year and I have made regular sites visits.

#### 2.2: Administrative Coordinator: Christy Barbee, Unit Coordinator (TTU)

Year 11 main objectives for the secretarial/administrative and bookkeeping support role for the TAWC Project included the following:

Accurate Accounting of All Expenses for the Project This included monthly reconciliations of accounts with the TTU accounting system, quarterly reconciliations of subcontractors' invoices, preparation of itemized quarterly reimbursement requests, and preparation of Task and Expense Budgets for Year 11. The budget was balanced for this annual report and is presented in Table 14 on page 174.

<u>Administrative Support for Special Events</u> Continued to assist the communications director and project director with special events by processing purchase orders, procurement card orders and travel.

Ongoing Administrative Support Daily administrative tasks included correspondence through print, telephone and e-mail; completed various clerical documents such as mileage logs, purchase orders, cost transfers, travel applications, human resource forms, and pay payroll paperwork; and other duties as requested or assigned. Prepared producer record books for individual producer records.

#### TASK 3: FARM Assistance Program

## Annual Report ending February 29, 2016

## Principal Investigator(s): Dr. Steve Klose, Jeff Pate and Jay Yates (TAMU, AgriLife-Extension)

Texas AgriLife Extension Service, FARM Assistance Subcontract with Texas Tech University

Year 11 project progress regarding Task 3 in the overall project scope of work has occurred in several areas ranging from collaborating in project coordination and data organization to data collection and communication, as well as, providing additional services to the area producers in conjunction with the TAWC project. A brief summary of specific activities and results follows:

#### **Project Collaboration**

A primary activity of initiating the FARM Assistance task included collaborating with the entire project management team and coordinating the FARM Assistance analysis process into the overall project concepts, goals, and objectives. The assessment and communication of individual producer's financial viability remains crucial to the evaluation and demonstration of water conserving practices. Through AgriLife Extension participation in management team meetings and other planning sessions, collaboration activities include early development of project plans, conceptualizing data organization and needs, and contributions to promotional activities and materials.

#### Farm Field Records

AgriLife Extension has taken the lead in the area of data retrieval in that FARM Assistance staff is meeting with producers multiple times each year to obtain field records and entering those records into the database. AgriLife Extension assisted many of the project participants individually with the completion of their individual site demonstration records (farm field records). Extension faculty have completed the collection, organization, and sharing of site records for all of the 2015 site demonstrations. At present, the TAWC project has 23 cooperating producers with 36 sites covering 5380 acres.

#### FARM Assistance Strategic Analysis Service

FARM Assistance service is continuing to be made available to the project producers. The complete farm analysis requires little extra time from the participant, and the confidentiality of personal data is protected. Extension faculty has completed whole farm strategic analysis for several producers in the past, and continues to seek other participants committed to the analysis. Ongoing phone contacts, e-mails, and personal visits with project participants promote this additional service to participants.

#### **Economic Study Papers**

Farm Assistance members, along with personnel from Texas Tech University's Department of Agricultural and Applied Economics, completed a study poster utilizing the economic data on a site within the TAWC project. The paper examined the profitability of 2 in 2 out planted cotton for 2013 and 2014. The results of this paper were presented at the Beltwide Cotton Conference held in New Orleans, Louisiana this past January.

#### **Continuing Cooperation**

Farm Assistance members also continue to cooperate with the Texas Tech Agriculture Economics Department by furnishing data and consulting in the creation of annual budgets. These budgets will later be used by Farm Assistance members to conduct site analysis for each farm in the TAWC project.

#### Field Walks

Two Field Walks was held during the growing season at two sites. The purpose of these Field Walks was to make producers aware of irrigation timing practices using various soil moisture probes. These probes were located on-site and allowed attendees to see them in operation during various stages of growth of corn, cotton, and grain sorghum. The participation was so encouraging that similar events are planned for 2016.

#### Field Days

Two Field Day was held in the T.A.W.C project during the 2015 growing season. The Summer Field Day was held September16. The meeting was held at the Unity Center in Muncy, Texas. The purpose of this meeting was to allow producers outside of the project to see what takes place within the project, as well as allow producers to hear about the latest research and policy that could have an impact on their operation. Personnel from AgriLife Extension, AgriLife Research, Farm Assistance, the High Plains Water District, and Texas Tech University were involved in the field day. An additional Field Day was held at the Texas Tech University Farm Lab, near New Deal, Texas. This event featured forage production for livestock and water-saving methods used in the production of these crops.

#### Water College

A new program was begun at the beginning of 2015 in which leaders in water conservation for the three main crops grown in West Texas were brought together for a regional meeting in Lubbock. Well over 100 participants were engaged in the meeting, along with more than a dozen sponsors. This program was such a success, that it was repeated in 2016. Over 200 participants were engaged in the meeting, along with more than a dozen sponsors. F.A. members promoted the event on radio and television. Plans are being developed for continuing this program in the future.

#### TASK 4: ECONOMIC ANALYSIS

#### Annual Report ending February 29, 2016

#### Principal Investigator(s): Drs. Phillip Johnson and Donna Mitchell (TTU)

The primary objectives of Task 4 are to compile and develop field level economic data, analyze the economic and agronomic potential of each site and system, and evaluate relationships within each system relative to economic viability and efficiency. In conjunction with Texas AgriLife Extension, field level records of inputs, practices and production are used to develop enterprise budgets for each site. The records and enterprise budgets provide the base data for evaluation of the economics of irrigation technologies, cropping strategies, and enterprise options. All expenses and revenues are accounted for within the budgeting process. In addition to an economic evaluation of each site, energy and carbon audits are compiled and evaluated.

#### **Major achievements for 2015:**

- 2015 was the eleventh year of economic data collection from the project sites. Data for the 2015 production year were collected and enterprise budgets were generated.
- TAWC cooperated with the National Cotton Council in a project for the Fieldprint Calculator which is being developed by Field-to-Market – The Keystone Alliance for Sustainable Agriculture. The Fieldprint Calculator estimates the sustainability footprint for crop production. TAWC site information for 2007 through 2014 was entered into the calculator. The results from the Fieldprint Calculator were reported in a paper presented at the 2015 Beltwide Cotton Conference.

## **Proceeding papers related to the TAWC in 2015:**

• Gillum, M., and P. Johnson. 2015. Fieldprint Calculator: Results from the Texas High Plains. 2015 Beltwide Cotton Conferences Proceedings, p. 689-692. Selected for presentation at the 2015 Beltwide Cotton Conference. January 5-7, 2015, Sam Antonio, TX.

#### **Grant funding received in 2015:**

- Application of the Fieldprint Calculator for Cotton Production in the Texas High Plains. Funded by the Cotton Foundation (7/14-8/16, \$36,000). PI Phillip Johnson. The objective of this project is to evaluate cotton production sites in the TAWC project with regard to their sustainability as measured by the Fieldprint Calculator.
- An Economic Analysis to Determine the Feasibility of Groundwater Supplementation from the Dockum Aquifer. Funded by the High Plains Underground Water District. Co-PIs Donna Mitchell and Phillip Johnson. (7/15-6/16, \$10,000). The objective of this project is to evaluate the economic feasibility of using water from the Dockum aquifer for crop production in the Texas High Plains.

#### Fieldprint Calculator: Results from the Texas High Plains

## Miranda Gillum, Phillip Johnson Texas Tech University Lubbock, TX<sup>3</sup>

#### ABSTRACT

The Fieldprint® Calculator is an analytical tool – developed by Field to Market®: The Keystone Alliance for Sustainable Agriculture – that evaluates crop production operations and computes metrics to measure their sustainability and operational efficiency. The objective of the study was to evaluate the relationship between the sustainability metrics generated by the Fieldprint Calculator and profitability. The data used for this study were from fields with irrigated cotton production across seven years from 2007 to 2013 in the Texas Alliance for Water Conservation (TAWC) project located in the Texas High Plains region. The sites were evaluated using the Fieldprint Calculator with sustainability index values calculated for each field. Least squares regression analysis was used to determine the relationship between gross margin as the dependent variable and the sustainability metrics as the independent variables. The results indicated that a "positive" relationship exists between sustainability and profitability. This study was funded by National Cotton Council and Texas Alliance for Water Conservation.

#### **BACKGROUND**

Sustainability in agricultural production is an important issue being addressed by many in the agricultural industry. Field to Market, developed the Fieldprint Calculator to enable agricultural producers to measure the sustainability of their operations, and researchers to analyze the effects on sustainability and the environment of different production practices (Field to Market). The Fieldprint Calculator evaluates a producer's sustainability based on seven metrics: land use (ac/lb of crop harvest), irrigation water use (acre-inches/lb of crop harvest), energy use (gallons of diesel/lb of crop harvest), greenhouse gas emissions (lbs CO<sub>2 equiv.</sub>/lb of crop harvest), soil conservation (tons of soil loss/ac/yr), a soil carbon index and a water quality index. Land use refers to the production efficiency of a particular field and is directly related to yield. If one field produces more yield per acre than another, it is more efficient and has a lower land use metric, meaning it requires less land to produce the same amount of crop. The soil conservation metric accounts for estimated soil erosion in the field. Irrigation water use is the amount of water applied per acre. Energy use accounts for all direct and indirect energy from production inputs used for an operation. Direct energy use is from inputs such as fuel used for irrigation and tillage operations. Indirect energy is energy used in the manufacture and transportation of inputs such as fertilizer and chemicals, and capital assets such as equipment. Greenhouse gas emissions are measured as the amount of CO<sub>2</sub> equiv. and is generally related to direct and indirect energy

<sup>&</sup>lt;sup>3</sup> Gillum, M. and P. Johnson. 2015. Fieldprint Calculator: Results from the Texas High Plains. *2015 Beltwide Cotton Conferences Proceedings*, in press. Selected for presentation at the 2015 Beltwide Cotton Conference. Co-sponsored by the National Cotton Council and the Cotton Foundation, January 5-7, 2015, San Antonio, TX.

usage. Water quality refers to the quality of runoff water at the edge of the field. Soil carbon is a measure of the level of organic carbon in the soil.

The calculator generates these metrics and provides a graphic sustainability footprint in the form of a spider graph. By assessing these metrics, the calculator enables a producer to explore different management decisions in order to improve the sustainability of their farming operation. Additionally, the calculator allows each farmer to compare their current farming practices to the county, state, and national averages in order to understand how their sustainability compares to other operations.

The objective of this study was to analyze and evaluate the relationship of the sustainability metrics derived from the Fieldprint Calculator on profitability. Data used in the study were from the Texas Alliance for Water Conservation (TAWC) for sites with irrigated cotton production in the years 2007 through 2013.

#### **METHODOLOGY**

The TAWC is a collaborative project with agricultural producers in Hale and Floyd counties of Texas. The project focuses on conserving water while maintaining and improving agricultural production. Data used in this study were from 20 producers in the TAWC project with 32 field sites that were in irrigated cotton production from the years 2007 through 2013, representing a total of 139 observations. These fields ranged in size from 13 acres to 398 acres, and included no-till, strip-till and conventional tillage operations, as well as different irrigation methods such as center pivot, subsurface drip and furrow. For this study, only irrigated cotton fields were evaluated. Producers provided field information on irrigation; tillage operations; chemical input applications of fertilizer, herbicide, insecticide, and harvest aides; and crop yield. Cost and return budgets were developed for each site to estimate the cost of production and profitability. Profitability was calculated as gross margin, which is cash receipts less cash costs.

Data from the TAWC sites were entered into the Fieldprint Calculator to estimate the sustainability metrics. Several of the sustainability metrics are expressed relative to the unit of harvested crop production. For example, the irrigation metric is expressed as inches of irrigation per lb of production, which is an irrigation-water footprint. This construct means that the metric values become smaller as resource use becomes more efficient, or the production of externalities such as greenhouse gasses are reduced. Since cotton is a joint product composed of lint and seed, the Fieldprint Calculator computes values based on a lint equivalent yield (LEY). The LEY is calculated by dividing the lint yield by the proportion of revenues attributed to lint, which was assumed to be 83%, with 17% of revenues coming from seed production. For example, a lint yield of 1200 lbs would be converted to a LEY of 1446 lbs to account for the seed yield.

The sustainability metrics were each converted to an index based on the mean value of each metric for the 139 observations. The conversion of the metrics to an index value standardized the units for each metric. A regression analysis was performed using the least squares method with gross margin as the dependent variable, the index value for each

metric, and dummy variables for each year as independent variables. Four of the seven metrics were evaluated as independent variables. The water quality and soil carbon metrics were not included in the analysis. The energy and greenhouse gas emission metrics were combined into one variable (EG) due to the high level of correlation (93%) between the two indexes by taking an average of the indexes for each metric.

The model was first estimated with the four sustainability variables (land use, irrigation, energy/greenhouse gas, and soil conservation) and the six dummy variables representing 2008 through 2013 (2007 was the base year). After estimating the model in SAS, the p-value for the soil conservation variable indicated that it did not have a significant effect on gross margin; therefore, the soil conservation variable was removed from the model. The model was then estimated using land use (LU), irrigation water use (Irr), the squared value of Irr, the energy/greenhouse gas variable (EG), the squared value of the EG variable, and the dummy variable for years 2007 through 2013. The results indicated that the irrigation squared variable was not significant; therefore, it was removed from the model. The final model was specified as follows.

GM = 
$$\beta_1 + \beta_2*LU + \beta_3*Irr + \beta_4*EG + \beta_5*EG^2 + \beta_6*D08 + \beta_7*D09 + \beta_8*D10 + \beta_9*D11 + \beta_{10}*D12 + \beta_{11}*D13$$

Where:

GM = Gross margin

LU = Land use

EG = Average of energy use and greenhouse gas emissions

 $EG^2$  = Squared value of EG

D08 = Crop produced in 2008

D09 = Crop produced in 2009

D10 = Crop produced in 2010

D11 = Crop produced in 2011

D12 = Crop produced in 2012

D13 = Crop produced in 2013

#### RESULTS

The results of the regression analysis are given in Table 9. Four variables were used to evaluate the effects of sustainability on profitability: land use, irrigation water use, energy/greenhouse gas emissions, and energy/greenhouse gas emissions squared. Dummy variables were used for each year of production to account for the variations due to weather and prices across production years with 2007 being the base year. Gross margin was the dependent variable and is defined as cash income minus cash expenses.

The regression results show that all coefficients for the sustainability metrics had the appropriate signs and values, and were significant at the 95% confidence level. The p-value for the 2009 dummy variable was not significant, however the variable was retained in the model.

A general model was derived by evaluating the dummy variables for each year at their mean value which increased the intercept by approximately \$250. This allowed the model to be simplified to only reflect the relationship between the sustainability metric and gross margin. The resulting equation is:

A lower index value for a sustainability metric is considered to be better because it indicates a more sustainable operation (i.e. smaller footprint). The negative coefficients for the sustainability metrics indicate that, as producer's lowers their index values, their gross margins will increase. For example, if a producer has an index value of 100 for each metric, the derived gross margin is \$448.80 per acre. If the value of the irrigation metric index is reduced to 80 while the other metric remain at an index value of 100, the derived gross margin increases to \$480.69 as shown in Table10.

Table 9. Results of Regression Equation with Gross Margin as the Dependent Variable.

| Variable        | Parameter<br>Estimate | Standard<br>Error | t Value | Pr >  t |
|-----------------|-----------------------|-------------------|---------|---------|
| Intercept       | 1162.72106            | 66.49842          | 17.48   | <.0001  |
| LU              | -5.40225              | 0.43376           | -12.45  | <.0001  |
| Irr             | -1.59417              | 0.41116           | -3.88   | 0.0002  |
| EG              | -4.15072              | 0.96326           | -4.31   | <.0001  |
| EG <sup>2</sup> | 0.01484               | 0.00220           | 6.76    | <.0001  |
| D08             | -121.11846            | 53.55237          | -2.26   | 0.0254  |
| D09             | -59.31872             | 50.73969          | -1.17   | 0.2445  |
| D10             | 196.03276             | 49.86895          | 3.93    | 0.0001  |
| D11             | 520.02370             | 58.71094          | 8.86    | <.0001  |
| D12             | 543.68462             | 51.32438          | 10.59   | <.0001  |
| D13             | 325.23226             | 51.50706          | 6.31    | <.0001  |

**Table 10. Derived Estimates of Gross Margin.** 

|                 |          | Index           |          | Index           |          |
|-----------------|----------|-----------------|----------|-----------------|----------|
| Intercept       |          |                 |          |                 |          |
| пистесрі        |          |                 | 1415.077 |                 | 1415.077 |
| LU              | -5.40225 | 100             | -540.225 | 100             | -540.225 |
| Irr             | -1.59417 | 100             | -159.417 | 80              | -127.534 |
| EG              | -4.15072 | 100             | -415.072 | 100             | -415.072 |
| EG <sup>2</sup> | 0.014844 | 10000           | 148.4416 | 10000           | 148.442  |
|                 |          | Gross<br>Margin | \$448.80 | Gross<br>Margin | \$480.69 |

#### **CONCLUSIONS**

Analysis of the Fieldprint Calculator's data output from TAWC sites in the Texas High Plains region showed that as sustainability metrics improved, there was a positive effect on gross margin. Given the results of this study, there is an incentive for producers to adopt production practices that lower the metrics evaluated by the Fieldprint Calculator, which increases their sustainability. By using the resources provided by the Fieldprint Calculator, producers can determine management practices that will aid in lowering their sustainability index and should be encouraged to do so given the results of this study.

#### **ACKNOWLEDGEMENTS**

National Cotton Council and Texas Alliance for Water Conservation provided the funds for this study.

#### REFERENCES

Field to Market®, <a href="https://www.fieldtomarket.org/fieldprint-calculator/">https://www.fieldtomarket.org/fieldprint-calculator/</a>

## TASK 5 & 7: PLANT WATER USE AND WATER USE EFFICIENCY

#### Annual Report ending February 29, 2016

## Principal Investigator(s): Drs. Steve Maas and Nithya Rajan (TTU & TAMU)

#### **Field Experiments**

During 2015, monitoring of fields in the TAWC Project continued using several eddy covariance (EC) systems established in project fields, including the "long-term agroecosystem" site in Field 17. These activities were conducted in cooperation with Dr. Nithya Rajan of Texas A&M University. Data from these fields were analyzed to study the energy balance, evapotranspiration, and carbon exchange of crops, primarily grassland, forage sorghum, and irrigated and dryland cotton. Results from 2015 were compared with those from previous years in the project. Results were used in peer-reviewed publications and presentations made at national meetings.

## Remote Sensing of Soil Moisture

During 2015, Dr. Sanaz Shafian (post-doctoral research associate employed by TAWC under the direction of S. J. Maas) continued her work on estimating soil moisture conditions in agricultural fields using remote sensing. Field data collected in TAWC fields were used in validating procedures developed by Dr. Shafian for estimating soil moisture conditions directly from Landsat image digital count data. Results showed that soil moisture could effectively be estimated during the growing season using this method. Results were summarized in a peer-reviewed publication.

#### **Irrigation Scheduling Tool**

Refinement of the advanced TAWC irrigation scheduling tool continued in anticipation of its future implementation. Dr. Nithya Rajan is leading this effort and collaborating with Dr. Bruce Gooch in the Department of Computer Science at Texas A&M University in developing the remote sensing-based advanced tool. The tool is at the early stages of development. This will be integrated with the TAWC Solutions by the end of 2017.

#### Retirement of Dr. Maas

Dr. S. J. Maas, coordinator of TAWC Task 5, announced his retirement effective at the end of 2015. It is anticipated that his replacement in the TTU Department of Plant and Soil Science will have the opportunity to carry on in this task. In preparation for leaving, Dr. Maas returned all field equipment (excluding the EC system at the "long-term agroecosystem" site in Field 17) to the lab in the TTU Department of Plant and Soil Science and an inventory of all equipment was provided to the TAWC principal investigator. Written reports detailing the advanced TAWC irrigation scheduling tool were also provided to the TAWC principal investigator in anticipation of the continuation of this work by Dr. Maas' successor.

#### **PUBLICATIONS AND PRESENTATIONS DURING 2015**

#### **PEER-REVIEWED PUBLICATIONS:**

Rajan, N., S.J. Maas, R. Kellison, M. Dollar, S. Cui, S. Sharma, and A. Attia. 2015. Emitter Uniformity and Application Efficiency for Center-pivot Irrigation Systems. Irrigation and Drainage 64: 353-361.

Shafian, S., and S. J. Maas. 2015. Index of Soil Moisture Using Raw Landsat Image Digital Count Data in Texas High Plains. Remote Sensing 7:2352-2372.

#### **PRESENTATIONS:**

Sharma, S., N. Rajan, and S. Maas. 2015. Inter-annual carbon, evapotranspiration and sensible heat flux dynamics of Old World Bluestem in the Southern Great Plains. Abstracts, ASA-CSSA-SSSA Annual Meeting, November 15-18, Minneapolis, MN.

Sharma, S., N. Rajan, and S. Maas. 2015. Net carbon and evapotranspiration dynamics of irrigated cotton compared to dryland cotton. Abstracts, ASA-CSSA-SSSA Annual Meeting, November 15-18, Minneapolis, MN.

Rajan, N, S. Sharma, K. D. Casey, and S. Maas. 2015. Effect of soil moisture and temperature on soil carbon flux from a conventional cotton cropping system. Abstracts, ASA-CSSA-SSSA Annual Meeting, November 15-18, Minneapolis, MN.

Rajan, N, S. Sharma, and S. Maas. 2015. Partitioning of net ecosystem exchange from agroecosystems into photosynthesis and respiration. Abstracts, ASA-CSSA-SSSA Annual Meeting, November 15-18, Minneapolis, MN.

## TASK 6: COMMUNICATIONS AND OUTREACH

## **Annual Report ending February 29, 2016**

#### Principal Investigator(s): Samantha Borgstedt, Dr. Steve Fraze, Dr. Rudy Ritz (TTU)

#### **Awards**

Texas Environmental Excellence Award – Agriculture Category

#### Forage and Livestock Field Day - July 2015

Outreach efforts were made for the July 9 Forage and Livestock Field Day. 500 save the date cards were printed and distributed, as well as 78 personal letters of invite. Email invites were also sent to over 400 contacts. Radio appearances by TAWC team members and advertisements were made on KFYO, KFLP and Fox Talk 950. Samantha Borgstedt went on Television with Fox 34 Ag Day and talked about the upcoming field day. Arrangements were made for caterer, tent, refreshments, chairs, tables, portable restrooms, and charter buses Field Day.

There were approximately 75 in attendance at the July 9 Field Day, which was favorable considering the heavy rain that day. Photos were taken by graduate student Libby Durst and Borgstedt at the meeting. Updates were made throughout the day to Twitter and Facebook. Borgstedt wrote follow-up Thank You letters to field day speakers and guests. Contact list was updated using sign-in sheet from the event.

#### Trade Shows, Meetings and Events Attended

Borgstedt and Kellison attended the August 19, 2015 High Plains Soil and Water Conservation Districts Annual Meeting where Kellison was the keynote speaker and Borgstedt setup and manned the TAWC booth.

Borgstedt set up and manned the TAWC booth at the Texas Underground Water Summit in San Marcos, TX, on August 25-27. She distributed TAWC outreach materials and made connections expanding our contacts.

Samantha Borgstedt, Rudy Ritz, and Libby Durst set up and staffed the TAWC booth as well as distributed project materials with attendees at the Texas Ginners Annual Meeting and Trade Show (April 9-10, 2015).

Borgstedt and Durst had the TAWC booth on display and distributed project materials at the annual High Plains Association of Crop Consultants Meeting in March 2015.

Ag Communications students Cassie Godwin and Libby Durst attended and manned the TAWC booth at the Amarillo Farm and Ranch Show at the Amarillo Civic Center on Dec. 1-3, 2015. The main goal of the trip was to promote TAWC Water College as well as distribute TAWC research materials. Contact was also made with three additional agricultural

companies that asked to be sponsors and have booths at Water College. USB drives ordered by Borgstedt with TAWC's project overview and summary of research preloaded were handed out with positive feedback. Over 250 Water College save the date cards were also distributed.

#### September 2015 TAWC Field Day

Radio advertisements ran on KKYN, KFLP and Fox Talk 950 for 10 days prior to the event. Judy Schatt from Floydada catered the noon meal. The event took place September 16 from 7:30 a.m. to 1:00 p.m. at the Floyd County Unity Center in Muncy, Texas. About 80 were in attendance. Booths were set up by local sponsors such as Texas Corn Producers, Hurst Farm Supply and Eco-Drip. Libby Durst video recorded all presentations and uploaded them to the TAWC YouTube page. Borgstedt also uploaded all presentation to www.tawc.us.

#### **Outreach Materials**

New project overview handout was designed, printed and distributed. 1,500 Save the Date cards were printed and distributed for our Forage & Livestock Field Day, September meeting and Water College.

Over 1,000 personal invite letters were printed and distributed for our Forage & Livestock Field Day, September meeting and Water College.

A new booth display was created that we now use at meetings and trade shows. USB drives were created with TAWC and TWDB logos and websites on them. These have uploaded on them the TAWC project overview and Phase 1 research summary. They will be handed out at our TAWC booth during outreach events beginning with the Amarillo Farm and Ranch Show, <a href="www.tawcwatercollege.com">www.tawcwatercollege.com</a> with meeting details, agenda, and speaker bios for TAWC Water College. The main TAWC website (<a href="www.tawc.us">www.tawc.us</a>) was redesigned and launched in 2015.

#### 2016 Water College

Final preparations were made for the TAWC Water College in December 2015. Radio advertisements were arranged on KKYN, KFLP, KFYO and Fox Talk 950 prior to the event. Fudruckers was contacted and confirmed for catering. Borgstedt began contacting sponsors and vendors for the event. Final details for meeting room arrangement was made with the Ag museum, planning for 225 in attendance. Borgstedt also updated www.tawcwatercollege.com with 2016 meeting information.

Radio advertisements for Water College began running on KFLP, KKYN, KFLP and Fox Talk 950 on January 4. A total of 16 live interviews talking about Water College were made by Rudy Ritz, Rick Kellison, Jeff Pate and Borgstedt across these four stations. Borgstedt sent out a press release to newspapers in Lubbock, Lamesa, Plainview, and Hereford. Lubbock television stations were asked to attend Water College. All area county agents were

contacted and asked to spread word of the event. Kellison and Pate set out save the date cards and hung fliers at local producer hang-outs. Borgstedt wrote and mailed personal invite letters to the 200+ TAWC contacts. Email blasts were also made and sent out. The Water College website was updated with speaker bios. All speaker presentations were collected and bound as handouts out for Water College participants.

Approximately 220 attended Water College. Two television stations, KFLP, Fox Talk 950 and the Lubbock Avalanche Journal all covered the event. Sixteen companies sponsored the event and had booths at the Ag Museum.

#### **Graduate Student Assistants**

- Cassie Godwin began working as our graduate assistant in September 2015 and continues to be with us through December 2016.
- Libby Durst was our graduate assistant that worked with us and graduated in December 2015. The following is her thesis. "Working with Water: An Exploration of Texas High Plains Agricultural Producers' Adoption of Water Conservation Practices in Irrigation Management."
- Poster Presented: Durst, L., & Meyers, C. (2015, May). Influencing change: Agricultural producers' use of the Texas Alliance for Water Conservation's communication efforts. Refereed poster session presented at National AAAE Research Conference, San Antonio, TX.
- 32 YouTube videos posted
- 52 TAWC Field Talk radio segments airing every Wednesday on KFLP All Ag All Day
- 12 electronic newsletters sent every month using MailChimp
- 394 Facebook followers
- 538 Twitter followers
- 3 Television Appearances
- 37 live Radio Appearances (KFLP, KKYN, KFLP and Fox Talk 950)
- 1 new booth display was designed
- New project overview handout designed, printed and distributed

#### TASK 7: Producer Assessment of Operation

Annual Report ending February 29, 2016

#### Principal Investigator: Dr. Nithya Rajan (TAMU, AgriLife Research)

Task 7 report is combined with Task 5 in this 2015 report because of their combined efforts.

## TASK 8: Integrated Crop/Forage/Livestock Systems and Animal Production Evaluation

## **Annual Report ending February 29, 2016**

## Principal Investigators: Dr. Chuck West, Mr. Philip Brown, and Dr. Sara Trojan (TTU)

Several forage and livestock research trials were carried out at the Texas Tech New Deal research facility to generate data that will be used in future outreach presentations, field tours, and to expand capabilities of the TAWC online tools.

Chuck West and Philip Brown carried out a steer grazing trial at the New Deal Research Field Station comparing pastures containing only grass versus pastures containing grass and alfalfa, a high quality legume forage. Total precipitation at the Station in Nov. 2014-Oct. 2015 was 30.1 inches (long-term average is 18.5 inches), and April-September (pasture growing season) precipitation was 21.9 inches (long-term average is 13.2 inches). 19.2 of the 21.9 inches fell between May 5 and July 7. Abundant rain early in the grazing season reduced irrigation needs. The Old World Bluestem (OWB) growing alone received 7.3 inches of irrigation, and that growing with alfalfa received 4.7 inches. Alfalfa growing with tall wheatgrass received 7.1 inches. We normally target irrigation levels in April-September to not exceed 12 inches for alfalfa-tall wheatgrass pastures and 9 inches for the Old World bluestem pastures, with or without alfalfa. The normal amount of rain + irrigation is targeted at 22 to 25 inches, but in 2015 rain + irrigation ranged from 26.6 to 29.2 inches because of the excessive rain in May. Only 4.4 inches of irrigation was applied to those pastures. The native grass pastures did not receive irrigation.

The second year (2015) of grazing research was carried out with steers to compare two forage systems: grasses only receiving 60 lbs/acre of nitrogen as fertilizer (60% of grazing days on pure OWB, 30% on native grass mixture, and 10% on teff) and grasses + legumes receiving no nitrogen (59% of grazing days on native grass mixture, 24% on alfalfa-tall wheatgrass, and 17% on OWB-legume mixture). Grazing occurred from June 9 to October 2. Average daily gain was 1.8 and 2.0 lbs/day for the two systems, respectively. Total gain was 302 and 439 lbs/acre, respectively. The productive advantage of the grass-legume system was due to a combination of exposure to high-quality legumes and a greater number of days in native grass mix compared with the grass-only system. The novel part of the grass-legume system was the inclusion of the alfalfa-tall wheatgrass mixture, which served as a supplemental protein bank in small acreage. This component was grazed for around 2 days per week and boosted protein intake over the grass alone.

Also tested was the innovation of managing alfalfa as a limit-grazing protein bank. This is part of doctoral student, Lisa Baxter's, research effort. Results will inform producers of ways to utilize alfalfa in the forage system in ways that require much lower irrigation compared with traditional hay crop alfalfa. Another forage looked at was teff, a type of annual lovegrass which establishes quickly from seed, provides medium to high quality grazing, and regrows well after light, sporadic rains.

Graduate student Lisa Baxter received a grant from the USDA-SARE graduate student program titled "Evaluation of winter annual cover crops under multiple residue

management: Impacts on land management, soil water depletion, and cash crop productivity." The winter cover crops were planted in October of 2015. Soil water and plant measurements were made over the 2015-2016 winter period.

Yedan (Victoria) Xiong continued her doctoral research in 2015 to enhance the ALMANAC and APSIM plant growth models to predict canopy leaf area, light interception, and forage growth as a function of water supply, canopy cover, and grazing vs. hay harvest. She will use these data to produce growth function for the models. Results will be used to add WW-B.Dahl as a crop option in the TAWC online decision aid tools.

Sara Trojan's graduate student (Dusty Sugg) carried out the first year of a grazing trial with steers on teff, a summer annual grass that is short with fine stems and leaves. The specific objective was to evaluate forage growth and quality in late summer while being fed cottonseed meal as a protein supplement. This research was part of a larger effort to assess water requirements by teff in a high-evaporative-demand environment as a possible forage option for dryland or ultra-low irrigation in an integrated crop-livestock system. Forage availability averaged 1173 lb/acre over a 63 grazing period in July and September. Soil volumetric water content in mid-season averaged 16% at 4 inches, and 28-43% between 8 and 36-inch depth. Rainfall was 9.4 inches and irrigation was 4 inches. Steers gained around 3 lb/head/day. The trial is being repeated in 2016, but preliminary observations indicate an excellent potential for using teff as a good quality annual forage grass adapted to low water input in the Texas South Plains.

The Forage and Livestock Field Day was held on July 9 with 100 participants as an outreach effort sponsored by TAWC and USDA-SARE. Producers learned about soil health, pasture establishment, annual forages, integration of low-irrigation-input grazing into cropping systems, irrigation innovations, cattle handling, old world bluestem hay and seed production, dryland native-pasture options, and cattle nutrition. The highlight of the field day was an after-lunch discussion and question-answer session with two prominent local producers who have successfully integrated the use of pastures into their annual cropping systems as a profitable method of dealing with reduced irrigation supply from the Ogallala aquifer. The producers were able to relate their decision-making on crop and forage diversification to the topics demonstrated in that morning's field day tours. The event was recorded on video by the communications personnel and posted on the TAWC web site. A local television station recorded field scenes and interviews with participants for local programing. The field day was partially financially supported by USDA-SARE with a \$10,000 grant.

Grant proposals were submitted and funded for continued funding (USDA-SARE) and new funding (USDA-NIFA-SARE) to enhance the efforts of TAWC (see list below). Very significantly among them was a major inter-institutional and interdisciplinary 4-year project that will amount to \$10 million (to be funded on an annual renewal basis). The objectives are to 1) integrate hydrologic, crop, soil, and climate models; 2) develop the best irrigation technologies, tools, and crop management practices; 3) analyze social, policy, and economic frameworks to identify incentives and policies for adaptive management; and 4) enable the adoption of tools and strategies to improve water conservation. The systems-

based approach will foster water conservation through the development of cost-effective, adoptable and sustainable practices and technologies for agricultural producers and processors. The well documented success of the TAWC program is part of this project and will entail expansion of the irrigation conservation approach to other states and audiences.

#### **Grants Funded:**

- 1. USDA-SARE. C. West. Long term agroecosystems research and adoption in the Texas Southern High Plains. \$100,000. This is a renewal grant for pasture research at the New Deal Research Field Station.
- 2. USDA-NIFA-AFRI. C. West in collaboration with 40 scientists from 8 universities and the USDA-ARS. Sustaining Agriculture through Adaptive Management to Preserve the Ogallala Aquifer under a Changing Climate. \$218,000 is the Texas Tech portion of a \$2.5 million grant, to be renewed at that level for an additional 3 years.
- 3. USDA Southern SARE Graduate Student Grant Program. L. Baxter (West advisee), and C.P. West. Evaluation of winter annual cover crops under multiple residue managements: Impacts on land management, soil water depletion, and cash crop productivity. \$9,511.

## TASK 9: EQUIPMENT, SITE INSTRUMENTATION AND DATA COLLECTION FOR WATER MONITORING

## **Annual Report ending February 29, 2016**

## Principal Investigator(s): Jason Coleman and Keith Whitworth (HPWCD #1)

#### 9.1 Equipment Procurement & Installation

- HPWD purchased a Solinst 500 ft. Water Level Meter to be used to measure water levels in the TAWC wells.
- New steel post and hardware was purchased to relocate the tipping bucket rain gauges.
- New equipment was purchased for the new sites in Hale and Lamb Counties.

#### 9.2 Data Collection and Processing

- Daily rainfall was collected using 25 tipping bucket rain gauges with Hobo data loggers.
- Compiled the 2015 daily rainfall into an Excel spreadsheet.
- Rainfall data were collected monthly in the PVC rain gauge network as a backup to the rainfall data collected by the tipping bucket data logger.
- All water level transducers were downloaded, graphed and published on the HPWD website.
- All equipment was monitored regularly and maintenance preformed if needed.

## Water and Crop Use Efficiency Summaries

## Philip Brown (TTU)

## **Total Irrigation and Water Use Efficiency (WUE)**

Table 11 lists the information related to the 2015 irrigation and total crop water efficiency. Data presented include **site**, **field**, **crop**, special harvest **status**, **irrigation type** and **acres** for each location within the project area. **Season rainfall** is based on individual sites and represents an estimated 50% effective rainfall in inches received during the growing season (approximately planting to harvest). 50% was chosen over the previously used 70% to correct for previous over-estimation of effective rainfall. Rain events in the High Plains tends to be high intensity, resulting in low effectiveness rainfall for crop use. This effective rainfall factor is based on the FAO method (http://www.fao.org/docrep/S2022E/ s2022e08.htm). **Total irrigation** (inches) is the total amount of irrigation applied for each site's crop. Soil moisture contribution to WUE (inches) is the estimated plant available soil moisture provided from pre-plant irrigation and/or rainfall and is the calculated difference based on a beginning and end-of-season soil moisture measurement. Beginning in 2014, neutron probe readings were discontinued by the HPWD. Alternatively, gravimetric soil moisture measurements were made using a hand soil probe to a maximum depth of 3 feet in 1 foot increments. Inability to punch a depth resulted in an assumed 0% soil moisture content below that depth. Gravimetric soil water content was converted to volumetric based on the site-specific soil texture, bulk density, wilting point and maximum available water capacity values from NRCS SSURGO from the USDA Soil Conservation Service (<a href="http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcs">http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcs</a> 142p2 053627).

This method allows potential calculation of initial and ending soil moisture for each site in the project previously not available. **Total crop water supplied** is a sum total of 50% effective rainfall, total irrigation and soil moisture contribution (when available in any given year). **ET crop water demand** is the average crop water demand (inches) required for an individual crop at 100% potential ET based on crop-specific water coefficients and/or a standardized season ET value based on research experience and history with crops lacking these coefficients. Use of a standardized ET value for all crops enabled calculation of the ET crop water demand (potential ET) for all sites and crops within the project. Percentage **crop water demand provided by rainfall (50% effective)**, **irrigation**, and **soil moisture** (when available) are the percentage of crop water demand supplied by each of these factors. **Total crop water demand provided by total irrigation** (%) includes only the proportion of demand contributed by irrigation, not soil water and rainfall. **Total crop water demand provided by total crop water (%)** includes soil moisture (when available), irrigation and 50% effective rainfall.

**Total** <u>irrigation</u> **potentially conserved in acre-feet** is the total amount of <u>irrigation</u> <u>water</u> estimated to have been conserved at **100% season crop ET water demand**.

**Total** <u>crop</u> <u>water</u> <u>demand</u> <u>potentially</u> <u>conserved</u> in <u>acre-feet</u> is the total amount of <u>total</u> <u>crop</u> <u>water</u> estimated to have been conserved at **100%** <u>season</u> <u>crop</u> <u>ET</u> <u>water</u> <u>demand</u>.

For 2015 there were no longer any active dryland sites included in the project area. Total crop water, which includes irrigation, rainfall and soil moisture, provided from 39 to 184% of the season crop ET water demand. Subsurface drip (SDI), assumed to be the most efficient irrigation system currently available, supplied on average 81% of total crop water demand. The LEPA system provided 80%, followed by LESA at 96%, MESA at 114% and FUR at 130%. Irrigation at greater than 100% crop water demand indicates excessive water application. The high value for FUR irrigation is expected because of excessive see page and surface wetting at the inlet. Many producers manage irrigation systems based on their experience with older, less-efficient pivot systems; however, systems such as SDI require a different management style since this water is applied sub-surface to reduce surface evaporation, and is therefore difficult to observe. Newer irrigation systems, while designed for greater efficiency, have often resulted in excessive water being applied rather than conserving water because of lack of careful monitoring of soil and crop water status. This indicates a need for increased user awareness and education on the operation and management of advanced irrigation systems such as SDI. Greater use of the TAWC online irrigation scheduling tool and equipment demonstrated within this project can help reduce over irrigation, and the 2015 data indicate we were more in line with expectations.

While total acres for each type of irrigation system varied and FUR acres were limited, which should be taken into account, the trend for average Total Irrigation potentially conserved (Table 11, bottom part) indicates FUR conserved the least at 31.7, followed by MESA, LESA, LEPA and SDI at 77.9, 83, 92.9 and 94.5 acre-feet, respectively. This would be the expected pattern for these irrigation systems and indicates we may be making progress in our education outreach based on past years' data. Estimated sum total <u>irrigation potentially conserved across the TAWC project sites totaled 4,429 acre-feet for the 2015 growing season, while sum total crop water demand potentially conserved totaled 962 acre-feet. On average across all sites and irrigation systems, irrigation alone provided 43% of the total crop water demand with 33% provided by rainfall and 17% by soil moisture. This sums to approximately 93% of the crop water demand provided by total crop water. Even though 2015 had extreme rainfall for the year, much of this water was wasted to runoff, deep drainage and/or out of season for the specific crop making it impossible to account for 100% total crop water demand. However, soil moisture contribution was higher than in previous years at 17%.</u>

**Table 11.** Total water use efficiency (WUE) summary by various cropping and livestock systems across the TAWC sites (2015).

| labic | <b>II.</b> 1( | Jiai w | ater use emcie | incy (WOL) s | ummai           | y Dy Va | 11 10 45                                  | croppi                       | ing am                                        | u nves                             | LUCK S                           | Stems                                            | aci oss t                                          | IIC IAVV                                              | c sites (                                          | 2013).                                                   |                                                          |
|-------|---------------|--------|----------------|--------------|-----------------|---------|-------------------------------------------|------------------------------|-----------------------------------------------|------------------------------------|----------------------------------|--------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| Year  | Site          | Field  | Crop           | Status       | Irrigation type | Acres   | Season rainfall<br>(50% effective-inches) | Total irrigation<br>(inches) | Soil moisture contribution<br>to WUE (inches) | Total crop water supplied (inches) | ET crop water demand<br>(inches) | Crop water demand<br>provided by rainfall<br>(%) | Crop water demand<br>provided by irrigation<br>(%) | Crop water demand<br>provided by soil moisture<br>(%) | Crop water demand provided by total crop water (%) | Total irrigation<br>potentially conserved<br>(acre-feet) | Total Crop Water<br>potentially conserved<br>(acre-feet) |
| 2015  | 4             | 5      | Alfalfa        | hay          | LEPA            | 16.0    | 10.6                                      | 14.0                         | 0.0                                           | 24.6                               | 40.0                             | 26%                                              | 35%                                                | 0%                                                    | 61%                                                | 34.7                                                     | 20.6                                                     |
| 2015  | 4             | 9      | Wheat          |              | LESA            | 29.6    | 8.3                                       | 7.0                          | 0.0                                           | 15.3                               | 18.0                             | 46%                                              | 39%                                                | 0%                                                    | 85%                                                | 27.1                                                     | 6.8                                                      |
| 2015  | 4             | 11     | Cotton         |              | LEPA            | 77.4    | 6.7                                       | 9.0                          | 0.0                                           | 15.7                               | 20.0                             | 34%                                              | 45%                                                | 0%                                                    | 79%                                                | 71.0                                                     | 27.7                                                     |
| 2015  | 5             | 2      | Sunflower      |              | LESA            | 85.8    | 10.1                                      | 8.0                          | 5.5                                           | 23.6                               | 22.0                             | 46%                                              | 36%                                                | 25%                                                   | 107%                                               | 100.1                                                    | -11.4                                                    |
| 2015  | 5             | 3      | Millet         |              | LESA            | 156.0   | 3.3                                       | 12.0                         | 5.5                                           | 20.8                               | 20.0                             | 17%                                              | 60%                                                | 28%                                                   | 104%                                               | 104.0                                                    | -10.4                                                    |
| 2015  | 5             | 4      | Wheat          |              | LESA            | 119.4   | 9.4                                       | 6.0                          | 5.5                                           | 20.9                               | 18.0                             | 52%                                              | 33%                                                | 31%                                                   | 116%                                               | 119.4                                                    | -28.4                                                    |
| 2015  | 5             | 5      | Corn           |              | LESA            | 122.9   | 3.3                                       | 14.0                         | 5.5                                           | 22.8                               | 32.0                             | 10%                                              | 44%                                                | 17%                                                   | 71%                                                | 184.4                                                    | 94.2                                                     |
| 2015  | 6             | 9      | Cotton         |              | LESA            | 60.6    | 6.2                                       | 20.5                         | 10.2                                          | 36.9                               | 20.0                             | 31%                                              | 103%                                               | 51%                                                   | 184%                                               | -2.5                                                     | -85.1                                                    |
| 2015  | 6             | 10     | Corn           |              | LESA            | 62.1    | 10.4                                      | 21.2                         | 0.0                                           | 31.6                               | 32.0                             | 32%                                              | 66%                                                | 0%                                                    | 99%                                                | 55.9                                                     | 2.3                                                      |
| 2015  | 9             | 1      | Grass          | grazed       | MESA            | 100.8   | 10.3                                      | 0.0                          | 0.0                                           | 10.3                               | 9.8                              | 106%                                             | 0%                                                 | 0%                                                    | 106%                                               | 81.9                                                     | -4.6                                                     |
| 2015  | 9             | 3      | Cotton         |              | MESA            | 77.0    | 6.6                                       | 6.0                          | 10.3                                          | 22.9                               | 20.0                             | 33%                                              | 30%                                                | 52%                                                   | 115%                                               | 89.8                                                     | -18.6                                                    |
| 2015  | 9             | 4      | Cotton         |              | MESA            | 59.9    | 6.6                                       | 6.0                          | 10.3                                          | 22.9                               | 20.0                             | 33%                                              | 30%                                                | 52%                                                   | 115%                                               | 69.9                                                     | -14.5                                                    |
| 2015  | 10            | 6      | Grass          | grazed       | LESA            | 57.7    | 11.7                                      | 3.8                          | 0.0                                           | 15.5                               | 9.8                              | 120%                                             | 39%                                                | 0%                                                    | 159%                                               | 28.6                                                     | -27.7                                                    |
| 2015  | 10            | 7      | Corn           |              | LESA            | 59.2    | 5.3                                       | 19.0                         | 3.8                                           | 28.1                               | 32.0                             | 17%                                              | 59%                                                | 12%                                                   | 88%                                                | 64.1                                                     | 19.2                                                     |
| 2015  | 10            | 8      | Cotton         |              | LESA            | 59.2    | 7.0                                       | 9.7                          | 3.8                                           | 20.5                               | 20.0                             | 35%                                              | 49%                                                | 19%                                                   | 103%                                               | 50.8                                                     | -2.5                                                     |
| 2015  | 11            | 9      | Grain sorghum  |              | FUR             | 35.0    | 11.0                                      | 4.0                          | 10.3                                          | 25.3                               | 24.0                             | 46%                                              | 17%                                                | 43%                                                   | 105%                                               | 58.3                                                     | -3.8                                                     |
| 2015  | 11            | 10     | Cotton         |              | FUR             | 10.0    | 6.8                                       | 14.0                         | 10.3                                          | 31.1                               | 20.0                             | 34%                                              | 70%                                                | 52%                                                   | 156%                                               | 5.0                                                      | -9.3                                                     |
| 2015  | 11            | 11     | Corn           |              | SDI             | 37.6    | 4.9                                       | 14.0                         | 0.0                                           | 18.9                               | 32.0                             | 15%                                              | 44%                                                | 0%                                                    | 59%                                                | 56.4                                                     | 41.2                                                     |
| 2015  | 14            | 4      | Cotton         | 2 in, 2 out  | MESA            | 124.1   | 6.6                                       | 10.0                         | 10.2                                          | 26.8                               | 20.0                             | 33%                                              | 50%                                                | 51%                                                   | 134%                                               | 103.4                                                    | -69.8                                                    |
| 2015  | 15            | 8      | Cotton         |              | SDI             | 56.7    | 6.8                                       | 7.0                          | 10.2                                          | 24.0                               | 20.0                             | 34%                                              | 35%                                                | 51%                                                   | 120%                                               | 61.4                                                     | -18.9                                                    |
| 2015  | 15            | 9      | Cotton         |              | SDI             | 44.4    | 6.8                                       | 7.0                          | 10.2                                          | 24.0                               | 20.0                             | 34%                                              | 35%                                                | 51%                                                   | 120%                                               | 48.1                                                     | -14.8                                                    |
| 2015  | 17            | 5      | Corn           |              | MESA            | 54.5    | 5.5                                       | 22.0                         | 5.2                                           | 32.7                               | 32.0                             | 17%                                              | 69%                                                | 16%                                                   | 102%                                               | 45.4                                                     | -3.0                                                     |
| 2015  | 17            | 6      | Sunflower      |              | MESA            | 54.4    | 15.2                                      | 5.0                          | 5.2                                           | 25.4                               | 22.0                             | 69%                                              | 23%                                                | 24%                                                   | 115%                                               | 77.1                                                     | -15.2                                                    |
| 2015  | 19            | 11     | Cotton         | 2 in, 2 out  | LEPA            | 120.3   | 6.2                                       | 8.0                          | 0.2                                           | 14.4                               | 20.0                             | 31%                                              | 40%                                                | 1%                                                    | 72%                                                | 120.3                                                    | 56.1                                                     |

| Year | Site | Field | Crop          | Status        | Irrigation type | Acres | Season rainfall<br>(50% effective-inches) | Total irrigation<br>(inches) | Soil moisture<br>contribution<br>to WHE finches) | Total | ET crop water demand (inches) | Crop water demand<br>provided by rainfall<br>(%) | Grop water demand<br>provided by irrigation<br>(%) | Crop water demand<br>provided by soil moisture<br>(%) | Crop water demand<br>provided by total crop<br>water (%) | Total irrigation<br>potentially conserved<br>(acre-feet) | Total Crop Water<br>potentially conserved<br>(acre-feet) |
|------|------|-------|---------------|---------------|-----------------|-------|-------------------------------------------|------------------------------|--------------------------------------------------|-------|-------------------------------|--------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| 2015 | 21   | 1     | Corn          |               | LEPA            | 60.1  | 10.8                                      | 12.5                         | 2.5                                              | 25.8  | 32.0                          | 34%                                              | 39%                                                | 8%                                                    | 80%                                                      | 97.7                                                     | 31.3                                                     |
| 2015 | 21   | 2     | Wheat         |               | LEPA            | 60.6  | 9.9                                       | 3.0                          | 0.0                                              | 12.9  | 18.0                          | 55%                                              | 17%                                                | 0%                                                    | 72%                                                      | 75.8                                                     | 25.8                                                     |
| 2015 | 22   | 3     | Corn          | failed cotton | LEPA            | 145.0 | 5.1                                       | 16.5                         | 10.2                                             | 31.8  | 32.0                          | 16%                                              | 52%                                                | 32%                                                   | 99%                                                      | 187.3                                                    | 3.0                                                      |
| 2015 | 24   | 1     | Corn          |               | LESA            | 64.6  | 9.9                                       | 20.0                         | 6.9                                              | 36.8  | 32.0                          | 31%                                              | 63%                                                | 22%                                                   | 115%                                                     | 64.6                                                     | -25.6                                                    |
| 2015 | 24   | 2     | Sunflower     |               | LESA            | 65.1  | 9.8                                       | 8.0                          | 10.2                                             | 28.0  | 22.0                          | 44%                                              | 36%                                                | 46%                                                   | 127%                                                     | 76.0                                                     | -32.3                                                    |
| 2015 | 26   | 1     | Corn          |               | LESA            | 62.9  | 3.3                                       | 16.0                         | 0.0                                              | 19.3  | 32.0                          | 10%                                              | 50%                                                | 0%                                                    | 60%                                                      | 83.9                                                     | 66.6                                                     |
| 2015 | 26   | 2     | Millet        |               | LESA            | 62.2  | 3.3                                       | 10.0                         | 0.0                                              | 13.3  | 20.0                          | 17%                                              | 50%                                                | 0%                                                    | 67%                                                      | 51.8                                                     | 34.7                                                     |
| 2015 | 28   | 1     | Corn          |               | SDI             | 51.5  | 5.3                                       | 17.0                         | 0.0                                              | 22.3  | 32.0                          | 17%                                              | 53%                                                | 0%                                                    | 70%                                                      | 64.4                                                     | 41.6                                                     |
| 2015 | 30   | 1     | Corn          |               | SDI             | 21.8  | 3.3                                       | 18.0                         | 5.6                                              | 26.9  | 32.0                          | 10%                                              | 56%                                                | 18%                                                   | 84%                                                      | 25.4                                                     | 9.3                                                      |
| 2015 | 31   | 1     | Corn          |               | LEPA            | 66.8  | 4.5                                       | 13.5                         | 0.0                                              | 18.0  | 32.0                          | 14%                                              | 42%                                                | 0%                                                    | 56%                                                      | 103.0                                                    | 77.9                                                     |
| 2015 | 31   | 2     | Grain sorghum |               | LEPA            | 55.1  | 6.7                                       | 9.5                          | 10.2                                             | 26.4  | 24.0                          | 28%                                              | 40%                                                | 43%                                                   | 110%                                                     | 66.6                                                     | -11.0                                                    |
| 2015 | 32   | 1     | Corn          |               | LEPA            | 70.0  | 5.1                                       | 18.1                         | 10.2                                             | 33.4  | 32.0                          | 16%                                              | 57%                                                | 32%                                                   | 104%                                                     | 81.1                                                     | -8.2                                                     |
| 2015 | 33   | 1     | Corn          |               | LEPA            | 70.0  | 5.1                                       | 19.0                         | 10.2                                             | 34.3  | 32.0                          | 16%                                              | 59%                                                | 32%                                                   | 107%                                                     | 75.8                                                     | -13.4                                                    |
| 2015 | 35   | 4     | Corn          |               | SDI             | 115.0 | 10.8                                      | 11.7                         | 9.7                                              | 32.2  | 32.0                          | 34%                                              | 37%                                                | 30%                                                   | 100%                                                     | 194.5                                                    | -1.4                                                     |
| 2015 | 35   | 5     | Corn          |               | SDI             | 115.0 | 4.6                                       | 9.0                          | 2.5                                              | 16.1  | 32.0                          | 14%                                              | 28%                                                | 8%                                                    | 50%                                                      | 220.4                                                    | 152.4                                                    |
| 2015 | 39   | 1     | Corn          |               | LEPA            | 60.0  | 10.1                                      | 10.8                         | 0.0                                              | 20.8  | 32.0                          | 31%                                              | 34%                                                | 0%                                                    | 65%                                                      | 106.3                                                    | 56.0                                                     |
| 2015 | 39   | 2     | Grain sorghum |               | LEPA            | 60.0  | 8.8                                       | 5.0                          | 0.0                                              | 13.8  | 24.0                          | 36%                                              | 21%                                                | 0%                                                    | 57%                                                      | 95.0                                                     | 51.3                                                     |
| 2015 | C50  | 1     | Cotton        |               | LESA            | 120.6 | 5.3                                       | 4.9                          | 0.5                                              | 10.7  | 20.0                          | 26%                                              | 25%                                                | 3%                                                    | 53%                                                      | 151.8                                                    | 94.0                                                     |
| 2015 | C51  | 1     | Cotton        |               | SDI             | 45.7  | 5.3                                       | 4.7                          | 0.0                                              | 10.0  | 20.0                          | 26%                                              | 24%                                                | 0%                                                    | 50%                                                      | 58.3                                                     | 38.3                                                     |
| 2015 | C52  | 1     | Cotton        |               | LESA            | 130.0 | 7.1                                       | 12.2                         | 0.0                                              | 19.3  | 20.0                          | 36%                                              | 61%                                                | 0%                                                    | 97%                                                      | 84.5                                                     | 7.6                                                      |
| 2015 | C53  | 1     | Cotton        |               | SDI             | 50.0  | 7.1                                       | 10.3                         | 0.0                                              | 17.4  | 20.0                          | 36%                                              | 52%                                                | 0%                                                    | 87%                                                      | 40.4                                                     | 10.8                                                     |
| 2015 | C54  | 1     | Cotton        |               | SDI             | 80.0  | 7.1                                       | 9.3                          | 0.0                                              | 16.4  | 20.0                          | 36%                                              | 47%                                                | 0%                                                    | 82%                                                      | 71.3                                                     | 24.0                                                     |
| 2015 | C56  | 1     | Blackeye pea  |               | LESA            | 40.0  | 5.2                                       | 6.0                          | 7.8                                              | 19.0  | 15.0                          | 34%                                              | 40%                                                | 52%                                                   | 126%                                                     | 30.0                                                     | -13.2                                                    |
| 2015 | C57  | 1     | Corn          | hail damage   | LESA            | 115.0 | 9.5                                       | 9.6                          | -6.5                                             | 12.6  | 32.0                          | 30%                                              | 30%                                                | -20%                                                  | 39%                                                      | 214.7                                                    | 186.4                                                    |
| 2015 | C58  | 1     | Corn          |               | LESA            | 60.0  | 3.8                                       | 18.4                         | 0.0                                              | 22.2  | 32.0                          | 12%                                              | 58%                                                | 0%                                                    | 69%                                                      | 68.0                                                     | 49.3                                                     |
| 2015 | C58  | 2     | Alfalfa       | hay           | LESA            | 60.0  | 9.6                                       | 17.6                         | 3.5                                              | 30.7  | 40.0                          | 24%                                              | 44%                                                | 9%                                                    | 77%                                                      | 112.0                                                    | 46.8                                                     |
| 2015 | C59  | 2     | Alfalfa       | hay           | SDI             | 93.0  | 9.6                                       | 14.3                         | 4.2                                              | 28.1  | 40.0                          | 24%                                              | 36%                                                | 11%                                                   | 70%                                                      | 199.2                                                    | 92.6                                                     |
| 2015 | C60  | 1     | Cotton        |               | LESA            | 59.5  | 7.6                                       | 5.0                          | 0.0                                              | 12.6  | 20.0                          | 38%                                              | 25%                                                | 0%                                                    | 63%                                                      | 74.4                                                     | 36.9                                                     |

|                                                                                                        | Crop water demand<br>provided by rainfall (%) | Crop water demand<br>provided by irrigation<br>(%) | Crop water demand<br>provided by soil moisture<br>(%) | Crop water demand<br>provided by total crop<br>water (%) | Total irrigation potentially<br>conserved<br>(acre-feet) | Total Crop Water potentially<br>conserved<br>(acre-feet) |
|--------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| Average across all sites and irrigation types                                                          | 33%                                           | 43%                                                | 17%                                                   | 93%                                                      | 85.2                                                     | 18.5                                                     |
| Average (MESA)                                                                                         | 48%                                           | 34%                                                | 32%                                                   | 114%                                                     | 77.9                                                     | -20.9                                                    |
| Average (LESA)                                                                                         | 34%                                           | 48%                                                | 14%                                                   | 96%                                                      | 83.0                                                     | 19.4                                                     |
| Average (LEPA)                                                                                         | 28%                                           | 40%                                                | 12%                                                   | 80%                                                      | 92.9                                                     | 26.4                                                     |
| Average (SDI)                                                                                          | 25%                                           | 40%                                                | 15%                                                   | 81%                                                      | 94.5                                                     | 34.1                                                     |
| Average (FUR)                                                                                          | 40%                                           | 43%                                                | 47%                                                   | 130%                                                     | 31.7                                                     | -6.5                                                     |
| Sum total irrigation only potentially conserved across all TAWC sites and irrigation types (acre-feet) |                                               |                                                    |                                                       |                                                          |                                                          | 4429                                                     |
| Sum total crop water potentially conserved across all TAWC sites and irrigation types (acre-feet)      |                                               |                                                    |                                                       |                                                          |                                                          | 962                                                      |
|                                                                                                        |                                               |                                                    |                                                       |                                                          |                                                          |                                                          |

It has been demonstrated in our area that deficit irrigation at 70% of total crop water demand provides an economically viable crop. Irrigating at this level, in addition to the average 25-50% water contribution from rainfall and pre-plant soil moisture should meet 100% of total crop water demand in most years. This would be the next step in water conservation; however, it is impossible to predict how much and when specific rainfall may occur. Predicting this rainfall and its timing is critical to a successful crop and taking advantage of this additional moisture when received is of extreme importance in achieving additional water savings. This will rely on changing attitudes, improved management techniques, advanced technologies, management tools, and predictive models to achieve further reductions in our irrigated water use. As explained previously in the 2014 Annual report, all data were revised in 2014 and are now based on the same method of calculation across each year and presented in Table 12.

**Table 12.** Average season rainfall, total irrigation, crop water demand, crop water demand provided by irrigation/total crop water and total water conserved summary across all crops for the TAWC sites (2005-2015).

| Year | Average season rainfall (50% effective-inches) | Average total irrigation<br>(inches) | Average ET crop water<br>demand (inches) | Average crop water demand<br>provided by rainfall (%) | Crop water demand<br>provided by soil moisture<br>(%) | Average crop water demand<br>provided by irrigation (%) | Average crop water demand<br>provided by total crop<br>water (%) | Total irrigation potentially<br>conserved all sites<br>(acre-feet) | Total crop water potentially conserved all sites (acre-feet) |
|------|------------------------------------------------|--------------------------------------|------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|
| 2005 | 5.4                                            | 8.2                                  | 22.5                                     | 25.4                                                  | na                                                    | 35.9                                                    | 61.3                                                             | 5,134                                                              | 3,183                                                        |
| 2006 | 4.2                                            | 13.2                                 | 25.2                                     | 18                                                    | 1.9                                                   | 52.1                                                    | 72.1                                                             | 4,526                                                              | 2,970                                                        |
| 2007 | 8.6                                            | 8.9                                  | 18.9                                     | 50.4                                                  | na                                                    | 46.7                                                    | 97.1                                                             | 4,130                                                              | 514                                                          |
| 2008 | 9.1                                            | 11.3                                 | 22.1                                     | 44.7                                                  | -6.9                                                  | 49.0                                                    | 87.9                                                             | 4,139                                                              | 937                                                          |
| 2009 | 5.4                                            | 10.5                                 | 23.6                                     | 27.0                                                  | 14.7                                                  | 44.8                                                    | 82.2                                                             | 4,365                                                              | 2,080                                                        |
| 2010 | 9.6                                            | 7.9                                  | 21.7                                     | 51.2                                                  | -14.3                                                 | 34.7                                                    | 78.5                                                             | 4,841                                                              | 1,711                                                        |
| 2011 | 1.5                                            | 19.0                                 | 26.7                                     | 6.8                                                   | 17.6                                                  | 76.6                                                    | 89.2                                                             | 3,475                                                              | 2,483                                                        |
| 2012 | 3.6                                            | 13.8                                 | 26.1                                     | 15.9                                                  | 8.4                                                   | 58.7                                                    | 79.6                                                             | 5,131                                                              | 3,382                                                        |
| 2013 | 5.2                                            | 14.6                                 | 23.5                                     | 24.7                                                  | 8.7                                                   | 63.8                                                    | 92.6                                                             | 4,099                                                              | 1,586                                                        |
| 2014 | 8.6                                            | 11.5                                 | 23.2                                     | 41.1                                                  | 4.1                                                   | 50.0                                                    | 95.4                                                             | 5,454                                                              | 1,094                                                        |
| 2015 | 7.3                                            | 11.1                                 | 25.3                                     | 32.5                                                  | 17.2                                                  | 42.7                                                    | 92.5                                                             | 4,429                                                              | 962                                                          |

Table 12 indicates that total irrigation potentially conserved is relatively consistent from year to year when evaluated on irrigation alone ranging from 3,475 to 5,454 acre-feet conserved across all sites. However, when including rainfall in total crop water potentially conserved, there are large variations across years ranging from 514 to 3,382 acre-feet conserved. Generally, in years with high seasonal rainfall, total crop water potentially conserved is lower while that of total irrigation potentially conserved remains relatively constant. This would seem to indicate that some producers irrigate regardless of rainfall, using rainfall as "water insurance." This also indicates that we may not be using the best method for evaluating potential water conserved and this method may need further scrutiny.

#### **Crop Water Use Efficiency - 2015**

Table 13 lists the information related to the 2015 crop water use efficiency. Data presented include **site**, **field**, **crop**, special harvest **status**, **irrigation type**, **acres**, **harvest yield** (lbs/acre), **in-season irrigation** (inches) and **in-season total crop water supplied** (inches) which includes in-season irrigation, soil moisture and 50% in-season effective rainfall (planting to harvest) for each specific site, field and crop within the project area. Crop water use efficiency is presented in terms of **yield per acre-inch of irrigation** water applied and the **yield per acre-inch of total water** applied.

**Table 13.** Crop water use efficiency (WUE) summary by various cropping and livestock systems across the TAWC sites (2015).

| Year | Site | Field | Crop          | Status        | Irrigation type | Acres | Harvest yield<br>(lbs/acre-inch) | In-season irrigation<br>(inches) | In-season total crop water<br>supplied (inches) | WUE of irrigation<br>(lbs/acre-inch) | WUE of total water<br>(lbs/acre-inch) |
|------|------|-------|---------------|---------------|-----------------|-------|----------------------------------|----------------------------------|-------------------------------------------------|--------------------------------------|---------------------------------------|
| 2015 | 4    | 5     | Alfalfa       | hay           | LEPA            | 16.0  | 9,320                            | 14.0                             | 24.6                                            | 665.7                                | 379.6                                 |
| 2015 | 4    | 9     | Wheat         |               | LESA            | 29.6  | 3,480                            | 7.0                              | 15.3                                            | 497.1                                | 228.2                                 |
| 2015 | 4    | 11    | Cotton        |               | LEPA            | 77.4  | 1,104                            | 9.0                              | 15.7                                            | 122.7                                | 70.3                                  |
| 2015 | 5    | 2     | Sunflower     |               | LESA            | 85.8  | 1,850                            | 8.0                              | 23.6                                            | 231.3                                | 78.4                                  |
| 2015 | 5    | 3     | Millet        |               | LESA            | 156.0 | 3,800                            | 12.0                             | 20.8                                            | 316.7                                | 182.7                                 |
| 2015 | 5    | 4     | Wheat         |               | LESA            | 119.4 | 4,260                            | 6.0                              | 20.9                                            | 710.0                                | 204.3                                 |
| 2015 | 5    | 5     | Corn          |               | LESA            | 122.9 | 10,920                           | 14.0                             | 22.8                                            | 780.0                                | 478.9                                 |
| 2015 | 6    | 9     | Cotton        |               | LESA            | 60.6  | 1,127                            | 20.5                             | 36.9                                            | 55.0                                 | 30.6                                  |
| 2015 | 6    | 10    | Corn          |               | LESA            | 62.1  | 11,464                           | 21.2                             | 31.6                                            | 540.8                                | 363.4                                 |
| 2015 | 9    | 1     | Grass         | grazed        | MESA            | 100.8 |                                  | 0.0                              | 10.3                                            | na                                   | 0.0                                   |
| 2015 | 9    | 3     | Cotton        |               | MESA            | 77.0  | 1,177                            | 6.0                              | 22.9                                            | 196.2                                | 51.4                                  |
| 2015 | 9    | 4     | Cotton        |               | MESA            | 59.9  | 1,177                            | 6.0                              | 22.9                                            | 196.2                                | 51.4                                  |
| 2015 | 10   | 6     | Grass         | grazed        | LESA            | 57.7  |                                  | 3.8                              | 15.5                                            | 0.0                                  | 0.0                                   |
| 2015 | 10   | 7     | Corn          |               | LESA            | 59.2  | 7,596                            | 19.0                             | 28.1                                            | 399.8                                | 270.3                                 |
| 2015 | 10   | 8     | Cotton        |               | LESA            | 59.2  | 1,083                            | 9.7                              | 20.5                                            | 111.6                                | 52.8                                  |
| 2015 | 11   | 9     | Grain sorghum |               | FUR             | 35.0  | 2,744                            | 4.0                              | 25.3                                            | 686.0                                | 108.5                                 |
| 2015 | 11   | 10    | Cotton        |               | FUR             | 10.0  | 1,945                            | 14.0                             | 31.1                                            | 138.9                                | 62.5                                  |
| 2015 | 11   | 11    | Corn          |               | SDI             | 37.6  | 8,736                            | 14.0                             | 18.9                                            | 624.0                                | 463.4                                 |
| 2015 | 14   | 4     | Cotton        | 2 in, 2 out   | MESA            | 124.1 | 1,503                            | 10.0                             | 26.8                                            | 150.3                                | 56.2                                  |
| 2015 | 15   | 8     | Cotton        |               | SDI             | 56.7  | 1,180                            | 7.0                              | 24.0                                            | 168.6                                | 49.2                                  |
| 2015 | 15   | 9     | Cotton        |               | SDI             | 44.4  | 1,180                            | 7.0                              | 24.0                                            | 168.6                                | 49.2                                  |
| 2015 | 17   | 5     | Corn          |               | MESA            | 54.5  | 12,040                           | 22.0                             | 32.7                                            | 547.3                                | 368.8                                 |
| 2015 | 17   | 6     | Sunflower     |               | MESA            | 54.4  | 1,501                            | 5.0                              | 25.4                                            | 300.2                                | 59.2                                  |
| 2015 | 19   | 11    | Cotton        | 2 in, 2 out   | LEPA            | 120.3 | 904                              | 8.0                              | 14.4                                            | 113.0                                | 62.8                                  |
| 2015 | 21   | 1     | Corn          |               | LEPA            | 60.1  | 9,968                            | 12.5                             | 25.8                                            | 797.4                                | 387.1                                 |
| 2015 | 21   | 2     | Wheat         |               | LEPA            | 60.6  | 3,216                            | 3.0                              | 12.9                                            | 1072.0                               | 249.3                                 |
| 2015 | 22   | 3     | Corn          | failed cotton | LEPA            | 145.0 | 11,256                           | 16.5                             | 31.8                                            | 682.2                                | 354.5                                 |
| 2015 | 24   | 1     | Corn          |               | LESA            | 64.6  | 12,488                           | 20.0                             | 36.8                                            | 624.4                                | 339.8                                 |
| 2015 | 24   | 2     | Sunflower     |               | LESA            | 65.1  | 2,020                            | 8.0                              | 28.0                                            | 252.5                                | 72.3                                  |
| 2015 | 26   | 1     | Corn          |               | LESA            | 62.9  | 11,480                           | 16.0                             | 19.3                                            | 717.5                                | 594.8                                 |
| 2015 | 26   | 2     | Millet        |               | LESA            | 62.2  | 2,900                            | 10.0                             | 13.3                                            | 290.0                                | 218.0                                 |
| 2015 | 28   | 1     | Corn          |               | SDI             | 51.5  | 2,590                            | 17.0                             | 22.3                                            | 152.4                                | 116.1                                 |
| 2015 | 30   | 1     | Corn          |               | SDI             | 21.8  | 10,696                           | 18.0                             | 26.9                                            | 594.2                                | 397.6                                 |
| 2015 | 31   | 1     | Corn          |               | LEPA            | 66.8  | 13,272                           | 13.5                             | 18.0                                            | 983.1                                | 737.3                                 |
| 2015 | 31   | 2     | Grain sorghum |               | LEPA            | 55.1  | 2,688                            | 9.5                              | 26.4                                            | 282.9                                | 101.8                                 |
| 2015 | 32   | 1     | Corn          |               | LEPA            | 70.0  | 11,760                           | 18.1                             | 33.4                                            | 649.7                                | 352.1                                 |

| Year | Site | Field | Crop          | Status      | Irrigation type | Acres | Harvest yield<br>(lbs/acre-inch) | In-season irrigation<br>(inches) | In-season total crop<br>water supplied (inches) | WUE of irrigation<br>(lbs/acre-inch) | WUE of total water<br>(lbs/acre-inch) |
|------|------|-------|---------------|-------------|-----------------|-------|----------------------------------|----------------------------------|-------------------------------------------------|--------------------------------------|---------------------------------------|
| 2015 | 33   | 1     | Corn          |             | LEPA            | 70.0  | 12,264                           | 19.0                             | 34.3                                            | 645.5                                | 357.6                                 |
| 2015 | 35   | 4     | Corn          |             | SDI             | 115.0 | 9,492                            | 11.7                             | 32.2                                            | 811.3                                | 295.2                                 |
| 2015 | 35   | 5     | Corn          |             | SDI             | 115.0 | 8,568                            | 9.0                              | 16.1                                            | 952.0                                | 532.2                                 |
| 2015 | 39   | 1     | Corn          |             | LEPA            | 60.0  | 14,884                           | 10.8                             | 20.8                                            | 1384.6                               | 715.6                                 |
| 2015 | 39   | 2     | Grain sorghum |             | LEPA            | 60.0  | 6,399                            | 5.0                              | 13.8                                            | 1279.8                               | 465.4                                 |
| 2015 | C50  | 1     | Cotton        |             | LESA            | 120.6 | 1,016                            | 4.9                              | 10.7                                            | 207.3                                | 95.4                                  |
| 2015 | C51  | 1     | Cotton        |             | SDI             | 45.7  | 1,157                            | 4.7                              | 10.0                                            | 246.2                                | 116.3                                 |
| 2015 | C52  | 1     | Cotton        |             | LESA            | 130.0 | 1,336                            | 12.2                             | 19.3                                            | 109.5                                | 69.2                                  |
| 2015 | C53  | 1     | Cotton        |             | SDI             | 50.0  | 1,548                            | 10.3                             | 17.4                                            | 150.3                                | 89.0                                  |
| 2015 | C54  | 1     | Cotton        |             | SDI             | 80.0  | 1,507                            | 9.3                              | 16.4                                            | 162.0                                | 91.9                                  |
| 2015 | C56  | 1     | Blackeye pea  |             | LESA            | 40.0  | 2,700                            | 6.0                              | 19.0                                            | 450.0                                | 142.5                                 |
| 2015 | C57  | 1     | Corn          | hail damage | LESA            | 115.0 | 9,845                            | 9.6                              | 12.6                                            | 1025.5                               | 784.5                                 |
| 2015 | C58  | 1     | Corn          |             | LESA            | 60.0  | 7,840                            | 18.4                             | 22.2                                            | 426.1                                | 354.0                                 |
| 2015 | C58  | 2     | Alfalfa       | hay         | LESA            | 60.0  | 17,400                           | 17.6                             | 30.7                                            | 988.6                                | 567.7                                 |
| 2015 | C59  | 2     | Alfalfa       | hay         | SDI             | 93.0  | 19,800                           | 14.3                             | 28.1                                            | 1384.6                               | 705.9                                 |
| 2015 | C60  | 1     | Cotton        |             | LESA            | 59.5  | 1,022                            | 5.0                              | 12.6                                            | 204.4                                | 81.4                                  |
|      |      |       |               |             |                 |       |                                  |                                  |                                                 |                                      |                                       |

Analysis of data for a single year indicates high variation and is year-dependent across the number of sites per irrigation system and the specific crop management implemented. Therefore, categorization of the primary mode of irrigation system type by specific crop averaged long-term would seem more prudent. See the Crop Water Use Efficiency 2005-2014 section of the 2014 Annual Report which contains a discussion of the 10 year averages summarized for 2005-2014 for cotton, corn grain, grain sorghum, sunflower and the perennial warm season grass 'WW-B.Dahl.'

The number of observations for each irrigation system type and crop varies, and a more detailed analysis of crop water use efficiency needs to be made across all years for irrigation systems, crops and management practices to gain a clearer understanding of efficiency and its related factors. In some cases, a system may be classified as LESA but was only used for this mode for germination and then was switched to the LEPA mode. Further refinement of system classification needs to be made as we move forward. However, the general trend is that the highest yields were obtained with the lower water input.

If this system efficiency pattern holds true, education needs to be focused on irrigation management specific to the irrigation system being used if the irrigation system's potential for reducing water use is to be fully achieved.

#### Systems Management for Water Savings - 2015

It should be noted that water savings can also be achieved through management of the cropping system and tillage types being implemented. There are many benefits to minimum/no-till management practices which can conserve water and/or improve infiltration and rainfall capture as well as other agronomic benefits to the overall system. Site 34 implements many of these practices, and this producer shares his experience and success with other area producers at a field day he promotes on his own farm each year. Crop selection and planting management can also have a major impact. For example, Sites 14 and 19 are pivot fields with approximately 120 acres each. Each of these sites has implemented a 2 in, 2 out planting scheme in 2014 and 2015 cropping years. This results in only half of the field area being planted to a crop, and so on a land-area basis, when 10 inches of irrigation has been applied to the crop, only 5 inches of irrigation has been applied to the system. This constitutes a 50% water savings to the overall cropping system. Other systems can include individual fields that have been fallowed or the integration of low water use crops such as specialty crops and perennial grasses that use less water, combined with higher water use crops allowing a producer to concentrate more water onto a smaller high-value crop area, but achieve water savings on the whole land area or 'system' basis. An increased education/outreach component focusing on these types of management practices is being implemented in Phase 2 of the TAWC Project.



http://www.tawcsolutions.org

# TAWC Solutions: Management Tools to aid Producers in conserving Water

Rick Kellison, Jeff Pate, Philip Brown (TTU, TAMU, TTU)

The **Texas Alliance for Water Conservation** released three web-based tools to aid producers at our February 2011 field day. Producers involved in the TAWC project had indicated the need for tools to aid them in making cropping decisions and managing these crops in season.

The **Irrigation Scheduling Tool** is a field level, crop specific ET tool to aid producers in irrigation management. The producer can customize this tool for beginning soil moisture, effective rainfall, effective irrigation application and percent ET replacement. Users can select from a list of local weather stations that supplies the correct weather information for each field. Once the decision is made on which crop a grower plants, this tool produces an in-season, check-book style water balance output to aid in irrigation applications.

The **TAWC Resource Allocation Analyzer** provide producers with a simple, comprehensive approach to planning and managing various cropping systems. The Resource Allocation Tool is an economic based optimization model that aids producers in making decisions about different cropping systems. Based on available irrigation water, projected cost of production and expected revenue, this model will aid producers in their decisions to plant various crops.

Because of implementation of new water policy by the High Plains Underground Water Conservation District, growers need a method to determine the amount of irrigation that they were allowed to apply to each irrigated acre. The **Contiguous Acre Calculator** allows growers to project specific levels of irrigation water to be applied to various delivery systems. The tool then calculates how much water can be banked for future use. Once the growing season is completed the producer can enter actual water applied and use it for record keeping.

More detail concerning each individual program is provided on our website and in previous annual reports.

# **Phase II - Budget**

**Table 14.** Task and expense budget for Phase II Year 1-2 of the demonstration project.

| TWDB # 1413581688                                   |                | Year 1                   | Year 2                   |              |
|-----------------------------------------------------|----------------|--------------------------|--------------------------|--------------|
|                                                     |                | (10/17/13 -<br>02/28/15) | (03/01/15 -<br>02/29/16) |              |
|                                                     | Task           |                          |                          | Total        |
| Task Budget                                         | Budget*        |                          |                          | Expenses     |
| 1                                                   |                |                          |                          |              |
| 2                                                   | \$1,148,395.00 | 135,179.51               | 254,325.38               | 389,504.89   |
| 3                                                   | \$571,806.00   | 19,180.57                | 79,957.17                | 99,137.74    |
| 4                                                   | \$469,978.00   | 39,467.89                | 47,127.42                | 86,595.31    |
| 5                                                   | \$360,708.00   | 110,849.99               | 82,061.04                | 192,911.03   |
| 6                                                   | \$582,645.00   | 50,867.54                | 110,592.85               | 161,460.39   |
| 7                                                   | \$27,048.00    | 3,000.00                 | 6,134.03                 | 9,134.03     |
| 8                                                   | \$181,110.00   | 6,671.70                 | 25,277.96                | 31,949.66    |
| 9                                                   | \$258,310.00   | 27,058.73                | 14,607.22                | 41665.95     |
| TOTAL                                               | \$3,600,000.00 | 392,275.93               | 620,083.07               | 1,012,359.00 |
|                                                     |                | Year 1                   | Year 2                   |              |
|                                                     |                | (10/17/13 -<br>02/28/15) | (03/01/15 -<br>02/29/16) |              |
|                                                     | Total          |                          |                          | Total        |
| Expense Budget                                      | <b>Budget*</b> |                          |                          | Expenses     |
| Salary and Wages +2%/yr                             | \$1,545,882.00 | 196,610.27               | 307,839.14               | 504,449.41   |
| Fringe                                              | \$229,910.00   | 30,751.67                | 48,664.72                | 79,416.39    |
| Travel                                              | \$106,151.00   |                          |                          |              |
| Other Operating Expenses (inc. materials & supplies | \$130,023.00   | 16,152.68                | 24,991.4                 | 41,144.08    |
| Capital Equipment                                   | \$76,000.00    | 14,249.11                | 16,871.15                | 31,120.26    |
| Subcontract Services                                | \$857,164.00   | 58,070.86                | 0                        | 58,070.86    |
| Technical/Hardware<br>/Software                     | \$238,033.00   | 49,239.30                | 105,048.42               | 154,287.72   |
| Tuition and Fees                                    | \$111,337.00   |                          | 69,944.98                | 69,944.98    |
| Other Expenses<br>(Insurance: auto, medical)        | \$305,500.00   | 7,578.05                 | 12,123.75                | 19,701.8     |
| TOTAL                                               | \$3,600,000.00 | 392,275.93               | 620,083.07               | 1,012,359.00 |
|                                                     |                |                          |                          |              |

# **Appendix - Archives**

#### **Phase I Changes and Alterations**

Phase I of the TAWC program spanned a period (2005-2013) of increasing corn production in response to a growing dairy industry and U.S. policy encouraging renewable biofuels, especially ethanol. This period also encompassed wide swings in annual rainfall (5.3 to 28.5 inches) and commodity prices (\$0.54 to \$0.90 per lb. of cotton lint and \$2.89 to \$6.00 per bu. of corn). The decline in aquifer output and intense swings in prices and rainfall have driven producers to seek ways to minimize risk. This project officially began with the announcement of the grant from the Texas Water Development Board in September, 2004. It was February, 2005, when all contracts and budgets were finalized and field site selections began. Also by February, 2005, the Producer Board was named and functioning, and the Management Team was identified to expedite the decision-making process. The positions of project director and secretary/accountant were filled by June, 2005. By autumn 2005, the FARM Assistance position was also filled.

Working through the Producer Board, 26 sites were identified that included 4,289 acres in Hale and Floyd counties (Figure 13). Soil moisture monitoring points installed, maintained and measured by the High Plains Underground Water Conservation District No. 1 were purposely located close to these sites, and global positioning system (GPS) coordinates were taken for each monitoring point. This was completed during 2005 and was operational for much of the 2005 growing season.

Total number of acres devoted to each crop and livestock enterprise and management type in 2005-2014 are given in Appendix Tables A1-A10. These sites include subsurface drip, center pivot, and furrow irrigation as well as dryland examples. It is important to note when interpreting data from Year 1 (2005), that this was an incomplete year. We were fortunate that this project made use of already existing and operating systems; thus there was no time delay in establishment of systems. Efforts were made to locate missing information on water use while the original 26 sites were brought on-line. Such information is based on estimates as well as actual measurements during this first year and should be interpreted with caution. The resulting 2005 water use data, however, provided useful information as we began this long-term project. It is important to note that improvements were made in 2006 in calibration of water measurements and other protocols.

In year 2 (2006), site 25 was lost to the project due to a change in land ownership, but was replaced by site 27, thus the project continued to monitor 26 sites. Total acreage in 2006 was 4,230, a decline of about 60 acres. Crop and livestock enterprises on these sites and the acres committed to each use by site are given in Table A2.

In year 3 (2007), all sites present in 2006 remained in the project through 2007. Total acreage was 4,245, a slight increase over year 2 due to expansion of Site 1 (Table A3).

In year 4 (2008), 25 sites comprised 3,967 acres (Table A4). Sites 1, 13, 16, and 25 of the original sites had left the project, and sites 28 and 29 were added.

In year 5 (2009), all sites present in 2008 remained in the project. Site 30 with 21.8 acres was added. Thus, 26 total sites were present in 2009 for a total of 3,991 acres (Table A5).

In year 5 (2009), all sites present in 2008 remained in the project. Site 30 with 21.8 acres was added. Thus, 26 total sites were present in 2009 for a total of 3,991 acres (Table A5).

In year 6 (2010), three new sites were added as part of the implementation phase of the project (Table A6). These sites were designed to limit total irrigation for 2010 to no more than 15 inches. Crops grown included cotton, seed millet, and corn. The purpose of these added sites was to demonstrate successful production systems while restricting the water applied. With the addition of sites 31, 32, and 33, the project now totaled 29 sites and increased the project acreage from 3,991 acres to 4,272 acres, although data from these new sites were treated separately in this year. The new sites also increased the number of producers involved in the project by one.

In year 7 (2011), the previously mentioned implementation sites were incorporated into the whole project and no longer differentiated from other sites in management or data analysis because of changes in water policy. In addition, site 5 was converted from a livestock-only system to an annual cropping system. The site acreage declined from 626.4 to 487.6 by dropping the grassland corners, but maintaining the cropping system under the center pivot. Site maps were adjusted for 2012 to reflect this change. Total acres for the project decreased from 4272 acres in 2010 to 4133 acres in 2011 as a result (Table A7).

In year 8 (2012), site 34 was added to the project (Table A8). The new 726.6 acres were partially offset by the exit of site 23 (121.1 acres). The 2012 report includes new satellite imagery of each site, and site information has been updated accordingly. As always, minor corrections to site acreages continued to occur as discrepancies are discovered. Total acres for the project increased from 4133 acres in 2011 to 4732 acres in 2012 as a result of these site changes.

In year 9 (2013), site 35 was added to the project (Table A9). The new 229.2 acres were a drip irrigated site. Total acres for the project increased from 4732 acres in 2012 to 4962 acres in 2013 as a result. Year 9 constituted the last data collection year of Phase I. A final report of Phase I was completed in 2014, and is available at <a href="http://www.depts.ttu.edu/tawc/resources.html">http://www.depts.ttu.edu/tawc/resources.html</a>.

## **Acres and Crops 2005-2014**

**Table A 1.** Irrigation type and total acres, by site, of crops, forages, and acres grazed by cattle in 26 producer sites in Hale and Floyd Counties during 2005.

| Site  | Irrigation<br>type | Cotton | Corn grain | Corn silage | Sorghum<br>grain | Sorghum<br>forage | Pearl millet | Sunflower | Alfalfa | Grass seed | Perennial<br>pasture | Cattle | Wheat | Rye   | Triticale | Oats |
|-------|--------------------|--------|------------|-------------|------------------|-------------------|--------------|-----------|---------|------------|----------------------|--------|-------|-------|-----------|------|
| 1     | SDI                | 62.3   |            |             |                  |                   |              |           |         |            |                      |        |       |       |           |      |
| 2     | SDI                | 60.9   |            |             |                  |                   |              |           |         |            |                      |        |       |       |           |      |
| 3     | PIV                | 61.8   |            |             | 61.5             |                   |              |           |         |            |                      |        |       |       |           |      |
| 4     | PIV                | 109.8  |            |             |                  |                   |              |           | 13.3    |            |                      |        |       |       |           |      |
| 5     | PIV/DRY            |        |            |             |                  |                   |              |           | 69.6    |            | 551.3                | 620.9  |       |       |           |      |
| 6     | PIV                | 122.9  |            |             |                  |                   |              |           |         |            |                      | 122.9  | 122.9 |       |           |      |
| 7     | PIV                |        |            |             |                  |                   |              |           |         | 130.0      |                      |        |       |       |           |      |
| 8     | SDI                |        |            |             |                  |                   |              |           |         | 61.8       |                      |        |       |       |           |      |
| 9     | PIV                | 137.0  |            |             |                  |                   |              |           |         |            | 95.8                 | 232.8  |       | 232.8 |           |      |
| 10    | PIV                | 44.5   |            |             |                  |                   |              |           |         |            | 129.1                | 129.1  |       |       |           |      |
| 11    | FUR                | 92.5   |            |             |                  |                   |              |           |         |            |                      |        |       |       |           |      |
| 12    | DRY                | 151.2  |            |             |                  | 132.7             |              |           |         |            |                      |        |       |       |           |      |
| 13    | DRY                | 201.5  |            |             |                  |                   |              |           |         |            |                      |        | 118.0 |       |           |      |
| 14    | PIV                | 124.2  |            |             |                  |                   |              |           |         |            |                      |        |       |       |           |      |
| 15    | FUR                | 95.5   |            |             |                  |                   |              |           |         |            |                      |        |       |       |           |      |
| 16    | PIV                | 143.1  |            |             |                  |                   |              |           |         |            |                      |        |       |       |           |      |
| 17    | PIV                | 108.9  |            | 58.3        |                  |                   |              |           |         |            | 53.6                 |        |       |       |           |      |
| 18    | PIV                | 61.5   |            |             | 60.7             |                   |              |           |         |            |                      |        |       |       |           |      |
| 19    | PIV                | 75.3   |            |             |                  |                   | 45.1         |           |         |            |                      |        |       |       |           |      |
| 20    | PIV                |        |            | 115.8       |                  | 117.6             |              |           |         |            |                      |        | 117.6 |       |           |      |
| 21    | PIV                | 122.7  |            |             |                  |                   |              |           |         |            |                      |        |       |       |           |      |
| 22    | PIV                | 72.7   | 76.0       |             |                  |                   |              |           |         |            |                      |        |       |       |           |      |
| 23    | PIV                | 51.5   |            |             |                  |                   |              | 48.8      |         |            |                      |        |       |       |           |      |
| 24    | PIV                | 64.7   | 65.1       |             |                  |                   |              |           |         |            |                      |        |       |       |           |      |
| 25    | DRY                | 90.9   |            |             | 87.6             |                   |              |           |         |            |                      |        |       |       |           |      |
| 26    | PIV                | 62.9   | 62.3       |             |                  |                   |              |           |         |            |                      |        |       |       |           |      |
| Total | 2005 acres         | 2118.3 | 203.4      | 174.1       | 209.8            | 250.3             | 45.1         | 48.8      | 82.9    | 191.8      | 829.8                | 1105.7 | 358.5 | 232.8 | 0.0       | 0.0  |

PIV = pivot irrigation SDI = subsurface drip irrigation FUR = furrow irrigation DRY = dryland, no irrigation (acres may overlap due to multiple crops per year and grazing).

**Table A 2.** Irrigation type and total acres, by site, of crops, forages, and acres grazed by cattle in 26 producer sites in Hale and Floyd Counties during 2006.

| Site  | lrrigation<br>type | Cotton | Corn grain | Corn silage | Sorghum<br>grain | Sorghum<br>forage | Pearl millet | Sunflowers | Alfalfa | Grass seed | Perennial<br>pasture | Cattle | Wheat | Rye   | Triticale | Oats |
|-------|--------------------|--------|------------|-------------|------------------|-------------------|--------------|------------|---------|------------|----------------------|--------|-------|-------|-----------|------|
| 1     | SDI                | 135.2  |            |             |                  |                   |              |            |         |            |                      |        |       |       |           |      |
| 2     | SDI                | 60.9   |            |             |                  |                   |              |            |         |            |                      |        |       |       |           |      |
| 3     | PIV                | 123.3  |            |             |                  |                   |              |            |         |            |                      |        |       |       |           |      |
| 4     | PIV                | 44.4   |            |             |                  | 65.4              |              |            | 13.3    |            |                      |        | 65.4  |       |           |      |
| 5     | PIV/DRY            |        |            |             |                  |                   |              |            | 69.6    |            | 551.3                | 620.9  |       |       |           |      |
| 6     | PIV                | 122.9  |            |             |                  |                   |              |            |         |            |                      |        |       |       |           |      |
| 7     | PIV                |        |            |             |                  |                   |              |            |         | 130.0      |                      |        |       |       |           |      |
| 8     | SDI                |        |            |             |                  |                   |              |            |         | 61.8       |                      |        |       |       |           |      |
| 9     | PIV                | 137.0  |            |             |                  |                   |              |            |         |            | 95.8                 | 95.8   |       | 137.0 |           |      |
| 10    | PIV                |        |            |             |                  | 44.5              |              |            |         |            | 129.1                | 129.1  |       |       |           | 44.5 |
| 11    | FUR                | 92.5   |            |             |                  |                   |              |            |         |            |                      |        |       |       |           |      |
| 12    | DRY                | 132.7  |            |             |                  |                   |              |            |         |            |                      |        | 151.2 |       |           |      |
| 13    | DRY                | 118.0  |            |             |                  |                   |              |            |         |            |                      |        | 201.5 |       |           |      |
| 14    | PIV                | 124.2  |            |             |                  |                   |              |            |         |            |                      |        |       |       |           |      |
| 15    | FUR                | 67.1   |            |             | 28.4             |                   |              |            |         |            |                      |        |       |       |           |      |
| 16    | PIV                | 143.1  |            |             |                  |                   |              |            |         |            |                      |        |       |       |           |      |
| 17    | PIV                | 58.3   |            | 108.9       |                  |                   |              |            |         |            | 53.6                 | 162.5  | 108.9 |       |           |      |
| 18    | PIV                | 60.7   |            |             |                  | 61.2              |              |            |         |            |                      |        |       |       |           | 61.2 |
| 19    | PIV                | 75.1   |            |             |                  |                   | 45.3         |            |         |            |                      |        |       |       |           |      |
| 20    | PIV                |        |            | 117.6       |                  | 115.8             |              |            |         |            |                      |        |       |       | 115.8     |      |
| 21    | PIV                | 61.3   | 61.4       |             |                  |                   |              |            |         |            |                      | 61.3   | 61.3  |       |           |      |
| 22    | PIV                | 72.7   | 76         |             |                  |                   |              |            |         |            |                      |        |       |       |           |      |
| 23    | PIV                | 51.5   | 48.8       |             |                  |                   |              |            |         |            |                      |        |       |       |           |      |
| 24    | PIV                | 65.1   |            | 64.7        |                  |                   |              |            |         |            |                      |        |       |       |           |      |
| 26    | PIV                | 62.3   | 62.9       |             |                  |                   |              |            |         |            |                      |        |       |       |           |      |
| 27    | SDI                | 46.2   |            |             |                  |                   |              |            |         |            |                      |        |       |       |           |      |
| Total | 2006 acres 1854.5  | 249.1  | 291.2      | 28.4        | 286.9            | 45.3              | 0.0          | 82.9       | 191.8   | 829.8      | 1069.6               | 588.3  | 137.0 | 115.8 | 105.7     | l .  |
|       |                    |        |            |             |                  |                   |              |            |         |            |                      |        |       |       |           |      |
|       |                    |        |            |             |                  |                   |              |            |         |            |                      |        |       |       |           |      |

PIV = pivot irrigation SDI = subsurface drip irrigation FUR = furrow irrigation DRY = dryland, no irrigation (acres may overlap due to multiple crops per year and grazing).

**Table A 3.** Irrigation type and total acres, by site, of crops, forages, and acres grazed by cattle in 26 producer sites in Hale and Floyd Counties during 2007.

| Site  | Irrigation type | Cotton | Corn grain | Corn silage | Sorghum grain | Sorghum<br>forage | Pearl millet | Sunflowers | Alfalfa | Grass seed | Perennial<br>pasture | Cattle | Wheat | Rye   | Triticale | Oats |
|-------|-----------------|--------|------------|-------------|---------------|-------------------|--------------|------------|---------|------------|----------------------|--------|-------|-------|-----------|------|
| 1     | SDI             | 135.2  |            |             |               |                   |              |            |         |            |                      |        |       |       |           |      |
| 2     | SDI             | 60.9   |            |             |               |                   |              |            |         |            |                      |        |       |       |           |      |
| 3     | PIV             | 61.5   |            |             |               | 61.8              |              |            |         |            |                      |        | 61.8  |       |           |      |
| 4     | PIV             | 65.4   |            |             |               |                   |              |            | 13.3    |            |                      | 109.8  | 109.8 |       |           |      |
| 5     | PIV/DRY         |        |            |             |               |                   |              |            |         |            | 620.9                | 620.9  |       |       |           |      |
| 6     | PIV             | 122.9  |            |             |               |                   |              |            |         |            |                      |        |       |       |           |      |
| 7     | PIV             |        |            |             |               |                   |              |            |         | 130.0      |                      |        |       |       |           |      |
| 8     | SDI             |        |            |             |               |                   |              |            |         | 61.8       |                      |        |       |       |           |      |
| 9     | PIV             |        |            |             | 137.0         |                   |              |            |         |            | 95.8                 | 95.8   |       | 232.8 |           |      |
| 10    | PIV             |        |            | 44.5        |               |                   |              |            |         |            | 129.1                | 129.1  |       |       |           |      |
| 11    | FUR             | 92.5   |            |             |               |                   |              |            |         |            |                      |        |       |       |           |      |
| 12    | DRY             | 151.2  |            |             | 132.7         |                   |              |            |         |            |                      |        |       |       |           |      |
| 13    | DRY             | 201.5  |            |             |               |                   |              |            |         |            |                      |        | 118.0 |       |           |      |
| 14    | PIV             | 124.2  |            |             |               |                   |              |            |         |            |                      |        |       |       |           |      |
| 15    | FUR             | 66.7   |            |             | 28.8          |                   |              |            |         |            |                      |        |       |       |           |      |
| 16    | PIV             | 143.1  |            |             |               |                   |              |            |         |            |                      |        |       |       |           |      |
| 17    | PIV             | 108.9  |            |             |               |                   |              |            |         |            | 167.2                | 167.2  | 108.9 |       |           |      |
| 18    | PIV             |        |            |             | 61.5          |                   |              |            |         |            |                      |        | 60.7  |       |           |      |
| 19    | PIV             | 75.8   |            |             |               |                   | 45.6         |            |         |            |                      |        |       |       |           |      |
| 20    | PIV             |        |            | 117.6       |               | 115.8             |              |            |         |            |                      |        |       |       | 233.4     |      |
| 21    | PIV             |        | 61.3       |             |               |                   |              |            |         | 61.4       |                      |        |       |       |           |      |
| 22    | PIV             | 148.7  |            |             |               |                   |              |            |         |            |                      |        |       |       |           |      |
| 23    | PIV             |        | 105.2      |             |               |                   |              |            |         |            |                      |        |       |       |           |      |
| 24    | PIV             |        | 129.8      |             |               |                   |              |            |         |            |                      |        |       |       |           |      |
| 26    | PIV             |        | 62.3       |             |               |                   | 62.9         |            |         |            |                      | 62.9   |       |       |           |      |
| 27    | SDI             | 16.2   |            | 46.2        |               |                   |              |            |         |            |                      |        |       |       |           |      |
| Total | 2007 acres      | 1574.7 | 358.6      | 208.3       | 360.0         | 177.6             | 108.5        | 0.0        | 13.3    | 253.2      | 1013.0               | 1185.7 | 459.2 | 232.8 | 233.4     | 0.0  |

PIV = pivot irrigation SDI = subsurface drip irrigation FUR = furrow irrigation DRY = dryland, no irrigation

**Table A 4.** Irrigation type and total acres, by site, of crops, forages, and acres grazed by cattle in 25 producer sites in Hale and Floyd Counties during 2008.

| Site     | Irrigation type   | Total acres (no<br>overlap) | Cotton        | Corn grain | Sunflowers | Grain sorghum | Grain sorghum for<br>seed | Grain sorghum for<br>silage | Forage sorghum for<br>hay | Pearl millet for seed | Alfalfa | Grass seed | Нау   | Perennial pasture | Cattle | Wheat for grain | Wheat for silage | Wheat for grazing | Grazing of crop residue    | Barley for seed | Fallow or<br>pens/facilities |
|----------|-------------------|-----------------------------|---------------|------------|------------|---------------|---------------------------|-----------------------------|---------------------------|-----------------------|---------|------------|-------|-------------------|--------|-----------------|------------------|-------------------|----------------------------|-----------------|------------------------------|
| 2        | SDI               | 60.9                        |               |            | 60.9       |               |                           |                             |                           |                       |         |            |       |                   |        |                 |                  |                   |                            |                 |                              |
| 3        | PIV               | 123.3                       | 61.8          |            |            | 61.5          |                           |                             |                           |                       |         |            |       |                   |        | 61.5            |                  |                   |                            |                 |                              |
| 4        | PIV               | 123.1                       |               |            |            | 65.4          |                           |                             |                           |                       | 13.3    |            | 13.3  | 13.3              | 44.4   | 44.4            |                  | 44.4              |                            |                 |                              |
| 5        | PIV/DRY           | 628.0                       |               |            |            |               |                           |                             |                           |                       |         |            | 81.2  | 620.9             | 620.9  |                 |                  |                   |                            |                 | 5.5                          |
| 6        | PIV               | 122.9                       | 92.9          | 30.0       |            |               |                           |                             |                           |                       |         |            |       |                   |        |                 |                  |                   |                            |                 |                              |
| 7        | PIV               | 130.0                       |               |            |            |               |                           |                             |                           |                       |         | 130.0      | 130.0 | 130.0             |        |                 |                  |                   |                            |                 |                              |
| 8        | SDI               | 61.8                        |               |            |            |               |                           |                             |                           |                       |         | 61.8       | 61.8  | 61.8              |        |                 |                  |                   |                            |                 |                              |
| 9        | PIV               | 237.8                       | 137.0         |            |            |               |                           |                             |                           |                       |         |            |       | 95.8              | 95.8   |                 |                  |                   |                            |                 | 5.0                          |
| 10       | PIV               | 173.6                       |               | 44.5       |            |               |                           |                             |                           |                       |         |            | 42.7  | 129.1             | 129.1  | 44.5            |                  |                   |                            |                 |                              |
| 11       | FUR               | 92.5                        | 47.3          |            |            | 45.2          |                           |                             |                           |                       |         |            |       |                   |        |                 |                  |                   |                            |                 | <del></del>                  |
| 12       | DRY               | 283.9                       | 1010          |            |            |               |                           | 151.2                       |                           |                       |         |            |       |                   |        |                 |                  |                   |                            |                 | 132.7                        |
| 14<br>15 | PIV<br>FUR        | 124.2<br>95.5               | 124.2<br>67.1 |            |            |               |                           |                             |                           |                       |         |            |       |                   |        | 28.4            |                  |                   |                            |                 | $\vdash$                     |
| 17       | PIV               | 220.8                       | 07.1          | 108.9      |            |               |                           |                             |                           |                       |         | 111.9      |       | 111.9             | 220.8  | 20.4            |                  |                   | 108.9                      |                 |                              |
| 18       | PIV               | 122.2                       | 61.5          | 100.7      |            | 60.7          |                           |                             |                           |                       |         | 111.7      |       | 111.7             | 220.0  |                 | 60.7             |                   | 100.7                      |                 |                              |
| 19       | PIV               | 120.4                       | 75.0          |            |            | 00.7          |                           |                             |                           | 45.4                  |         |            |       |                   |        |                 | 00.7             |                   |                            |                 |                              |
| 20       | PIV               | 233.4                       | 7 0.0         |            |            | 117.6         |                           | 115.8                       |                           | 10.1                  |         |            | 117.6 |                   |        | 233.4           |                  |                   |                            |                 |                              |
| 21       | PIV               | 122.7                       |               |            |            | 117.0         |                           | 110.0                       | 61.3                      |                       |         | 61.4       | 122.7 | 61.4              |        | 20011           |                  |                   |                            | 61.3            |                              |
| 22       | PIV               | 148.7                       |               | 148.7      |            |               |                           |                             | 0 2.0                     |                       |         |            |       | <u> </u>          |        |                 |                  |                   |                            | 0 2.0           |                              |
| 23       | PIV               | 105.1                       | 60.5          |            | 44.6       |               |                           |                             |                           |                       |         |            |       |                   |        |                 |                  |                   |                            |                 |                              |
| 24       | PIV               | 129.8                       |               | 129.8      |            |               |                           |                             |                           |                       |         |            |       |                   |        |                 |                  |                   |                            |                 |                              |
| 26       | PIV               | 125.2                       |               | 40.4       |            |               | 22.5                      |                             |                           | 62.3                  |         |            |       |                   | 125.2  |                 |                  |                   | 125.2                      |                 |                              |
| 27       | SDI               | 108.5                       | 46.2          | 62.3       |            |               |                           |                             |                           |                       |         |            |       |                   |        |                 |                  |                   |                            |                 |                              |
| 28       | SDI               | 51.5                        |               | 51.5       |            |               |                           |                             |                           |                       |         |            |       |                   |        |                 |                  |                   |                            |                 |                              |
| 29       | DRY               | 221.6                       | 117.3         |            |            |               |                           |                             |                           |                       |         |            |       |                   | 104.3  |                 |                  | 104.3             |                            |                 |                              |
|          | tal 2008<br>acres | 3967.4                      | 890.8         | 616.1      | 105.5      | 350.4         | 22.5                      | 267.0                       | 61.3                      | 107.7                 | 13.3    | 365.1      | 569.3 | 1224.2            | 1340.5 | 412.2           | 60.7             | 148.7             | 234.1                      | 61.3            | 143.2                        |
| #        | of sites          | 25                          | 11            | 8          | 2          | 5             | 1                         | 2                           | 1                         | 2                     | 1       | 4          | 7     | 8                 | 7      | 5               | 1                | 2                 | 2                          | 1               | 3                            |
| Site     | irrigation type   | total acres (no<br>overlap) | cotton        | corn grain | sunflowers | grain sorghum | grain sorghum for<br>seed | grain sorghum for<br>silage | forage sorghum for<br>hay | pearl millet for seed | alfalfa | grass seed | hay   | perennial pasture | cattle | wheat for grain | wheat for silage | wheat for grazing | grazing of crop<br>residue | barley for seed | fallow or<br>pens/facilities |

PIV = pivot irrigation SDI = subsurface drip irrigation FUR = furrow irrigation DRY = dryland, no irrigation

**Table A 5.** Irrigation type and total acres, by site, of crops, forages, and acres grazed by cattle in 26 producer sites in Hale and Floyd Counties during 2009.

| N Site | Irrigation type    | System acres | Cotton | Corn grain | Corn silage | Sunflowers | Grain sorghum | Grain sorghum for<br>silage | Forage sorghum for<br>hay | Alfalfa | Grass seed | Нау   | Perennial pasture    | Cattle | Wheat for grain | Wheat for silage | Wheat for grazing    | Grazing of crop residue    | Oat silage | Fallow or<br>pens/facilities |
|--------|--------------------|--------------|--------|------------|-------------|------------|---------------|-----------------------------|---------------------------|---------|------------|-------|----------------------|--------|-----------------|------------------|----------------------|----------------------------|------------|------------------------------|
| 2      | SDI                | 60.9         | 60.9   |            |             |            |               |                             |                           |         |            |       |                      |        |                 |                  |                      |                            |            |                              |
| 3      | PIV                | 123.3        | 61.8   |            |             |            | 61.5          |                             |                           |         |            |       |                      |        |                 |                  |                      |                            |            |                              |
| 4      | PIV                | 123.1        | 13.3   |            |             |            | 28.4          |                             |                           | 16.0    |            |       | 16.0                 | 98.3   | 65.4            |                  |                      | 98.3                       |            |                              |
| 5      | PIV/DRY            | 626.4        |        |            |             |            |               |                             |                           |         |            | 89.2  | 620.9                | 620.9  |                 |                  |                      |                            |            | 5.5                          |
| 6      | PIV                | 122.9        | 90.8   | 32.1       |             |            |               |                             |                           |         |            |       |                      |        |                 |                  |                      |                            |            |                              |
| 7      | PIV                | 129.9        |        |            |             |            |               |                             |                           |         | 129.9      | 129.9 | 129.9                |        |                 |                  |                      |                            |            |                              |
| 8      | SDI                | 61.8         |        |            |             |            |               |                             |                           |         | 61.8       | 61.8  | 61.8                 |        |                 |                  |                      |                            |            |                              |
| 9      | PIV                | 237.8        | 137.0  |            |             |            |               |                             |                           |         |            |       | 100.8                | 100.8  |                 |                  |                      |                            |            |                              |
| 10     | PIV                | 173.6        | 44.5   |            |             |            |               |                             |                           |         |            |       | 129.1                | 129.1  |                 |                  |                      |                            |            |                              |
| 11     | FUR                | 92.5         | 68.1   |            |             |            | 24.4          |                             |                           |         |            |       |                      |        |                 |                  |                      |                            |            |                              |
| 12     | DRY                | 283.9        |        |            |             |            |               | 151.2                       |                           |         |            |       |                      |        |                 |                  |                      |                            |            | 132.7                        |
| 14     | PIV                | 124.2        | 61.8   |            |             |            |               |                             |                           |         |            |       |                      |        | 62.4            |                  |                      |                            |            |                              |
| 15     | FUR/SDI            | 102.8        | 102.8  |            |             |            |               |                             |                           |         |            |       |                      |        |                 |                  |                      |                            |            |                              |
| 17     | PIV                | 220.8        |        |            |             | 108.9      |               |                             |                           |         | 53.6       |       | 111.9                | 111.9  |                 |                  |                      |                            |            |                              |
| 18     | PIV                | 122.2        | 60.7   |            |             |            |               |                             |                           |         |            |       |                      |        | 61.5            |                  |                      |                            |            |                              |
| 19     | PIV                | 120.3        | 60.2   |            |             |            |               |                             |                           |         |            |       |                      |        | 60.1            |                  |                      |                            |            |                              |
| 20     | PIV                | 233.3        | 117.6  |            | 115.7       |            |               |                             |                           |         |            |       |                      |        |                 |                  |                      |                            |            |                              |
| 21     | PIV                | 122.6        |        |            |             |            |               |                             | 61.2                      |         | 61.4       | 61.4  | 61.4                 |        | 61.2            |                  |                      |                            |            |                              |
| 22     | PIV                | 148.7        | 148.7  |            |             |            |               |                             |                           |         |            |       | -                    |        |                 |                  |                      |                            |            |                              |
| 23     | PIV                | 101.4        |        |            |             |            |               | 101.4                       |                           |         |            |       |                      |        |                 | 60.5             |                      |                            | 40.9       |                              |
| 24     | PIV                | 129.7        |        | 64.6       |             | 65.1       |               |                             |                           |         |            |       |                      |        |                 |                  |                      |                            |            |                              |
| 26     | PIV                | 125.2        |        | 62.3       |             | 62.9       |               |                             |                           |         |            |       |                      | 62.9   |                 |                  | 62.9                 |                            |            |                              |
| 27     | SDI                | 108.5        | 48.8   | 59.7       |             |            |               |                             |                           |         |            |       |                      |        |                 |                  |                      |                            |            |                              |
| 28     | SDI                | 51.5         | 51.5   |            |             |            |               |                             |                           |         |            |       |                      |        |                 |                  |                      |                            |            |                              |
| 29     | DRY                | 221.7        | 116.4  |            |             |            |               |                             |                           |         |            |       |                      |        | 104.3           |                  |                      |                            |            |                              |
| 30     | PIV                | 21.8         |        |            |             | 21.8       |               |                             |                           |         |            |       |                      |        |                 |                  |                      |                            |            |                              |
| To     | otal 2009<br>acres | 3990.8       | 1244.9 | 218.7      | 115.7       | 258.7      | 114.3         | 252.6                       | 61.2                      | 16.0    | 306.7      | 342.3 | 1231.8               | 1123.9 | 414.9           | 60.5             | 62.9                 | 98.3                       | 40.9       | 138.2                        |
| #      | of sites           | 26           | 16     | 4          | 1           | 4          | 3             | 2                           | 1                         | 1       | 4          | 4     | 8                    | 6      | 6               | 1                | 1                    | 1                          | 1          | 2                            |
| Site   | irrigation type    | System acres | cotton | corn grain | Corn silage | sunflowers | grain sorghum | grain sorghum<br>for silage | forage sorghum<br>for hay | alfalfa | grass seed | hay   | perennial<br>pasture | cattle | wheat for grain | wheat for silage | wheat for<br>grazing | grazing of crop<br>residue | Oat silage | fallow or<br>pens/facilities |

 $PIV = pivot\ irrigation\ SDI = subsurface\ drip\ irrigation\ FUR = furrow\ irrigation\ DRY = dryland, no\ irrigation$ 

**Table A 6.** Irrigation type and total acres, by site, of crops, forages, and acres grazed by cattle in 26 producer sites in Hale and Floyd Counties during 2010.

|      | Tioya do           |              |        |            |             |            |                  |                                |                              |         |            |       |                     | 1      |                    |                     |                      |                            |                     |
|------|--------------------|--------------|--------|------------|-------------|------------|------------------|--------------------------------|------------------------------|---------|------------|-------|---------------------|--------|--------------------|---------------------|----------------------|----------------------------|---------------------|
| Site | Irrigation type    | System acres | Cotton | Corn grain | Corn silage | Sunflowers | Grain sorghum    | Grain sorghum for<br>silage    | Forage sorghum for<br>hay    | Alfalfa | Grass seed | Нау   | Perennial forage    | Cattle | Wheat for grain    | Wheat for silage    | Wheat for grazing    | Grazing of crop residue    | Triticale silage    |
| 2    | SDI                | 60.9         |        | 60.9       |             |            |                  |                                |                              |         |            |       |                     |        |                    |                     |                      |                            |                     |
| 3    | PIV                | 123.3        | 61.8   |            |             |            | 61.5             |                                |                              |         |            |       |                     |        |                    |                     |                      |                            |                     |
| 4    | PIV                | 123.0        | 78.6   |            |             |            |                  |                                | 28.4                         | 16.0    |            |       | 16.0                |        | 28.4               |                     |                      |                            |                     |
| 5    | PIV/DRY            | 628.0        |        |            |             |            |                  |                                |                              |         |            |       | 628                 | 628    |                    |                     |                      |                            |                     |
| 6    | PIV                | 122.8        | 62.2   | 60.6       |             |            |                  |                                |                              |         |            |       |                     |        |                    |                     |                      |                            |                     |
| 7    | PIV                | 130.0        |        |            |             |            |                  |                                |                              |         | 130.0      | 130.0 | 130                 |        |                    |                     |                      |                            |                     |
| 8    | SDI                | 61.8         |        |            |             |            |                  |                                |                              |         | 61.8       | 61.8  | 61.8                |        |                    |                     |                      |                            |                     |
| 9    | PIV                | 237.8        | 137.0  |            |             |            |                  |                                |                              |         |            |       | 100.8               | 100.8  |                    |                     |                      |                            |                     |
| 10   | PIV                | 173.6        |        | 87.2       |             |            |                  |                                |                              |         |            |       | 86.4                | 86.4   |                    |                     |                      |                            |                     |
| 11   | FUR                | 92.5         | 69.6   |            |             |            | 22.9             |                                |                              |         |            |       |                     |        |                    |                     |                      |                            |                     |
| 12   | DRY                | 283.9        |        |            |             |            |                  |                                |                              |         |            |       |                     |        |                    |                     |                      |                            |                     |
| 14   | PIV                | 124.2        | 62.4   |            |             |            |                  |                                |                              |         |            |       |                     |        | 61.8               |                     |                      |                            |                     |
| 15   | FUR/SDI            | 102.8        | 102.8  |            |             |            |                  |                                |                              |         |            |       |                     |        |                    |                     |                      |                            |                     |
| 17   | PIV                | 220.8        |        | 108.9      |             |            |                  |                                |                              |         |            |       | 111.9               | 220.8  |                    |                     |                      |                            |                     |
| 18   | PIV                | 122.2        | 61.5   |            |             |            |                  |                                |                              |         |            |       |                     |        | 60.7               |                     |                      |                            |                     |
| 19   | PIV                | 120.4        | 59.2   |            |             |            |                  |                                |                              |         |            |       |                     |        | 61.2               |                     |                      |                            |                     |
| 20   | PIV                | 233.4        | 115.8  |            | 117.6       |            |                  |                                |                              |         |            |       |                     |        |                    |                     |                      |                            | 115.8               |
| 21   | PIV                | 122.6        | 61.2   | 61.4       |             |            |                  |                                |                              |         |            |       |                     |        |                    |                     |                      |                            |                     |
| 22   | PIV                | 148.7        |        | 148.7      |             |            |                  |                                |                              |         |            |       |                     |        |                    |                     |                      |                            | <b></b>             |
| 23   | PIV                | 121.1        |        | 121.1      |             |            |                  |                                |                              |         |            |       |                     |        |                    |                     |                      |                            | 121.1               |
| 24   | PIV                | 129.7        | 10.0   | 129.7      |             |            |                  |                                |                              |         |            |       |                     |        |                    |                     |                      |                            |                     |
| 26   | PIV                | 125.2        | 62.9   | 62.3       | 40.0        |            |                  |                                |                              |         |            |       |                     | 62.3   | 62.3               |                     | 62.3                 |                            |                     |
| 27   | SDI                | 108.5        | 59.7   |            | 48.8        |            |                  |                                |                              |         |            |       |                     |        |                    |                     |                      |                            | $\vdash$            |
| 28   | SDI                | 51.5         | 51.5   |            |             |            | 117.4            |                                |                              |         |            |       |                     |        |                    |                     |                      |                            | $\vdash$            |
| 29   | DRY                | 221.7        | 104.3  | 21.0       |             |            | 117.4            |                                |                              |         |            |       |                     |        |                    |                     |                      |                            | $\vdash$            |
| 30   | SDI                | 21.8         |        | 21.8       |             |            |                  |                                |                              |         |            |       |                     |        |                    |                     |                      |                            | $\vdash$            |
| Tota | l 2010 acres       | 4012.2       | 1150.5 | 862.6      | 166.4       | 0.0        | 201.8            | 0.0                            | 28.4                         | 16.0    | 191.8      | 191.8 | 1134.9              | 1098.3 | 274.4              | 0.0                 | 62.3                 | 0.0                        | 236.9               |
| #    | of sites           | 26           | 15     | 10         | 2           | 0          | 3                | 0                              | 1                            | 1       | 2          | 2     | 7                   | 5      | 5                  | 0                   | 1                    | 0                          | 2                   |
| Site | irrigation<br>type | System acres | cotton | corn grain | Corn silage | sunflowers | grain<br>sorghum | grain<br>sorghum for<br>silage | forage<br>sorghum for<br>hav | alfalfa | grass seed | hay   | perennial<br>forage | cattle | wheat for<br>grain | wheat for<br>silage | wheat for<br>grazing | grazing of<br>crop residue | Triticale<br>silage |

PIV = pivot irrigation SDI = subsurface drip irrigation FUR = furrow irrigation DRY = dryland, no irrigation

Table A 7. Irrigation type and total acres, by site, of crops, forages, and acres grazed by cattle in 29 producer sites in Hale and Floyd Counties during 2011.

|           |                    |                 |               |            |             |        |                  |                                |                           |         | 1          |       | 4.                  |        |                    |                     | 1                    |                            |                     |             |
|-----------|--------------------|-----------------|---------------|------------|-------------|--------|------------------|--------------------------------|---------------------------|---------|------------|-------|---------------------|--------|--------------------|---------------------|----------------------|----------------------------|---------------------|-------------|
| Site      | Irrigation type    | System acres    | Cotton        | Corn grain | Corn silage | Fallow | Grain sorghum    | Grain sorghum<br>for silage    | Forage sorghum<br>for hay | Alfalfa | Grass seed | Нау   | Perennial forage    | Cattle | Wheat for grain    | Wheat for silage    | Wheat for<br>grazing | Grazing of crop<br>residue | Triticale silage    | Seed millet |
| 2         | SDI                | 60.9            | 41.3          |            |             | 19.6   |                  |                                |                           |         |            |       |                     |        |                    |                     |                      |                            |                     | <b></b>     |
| 3         | PIV                | 123.3           | 123.3         |            |             |        |                  |                                | 40.0                      | 160     |            |       |                     |        | 20.0               |                     |                      |                            |                     | -           |
| 4         | PIV<br>PIV         | 123.0<br>487.6  | 79.0<br>347.8 |            |             | 120.0  |                  |                                | 13.3                      | 16.0    |            |       |                     |        | 28.0               |                     |                      |                            |                     | <b></b>     |
| 5         | PIV                | 122.8           | 92.9          | 20.0       |             | 139.8  |                  |                                |                           |         |            |       |                     |        |                    |                     |                      |                            |                     | <b></b>     |
| 7         | PIV                | 130.0           | 92.9          | 29.9       |             |        |                  |                                |                           |         | 130.0      | 130.0 | 130                 |        |                    |                     |                      |                            |                     | <b></b>     |
| 8         | SDI                | 61.8            |               |            |             |        |                  |                                |                           |         | 42.5       | 42.5  | 61.8                |        |                    |                     |                      |                            |                     | <b></b>     |
| 9         | PIV                | 237.8           | 137.0         |            |             |        |                  |                                |                           |         | 42.5       | 42.5  | 100.8               | 100.8  |                    |                     |                      |                            |                     | <b></b>     |
| 10        | PIV                | 173.6           | 137.0         |            |             |        |                  |                                |                           |         |            |       | 42.1                | 42.1   |                    |                     |                      |                            |                     |             |
| 11        | FUR                | 92.5            | 74.5          |            |             |        |                  | 18.0                           |                           |         |            |       | 42.1                | 42.1   |                    |                     |                      |                            |                     |             |
| 12        | DRY                | 283.9           | 283.9         |            |             |        |                  | 10.0                           |                           |         |            |       |                     |        |                    |                     |                      |                            |                     |             |
| 14        | PIV                | 124.2           | 124.2         |            |             |        |                  |                                |                           |         |            |       |                     |        |                    |                     |                      |                            |                     |             |
| 15        | SDI                | 102.8           | 57.2          |            | 45.6        |        |                  |                                |                           |         |            |       |                     |        |                    |                     |                      |                            |                     |             |
| 17        | PIV                | 220.8           | 108.9         |            | 43.0        |        |                  |                                |                           |         |            |       | 111.9               | 111.9  |                    |                     |                      |                            |                     |             |
| 18        | PIV                | 122.2           | 100.9         |            |             |        |                  |                                |                           |         |            |       | 111.7               | 111.7  | 61.5               |                     |                      |                            |                     |             |
| 19        | PIV                | 120.4           | 120.4         |            |             |        |                  |                                |                           |         |            |       |                     |        | 01.3               |                     |                      |                            |                     |             |
| 20        | PIV                | 233.4           | 117.6         |            | 115.8       |        |                  |                                |                           |         |            | 117.6 |                     |        |                    |                     |                      |                            | 117.6               |             |
| 21        | PIV                | 122.6           | 61.4          | 61.2       | 113.0       |        |                  |                                |                           |         |            | 117.0 |                     |        |                    |                     |                      |                            | 117.0               |             |
| 22        | PIV                | 148.7           | 148.7         | 01.2       |             |        |                  |                                |                           |         |            |       |                     |        |                    |                     |                      |                            |                     |             |
| 23        | PIV                | 121.1           | 110.7         |            | 121.1       |        |                  |                                |                           |         |            |       |                     |        |                    |                     |                      |                            | 121.1               |             |
| 24        | PIV                | 129.7           | 65.1          | 64.6       | 121.1       |        |                  |                                |                           |         |            |       |                     |        |                    |                     |                      |                            | 121.1               |             |
| 26        | PIV                | 125.2           | 62.9          | 62.3       |             |        |                  |                                |                           |         |            |       |                     |        |                    |                     |                      |                            |                     |             |
| 27        | SDI                | 108.5           | 48.8          | 02.0       | 59.7        |        |                  |                                |                           |         |            |       |                     |        |                    |                     |                      |                            |                     |             |
| 28        | SDI                | 51.5            | 51.5          |            | 57.7        |        |                  |                                |                           |         |            |       |                     |        |                    |                     |                      |                            |                     |             |
| 29        | DRY                | 221.7           | 221.7         |            |             |        |                  |                                |                           |         |            |       |                     |        |                    |                     |                      |                            |                     |             |
| 30        | SDI                | 21.8            |               |            |             | 21.8   |                  |                                |                           |         |            |       |                     |        |                    |                     |                      |                            |                     | i           |
| 31        | PIV                | 121.0           | 55.4          |            |             |        |                  |                                |                           |         |            |       |                     |        |                    |                     |                      |                            |                     | 66.1        |
| 32        | PIV                | 70.0            |               | 70.0       |             |        |                  |                                |                           |         |            |       |                     |        |                    |                     |                      |                            |                     |             |
| 33        | PIV                | 70.0            |               | 70.0       |             |        |                  |                                |                           |         |            |       |                     |        |                    |                     |                      |                            |                     |             |
| Tota<br>a | al 2011<br>cres    | 4132.8          | 2655.0        | 358.0      | 342.2       | 181.2  | 0.0              | 18.0                           | 13.3                      | 16.0    | 172.5      | 290.1 | 446.6               | 254.8  | 89.5               | 0.0                 | 0.0                  | 0.0                        | 238.7               | 66.1        |
| # o       | f sites            | 29              | 23            | 6          | 4           | 3      | 0                | 1                              | 1                         | 1       | 2          | 3     | 5                   | 3      | 2                  | 0                   | 0                    | 0                          | 2                   | 1           |
| Site      | irrigation<br>type | System<br>acres | cotton        | corn grain | Corn silage | fallow | grain<br>sorghum | grain<br>Sorghum<br>for silago | forage<br>sorghum         | alfalfa | grass seed | hay   | perennial<br>forage | cattle | wheat for<br>grain | wheat for<br>silage | wheat for<br>grazing | grazing of<br>crop         | Triticale<br>silage | seed millet |

PIV = pivot irrigation SDI = subsurface drip irrigation FUR = furrow irrigation DRY = dryland, no irrigation
\*\*Yellow notes abandoned, Tan partially abandoned, Brown fallowed

**Table A 8.** Irrigation type and total acres, by site, of crops, forages, and acres grazed by cattle in 29 producer sites in Hale and Floyd Counties during 2012.

|      |                 |              |                                          |            |             |               |               |              | _                         |         |            |       | 0                   |        |                    |                     | gı                   |            |                  |                        |
|------|-----------------|--------------|------------------------------------------|------------|-------------|---------------|---------------|--------------|---------------------------|---------|------------|-------|---------------------|--------|--------------------|---------------------|----------------------|------------|------------------|------------------------|
| Site | Irrigation type | System acres | Cotton                                   | Corn grain | Corn silage | Fallow        | Grain sorghum | Seed sorghum | Forage sorghum<br>for hay | Alfalfa | Grass seed | Нау   | Perennial forage    | Cattle | Wheat for grain    | Wheat for silage    | Wheat for grazing    | Sunflowers | Triticale silage | Seed millet            |
| 2    | SDI             | 60.0         | 24                                       | 36         |             |               |               |              |                           |         |            |       |                     |        |                    |                     |                      |            |                  |                        |
| 3    | PIV             | 123.3        | 123.3                                    |            |             |               |               |              |                           |         |            |       |                     |        |                    |                     |                      |            |                  |                        |
| 4    | PIV             | 123.0        | 29.6                                     |            |             |               |               | 50.5         | 13.2                      | 16      |            |       |                     |        | 26.9               |                     |                      |            |                  |                        |
| 5    | PIV             | 484.1        | 398.3                                    |            |             | 85.5          |               |              |                           |         |            |       |                     |        |                    |                     |                      |            |                  |                        |
| 6    | PIV             | 122.7        |                                          | 60.6       |             | 62.1          |               |              |                           |         |            |       |                     |        |                    |                     |                      |            |                  |                        |
| 7    | PIV             | 130.0        |                                          |            |             |               |               |              |                           |         | 130        | 130   | 130                 |        |                    |                     |                      |            |                  |                        |
| 8    | SDI             | 61.8         |                                          |            |             |               |               |              |                           |         | 61.8       | 61.8  | 61.8                |        |                    |                     |                      |            |                  |                        |
| 9    | PIV             | 237.8        | 137                                      |            |             |               |               |              |                           |         |            |       | 100.8               |        |                    |                     |                      |            |                  |                        |
| 10   | PIV             | 173.6        |                                          |            | 87.2        |               |               |              |                           |         |            |       | 86.4                |        |                    |                     |                      |            |                  |                        |
| 11   | FUR             | 92.5         | 92.5                                     |            |             |               | 92.5          |              |                           |         |            |       |                     |        |                    |                     |                      |            |                  |                        |
| 12   | DRY             | 283.8        | 283.8                                    |            |             | 283.8         |               |              |                           |         |            |       |                     |        |                    |                     |                      |            |                  |                        |
| 14   | PIV             | 124.1        | 62.4                                     |            |             |               |               |              |                           |         |            |       |                     |        | 61.7               |                     |                      |            |                  | <b>——</b>              |
| 15   | SDI             | 101.1        | 101.1                                    |            |             |               | 101.1         |              |                           |         |            |       |                     |        |                    |                     |                      |            |                  | <b></b>                |
| 17   | PIV             | 220.7        | 54.5                                     | 54.4       |             |               |               |              |                           |         |            |       | 111.8               | 111.8  |                    |                     |                      |            |                  | <b></b>                |
| 18   | PIV             | 122.2        |                                          |            |             |               |               |              |                           |         |            |       |                     |        |                    |                     |                      |            |                  | <b></b>                |
| 19   | PIV             | 120.4        | 59.2                                     |            |             | 61.2          |               |              |                           |         |            |       |                     |        |                    |                     |                      |            |                  | <b></b>                |
| 20   | PIV             | 233.3        | 115.7                                    | 117.6      |             |               |               |              |                           |         |            |       |                     |        |                    |                     |                      |            | 115.7            | <b></b>                |
| 21   | PIV             | 122.6        | 61.2                                     |            |             |               |               |              | 61.4                      |         |            |       |                     |        | 61.4               |                     |                      |            |                  | <b></b>                |
| 22   | PIV             | 148.7        | 148.7                                    |            |             |               |               |              |                           |         |            |       |                     |        |                    |                     |                      |            |                  | <b></b>                |
| 24   | PIV             | 129.7        | 65.1                                     | 64.6       |             |               |               |              |                           |         |            |       |                     |        |                    |                     |                      | 60.0       |                  | <u> </u>               |
| 26   | PIV             | 125.2        | 62.3                                     |            | 40.0        |               |               |              |                           |         |            |       |                     |        |                    |                     |                      | 62.9       |                  | <u> </u>               |
| 27   | SDI             | 108.4        | 59.6                                     | 54.5       | 48.8        |               |               |              |                           |         |            |       |                     |        |                    |                     |                      |            |                  |                        |
| 28   | SDI             | 51.5         | 51.5<br>117.3                            | 51.5       |             |               | 1042          |              |                           |         |            |       |                     |        |                    |                     |                      |            |                  |                        |
| 29   | DRY             | 221.6        |                                          |            |             |               | 104.3         |              |                           |         |            |       |                     |        |                    |                     |                      |            |                  |                        |
| 30   | SDI             | 21.8         | 21.8                                     | -          |             |               |               |              |                           |         |            |       |                     |        |                    |                     |                      |            |                  | FF 1                   |
| 31   | PIV             | 121.9        | 66.8<br>70                               | 70         | 1           |               |               |              |                           |         |            |       |                     |        |                    |                     |                      |            |                  | 55.1                   |
| 32   | PIV<br>PIV      | 70.0<br>70.0 | 70                                       | 70         |             |               |               |              |                           |         |            |       |                     |        |                    |                     |                      |            |                  | $\vdash \vdash \vdash$ |
| 34   | PIV             | 726.6        | 364                                      | 182        |             | 362.6         |               |              |                           |         |            |       |                     |        |                    |                     |                      |            |                  | $\vdash \vdash \vdash$ |
| 34   | PIV             | / 20.0       | 304                                      | 104        |             | 302.0         |               |              |                           |         |            |       |                     |        |                    |                     |                      |            |                  | $\vdash \vdash \vdash$ |
| Tota | l 2012 acres    | 4732.4       | 2569.7                                   | 706.7      | 136         | 855.2         | 297.9         | 50.5         | 74.6                      | 16      | 191.8      | 191.8 | 490.8               | 111.8  | 150                | 0                   | 0                    | 62.9       | 115.7            | 55.1                   |
|      | # of sites      | 29           | 23                                       | 9          | 2           | 5             | 3             | 1            | 2                         | 1       | 2          | 2     | 5                   | 1      | 3                  | 0                   | 0                    | 1          | 1                | 1                      |
| Site | irrigation type | System acres | to t | corn grain | Corn silage | n DRY = dryla | grain sorghum | Seed Sorghum | forage<br>sorghum for     | alfalfa | grass seed | hay   | perennial<br>forage | cattle | wheat for<br>grain | wheat for<br>silage | wheat for<br>grazing | Sunflowers | Triticale silage | seed millet            |

PIV = pivot irrigation SDI = subsurface drip irrigation FUR = furrow irrigation DRY = dryland, no irrigation
\*\*Yellow notes abandoned, Tan partially abandoned, Brown fallowed

Table A 9. Irrigation type and total acres, by site, of crops, forages, and acres grazed by cattle in 30 producer sites in Hale and Floyd Counties during 2013.

| Site | lrrigation<br>type | System<br>acres | Cotton | Corn grain | Corn silage | Fallow | Grain<br>sorghum | Seed<br>sorghum | Haygrazer | Alfalfa | Grass seed | Нау   | Perennial<br>forage | Cattle<br>grazed | Wheat for<br>grain | Wheat<br>silage | Grazed<br>wheat | Sunflower | Triticale<br>silage | Seed millet |
|------|--------------------|-----------------|--------|------------|-------------|--------|------------------|-----------------|-----------|---------|------------|-------|---------------------|------------------|--------------------|-----------------|-----------------|-----------|---------------------|-------------|
| 2    | SDI                | 60              | 31.5   | 28.4       |             |        |                  |                 |           |         |            |       |                     |                  |                    |                 |                 |           |                     |             |
| 3    | PIV                | 123.3           | 61.5   |            |             |        | 61.8             |                 |           |         |            |       |                     |                  |                    |                 |                 |           |                     | ļ           |
| 4    | PIV                | 123             | 50.5   |            |             |        |                  |                 | 26.8      | 16      |            | 16    | 16                  | 26.8             | 26.8               |                 |                 |           |                     | 29.6        |
| 5    | PIV                | 484.1           | 119.4  |            |             |        |                  |                 |           |         |            |       |                     | 85.8             | 85.8               |                 |                 | 122.9     |                     | 156         |
| 6    | PIV                | 122.7           | 60.6   |            |             |        |                  |                 |           |         |            | 62.1  |                     |                  | 62.1               |                 |                 |           |                     |             |
| 7    | PIV                | 130             |        |            |             |        |                  |                 |           |         | 130        | 130   | 130                 |                  |                    |                 |                 |           |                     |             |
| 8    | SDI                | 61.8            |        |            |             |        |                  |                 |           |         | 61.8       | 61.8  | 61.8                |                  |                    |                 |                 |           |                     |             |
| 9    | PIV                | 237.8           | 77     |            |             |        | 59.9             |                 |           |         |            |       | 100.8               | 100.8            |                    |                 |                 |           |                     |             |
| 10   | PIV                | 173.6           | 42.1   |            | 87.2        |        |                  |                 |           |         |            |       | 44.3                | 44.3             |                    |                 |                 |           |                     |             |
| 11   | FUR                | 92.5            | 92.5   |            |             |        |                  |                 |           |         |            |       |                     |                  |                    |                 |                 |           |                     |             |
| 12   | DRY                | 283.8           | 283.8  |            |             |        |                  |                 |           |         |            |       |                     |                  |                    |                 |                 |           |                     |             |
| 14   | PIV                | 124.1           | 124.1  |            |             |        |                  |                 |           |         |            |       |                     |                  |                    |                 |                 |           |                     |             |
| 15   | SDI                | 101.1           | 101.1  |            |             |        |                  |                 |           |         |            |       |                     |                  |                    |                 |                 |           |                     |             |
| 17   | PIV                | 220.7           |        | 54.5       |             |        |                  |                 |           |         |            |       | 111.8               | 111.8            |                    |                 |                 | 54.4      |                     |             |
| 18   | PIV                | 122.2           |        |            |             | 122.2  |                  |                 |           |         |            |       |                     |                  |                    |                 |                 |           |                     |             |
| 19   | PIV                | 120.3           | 120.3  |            |             |        |                  |                 |           |         |            |       |                     |                  |                    |                 |                 |           |                     |             |
| 20   | PIV                | 233.3           | 117.6  |            | 115.7       |        |                  |                 |           |         |            |       |                     |                  |                    |                 |                 |           | 117.6               |             |
| 21   | PIV                | 122.6           |        | 61.4       |             |        |                  |                 | 61.2      |         |            | 61.2  |                     |                  | 61.2               |                 |                 |           |                     |             |
| 22   | PIV                | 148.7           | 148.7  |            |             |        |                  |                 |           |         |            |       |                     |                  |                    |                 |                 |           |                     |             |
| 24   | PIV                | 129.7           |        | 65.1       |             |        |                  |                 |           |         |            |       |                     |                  |                    |                 |                 | 64.6      |                     |             |
| 26   | PIV                | 125.2           |        | 62.2       |             |        |                  |                 |           |         |            |       |                     |                  | 62.9               |                 |                 |           |                     |             |
| 27   | SDI                | 108.4           | 48.8   |            | 59.6        |        |                  |                 |           |         |            |       |                     |                  |                    |                 |                 |           |                     |             |
| 28   | SDI                | 51.4            | 51.4   |            |             |        |                  |                 |           |         |            |       |                     |                  |                    |                 |                 |           |                     |             |
| 29   | DRY                | 221.7           | 221.7  |            |             |        |                  |                 |           |         |            |       |                     |                  |                    |                 |                 |           |                     |             |
| 30   | SDI                | 21.8            |        | 21.8       |             |        |                  |                 |           |         |            |       |                     |                  |                    |                 |                 |           |                     |             |
| 31   | PIV                | 121.9           | 55.1   |            |             |        |                  |                 |           |         |            |       |                     |                  |                    |                 |                 |           |                     | 66.8        |
| 32   | PIV                | 70              |        |            | 70          |        |                  |                 |           |         |            |       |                     |                  |                    |                 |                 |           |                     |             |
| 33   | PIV                | 70              |        | 70         |             |        |                  |                 |           |         |            |       |                     |                  |                    |                 |                 |           |                     |             |
| 34   | PIV                | 726.6           |        | 241.2      |             |        |                  |                 |           |         |            |       |                     |                  |                    |                 |                 | 485.4     |                     |             |
| 35   | PIV                | 209.1           | 75     | 60.9       |             |        | 73.2             |                 |           |         |            |       |                     |                  |                    |                 |                 |           |                     |             |
|      | al acres 2013      | 4941.4          | 1882.7 | 665.5      | 332.5       | 122.2  | 194.9            | 0               | 88        | 16      | 191.8      | 331.1 | 464.7               | 369.5            | 298.8              | 0               | 0               | 727.3     | 117.6               | 252.4       |
|      | # of sites         | 30              | 19     | 9          | 4           | 1      | 3                | 0               | 2         | 1       | 2          | 5     | 6                   | 5                | 5                  | 0               | 0               | 4         | 1                   | 3           |
| Site | irrigation<br>type | System<br>acres | Cotton | Corn grain | Corn silage | Fallow | Grain<br>sorghum | Seed<br>sorghum | Haygrazer | Alfalfa | Grass seed | Нау   | Perennial<br>forage | Cattle<br>grazed | Wheat for<br>grain | Wheat<br>silage | Grazed<br>wheat | Sunflower | Triticale<br>silage | Seed millet |

PIV = pivot irrigation SDI = subsurface drip irrigation FUR = furrow irrigation DRY = dryland, no irrigation \*\*Red denotes field crop failure, Yellow denotes original purpose altered, brown denotes fallowed

Table A 10. Irrigation type and total acres, by site, of crops, forages, and acres grazed by cattle in 36 producer sites in the project during year 1 Phase II 2014.

| Site | irrigation<br>type | System<br>acres | Cotton | Corn<br>grain | Corn<br>silage | Fallow | Grain<br>sorghum | Seed<br>sorghum | Forage<br>sorghum | Alfalfa | Grass<br>seed | Нау   | Perennial<br>forage | Cattle<br>grazed | Wheat<br>for grain | Wheat<br>silage | Grazed<br>wheat | Sunflower | Triticale<br>hay | Seed<br>millet |
|------|--------------------|-----------------|--------|---------------|----------------|--------|------------------|-----------------|-------------------|---------|---------------|-------|---------------------|------------------|--------------------|-----------------|-----------------|-----------|------------------|----------------|
| 4    | PIV                | 122.9           | 29.6   |               |                |        | 29.6             | 50.5            | 26.8              | 16      |               | 16    | 16                  | 53.6             |                    |                 | 26.8            |           |                  |                |
| 5    | PIV                | 484.1           | 241.8  |               |                |        |                  |                 |                   |         |               |       |                     |                  |                    |                 |                 | 119.4     |                  | 122.9          |
| 6    | PIV                | 122.7           | 62.1   | 60.6          |                |        |                  |                 |                   |         |               |       |                     |                  |                    |                 |                 |           |                  |                |
| 7    | PIV                | 130             |        |               |                |        |                  |                 |                   |         | 130.0         | 130   | 130                 |                  |                    |                 |                 |           |                  |                |
| 8    | SDI                | 61.8            |        |               |                |        |                  |                 |                   |         | 61.8          | 61.8  | 61.8                |                  |                    |                 |                 |           |                  |                |
| 9    | PIV                | 237.7           | 59.9   |               |                |        | 77.0             |                 |                   |         |               |       | 100.8               | 100.8            |                    |                 |                 |           |                  |                |
| 10   | PIV                | 173.6           | 59.2   | 59.2          |                |        |                  |                 |                   |         |               |       | 57.7                | 57.7             |                    |                 |                 |           |                  |                |
| 11   | FUR                | 92.3            | 77.3   |               |                |        | 15.0             |                 |                   |         |               |       |                     |                  |                    |                 |                 |           |                  |                |
| 14   | PIV                | 124.1           | 124.1  |               |                |        |                  |                 |                   |         |               |       |                     |                  |                    |                 |                 |           |                  |                |
| 15   | SDI                | 101.1           | 101.1  |               |                |        |                  |                 |                   |         |               |       |                     |                  |                    |                 |                 |           |                  |                |
| 17   | PIV                | 220.7           |        | 54.4          |                | 111.8  |                  |                 |                   |         |               |       | 111.8               |                  |                    |                 |                 | 54.5      |                  |                |
| 19   | PIV                | 120.3           | 120.3  |               |                |        |                  |                 |                   |         |               |       |                     |                  |                    |                 |                 |           |                  |                |
| 20   | PIV                | 233.3           |        |               | 233.3          |        |                  |                 |                   |         |               |       |                     |                  |                    |                 |                 |           |                  |                |
| 21   | PIV                | 122.0           | 60.6   |               |                |        |                  |                 | 61.4              |         |               | 61.4  |                     |                  | 61.4               |                 |                 |           |                  |                |
| 22   | PIV                | 148.7           |        | 148.7         |                |        |                  |                 |                   |         |               |       |                     |                  |                    |                 |                 |           |                  |                |
| 24   | PIV                | 129.7           |        | 64.6          |                |        |                  |                 |                   |         |               |       |                     |                  |                    |                 |                 | 65.1      |                  |                |
| 26   | PIV                | 125.1           |        | 62.9          |                |        |                  |                 |                   |         |               |       |                     |                  |                    |                 |                 | 62.2      |                  |                |
| 27   | SDI                | 108.4           |        |               | 108.4          |        |                  |                 |                   |         |               |       |                     |                  |                    |                 |                 |           |                  |                |
| 28   | SDI                | 51.4            | 51.4   |               |                |        |                  |                 |                   |         |               |       |                     |                  |                    |                 |                 |           |                  |                |
| 29   | DRY                | 221.7           | 221.7  |               |                |        |                  |                 |                   |         |               |       |                     |                  |                    |                 |                 |           |                  |                |
| 30   | SDI                | 21.8            | 21.8   |               |                |        |                  |                 |                   |         |               |       |                     |                  |                    |                 |                 |           |                  |                |
| 31   | PIV                | 121.9           | 66.8   |               |                |        | 66.8             |                 |                   |         |               |       |                     |                  |                    |                 |                 |           |                  |                |
| 32   | PIV                | 70              | 70.0   |               |                |        | 70.0             |                 |                   |         |               |       |                     |                  |                    |                 |                 |           |                  |                |
| 33   | PIV                | 70              | 70.0   |               |                |        |                  |                 |                   |         |               |       |                     |                  |                    |                 |                 |           |                  |                |
| 34   | PIV                | 726.0           | 242.0  | 484.0         |                |        |                  |                 |                   |         |               |       |                     |                  |                    |                 |                 |           |                  |                |
| 35   | PIV                | 230.2           | 80.5   | 75.0          |                |        | 74.7             | 55.1            |                   |         |               |       |                     |                  |                    |                 |                 |           |                  |                |
| C50  | PIV                | 120.6           | 120.6  |               |                |        |                  |                 |                   |         |               |       |                     |                  |                    |                 |                 |           |                  |                |
| C51  | SDI                | 45.7            | 45.7   |               |                |        |                  |                 |                   |         |               |       |                     |                  |                    |                 |                 |           |                  |                |
| C52  | PIV                | 135             | 135    |               |                |        |                  |                 |                   |         |               |       |                     |                  |                    |                 |                 |           |                  |                |
| C53  | SDI                | 50              | 50     |               |                |        |                  |                 |                   |         |               |       |                     |                  |                    |                 |                 |           |                  |                |
| C54  | SDI                | 85              | 85     |               |                |        |                  |                 |                   |         |               |       |                     |                  |                    |                 |                 |           |                  |                |
| C56  | PIV                | 45              |        |               | 45             |        |                  |                 |                   |         |               |       |                     |                  |                    |                 |                 |           |                  |                |
| C57  | PIV                | 115             |        |               | 115            |        |                  |                 |                   |         |               |       |                     |                  |                    |                 |                 |           |                  |                |
| C58  | PIV                | 120             |        |               |                |        |                  |                 |                   | 60      |               |       |                     |                  |                    |                 |                 |           | 60               |                |
| C59  | SDI                | 76              |        |               |                |        |                  |                 |                   | 76      |               |       |                     |                  |                    |                 |                 |           |                  |                |
| C60  | PIV                | 59.5            |        |               |                |        | 59.5             |                 |                   |         |               |       |                     |                  |                    |                 |                 |           |                  |                |
|      | l acres 2014       | 5223.3          | 2196.5 | 1009.4        | 501.7          | 111.8  | 392.6            | 105.6           | 88.2              | 152     | 191.8         | 269.2 | 478.1               | 212.1            | 61.4               | 0               | 26.8            | 301.2     | 60               | 122.9          |
| #    | f of Sites         | 36              | 23     | 8             | 4              | 1      | 7                | 2               | 2                 | 3       | 2             | 4     | 6                   | 3                | 1                  | 0               | 1               | 4         | 1                | 1              |

PIV = pivot irrigation SDI = subsurface drip irrigation FUR = furrow irrigation DRY = dryland, no irrigation \*\*Red denotes field crop failure, Yellow denotes original purpose altered, Brown denotes fallowed

# Phase I Economic Summaries of Results from Monitoring Producer Sites in 2005-2013.

### Phase I - Economic assumptions of data collection and interpretation

- 1. Although actual depth to water in wells located among the producer sites varies, a pumping depth of 303 feet is assumed for all irrigation points. The actual depth to water influences costs and energy used to extract water but has nothing to do with the actual functions of the system to which this water is delivered. Thus, a uniform pumping depth is assumed.
- 2. All input costs and prices received for commodities sold are uniform and representative of the year and the region. Using an individual's actual costs for inputs would reflect the unique opportunities that an individual could have for purchasing in bulk or being unable to take advantage of such economies and would thus represent differences between individuals rather than the system. Likewise, prices received for commodities sold should represent the regional average to eliminate variation due to an individual's marketing skill.
- 3. Irrigation system costs are unique to the type of irrigation system. Therefore, annual fixed costs were calculated for each type of irrigation system taking into account the average cost of equipment and expected economic life.
- 4. Variable cost of irrigation across all systems was based on a center pivot system using electricity as the energy source. Variable costs are nearly constant across irrigation systems, according to Amosson et al. (2011)<sup>4</sup>, so this assumption has negligible effect on the analysis. The estimated cost per acre-inch includes the cost of energy, repair and maintenance cost, and labor cost. The primary source of variation in variable cost from year to year is due to changes in the unit cost of energy and repair and maintenance costs.
- 5. Mechanical tillage operations for each individual site were accounted for with the cost of each field operation being based on typical custom rates for the region. Using custom rates avoids the variations among sites in the types of equipment owned and operated by individuals.

# <u>Phase I - Assumptions of energy costs, prices, fixed and variable costs</u> (Tables A10-A13)

1. Irrigation costs were based on a center pivot system using electricity as the energy source.

<sup>&</sup>lt;sup>4</sup> Amosson, L. et al. 2011. Economics of irrigation systems. Texas A&M AgriLife Extension Service. B-6113.

**Table A 11.** Electricity irrigation cost parameters for 2005 through 2013.

| Item                            | 2005    | 2006    | 2007    | 2008    | 2009    | 2010    | 2011    | 2012    | 2013    |
|---------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Gallons per minute (gpm)        | 450     | 450     | 450     | 450     | 450     | 450     | 450     | 450     | 450     |
| Pumping lift (feet)             | 260     | 250     | 252     | 254     | 256     | 285     | 290     | 300     | 303     |
| Discharge pressure (psi)        | 15      | 15      | 15      | 15      | 15      | 15      | 15      | 15      | 15      |
| Pump efficiency (%)             | 60      | 60      | 60      | 60      | 60      | 60      | 60      | 60      | 60      |
| Motor efficiency (%)            | 88      | 88      | 88      | 88      | 88      | 88      | 88      | 88      | 88      |
| Electricity cost per kWh        | \$0.085 | \$0.085 | \$0.090 | \$0.110 | \$0.140 | \$0.081 | \$0.086 | \$0.100 | \$0.140 |
| Cost of electricity per ac-inch | \$4.02  | \$4.26  | \$5.06  | \$6.60  | \$3.78  | \$4.42  | \$4.69  | \$5.37  | \$8.26  |
| Cost of maint. & repairs per    |         |         |         |         |         |         |         |         |         |
| acre-inch                       | \$2.05  | \$2.07  | \$2.13  | \$2.45  | \$3.37  | \$3.49  | \$4.15  | \$3.83  | \$3.87  |
| Cost of labor per acre-inch     | \$0.75  | \$0.75  | \$0.80  | \$0.90  | \$0.90  | \$0.90  | \$0.90  | \$1.00  | \$1.10  |
| Total Cost per acre-nch         | \$6.82  | \$7.08  | \$7.99  | \$9.95  | \$8.05  | \$8.81  | \$9.74  | \$10.20 | \$13.23 |

2. Commodity prices are reflective of the production year; however, prices were constant across sites.

**Table A 12.** Commodity prices for 2005 through 2013.

| Commodity                      | 2005    | 2006    | 2007    | 2008    | 2009    | 2010    | 2011    | 2012    | 2013    |
|--------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Cotton lint (\$/lb)            | \$0.54  | \$0.56  | \$0.58  | \$0.55  | \$0.56  | \$0.75  | \$0.90  | \$0.90  | \$0.80  |
| Cotton seed (\$/ton)           | \$100   | \$135   | \$155   | \$225   | \$175   | \$150   | \$340   | \$280   | \$260   |
| Grain sorghum - Grain (\$/cwt) | \$3.85  | \$6.10  | \$5.96  | \$7.90  | \$6.48  | \$9.51  | \$9.75  | \$13.10 | \$8.50  |
| Grain sorghum – Seed (\$/lb)   | -       | -       | -       | -       | -       | -       | -       | \$0.17  | -       |
| Corn – Grain (\$/bu)           | \$2.89  | \$3.00  | \$3.69  | \$5.71  | \$3.96  | \$5.64  | \$5.64  | \$6.00  | \$5.00  |
| Corn – Food (\$/bu)            | \$3.48  | \$3.55  | \$4.20  | \$7.02  | \$5.00  | \$4.88  | \$7.50  | \$7.50  | \$6.80  |
| Barley (\$/cwt)                | -       | -       | -       | -       | -       | -       | -       | \$14.08 | \$14.08 |
| Wheat - grain (\$/bu)          | \$2.89  | \$4.28  | \$4.28  | \$7.85  | \$5.30  | \$3.71  | \$5.75  | \$6.85  | \$6.85  |
| Sorghum silage (\$/ton)        | \$20.19 | \$18.00 | \$18.00 | \$25.00 | \$24.00 | \$24.00 | \$24.00 | \$24.00 | \$24.00 |
| Corn silage (\$/ton)           | \$20.12 | \$22.50 | \$25.00 | \$25.00 | \$42.90 | \$43.50 | \$43.50 | \$43.50 | \$45.00 |
| Wheat silage (\$/ton)          | \$18.63 | \$22.89 | \$22.89 | \$29.80 | \$26.59 | \$26.59 | \$26.59 | \$26.59 | \$26.59 |
| Oat silage (\$/ton) -          | \$17.00 | \$17.00 | -       | \$14.58 | -       | -       | -       | \$14.58 | \$14.58 |
| Millet seed (\$/lb)            | \$0.17  | \$0.17  | \$0.22  | \$0.25  | -       | \$0.25  | \$0.25  | \$0.25  | \$0.38  |
| Sunflower (\$/lb)              | \$0.21  | \$0.21  | \$0.21  | \$0.29  | \$0.27  | -       | -       | \$0.39  | \$0.38  |
| Alfalfa (\$/ton)               | \$130   | \$150   | \$150   | \$160   | \$160   | \$185   | \$350   | \$350   | \$250   |
| Hay (\$/ton)                   | \$60    | \$60    | \$60    | \$60    | \$60    | -       | -       | \$60    | \$60    |
| WW-BDahl hay (\$/ton)          | \$65    | \$65    | \$90    | \$90    | -       | \$60    | \$200   | \$200   | \$108   |
| Haygrazer (\$/ton)             | -       | \$110   | \$110   | \$70    | \$110   | \$65    | \$65    | \$125   | \$104   |
| Sideoats seed (\$/lb)          | -       | -       | \$6.52  | \$6.52  | \$3.90  | \$8.00  | \$5.70  | \$5.70  | \$9.00  |
| Sideoats hay (\$/ton)          | -       | -       | \$64    | \$64    | \$70    | \$60    | \$220   | \$220   | \$60    |
| Triticale silage (\$/ton)      | -       | -       | -       | -       | -       | -       | -       | \$45    | \$45    |
| Triticale forage (\$/ton)      | -       | -       | -       | -       | -       | -       | -       | \$24    | \$24    |

- 3. Fertilizer and chemical costs (herbicides, insecticides, growth regulators, and harvest aids) are reflective of the production year; however, prices were constant across sites for the product and formulation.
- 4. Other variable and fixed costs are given for 2005 through 2013 in Table A12.

**Table A 13.** Other variable and fixed costs for 2005 through 2013.

| VARIABLE COSTS                   | 2005    | 2006    | 2007    | 2008     | 2009     | 2010     | 2011     | 2012     | 2013     |
|----------------------------------|---------|---------|---------|----------|----------|----------|----------|----------|----------|
| Boll weevil assessment: (\$/ac)  |         |         |         |          |          |          |          |          |          |
| Irrigated cotton                 | \$12.00 | \$12.00 | \$12.00 | \$1.50   | \$1.00   | \$1.00   | \$1.00   | \$1.00   | \$1.00   |
| Dryland cotton                   | \$6.00  | \$6.00  | \$6.00  | \$1.50   | \$1.00   | \$1.00   | \$1.00   | \$1.00   | \$1.00   |
| Crop insurance: (\$/ac)          |         |         |         |          |          |          |          |          |          |
| Irrigated cotton                 | \$17.25 | \$17.25 | \$17.25 | \$20.00  | \$20.00  | \$20.00  | \$30.00  | \$30.00  | \$30.00  |
| Dryland cotton                   | \$12.25 | \$12.25 | \$12.25 | \$12.25  | \$12.25  | \$12.25  | \$20.00  | \$20.00  | \$20.00  |
| Irrigated corn                   | \$15.00 | \$15.00 | \$15.00 | \$15.00  | \$15.00  | \$15.00  | \$15.00  | \$15.00  | \$15.00  |
| Irrigated corn silage            | -       | -       | -       | -        | -        | -        | -        | \$11.00  | \$11.00  |
| Irrigated Wheat                  | -       | -       | -       | -        | -        | -        | -        | \$5.00   | \$5.00   |
| Irrigated sorghum grain          | -       | -       | -       | -        | -        | -        | -        | \$2.00   | \$2.00   |
| Dryland sorghum grain            | -       | -       | -       | -        | -        | -        | -        | \$2.00   | \$2.00   |
| Irrigated sorghum silage         | -       | -       | -       | -        | -        | -        | -        | \$2.00   | \$2.00   |
| Irrigated sunflower              | -       | -       | -       | -        | -        | -        | -        | \$5.00   | \$5.00   |
| Cotton harvest – strip and       | \$0.08  | \$0.08  | \$0.08  | \$0.08   | \$0.08   | \$0.08   | \$0.08   | \$0.08   | \$0.08   |
| module (\$/lint lb)              |         |         |         |          |          |          |          |          |          |
| Cotton ginning (\$/cwt)          | \$1.95  | \$1.75  | \$1.75  | \$1.95   | \$1.95   | \$1.95   | \$1.95   | \$1.95   | \$2.10   |
| Bags, ties, & classing (\$/bale) | \$17.50 | \$19.30 | \$17.50 | \$18.50  | \$18.50  | \$18.50  | \$18.50  | \$18.50  | \$18.50  |
| FIXED COSTS                      | 2005    | 2006    | 2007    | 2008     | 2009     | 2010     | 2011     | 2012     | 2013     |
| Irrigation system:               |         |         |         |          |          |          |          |          |          |
| Center Pivot system              | \$33.60 | \$33.60 | \$33.60 | \$33.60  | \$33.60  | \$40.00  | \$40.00  | \$40.00  | \$40.00  |
| Drip system                      | \$75.00 | \$75.00 | \$75.00 | \$75.00  | \$75.00  | \$75.00  | \$75.00  | \$75.00  | \$75.00  |
| Flood system                     | \$25.00 | \$25.00 | \$25.00 | \$25.00  | \$25.00  | \$25.00  | \$25.00  | \$25.00  | \$25.00  |
| Cash rent:                       |         |         |         |          |          |          |          |          |          |
| Irrigated cotton, grain          | \$45.00 | \$45.00 | \$45.00 | \$75.00  | \$75.00  | \$100.00 | \$100.00 | \$100.00 | \$100.00 |
| sorghum, sun-flowers, grass,     |         |         |         |          |          |          |          |          |          |
| pearl millet, and sorghum        |         |         |         |          |          |          |          |          |          |
| silage.                          |         |         |         |          |          |          |          |          |          |
| Irrigated corn silage, corn      | \$75.00 | \$75.00 | \$75.00 | \$100.00 | \$100.00 | \$140.00 | \$140.00 | \$140.00 | \$140.00 |
| grain, and alfalfa.              |         |         |         |          |          |          |          |          |          |
| Dryland cropland                 | \$15.00 | \$15.00 | \$15.00 | \$25.00  | \$25.00  | \$30.00  | \$30.00  | \$30.00  | \$30.00  |

5. The custom tillage and harvest rates used for 2005 were based on rates reported in Texas A&M AgriLife Extension, <u>2013 Texas Agricultural Custom Rates</u>, May 2013.

Table A 14. Summary of results from monitoring 26 producer sites in 2005 (Year 1).

|                             | Site |       | Irrigation        | System | \$/system | \$/inch |  |
|-----------------------------|------|-------|-------------------|--------|-----------|---------|--|
| System                      | No.  | Acres | Type <sup>1</sup> | Inches | Acre      | water   |  |
| Monoculture systems         |      |       |                   |        |           |         |  |
| Cotton                      | 1    | 61    | SDI               | 11.7   | 84.02     | 7.19    |  |
| Cotton                      | 2    | 68    | SDI               | 8.9    | 186.94    | 21      |  |
| Cotton                      | 14   | 125   | CP                | 6.8    | 120.9     | 17.91   |  |
| Cotton                      | 16   | 145   | CP                | 7.6    | 123.68    | 16.38   |  |
| Cotton                      | 21   | 123   | CP                | 6.8    | 122.51    | 18.15   |  |
| Cotton                      | 11   | 95    | Fur               | 9.2    | 4.39      | 0.48    |  |
| Cotton                      | _15  | 98    | Fur               | 4.6    | 62.65     | 13.62   |  |
| <u>Multi-crop systems</u>   |      |       |                   |        |           |         |  |
| Cotton/grain sorghum        | 3    | 125   | CP                | 8.3    | 37.79     | 4.66    |  |
| Cotton/grain sorghum        | 18   | 120   | CP                | 5.9    | 16.75     | 2.84    |  |
| Cotton/grain sorghum        | 25   | 179   | DL                | 0      | 67.58     | na      |  |
| Cotton/forage sorghum       | 12   | 250   | DL                | 0      | 36        | na      |  |
| Cotton/pearl millet         | 19   | 120   | CP                | 9.5    | 186.97    | 19.12   |  |
| Cotton/corn                 | 22   | 148   | CP                | 15.3   | 166.63    | 10.9    |  |
| Cotton/corn                 | 24   | 129   | CP                | 14.7   | 149.87    | 9.96    |  |
| Cotton/corn                 | 26   | 123   | CP                | 10.5   | 192.44    | 18.34   |  |
| Cotton/sunflower            | 23   | 110   | CP                | 5.4    | 270.62    | 47.07   |  |
| Cotton/alfalfa              | 4    | 123   | CP                | 5.5    | 110.44    | 19.06   |  |
| Cotton/wheat                | 13   | 315   | DL                | 0      | 47.37     | na      |  |
| Cotton/corn silage/grass    | 17   | 223   | CP                | 10.5   | 188.44    | 17.91   |  |
| Corn/wheat/sorghum silages  | 20   | 220   | CP                | 21.5   | -48.6     | -2.16   |  |
| Crop-livestock systems      |      |       |                   |        |           |         |  |
| Cotton/wheat/stocker cattle | 6    | 123   | CP                | 11.4   | 162.63    | 9.04    |  |
| Cotton/grass/stocker cattle | 9    | 237   | CP                | 6.5    | 298.14    | 46.17   |  |
| Cotton/grass/cattle         | 10   | 175   | CP                | 8.5    | 187.72    | 22.06   |  |
| Forage/beef cow-calf        | 5    | 630   | CP                | 1.23   | 125.89    | 93.34   |  |
| Forage/Grass seed           | 7    | 61    | SDI               | 9.8    | 425.32    | 37.81   |  |
| Forage/Grass seed           | 8    | 130   | CP                | 11.3   | 346.9     | 35.56   |  |

<sup>&</sup>lt;sup>1</sup>SDI – Subsurface drip irrigation; CP – center pivot; Fur – furrow irrigation; DL – dryland

**Table A 15.** Summary of results from monitoring 26 producer sites in 2006 (Year 2).

| System                        | Site No. | Acres | Irrigation<br>type <sup>1</sup> | System<br>inches | \$/system<br>acre | \$/inch<br>water | Gross<br>margin<br>per inch<br>irrigation |
|-------------------------------|----------|-------|---------------------------------|------------------|-------------------|------------------|-------------------------------------------|
| <u>Monoculture systems</u>    |          |       |                                 |                  |                   |                  |                                           |
| Cotton                        | 1        | 135   | SDI                             | 21               | 225.9             | 10.76            | 15.77                                     |
| Cotton                        | 2        | 61    | SDI                             | 19               | 308.71            | 16.25            | 22.56                                     |
| Cotton                        | 27       | 46    | SDI                             | 18               | 417.99            | 23.22            | 29.89                                     |
| Cotton                        | 3        | 123   | CP                              | 10               | 105.79            | 10.58            | 18.44                                     |
| Cotton                        | 6        | 123   | CP                              | 13.6             | 321.79            | 23.64            | 29.42                                     |
| Cotton                        | 14       | 124   | CP                              | 6.2              | 44.81             | 7.2              | 19.84                                     |
| Cotton                        | 16       | 143   | CP                              | 12.2             | 71.08             | 5.81             | 8.43                                      |
| Cotton                        | 11       | 93    | Fur                             | 16.9             | 88.18             | 5.22             | 9.37                                      |
| <u>Multi-crop systems</u>     |          |       |                                 |                  |                   |                  |                                           |
| Cotton/grain sorghum          | 15       | 96    | Fur                             | 11.2             | 161.89            | 14.51            | 20.78                                     |
| Cotton/forage sorghum         | 12       | 284   | DL                              | 0                | -13.72            | na               | na                                        |
| Cotton/forage sorghum         |          |       |                                 |                  |                   |                  |                                           |
| /oats                         | 18       | 122   | CP                              | 12               | -32.31            | -2.69            | 3.86                                      |
| Cotton/pearl millet           | 19       | 120   | CP                              | 9.8              | 95.28             | 9.77             | 17.83                                     |
| Cotton/corn                   | 22       | 149   | CP                              | 22               | 285.98            | 12.98            | 16.55                                     |
| Cotton/corn                   | 24       | 130   | CP                              | 19.4             | 68.17             | 3.51             | 8.34                                      |
| Cotton/corn                   | 26       | 123   | CP                              | 16               | 243.32            | 15.22            | 21.08                                     |
| Cotton/corn                   | 23       | 105   | CP                              | 14.8             | 127.39            | 8.59             | 13.9                                      |
| Cotton/alfalfa/wheat/         |          |       |                                 |                  |                   |                  |                                           |
| forage sorghum                | 4        | 123   | CP                              | 26.7             | 312.33            | 11.69            | 14.75                                     |
| Cotton/wheat                  | 13       | 320   | DL                              | 0                | -33.56            | na               | na                                        |
| Corn/triticale/sorghum        |          |       |                                 |                  |                   |                  |                                           |
| silages                       | 20       | 233   | CP                              | 21.9             | 242.79            | 10.49            | 15.17                                     |
| <u>Crop-livestock systems</u> |          |       |                                 |                  |                   |                  |                                           |
| Cotton/stocker cattle         | 21       | 123   | CP                              | 16.4             | 94.94             | 5.79             | 10.22                                     |
| Cotton/grass/stocker          |          |       |                                 |                  |                   |                  |                                           |
| cattle                        | 9        | 237   | CP                              | 10.6             | 63.29             | 6.26             | 13.87                                     |
| Cotton/corn silage            |          |       |                                 |                  |                   |                  |                                           |
| /wheat/cattle                 | 17       | 221   | CP                              | 13               | 242.21            | 14.89            | 20.64                                     |
| Forage/beef cow-calf          | 5        | 628   | CP                              | 9.6              | 150.46            | 15.62            | 22.31                                     |
| Forage/beef cow-calf          | 10       | 174   | CP                              | 16.1             | 217.71            | 13.52            | 18.4                                      |
| Forage/Grass seed             | 7        | 130   | CP                              | 7.8              | 687.36            | 88.69            | 98.83                                     |
| Forage/Grass seed             | 8        | 62    | SDI                             | 10.1             | 376.36            | 48.56            | 64.05                                     |

<sup>1</sup>SDI – Subsurface drip irrigation; CP – center pivot; Fur – furrow irrigation; DL – dryland

**Table A 16.** Summary of results from monitoring 26 producer sites in 2007 (Year 3).

| Nonoculture systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | System                                | Site<br>No. | Acre<br>s | Irrigation<br>Type <sup>1</sup> | System inches | \$/system acre | \$/inch<br>water | Gross<br>margin<br>per inch<br>irrigation |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------|-----------|---------------------------------|---------------|----------------|------------------|-------------------------------------------|
| Cotton         2         61         SDI         12.94         511.33         39.52         48.79           Cotton         6         123         CP         10.86         605.78         55.78         63.02           Cotton         11         93         Fur         14.67         163.58         11.15         15.92           Cotton         14         124         CP         8.63         217.38         25.19         34.30           Cotton         22         149         CP         11.86         551.33         46.49         53.11           Corn         23         105         CP         10.89         325.69         29.91         37.12           Corn         24         130         CP         15.34         373.92         24.38         31.46           Perennial grass: seed and hay         7         130         CP         13.39         392.59         29.91         37.12           Cotton/grain sorghum/wheat         3         123         CP         13.25         190.53         14.38         20.31           Cotton/grain sorghum         12         284         DL         0.00         265.71         Dryland         Dryland         Dryland <td>Monoculture systems</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                         | Monoculture systems                   |             |           |                                 |               |                |                  |                                           |
| Cotton         6         123         CP         10.86         605.78         55.78         63.02           Cotton         11         93         Fur         14.67         163.58         11.15         15.92           Cotton         14         124         CP         8.63         217.38         25.19         34.30           Cotton         22         149         CP         11.86         551.33         46.49         53.11           Corn         23         105         CP         10.89         325.69         29.91         37.12           Corn         24         130         CP         15.34         373.92         24.38         31.46           Perennial grass: seed and hay         7         130         CP         13.39         392.59         29.32         35.19           Perennial grass: seed and hay         8         62         SDI         15.67         292.63         18.67         26.33           Multi-crop systems         8         62         SDI         15.67         292.63         18.67         26.33           Multi-crop systems         8         122         284         DL         0.00         265.71         Dryland         Dryland                                                                                                                                                                                                                                                                                                                                                                                                    | Cotton                                | 1           | 135       |                                 | 14.60         | 162.40         |                  | 19.34                                     |
| Cotton         11         93         Fur         14.67         163.58         11.15         15.92           Cotton         14         124         CP         8.63         217.38         25.19         34.30           Cotton         22         149         CP         11.86         551.33         46.49         53.11           Corn         23         105         CP         10.89         325.69         29.91         37.12           Corn         24         130         CP         15.34         373.92         24.38         31.46           Perennial grass: seed and hay         7         130         CP         13.39         392.59         29.32         35.19           Perennial grass: seed and hay         8         62         SDI         15.67         292.63         18.67         26.33           Multi-crop systems         8         62         SDI         15.67         292.63         18.67         26.33           Multi-crop systems         8         62         SDI         15.67         292.63         18.67         26.33           Multi-crop systems         8         122         CP         13.25         190.53         14.38         20.31                                                                                                                                                                                                                                                                                                                                                                                                       | Cotton                                |             |           |                                 |               |                |                  |                                           |
| Cotton         14         124         CP         8.63         217.38         25.19         34.30           Cotton         22         149         CP         11.86         551.33         46.49         53.11           Corn         23         105         CP         10.89         325.69         29.91         37.12           Corn         24         130         CP         15.34         373.92         24.38         31.46           Perennial grass: seed and hay         7         130         CP         13.39         392.59         29.32         35.19           Perennial grass: seed and hay         8         62         SDI         15.67         292.63         18.67         26.33           Multi-crop systems           Cotton/grain sorghum/wheat         3         123         CP         13.25         190.53         14.38         20.31           Cotton/grain sorghum/wheat         13         320         DL         0.00         265.71         Dryland         Dryland           Cotton/grain sorghum/wheat         18         122         CP         5.34         13.91         2.60         13.62           Cotton/pearl millet         19         121         CP                                                                                                                                                                                                                                                                                                                                                                                            | Cotton                                | 6           | 123       | CP                              | 10.86         | 605.78         | 55.78            |                                           |
| Cotton         22         149         CP         11.86         551.33         46.49         53.11           Corn         23         105         CP         10.89         325.69         29.91         37.12           Corn         24         130         CP         15.34         373.92         24.38         31.46           Perennial grass: seed and hay         7         130         CP         13.39         392.59         29.32         35.19           Perennial grass: seed and hay         8         62         SDI         15.67         292.63         18.67         26.33           Multi-crop systems           Cotton/grain sorghum/wheat         3         123         CP         13.25         190.53         14.38         20.31           Cotton/prain sorghum         12         284         DL         0.00         265.71         Dryland         Dryland         Dryland         Cotton/prain sorghum         15         96         Fur         10.50         191.68         18.26         24.92         Grain sorghum/wheat         18         122         CP         5.34         13.91         2.60         13.62         Cotton/per.grass:seed and hay         21         123         CP         7.57 <td>Cotton</td> <td>11</td> <td>93</td> <td>Fur</td> <td>14.67</td> <td>163.58</td> <td>11.15</td> <td>15.92</td>                                                                                                                                                                                                                                       | Cotton                                | 11          | 93        | Fur                             | 14.67         | 163.58         | 11.15            | 15.92                                     |
| Corn         23         105         CP         10.89         325.69         29.91         37.12           Corn         24         130         CP         15.34         373.92         24.38         31.46           Perennial grass: seed and hay         7         130         CP         13.39         392.59         29.32         35.19           Perennial grass: seed and hay         8         62         SDI         15.67         292.63         18.67         26.33           Multi-crop systems           Cotton/grain sorghum/wheat         3         123         CP         13.25         190.53         14.38         20.31           Cotton/grain sorghum         12         284         DL         0.00         265.71         Dryland         Dryland           Cotton/pain sorghum         15         96         Fur         10.50         191.68         18.26         24.92           Grain sorghum/wheat         18         122         CP         5.34         13.91         2.60         13.62           Cotton/pearl millet         19         121         CP         7.57         318.61         42.10         52.49           Corn/sorghum/triticale silages         20         233<                                                                                                                                                                                                                                                                                                                                                                              | Cotton                                |             | 124       | CP                              | 8.63          | 217.38         | 25.19            | 34.30                                     |
| Corn         24         130         CP         15.34         373.92         24.38         31.46           Perennial grass: seed and hay         7         130         CP         13.39         392.59         29.32         35.19           Perennial grass: seed and hay         8         62         SDI         15.67         292.63         18.67         26.33           Multi-crop systems           Cotton/grain sorghum/wheat         3         123         CP         13.25         190.53         14.38         20.31           Cotton/grain sorghum         12         284         DL         0.00         265.71         Dryland         Dryland           Cotton/wheat         13         320         DL         0.00         105.79         Dryland         Dryland           Cotton/grain sorghum         15         96         Fur         10.50         191.68         18.26         24.92           Grain sorghum/wheat         18         122         CP         5.34         13.91         2.60         13.62           Cotton/pearl millet         19         121         CP         7.57         318.61         42.10         52.49           Corn/sorghum/triticale silages         20                                                                                                                                                                                                                                                                                                                                                                               | Cotton                                | 22          | 149       | CP                              | 11.86         | 551.33         | 46.49            | 53.11                                     |
| Perennial grass: seed and hay 8 62 SDI 15.67 292.63 18.67 26.33         35.19           Multi-crop systems         V           Cotton/grain sorghum/wheat         3 123 CP 13.25 190.53 14.38 20.31           Cotton/grain sorghum         12 284 DL 0.00 265.71 Dryland Dryland Cotton/wheat         Dryland Dryland Dryland Dryland Dryland Cotton/grain sorghum         DL 0.00 105.79 Dryland Dryland Dryland Cotton/grain sorghum         Dryland Dryland Dryland Dryland Dryland Dryland Dryland Dryland Cotton/grain sorghum/wheat         18 122 CP 5.34 13.91 2.60 13.62         24.92           Grain sorghum/wheat         18 122 CP 5.34 13.91 2.60 13.62         13.62         24.92           Cotton/pearl millet         19 121 CP 7.57 318.61 42.10 52.49         52.49           Corn/sorghum/triticale silages         20 233 CP 24.27 371.14 15.29 19.76         19.76           Corn/per. grass: seed and hay         21 123 CP 8.35 231.60 27.75 37.16         27.75 37.16           Crop-livestock systems         Wheat: cow-calf, grain/cotton/alfalfa hay         4 123 CP 8.18 183.72 22.47 33.30         22.47 33.30           Perennial grass: cow-calf, hay/corn silage         9 237 CP 4.19 48.89 11.65 30.00         30.00           Perennial grass: cow-calf, hay/corn silage         10 174 CP 6.80 27.84 4.09 11.65         30.00           Perennial grass: cow-calf, hay/corn silage         10 174 CP 6.80 27.84 4                                         | Corn                                  | 23          | 105       | CP                              | 10.89         | 325.69         | 29.91            | 37.12                                     |
| Perennial grass: seed and hay   8   62   SDI   15.67   292.63   18.67   26.33   Multi-crop systems   SU   SU   SU   SU   SU   SU   SU   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Corn                                  | 24          | 130       | CP                              | 15.34         | 373.92         | 24.38            | 31.46                                     |
| Multi-crop systems         Cotton/grain sorghum/wheat         3         123         CP         13.25         190.53         14.38         20.31           Cotton/grain sorghum         12         284         DL         0.00         265.71         Dryland         Dryland           Cotton/wheat         13         320         DL         0.00         105.79         Dryland         Dryland           Cotton/grain sorghum         15         96         Fur         10.50         191.68         18.26         24.92           Grain sorghum/wheat         18         122         CP         5.34         13.91         2.60         13.62           Cotton/pearl millet         19         121         CP         7.57         318.61         42.10         52.49           Corn/sorghum/triticale silages         20         233         CP         24.27         371.14         15.29         19.76           Corn/per. grass: seed and hay         21         123         CP         8.35         231.60         27.75         37.16           Corn silage         27         62         SDI         13.00         194.40         14.95         24.18           Crop-livestock systems           Wheat: cow-                                                                                                                                                                                                                                                                                                                                                                     | Perennial grass: seed and hay         | 7           | 130       | CP                              | 13.39         | 392.59         | 29.32            | 35.19                                     |
| Cotton/grain sorghum/wheat         3         123         CP         13.25         190.53         14.38         20.31           Cotton/grain sorghum         12         284         DL         0.00         265.71         Dryland         Dryland           Cotton/wheat         13         320         DL         0.00         105.79         Dryland         Dryland           Cotton/grain sorghum         15         96         Fur         10.50         191.68         18.26         24.92           Grain sorghum/wheat         18         122         CP         5.34         13.91         2.60         13.62           Cotton/pearl millet         19         121         CP         7.57         318.61         42.10         52.49           Corn/sorghum/triticale silages         20         233         CP         24.27         371.14         15.29         19.76           Corn/per. grass: seed and hay         21         123         CP         8.35         231.60         27.75         37.16           Corn silage         27         62         SDI         13.00         194.40         14.95         24.18           Grow-line stock systems         Wheat: cow-calf, grain/cotton/alfalfa hay         4                                                                                                                                                                                                                                                                                                                                                         | Perennial grass: seed and hay         | 8           | 62        | SDI                             | 15.67         | 292.63         | 18.67            | 26.33                                     |
| Cotton/grain sorghum         12         284         DL         0.00         265.71         Dryland         Dryland           Cotton/wheat         13         320         DL         0.00         105.79         Dryland         Dryland           Cotton/grain sorghum         15         96         Fur         10.50         191.68         18.26         24.92           Grain sorghum/wheat         18         122         CP         5.34         13.91         2.60         13.62           Cotton/pearl millet         19         121         CP         7.57         318.61         42.10         52.49           Corn/sorghum/triticale silages         20         233         CP         24.27         371.14         15.29         19.76           Corn/per. grass: seed and hay         21         123         CP         8.35         231.60         27.75         37.16           Corn silage         27         62         SDI         13.00         194.40         14.95         24.18           Crop-livestock systems           Wheat: cow-calf, grain/cotton/alfalfa hay         4         123         CP         8.18         183.72         22.47         33.30           Per. grass, rye: stocker cattle/g                                                                                                                                                                                                                                                                                                                                                            |                                       |             |           |                                 |               |                |                  |                                           |
| Cotton/wheat         13         320         DL         0.00         105.79         Dryland         Dryland           Cotton/grain sorghum         15         96         Fur         10.50         191.68         18.26         24.92           Grain sorghum/wheat         18         122         CP         5.34         13.91         2.60         13.62           Cotton/pearl millet         19         121         CP         7.57         318.61         42.10         52.49           Corn/sorghum/triticale silages         20         233         CP         24.27         371.14         15.29         19.76           Corn/per. grass: seed and hay         21         123         CP         8.35         231.60         27.75         37.16           Corn silage         27         62         SDI         13.00         194.40         14.95         24.18           Crop-livestock systems           Wheat: cow-calf,         grain/cotton/alfalfa hay         4         123         CP         8.18         183.72         22.47         33.30           Pereng grass, rye: stocker cattle/grain sorghum         9         237         CP         4.19         48.89         11.65         30.00                                                                                                                                                                                                                                                                                                                                                                           | Cotton/grain sorghum/wheat            | 3           | 123       | CP                              | 13.25         | 190.53         | 14.38            | 20.31                                     |
| Cotton/grain sorghum         15         96         Fur         10.50         191.68         18.26         24.92           Grain sorghum/wheat         18         122         CP         5.34         13.91         2.60         13.62           Cotton/pearl millet         19         121         CP         7.57         318.61         42.10         52.49           Corn/sorghum/triticale silages         20         233         CP         24.27         371.14         15.29         19.76           Corn/per. grass: seed and hay         21         123         CP         8.35         231.60         27.75         37.16           Corn silage         27         62         SDI         13.00         194.40         14.95         24.18           Crop-livestock systems           Wheat: cow-calf,           grain/cotton/alfalfa hay         4         123         CP         8.18         183.72         22.47         33.30           Perennial grass: cow-calf, hay         5         628         CP         3.56         193.81         54.38         72.45           Perennial grass: cow-calf, hay/corn silage         10         174         CP         6.80         27.84 </td <td>Cotton/grain sorghum</td> <td>12</td> <td>284</td> <td>DL</td> <td>0.00</td> <td>265.71</td> <td>Dryland</td> <td>Dryland</td>                                                                                                                                                                                                                                                    | Cotton/grain sorghum                  | 12          | 284       | DL                              | 0.00          | 265.71         | Dryland          | Dryland                                   |
| Grain sorghum/wheat         18         122         CP         5.34         13.91         2.60         13.62           Cotton/pearl millet         19         121         CP         7.57         318.61         42.10         52.49           Corn/sorghum/triticale silages         20         233         CP         24.27         371.14         15.29         19.76           Corn/per. grass: seed and hay         21         123         CP         8.35         231.60         27.75         37.16           Corn silage         27         62         SDI         13.00         194.40         14.95         24.18           Crop-livestock systems           Wheat: cow-calf,         Variation of the company of the com | Cotton/wheat                          | 13          | 320       | DL                              | 0.00          | 105.79         | Dryland          | Dryland                                   |
| Cotton/pearl millet         19         121         CP         7.57         318.61         42.10         52.49           Corn/sorghum/triticale silages         20         233         CP         24.27         371.14         15.29         19.76           Corn/per. grass: seed and hay         21         123         CP         8.35         231.60         27.75         37.16           Corn silage         27         62         SDI         13.00         194.40         14.95         24.18           Crop-livestock systems           Wheat: cow-calf,           grain/cotton/alfalfa hay         4         123         CP         8.18         183.72         22.47         33.30           Perennial grass: cow-calf, hay         5         628         CP         3.56         193.81         54.38         72.45           Perennial grass: cow-calf, hay/corn silage         9         237         CP         4.19         48.89         11.65         30.00           Perennial grass: cow-calf, hay/corn silage         10         174         CP         6.80         27.84         4.09         14.74           Perennial grass: cow-calf, seed, hay/cotton/wheat for grazing         17 <td>Cotton/grain sorghum</td> <td>15</td> <td>96</td> <td>Fur</td> <td>10.50</td> <td>191.68</td> <td>18.26</td> <td>24.92</td>                                                                                                                                                                                                                                                 | Cotton/grain sorghum                  | 15          | 96        | Fur                             | 10.50         | 191.68         | 18.26            | 24.92                                     |
| Corn/sorghum/triticale silages         20         233         CP         24.27         371.14         15.29         19.76           Corn/per. grass: seed and hay         21         123         CP         8.35         231.60         27.75         37.16           Corn silage         27         62         SDI         13.00         194.40         14.95         24.18           Crop-livestock systems           Wheat: cow-calf,           grain/cotton/alfalfa hay         4         123         CP         8.18         183.72         22.47         33.30           Perennial grass: cow-calf, hay         5         628         CP         3.56         193.81         54.38         72.45           Per. grass, rye: stocker cattle/grain sorghum         9         237         CP         4.19         48.89         11.65         30.00           Perennial grass: cow-calf, hay/corn silage         10         174         CP         6.80         27.84         4.09         14.74           Perennial grass: cow-calf, seed, hay/cotton/wheat for grazing         17         221         CP         8.31         181.48         21.83         33.06                                                                                                                                                                                                                                                                                                                                                                                                                       | Grain sorghum/wheat                   | 18          | 122       | CP                              | 5.34          | 13.91          | 2.60             | 13.62                                     |
| Corn/per. grass: seed and hay         21         123         CP         8.35         231.60         27.75         37.16           Corn silage         27         62         SDI         13.00         194.40         14.95         24.18           Crop-livestock systems           Wheat: cow-calf, grain/cotton/alfalfa hay         4         123         CP         8.18         183.72         22.47         33.30           Perennial grass: cow-calf, hay         5         628         CP         3.56         193.81         54.38         72.45           Per. grass, rye: stocker cattle/grain sorghum         9         237         CP         4.19         48.89         11.65         30.00           Perennial grass: cow-calf, hay/corn silage         10         174         CP         6.80         27.84         4.09         14.74           Perennial grass: cow-calf, seed, hay/cotton/wheat for grazing         17         221         CP         8.31         181.48         21.83         33.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cotton/pearl millet                   | 19          | 121       | CP                              | 7.57          | 318.61         | 42.10            | 52.49                                     |
| Corn silage         27         62         SDI         13.00         194.40         14.95         24.18           Crop-livestock systems           Wheat: cow-calf, grain/cotton/alfalfa hay         4         123         CP         8.18         183.72         22.47         33.30           Perennial grass: cow-calf, hay         5         628         CP         3.56         193.81         54.38         72.45           Per. grass, rye: stocker cattle/grain sorghum         9         237         CP         4.19         48.89         11.65         30.00           Perennial grass: cow-calf, hay/corn silage         10         174         CP         6.80         27.84         4.09         14.74           Perennial grass: cow-calf, seed, hay/cotton/wheat for grazing         17         221         CP         8.31         181.48         21.83         33.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Corn/sorghum/triticale silages        | 20          | 233       | CP                              | 24.27         | 371.14         | 15.29            | 19.76                                     |
| Crop-livestock systems         Wheat: cow-calf, grain/cotton/alfalfa hay       4       123       CP       8.18       183.72       22.47       33.30         Perennial grass: cow-calf, hay       5       628       CP       3.56       193.81       54.38       72.45         Per. grass, rye: stocker cattle/grain sorghum       9       237       CP       4.19       48.89       11.65       30.00         Perennial grass: cow-calf, hay/corn silage       10       174       CP       6.80       27.84       4.09       14.74         Perennial grass: cow-calf, seed, hay/cotton/wheat for grazing       17       221       CP       8.31       181.48       21.83       33.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Corn/per. grass: seed and hay         | 21          | 123       | CP                              | 8.35          | 231.60         | 27.75            | 37.16                                     |
| Wheat: cow-calf, grain/cotton/alfalfa hay       4       123       CP       8.18       183.72       22.47       33.30         Perennial grass: cow-calf, hay       5       628       CP       3.56       193.81       54.38       72.45         Per. grass, rye: stocker cattle/grain sorghum       9       237       CP       4.19       48.89       11.65       30.00         Perennial grass: cow-calf, hay/corn silage       10       174       CP       6.80       27.84       4.09       14.74         Perennial grass: cow-calf, seed, hay/cotton/wheat for grazing       17       221       CP       8.31       181.48       21.83       33.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Corn silage                           | 27          | 62        | SDI                             | 13.00         | 194.40         | 14.95            | 24.18                                     |
| grain/cotton/alfalfa hay       4       123       CP       8.18       183.72       22.47       33.30         Perennial grass: cow-calf, hay       5       628       CP       3.56       193.81       54.38       72.45         Per. grass, rye: stocker cattle/grain sorghum       9       237       CP       4.19       48.89       11.65       30.00         Perennial grass: cow-calf, hay/corn silage       10       174       CP       6.80       27.84       4.09       14.74         Perennial grass: cow-calf, seed, hay/cotton/wheat for grazing       17       221       CP       8.31       181.48       21.83       33.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Crop-livestock systems                |             |           |                                 |               |                |                  |                                           |
| Perennial grass: cow-calf, hay       5       628       CP       3.56       193.81       54.38       72.45         Per. grass, rye: stocker cattle/grain sorghum       9       237       CP       4.19       48.89       11.65       30.00         Perennial grass: cow-calf, hay/corn silage       10       174       CP       6.80       27.84       4.09       14.74         Perennial grass: cow-calf, seed, hay/cotton/wheat for grazing       17       221       CP       8.31       181.48       21.83       33.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Wheat: cow-calf,                      |             |           |                                 |               |                |                  |                                           |
| Per. grass, rye: stocker cattle/grain sorghum       9       237       CP       4.19       48.89       11.65       30.00         Perennial grass: cow-calf, hay/corn silage       10       174       CP       6.80       27.84       4.09       14.74         Perennial grass: cow-calf, seed, hay/cotton/wheat for grazing       17       221       CP       8.31       181.48       21.83       33.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | grain/cotton/alfalfa hay              | 4           | 123       | CP                              | 8.18          | 183.72         | 22.47            | 33.30                                     |
| sorghum       9       237       CP       4.19       48.89       11.65       30.00         Perennial grass: cow-calf, hay/corn silage       10       174       CP       6.80       27.84       4.09       14.74         Perennial grass: cow-calf, seed, hay/cotton/wheat for grazing       17       221       CP       8.31       181.48       21.83       33.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Perennial grass: cow-calf, hay        | 5           | 628       | CP                              | 3.56          | 193.81         | 54.38            | 72.45                                     |
| Perennial grass: cow-calf, hay/corn silage       10       174       CP       6.80       27.84       4.09       14.74         Perennial grass: cow-calf, seed, hay/cotton/wheat for grazing       17       221       CP       8.31       181.48       21.83       33.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Per. grass, rye: stocker cattle/grain |             |           |                                 |               |                |                  |                                           |
| silage       10       174       CP       6.80       27.84       4.09       14.74         Perennial grass: cow-calf, seed, hay/cotton/wheat for grazing       17       221       CP       8.31       181.48       21.83       33.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sorghum                               | 9           | 237       | CP                              | 4.19          | 48.89          | 11.65            | 30.00                                     |
| Perennial grass: cow-calf, seed,<br>hay/cotton/wheat for grazing 17 221 CP 8.31 181.48 21.83 33.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Perennial grass: cow-calf, hay/corn   |             |           |                                 |               |                |                  |                                           |
| hay/cotton/wheat for grazing 17 221 CP 8.31 181.48 21.83 33.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | silage                                | 10          | 174       | CP                              | 6.80          | 27.84          | 4.09             | 14.74                                     |
| hay/cotton/wheat for grazing 17 221 CP 8.31 181.48 21.83 33.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Perennial grass: cow-calf, seed,      |             |           |                                 |               |                |                  |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | hay/cotton/wheat for grazing          | 17          | 221       | CP                              | 8.31          | 181.48         | 21.83            | 33.06                                     |
| 1 2011 11101 11101 11101 11101 11101 11101 11101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pearl millet: seed, grazing/corn      | 26          | 123       | CP                              | 11.34         | 378.61         | 33.39            | 41.65                                     |

<sup>&</sup>lt;sup>1</sup>SDI – Subsurface drip irrigation; CP – center pivot; Fur – furrow irrigation; DL – dryland

**Table A 17.** Summary of results from monitoring 25 producer sites in 2008 (Year 4).

| System                                 | Site<br>No. | Acres | Irrigation<br>Type <sup>1</sup> | System inches | \$/system acre | \$/inch<br>water | Gross margin<br>per inch<br>irrigation |
|----------------------------------------|-------------|-------|---------------------------------|---------------|----------------|------------------|----------------------------------------|
| Monoculture Systems                    |             |       |                                 |               |                |                  |                                        |
| Sunflowers                             | 2           | 60.9  | SDI                             | 6.89          | 147.83         | 21.46            | 43.23                                  |
| Perennial grass: seed and hay          | 7           | 130.0 | CP                              | 9.88          | 295.43         | 29.90            | 40.89                                  |
| Perennial grass: seed and hay          | 8           | 61.8  | SDI                             | 6.65          | 314.74         | 47.33            | 69.89                                  |
| Cotton                                 | 14          | 124.2 | CP                              | 8.97          | -2.12          | -0.24            | 11.87                                  |
| Corn                                   | 22          | 148.7 | CP                              | 24.75         | 720.10         | 29.09            | 34.49                                  |
| Corn                                   | 24          | 129.8 | CP                              | 24.70         | 513.54         | 20.79            | 26.20                                  |
| Corn                                   | 28          | 51.5  | SDI                             | 8.20          | 591.15         | 72.09            | 93.43                                  |
| Multi-crop systems                     |             |       |                                 |               |                |                  |                                        |
| Cotton/Wheat/Grain sorghum             | 3           | 123.3 | CP                              | 14.75         | 53.79          | 3.65             | 11.01                                  |
| Cotton/Corn                            | 6           | 122.9 | CP                              | 17.35         | 411.02         | 23.68            | 29.94                                  |
| Cotton/Grain sorghum                   | 11          | 92.5  | Fur                             | 10.86         | 176.14         | 16.22            | 25.43                                  |
| Sorghum silage/fallow wheat            | 12          | 283.9 | DL                              | 0.00          | -17.89         | Dryland          | Dryland                                |
| Cotton/Wheat                           | 15          | 95.5  | Fur/SDI                         | 11.22         | 132.15         | 11.78            | 21.57                                  |
| Cotton/Wheat silage/Grain sorghum      |             |       | ,                               |               |                |                  |                                        |
| hay & silage                           | 18          | 122.2 | CP                              | 10.67         | 186.42         | 17.47            | 27.64                                  |
| Cotton/Seed millet                     | 19          | 120.4 | CP                              | 7.01          | 121.40         | 17.33            | 32.83                                  |
| Wheat grain/Grain sorghum grain &      |             |       |                                 |               |                |                  |                                        |
| silage/hay                             | 20          | 233.4 | CP                              | 27.61         | 513.56         | 18.60            | 22.54                                  |
| Barley seed/forage sorghum hay/per.    |             |       |                                 |               |                |                  |                                        |
| grass: seed & hay                      | 21          | 122.7 | CP                              | 10.13         | 387.20         | 38.24            | 48.96                                  |
| Cotton/Sunflowers                      | 23          | 105.1 | CP                              | 14.93         | -50.54         | -3.38            | 4.60                                   |
| Cotton/Corn grain                      | 27          | 108.5 | SDI                             | 20.69         | 291.15         | 14.07            | 22.01                                  |
| Cotton/Wheat/fallow                    | 29          | 221.6 | DL                              | 0.00          | 34.06          | Dryland          | Dryland                                |
| <u>Crop-Livestock systems</u>          |             |       |                                 |               |                |                  |                                        |
| Wheat: cow-calf, grain/cotton/alfalfa  |             |       |                                 |               |                |                  |                                        |
| hay                                    | 4           | 123.1 | CP                              | 14.51         | 154.85         | 10.68            | 17.00                                  |
| Perennial grass: cow-calf, hay         | 5           | 628   | CP                              | 4.02          | 107.14         | 26.65            | 49.02                                  |
| Perennial Grass: stocker cattle/Cotton | 9           | 237.8 | CP                              | 7.26          | 11.63          | 1.60             | 16.25                                  |
| Perennial grass: cow-calf, hay/Grass   |             |       |                                 |               |                |                  |                                        |
| seed/Corn                              | 10          | 173.6 | CP                              | 14.67         | 64.80          | 4.42             | 0.00                                   |
| Perennial grass: cow-calf, seed,       | 4.5         | 220.0 | an.                             | 45.00         | 200.24         | 20.62            | 20.62                                  |
| hay/cotton/wheat for grazing           | 17          | 220.8 | CP                              | 15.00         | 309.34         | 20.62            | 28.68                                  |
| Pearl millet: seed, Grain              | 26          | 125.2 | СР                              | 1465          | 270.60         | 19.09            | 27.27                                  |
| sorghum/Corn: grazing, hay             |             |       |                                 | 14.65         | 279.69         | 19.09            | 27.36                                  |

<sup>&</sup>lt;sup>1</sup>SDI – Subsurface drip irrigation; CP – center pivot; Fur – furrow irrigation; DL – dryland

**Table A 18.** Summary of results from monitoring 26 producer sites in 2009 (Year 5).

| System                                                             | Site<br>No. | Acres | Irrigation<br>Type <sup>1</sup> | System inches | \$/system<br>acre | \$/inch<br>water | Gross margin<br>per inch<br>irrigation |
|--------------------------------------------------------------------|-------------|-------|---------------------------------|---------------|-------------------|------------------|----------------------------------------|
| Monoculture Systems                                                |             |       |                                 |               |                   |                  |                                        |
| Cotton                                                             | 2           | 60.9  | SDI                             | 10.50         | -52.29            | -4.98            | 9.31                                   |
| Perennial grass: seed and hay                                      | 7           | 129.9 | CP                              | 15.70         | 597.23            | 38.04            | 44.96                                  |
| Perennial grass: seed and hay                                      | 8           | 61.8  | SDI                             | 13.80         | 365.46            | 26.48            | 37.35                                  |
| Cotton                                                             | 15          | 102.8 | Fur/SDI                         | 12.96         | 72.15             | 5.57             | 12.39                                  |
| Cotton                                                             | 22          | 148.7 | CP                              | 14.73         | 56.35             | 3.83             | 11.20                                  |
| Cotton                                                             | 28          | 51.5  | SDI                             | 10.89         | 187.72            | 17.24            | 31.01                                  |
| Sunflower                                                          | 30          | 21.8  | SDI                             | 9.25          | 8.13              | 0.88             | 17.10                                  |
| <u>Multi-crop systems</u>                                          |             |       |                                 |               |                   |                  |                                        |
| Cotton/Grain Sorghum                                               | 3           | 123.3 | CP                              | 5.89          | 158.51            | 26.91            | 45.35                                  |
| Cotton/Corn                                                        | 6           | 122.9 | CP                              | 10.43         | 182.14            | 17.52            | 28.49                                  |
| Cotton/Rye                                                         | 9           | 237.8 | CP                              | 3.17          | -11.71            | -3.69            | 30.52                                  |
| Cotton/Grain Sorghum                                               | 11          | 92.5  | Fur                             | 13.24         | 53.67             | 4.05             | 11.60                                  |
| Sorghum silage/Wheat                                               | 12          | 283.9 | DL                              | 0.00          | -8.81             | Dryland          | Dryland                                |
| Wheat grain/Cotton                                                 | 14          | 124.2 | CP                              | 10.57         | 37.15             | 3.52             | 13.79                                  |
| Wheat grain/Cotton                                                 | 18          | 122.2 | CP                              | 3.53          | 44.88             | 12.71            | 43.47                                  |
| Wheat grain/Cotton                                                 | 19          | 120.3 | CP                              | 5.26          | -4.88             | -0.93            | 19.71                                  |
| Corn silage/Cotton                                                 | 20          | 233.3 | CP                              | 23.75         | 552.08            | 23.25            | 28.35                                  |
| Wheat grain/Hay/perennial grass                                    | 21          | 122.6 | CP                              | 17.75         | 79.79             | 4.50             | 10.61                                  |
| Oats/Wheat/Sorghum - all silage                                    | 23          | 105.2 | CP                              | 15.67         | 53.80             | 3.43             | 10.36                                  |
| Corn/Sunflower                                                     | 24          | 129.7 | CP                              | 13.09         | 172.53            | 13.18            | 22.42                                  |
| Corn/Cotton                                                        | 27          | 108.5 | SDI                             | 23.00         | 218.72            | 9.51             | 16.63                                  |
| Wheat grain/Cotton                                                 | 29          | 221.6 | DL                              | 0.00          | 73.79             | Dryland          | Dryland                                |
| <u>Crop-livestock systems</u>                                      |             |       |                                 |               |                   |                  |                                        |
| Wheat/haygrazer; contract grazing,                                 |             |       |                                 |               |                   |                  |                                        |
| grain sorghum/cotton/alfalfa hay                                   | 4           | 123.1 | CP                              | 9.03          | 119.85            | 13.28            | 25.67                                  |
| Perennial grass: cow-calf, hay                                     | 5           | 626.4 | CP                              | 6.60          | 53.76             | 8.15             | 21.79                                  |
| Perennial grass: contract grazing,                                 |             |       |                                 |               |                   |                  |                                        |
| /Cotton                                                            | 10          | 173.6 | CP                              | 6.04          | -83.25            | -13.79           | 4.20                                   |
| Perennial grass: contract grazing,<br>/sunflower/WW-BDahl for seed |             |       |                                 |               |                   |                  |                                        |
| and grazing                                                        | 17          | 220.8 | CP                              | 7.09          | 71.37             | 10.07            | 25.39                                  |
| Corn/Sunflower, contract grazing                                   | 26          | 125.2 | CP                              | 14.99         | 316.22            | 21.09            | 29.16                                  |

<sup>&</sup>lt;sup>1</sup>SDI – Subsurface drip irrigation; CP – center pivot; Fur – furrow irrigation; DL – dryland

**Table A 19.** Summary of results from monitoring 26 producer sites in 2010 (Year 6).

| System                             | Site<br>No. | Acres | Irrigation<br>Type <sup>1</sup> | System inches | \$/system acre | \$/inch<br>water | Gross margin<br>per inch<br>irrigation |
|------------------------------------|-------------|-------|---------------------------------|---------------|----------------|------------------|----------------------------------------|
| Monoculture systems                |             |       |                                 |               |                |                  |                                        |
| Corn                               | 2           | 60.9  | SDI                             | 14.04         | 107.81         | 7.68             | 22.99                                  |
| Perennial grass: seed and hay      | 7           | 130   | CP                              | 2.37          | 460.56         | 194.33           | 253.40                                 |
| Perennial grass: seed and hay      | 8           | 61.8  | SDI                             | 3.25          | 498.82         | 153.48           | 207.33                                 |
| Cotton                             | 15          | 102.8 | Fur/SDI                         | 3.98          | 489.46         | 122.85           | 166.77                                 |
| Corn                               | 22          | 148.7 | CP                              | 16.10         | 370.88         | 23.04            | 34.22                                  |
| Corn                               | 24          | 129.7 | CP                              | 17.90         | 271.50         | 15.17            | 25.22                                  |
| Cotton                             | 28          | 51.5  | SDI                             | 6.24          | 298.35         | 47.81            | 75.86                                  |
| Corn                               | 30          | 21.8  | SDI                             | 11.90         | 563.63         | 47.36            | 65.43                                  |
| <u>Multi-crop systems</u>          |             |       |                                 |               |                |                  |                                        |
| Cotton/Grain Sorghum/Wheat         | 3           | 123.3 | CP                              | 9.15          | 191.55         | 20.93            | 38.10                                  |
| Alfalfa/Cotton/Wheat/Hay           | 4           | 123   | CP                              | 11.11         | 365.89         | 32.92            | 45.99                                  |
| Cotton/Corn                        | 6           | 122.8 | CP                              | 9.88          | 323.38         | 32.72            | 48.88                                  |
| Cotton/Grain Sorghum               | 11          | 92.5  | Fur                             | 4.41          | 6,9,10         | 38.93            | 67.25                                  |
|                                    | 12          | 283.9 | DL                              | 0.00          | 0.00           | Dryland          | Dryland                                |
| Wheat grain/Cotton                 | 14          | 124.2 | CP                              | 4.30          | 73.13          | 17.02            | 49.59                                  |
| Wheat grain/Cotton                 | 18          | 122.2 | CP                              | 1.11          | 78.24          | 70.66            | 197.11                                 |
| Wheat grain/Cotton                 | 19          | 120.3 | CP                              | 4.31          | 134.55         | 31.21            | 63.69                                  |
| Corn/Trititcale silage/Cotton      | 20          | 233.4 | CP                              | 16.69         | 817.74         | 49.01            | 59.80                                  |
| Cotton/Corn                        | 21          | 122.6 | CP                              | 10.45         | 246.09         | 23.54            | 38.85                                  |
| Triticale/Corn silage              | 23          | 121.1 | CP                              | 20.70         | -7.64          | -0.37            | 8.33                                   |
| Corn silage/Cotton                 | 27          | 108.5 | SDI                             | 14.70         | 565.29         | 38.46            | 51.59                                  |
| Grain sorghum/Cotton               | 29          | 221.6 | DL                              | 0.00          | 235.29         | Dryland          | Dryland                                |
| Crop-livestock systems             |             |       |                                 |               |                |                  |                                        |
| Perennial grass: cow-calf, Hay     | 5           | 628   | CP                              | 5.15          | 44.47          | 8.63             | 31.08                                  |
| Perennial grass: contract grazing, |             |       |                                 |               |                |                  |                                        |
| /Cotton                            | 9           | 237.8 | CP                              | 2.19          | 129.12         | 58.98            | 122.93                                 |
| Perennial grass: contract grazing, |             |       |                                 |               |                |                  |                                        |
| /Corn                              | 10          | 173.6 | СР                              | 12.00         | 140.43         | 25.32            | 57.36                                  |
| Perennial grass: contract grazing, | 10          | 175.0 | GI                              | 12.00         | 110.13         | 25.52            | 57.50                                  |
| /Corn                              | 17          | 220.8 | СР                              | 8.94          | 6.82           | 0.76             | 18.62                                  |
| Wheat/Cotton/Corn, contract        | 1/          | 440.8 | UF .                            | 0.94          | 0.62           | 0.76             | 10.02                                  |
| •                                  | 26          | 125.2 | СР                              | 10.73         | 416.76         | 38.85            | 53.75                                  |
| grazing                            |             |       | LP<br>Eum fummore               |               |                | 30.05            | 55./5                                  |

<sup>&</sup>lt;sup>1</sup>SDI – Subsurface drip irrigation; CP – center pivot; Fur – furrow irrigation; DL – dryland

Table A 20. Summary of results from monitoring 29 producer sites in 2011 (Year 7).

| System                     | Site<br>No. | Acres | Irrigation<br>Type <sup>1</sup> | System inches | \$/system acre | \$/inch<br>water | Gross<br>margin<br>per inch<br>irrigation |
|----------------------------|-------------|-------|---------------------------------|---------------|----------------|------------------|-------------------------------------------|
| Monoculture systems        |             |       |                                 |               |                |                  |                                           |
| Cotton                     | 2           | 60.9  | SDI                             | 16.61         | 122.37         | 7.37             | 17.90                                     |
| Cotton                     | 3           | 123.3 | CP/MESA                         | 9.30          | -102.89        | -11.07           | 3.99                                      |
| Perennial grass:           |             |       |                                 |               |                |                  |                                           |
| seed and hay               | 7           | 130   | CP/LESA                         | 20.50         | 370.64         | 18.08            | 24.91                                     |
| Perennial grass:           |             |       |                                 |               |                |                  |                                           |
| seed and hay               | 8           | 61.8  | SDI                             | 20.04         | 93.50          | 4.67             | 13.40                                     |
| Cotton                     | 12          | 283.9 | DL                              | 0.00          | 230.29         | Dryland          | Dryland                                   |
| Cotton                     | 14          | 124.2 | CP/MESA                         | 17.80         | -226.26        | -12.71           | -4.85                                     |
| Cotton                     | 19          | 120.3 | CP/LEPA                         | 19.90         | 141.92         | 7.13             | 14.17                                     |
| Cotton                     | 22          | 148.7 | CP/LEPA                         | 25.20         | 538.44         | 21.37            | 26.92                                     |
| Cotton                     | 28          | 51.5  | ,<br>SDI                        | 18.80         | 319.90         | 17.02            | 26.32                                     |
| Cotton                     | 29          | 221.6 | DL                              | 0.00          | 194.89         | Dryland          | Dryland                                   |
| Fallow                     | 30          | 21.8  | SDI                             | 0.00          | -215.00        | Fallow           | Fallow                                    |
| Corn                       | 32          | 70    | CP/LEPA                         | 37.00         | -866.35        | -23.41           | -18.55                                    |
| Corn                       | 33          | 70    | CP/LEPA                         | 12.00         | -67.05         | -5.59            | 9.41                                      |
| Multi-crop systems         |             |       |                                 |               |                |                  |                                           |
| Alfalfa/Cotton/Wheat       |             |       |                                 |               |                |                  |                                           |
| /Haygrazer                 | 4           | 123   | CP/LEPA                         | 25.32         | 519.67         | 20.53            | 26.26                                     |
| Cotton/fallow              | 5           | 487.6 | CP/LESA                         | 3.71          | 162.53         | 43.82            | 81.56                                     |
| Cotton/Corn                | 6           | 122.8 | CP/LESA                         | 18.94         | 179.82         | 9.49             | 17.40                                     |
| Cotton/Grain Sorghum       | 11          | 92.5  | Fur                             | 27.80         | -81.18         | -2.92            | 1.58                                      |
| Corn/Cotton                | 15          | 102.8 | SDI                             | 19.31         | 346.96         | 17.97            | 27.95                                     |
| Wheat grain/Cotton         | 18          | 122.2 | CP/MESA                         | 0.93          | 31.02          | 33.35            | 183.89                                    |
| Corn/Triticale             |             |       | •                               |               |                |                  |                                           |
| silage/Cotton              | 20          | 233.4 | CP/LEPA                         | 52.08         | 250.23         | 4.80             | 8.26                                      |
| Cotton/Corn                | 21          | 122.6 | CP/LEPA                         | 17.91         | 157.78         | 8.81             | 17.75                                     |
| Triticale/Corn silage      | 23          | 121.1 | CP/LESA                         | 33.85         | 112.64         | 3.33             | 8.65                                      |
| Corn grain/Cotton          | 24          | 129.7 | CP/LESA                         | 26.54         | 537.36         | 20.25            | 26.27                                     |
| Corn/Cotton                | 26          | 125.2 | CP/LESA                         | 16.57         | 433.62         | 26.16            | 35.81                                     |
| Corn Silage/Cotton         | 27          | 108.5 | SDI                             | 38.20         | 229.80         | 6.02             | 11.17                                     |
| Cotton/Seed millet         | 31          | 121   | CP/LEPA                         | 27.90         | 12.26          | 0.02             | 5.46                                      |
| Crop-Livestock             | 31          | 121   | CI / LLI A                      | 27.70         | 12.20          | 0.11             | 3.40                                      |
| <u>systems</u>             |             |       |                                 |               |                |                  |                                           |
| Perennial grass:           |             |       |                                 |               |                |                  |                                           |
| contract grazing,          | 9           | 237.8 | CP/MESA                         | 8.45          | 72.39          | 8.56             | 25.12                                     |
| /Cotton                    |             | 237.0 | CI / I·ILDII                    | 0.15          | 72.57          | 0.50             | 23.12                                     |
| Perennial grass:           |             |       |                                 |               |                |                  |                                           |
| contract grazing,          | 10          | 173.6 | CP/LESA                         | 30.02         | 592.02         | 19.72            | 24.38                                     |
| /Cotton                    | 10          | 1/3.0 | GI / LLOM                       | 50.02         | 372.02         | 17.74            | 24.50                                     |
| Perennial grass:           |             |       |                                 |               |                |                  |                                           |
| contract grazing,          | 17          | 220.8 | CP/MESA                         | 22.00         | 116.96         | 5.32             | 11.68                                     |
| /Cotton                    | 1/          | 220.0 | CI / MESA                       | 44.00         | 110.70         | 3.32             | 11.00                                     |
| 1SDI – Subsurface drin iri |             | CD .  |                                 | · · ·         | DI             | 1 1 1            |                                           |

<sup>&</sup>lt;sup>1</sup>SDI – Subsurface drip irrigation; CP – center pivot; Fur – furrow irrigation; DL – dryland

**Table A 21.** Summary of results from monitoring 29 producer sites in 2012 (Year 8).

| System                                                                 | Site<br>No. | Acres | Irrigation<br>Type <sup>1</sup> | System inches | \$/system acre | \$/inch<br>water | Gross margin<br>per inch<br>irrigation |
|------------------------------------------------------------------------|-------------|-------|---------------------------------|---------------|----------------|------------------|----------------------------------------|
| Monoculture systems                                                    |             |       |                                 |               |                |                  | Ţ.                                     |
| Cotton                                                                 | 3           | 123.3 | CP/MESA                         | 8.40          | 822.71         | 97.93            | 114.60                                 |
| Cotton/fallow                                                          | 5           | 484.1 | CP/LESA                         | 10.53         | -55.06         | -5.23            | 5.71                                   |
| Corn grain/fallow                                                      | 6           | 122.7 | CP/LESA                         | 17.29         | -76.28         | -4.41            | 2.52                                   |
| Perennial grass: seed and hay                                          | 7           | 130   | CP/LESA                         | 20.60         | 696.38         | 33.80            | 40.60                                  |
| Perennial grass:                                                       | 8           | 61.8  |                                 | 17.30         | 712.46         | 41.18            | 51.30                                  |
| seed and hay                                                           |             |       | SDI                             |               |                |                  |                                        |
| Cotton (No data)                                                       | 12          | 283.8 | DL                              | 0.00          | 0.00           | Dryland          | Dryland                                |
| Cotton/fallow                                                          | 19          | 120.4 | CP/LEPA                         | 7.33          | 177.03         | 24.16            | 40.50                                  |
| Cotton                                                                 | 22          | 148.7 | CP/LEPA                         | 19.50         | 918.83         | 47.12            | 54.30                                  |
| Cotton                                                                 | 30          | 21.8  | SDI                             | 13.60         | -53.60         | -3.94            | 8.93                                   |
| Corn grain                                                             | 33          | 70    | CP/LEPA                         | 18.70         | -298.65        | -15.97           | -6.34                                  |
| <u>Multi-crop systems</u>                                              |             |       | an.                             | 10.06         | = 4 = 40       | 4 = 00           | 64 <b>=</b> 0                          |
| Cotton/Corn grain                                                      | 2           | 60    | SDI                             | 12.06         | 545.42         | 45.23            | 61.73                                  |
| Alfalfa/Cotton/Wheat/<br>Seed sorghum                                  | 4           | 123   | CP/LEPA                         | 15.54         | 320.03         | 20.59            | 26.24                                  |
| Cotton (failed)/Grain sorghum                                          | 11          | 92.5  | Fur                             | 12.00         | 463.87         | 38.66            | 49.07                                  |
| Cotton/Wheat                                                           | 14          | 124.1 | CP/MESA                         | 6.51          | -99.71         | -15.31           | 6.19                                   |
| Cotton (failed)/Grain sorghum                                          | 15          | 101.1 | SDI                             | 27.43         | 591.80         | 21.57            | 27.95                                  |
| Perennial grass:<br>contract grazing,<br>/Cotton/Corn grain            | 17          | 220.7 | CP/MESA                         | 17.40         | 890.46         | 51.18            | 59.23                                  |
| Wheat/Cotton (No data)                                                 | 18          | 122.2 | CP/MESA                         | 0.00          | 0.00           | 0.00             | 0.00                                   |
| Corn/Triticale<br>Silage/Cotton                                        | 20          | 233.3 | CP/LEPA                         | 29.53         | 609.85         | 20.66            | 26.08                                  |
| Wheat/Haygrazer/<br>Cotton                                             | 21          | 122.6 | CP/LEPA                         | 19.41         | 542.88         | 27.97            | 35.19                                  |
| Corn grain/Cotton                                                      | 24          | 129.7 | CP/LESA                         | 19.94         | 788.27         | 39.53            | 47.55                                  |
| Sunflowers/Cotton                                                      | 26          | 125.1 | CP/LESA                         | 14.95         | 235.53         | 15.75            | 25.12                                  |
| Corn Silage/Cotton                                                     | 27          | 108.4 | SDI                             | 16.98         | 953.77         | 56.17            | 66.40                                  |
| Cotton (hail)/Corn<br>grain                                            | 28          | 51.5  | SDI                             | 19.6          | -138.03        | -7.04            | 1.89                                   |
| Cotton/Grain sorghum                                                   | 29          | 221.6 | DL                              | 0.00          | 9.39           | Dryland          | Dryland                                |
| Cotton/Seed millet                                                     | 31          | 121.9 | CP/LEPA                         | 20.36         | 167.05         | 8.21             | 15.08                                  |
| Cotton (hail)/Corn<br>grain                                            | 32          | 70    | CP/LEPA                         | 21.50         | 194.39         | 9.04             | 17.41                                  |
| Cotton (hail)/Corn<br>grain                                            | 34          | 726.6 | CP/LESA                         | 10.00         | 358.39         | 35.84            | 51.84                                  |
| Crop-livestock systems                                                 |             |       |                                 |               |                |                  |                                        |
| Perennial grass:<br>contract grazing,<br>/Cotton                       | 9           | 237.8 | CP/MESA                         | 11.46         | 391.18         | 34.14            | 46.35                                  |
| Perennial grass: contract grazing, /Cotton  1SDI – Subsurface drip irr | 10          | 173.6 | CP/LESA                         | 23.02         | 29.08          | 1.26             | 8.22                                   |

<sup>&</sup>lt;sup>1</sup>SDI – Subsurface drip irrigation; CP – center pivot; Fur – furrow irrigation; DL – dryland

**Table A 22.** Summary of results from monitoring 30 producer sites in 2013 (Year 9).

| System                            | Site<br>No. | Acres | Irrigation<br>Type <sup>1</sup> | System inches | \$/system acre | \$/inch<br>water | Gross margin<br>per inch<br>irrigation |
|-----------------------------------|-------------|-------|---------------------------------|---------------|----------------|------------------|----------------------------------------|
| <u>Monoculture systems</u>        |             |       |                                 |               |                |                  | 3                                      |
| Perennial grass: seed/hay         | 7           | 130   | CP/LESA                         | 10.3          | 403.68         | 39.19            | 52.78                                  |
| Perennial grass: seed/hay         | 8           | 61.8  | SDI                             | 14.1          | 983.54         | 69.75            | 82.17                                  |
| Cotton                            | 11          | 92.5  | FUR                             | 12.0          | -18.10         | -1.51            | 8.91                                   |
| Cotton – No data                  | 12          | 283.8 | DL                              | 0             | 0.00           | Dryland          | Dryland                                |
| Cotton (2 in 2 out)               | 14          | 124.1 | CP/LESA                         | 7.5           | 371.85         | 49.58            | 58.92                                  |
| Cotton                            | 15          | 101.1 | SDI                             | 17.65         | 858.11         | 48.62            | 58.54                                  |
| Fallowed                          | 18          | 122.2 | CP/MESA                         | 0             | 0.00           | 0.00             | 0.00                                   |
| Cotton (2 in 2 out)               | 19          | 120.3 | CP/LEPA                         | 12.0          | 199.93         | 16.66            | 22.49                                  |
| Cotton                            | 22          | 148.7 | CP/LEPA                         | 24.5          | 424.35         | 17.32            | 23.03                                  |
| Cotton                            | 28          | 51.4  | SDI                             | 17.5          | 163.36         | 9.33             | 19.33                                  |
| Cotton (failed, collected ins.)   | 29          | 221.6 | DL                              | 0             | 3.79           | Dryland          | Dryland                                |
| Corn                              | 30          | 21.8  | SDI                             | 13            | -30.84         | -2.37            | 14.17                                  |
| Corn                              | 32          | 70    | CP/LEPA                         | 20.6          | 196.45         | 9.54             | 18.27                                  |
| Corn                              | 33          | 70    | CP/LEPA                         | 26.8          | 188.99         | 7.05             | 13.77                                  |
| <u>Multi-crop systems</u>         |             |       | , i                             |               |                |                  |                                        |
| Cotton/Corn grain                 | 2           | 59.9  | SDI                             | 21.0          | 262.95         | 12.54            | 21.79                                  |
| Cotton/Grain sorghum              | 3           | 123.3 | CP/MEPA                         | 16.2          | 334.56         | 20.59            | 29.21                                  |
| Wheat/Millet/Cotton/Sunflower     | 5           | 484.1 | CP/LESA                         | 10.3          | 454.87         | 44.37            | 58.03                                  |
| Wheat/Cotton                      | 6           | 122.7 | CP/LESA                         | 17.0          | 149.62         | 8.78             | 17.00                                  |
| Dahl/Corn/Sunflower               | 17          | 220.7 | CP/MESA                         | 12.2          | 118.60         | 9.76             | 21.27                                  |
| Trit silage/Corn silage/Cotton    | 20          | 233.3 | CP/LEPA                         | 27.3          | 704.25         | 25.78            | 31.65                                  |
| Wheat/Haygrazer/Corn              | 21          | 122.6 | CP/LEPA                         | 19.9          | 286.14         | 14.38            | 21.16                                  |
| Corn grain/Sunflower              | 24          | 129.7 | CP/LESA                         | 17.2          | 392.45         | 22.78            | 32.07                                  |
| Wheat/Corn                        | 26          | 125.1 | CP/LESA                         | 11.9          | 157.18         | 13.20            | 26.62                                  |
| Corn silage/Cotton                | 27          | 108.4 | SDI                             | 36.3          | 673.31         | 18.55            | 23.98                                  |
| Cotton/Seed millet                | 31          | 121.9 | CP/LEPA                         | 20.0          | 469.53         | 23.52            | 30.53                                  |
| Corn/Sunflower                    | 34          | 726.6 | CP/LESA                         | 14.1          | 445.30         | 31.58            | 40.94                                  |
| Grain sorghum/Corn/Cotton         | 35          | 229.3 | ,<br>SDI                        | 20.0          | 403.82         | 20.22            | 27.70                                  |
| <u>Crop-livestock systems</u>     |             |       |                                 |               |                |                  |                                        |
| Alfalfa/Cotton/Wheat/Seed Sorghum | 4           | 122.9 | CP/LEPA                         | 18.3          | 420.87         | 23.05            | 31.01                                  |
| Perennial grass: contract         | 9           | 2277  | •                               |               | 277.05         | 21.00            | 47.06                                  |
| grazing/cotton                    | 9           | 237.7 | CP/MESA                         | 8.7           | 277.95         | 31.89            | 47.96                                  |
| Perennial grass: contract         | 10          | 173.6 | CP/LESA                         | 18.5          | 242.86         | 13.14            | 21.80                                  |
| grazing/cotton                    | 10          | 1/3.0 | CF/LESA                         | 10.5          | 242.80         | 15.14            | 41.80                                  |

<sup>&</sup>lt;sup>1</sup>SDI – Subsurface drip irrigation; CP – center pivot; FUR – furrow irrigation; DL – dryland

Table A 23. Phase II Summary of results from monitoring 36 producer sites during 2014 (Year 1).

| System                                  | Site<br>No. | Acres | Irrigation<br>Type <sup>1</sup> | System inches | \$/system acre | \$/inch<br>water | Gross margin<br>per inch<br>irrigation |
|-----------------------------------------|-------------|-------|---------------------------------|---------------|----------------|------------------|----------------------------------------|
| <u>Monoculture systems</u>              |             |       |                                 |               |                |                  | ITTIGUTION                             |
| Perennial grass: seed/hay               | 7           | 130   | CP/LESA                         | 15.5          | -63.58         | -4.10            | 4.93                                   |
| Perennial grass: seed/hay               | 8           | 61.8  | SDI                             | 16.0          | 22.23          | 1.39             | 12.33                                  |
| Cotton (2 in 2 out)                     | 14          | 124.1 | CP/LESA                         | 4.5           | 102.08         | 22.68            | 38.25                                  |
| Cotton                                  | 15          | 101.1 | ,<br>SDI                        | 15.2          | 150.58         | 9.89             | 21.39                                  |
| Cotton (2 in 2 out)                     | 19          | 120.3 | CP/LEPA                         | 4.3           | 43.82          | 10.31            | 26.77                                  |
| Corn silage                             | 20          | 233.3 | CP/LEPA                         | 14.2          | -143.00        | -10.07           | 2.61                                   |
| Corn                                    | 22          | 148.7 | CP/LEPA                         | 21.0          | 478.71         | 22.80            | 31.37                                  |
| Corn silage                             | 27          | 108.4 | ,<br>SDI                        | 12.7          | -162.75        | -12.81           | 4.11                                   |
| Cotton                                  | 28          | 51.4  | SDI                             | 8.0           | 113.13         | 14.14            | 36.02                                  |
| Cotton                                  | 29          | 221.7 | DL                              | 0             | 43.04          | Dryland          | Dryland                                |
| Cotton                                  | 30          | 21.8  | SDI                             | 13            | 256.73         | 19.75            | 33.21                                  |
| Cotton (failed replanted grain sorghum) | 32          | 70    | CP/LEPA                         | 14.2          | 104.46         | 7.36             | 20.03                                  |
| Cotton                                  | 33          | 70    | CP/LEPA                         | 13.9          | -18.75         | -1.35            | 11.60                                  |
| Cotton (1 year)                         | C50         | 120.6 | CP/LESA                         | 8.4           | 86.69          | 10.38            | 27.15                                  |
| Cotton (1 year)                         | C51         | 45.7  | ,<br>SDI                        | 9.4           | 244.15         | 25.97            | 44.59                                  |
| Cotton (1 year)                         | C52         | 135   | CP/LESA                         | 15.5          | -176.98        | -11.42           | -2.39                                  |
| Cotton (1 year)                         | C53         | 50    | SDI                             | 8.5           | 108.94         | 12.89            | 33.60                                  |
| Cotton (1 year)                         | C54         | 85    | SDI                             | 8.3           | 74.61          | 8.99             | 30.07                                  |
| Corn silage (1 year)                    | C56         | 45    | CP/LESA                         | 14.4          | 721.08         | 50.08            | 62.58                                  |
| Corn silage (1 year)                    | C57         | 115   | CP/LESA                         | 11.6          | 422.08         | 36.54            | 52.13                                  |
| Alfalfa (1 year)                        | C59         | 76    | ,<br>SDI                        | 15.1          | 1740.88        | 115.29           | 129.53                                 |
| Grain sorghum (1 year)                  | C60         | 59.5  | CP/LESA                         | 9.8           | -94.87         | -9.68            | 4.61                                   |
| <u>Multi-crop systems</u>               |             |       |                                 |               |                |                  |                                        |
| Millet/Cotton/Sunflower                 | 5           | 484.1 | CP/LESA                         | 12.5          | 410.76         | 32.82            | 44.01                                  |
| Corn/Cotton                             | 6           | 122.7 | CP/LESA                         | 13.5          | 61.24          | 4.55             | 16.41                                  |
| Grain Sorghum/Cotton                    | 11          | 92.3  | FUR/SDI                         | 11.0          | -60.97         | -5.55            | 8.16                                   |
| Perennial grass/Corn/Sunflower          | 17          | 220.7 | CP/MESA                         | 5.4           | 105.17         | 19.38            | 47.00                                  |
| Wheat/Haygrazer/Cotton                  | 21          | 122.0 | CP/LEPA                         | 12.8          | 122.96         | 9.59             | 18.55                                  |
| Corn grain/Sunflower                    | 24          | 129.7 | CP/LESA                         | 12.7          | 413.56         | 32.47            | 45.04                                  |
| Corn/Sunflower                          | 26          | 125.1 | CP/LESA                         | 11.5          | 474.52         | 41.19            | 55.07                                  |
| Grain sorghum/Forage Sorghum            | 31          | 121.9 | CP/LEPA                         | 16.6          | 643.26         | 38.78            | 47.22                                  |
| Corn/Cotton                             | 34          | 726.0 | CP/LESA                         | 12.6          | 270.78         | 21.43            | 21.50                                  |
| Grain sorghum/Corn/Cotton               | 35          | 230.2 | SDI                             | 12.3          | -85.97         | -7.00            | 8.31                                   |
| Triticale/Alfalfa (1 year)              | C58         | 120   | CP/LESA                         | 16.7          | 399.57         | 24.00            | 33.61                                  |
| Crop-Livestock systems                  |             |       |                                 |               |                |                  |                                        |
| Alfalfa/Grain Sorg./Wheat/              |             |       |                                 |               |                |                  |                                        |
| Haygrazer/Seed sorghum                  | 4           | 122.9 | CP/LEPA                         | 17.4          | 329.52         | 18.89            | 27.21                                  |
| Perennial grass: Contract               |             |       | ,                               |               |                |                  |                                        |
| grazing/Cotton/Grain Sorghum            | 9           | 237.7 | CP/MESA                         | 5.1           | 5.02           | 0.99             | 28.47                                  |
| Perennial grass: Contract               | 10          | 173.6 | CP/LESA                         | 11.2          | 22.53          | 2.01             | 15.71                                  |
| grazing/Corn/Cotton                     |             |       | <u> </u>                        |               |                | 2.01             | 15./1                                  |

<sup>&</sup>lt;sup>1</sup>SDI – Subsurface drip irrigation; CP – center pivot; FUR – furrow irrigation; DL – dryland

**Table A 24.** Phase I summary of crop production, irrigation, and economic returns within all production sites during 2005-2013.

| Crop                     |                                                                                                                                           | 2005      | 2006           | 2007         | 2008                 | 2009         | 2010             | 2011            | 2012       | 2013          | Crop year average |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|--------------|----------------------|--------------|------------------|-----------------|------------|---------------|-------------------|
| СГОР                     | Mean yields, per acre (only includes sites producing these crops, includes dryland) {Yield averages across harvested fields within sites} |           |                |              |                      |              |                  |                 |            |               | average           |
|                          | Mean yielus, per                                                                                                                          |           | ciudes sites p | oducing thes | e crops, menue       | Suryianu) (1 | l leiu averagi   | es across narve | l leius wi | lullii sites} |                   |
| Cotton                   |                                                                                                                                           |           |                |              |                      |              |                  |                 |            |               |                   |
|                          |                                                                                                                                           | 1,117     |                |              |                      | 1,223        | 1,261            |                 |            | 1,470         |                   |
|                          | Lint, lbs                                                                                                                                 | (22)      | 1,379 (20)     | 1,518 (13)   | 1,265 (11)           | (16)         | (15)             | 1,166 (19)      | 1,299 (16) | (19)          | 1,300             |
|                          | Seed, tons                                                                                                                                | 0.80 (22) | 0.95 (20)      | 1.02 (13)    | 0.86 (11)            | 0.81 (16)    | 0.83 (15)        | 0.77 (19)       | 0.92 (16)  | 1.0 (19)      | 0.9               |
| Corn                     |                                                                                                                                           |           |                |              |                      |              |                  |                 |            |               |                   |
|                          | Grain, lbs                                                                                                                                | 12,729    |                | 10.000.613   |                      | 12,613       | 12,685           |                 |            | 11,982        | 40.400            |
|                          | C:1 t                                                                                                                                     | (3)       | 8,814 (4)      | 12,229 (4)   | 10,829 (8)           | (4)          | (10)             | 6,766 (4)       | 7,475 (7)  | (9)           | 10,680            |
|                          | Silage, tons                                                                                                                              | 30.9 (2)  | 28.3 (3)       | 27.3 (3)     | -                    | 38.3 (1)     | 31 (2)           | 20.5 (3)        | 6.3 (4)    | 32 (5)        | 26.8              |
| Sorghum                  | Caria III.a                                                                                                                               |           |                |              |                      |              |                  |                 |            |               |                   |
|                          | Grain, lbs                                                                                                                                | 4,147 (3) | 2,987 (1)      | 6,459 (4)    | 6,345 (5)            | 6,907 (3)    | 4,556 (3)        | 1,196 (1)       | 6,358 (2)  | 8,124 (3)     | 5,231             |
|                          | Silage, tons                                                                                                                              | 26.0 (1)  | 20.4 (2)       | 25.0 (1)     | 11.3 (2)             | 9.975 (2)    | -                | -               | -          | -             | 18.5              |
|                          | Seed, lbs                                                                                                                                 | -         | -              | -            | 3,507 (1)            | -            | -                | -               | 3,396 (1)  | -             | 3,438             |
| Wheat                    |                                                                                                                                           |           |                |              |                      |              |                  |                 |            |               |                   |
|                          | Grain, lbs                                                                                                                                | 2,034 (1) | -              | 2,613 (5)    | 4,182 (5)            | 2,061 (6)    | 2,860 (6)        | 3,060 (1)       | 2,052 (3)  | 798 (3)       | 2,458             |
|                          | Silage, tons                                                                                                                              | 16.1 (1)  | 7.0 (1)        | -            | 7.5 (1)              | 3.71 (1)     | -                | -               | -          | -             | 8.6               |
|                          | Hay, tons                                                                                                                                 | -         | -              | -            | -                    | 2.5 (1)      | -                | -               | -          | 0.5 (2)       | 2.5               |
| 0at                      |                                                                                                                                           |           |                |              |                      |              |                  |                 |            |               |                   |
|                          | Silage, tons                                                                                                                              | -         | 4.9 (1)        | -            | -                    | 12.5 (1)     | -                | -               | -          | -             | 8.7               |
| D 1                      | Hay, tons                                                                                                                                 | -         | 1.8 (1)        | -            | -                    | -            | -                | -               | -          | -             | 1.8               |
| Barley                   | Grain, lbs                                                                                                                                |           |                |              | 2 122 (1)            |              |                  |                 |            |               | 2 122             |
|                          | Hay, tons                                                                                                                                 | -         | -              | -            | 3,133 (1)<br>5.5 (1) | -            | -                | -               | -          | -             | 3,133<br>5.5      |
| Triticale                | nay, tons                                                                                                                                 | -         | -              | -            | 5.5 (1)              | -            | -                | -               | -          | -             | 5.5               |
| TTILICAIE                | Hay, tons                                                                                                                                 | _         | -              | -            | -                    | _            | _                | 3(1)            | _          | _             | 3.0               |
|                          | Silage, tons                                                                                                                              | -         | 21.3 (1)       | 17.5 (1)     | -                    | -            | 13 (2)           | 2.5(2)          | 12 (1)     | -             | 13.3              |
| Sunflower                |                                                                                                                                           |           |                | (2)          |                      |              | ( <del>-</del> ) | (=)             | (-)        |               | _5.0              |
|                          | Seed, lbs                                                                                                                                 | -         | -              | -            | 1,916 (2)            | 2,274 (4)    | -                | -               | 1903 (1)   | 2,635 (4)     | 2,182             |
| Pearl millet<br>for seed | ,                                                                                                                                         |           |                |              |                      | , ,          |                  |                 |            |               | ,                 |
|                          | Seed, lbs                                                                                                                                 | 3,876 (1) | 2,488 (1)      | 4,002 (2)    | 2,097 (2)            | -            | -                | 1,800(1)        | 2,014 (1)  | 3,600 (3)     | 2,840             |
| Perennial forage         |                                                                                                                                           |           |                |              |                      |              |                  |                 |            |               |                   |
| WW-BDahl                 |                                                                                                                                           |           |                |              |                      |              |                  |                 |            |               |                   |
|                          | Seed, PLS lbs                                                                                                                             | -         | -              | -            | 30 (1)               | 83.14 (1)    | -                | -               | 62.8 (1)   | -             | 58.6              |
|                          | Hay, tons                                                                                                                                 | -         | -              | -            | 2.5 (1)              | -            | -                | -               | -          | -             | 2.5               |
| Sideoats                 |                                                                                                                                           |           |                |              |                      |              |                  |                 |            |               |                   |
|                          | Seed, PLS lbs                                                                                                                             | 313 (2)   | 268 (2)        | 183.5 (3)    | 192.9 (3)            | 362 (3)      | 212.5 (2)        | 200.75 (2)      | 267 (2)    | 315 (2)       | 257               |
|                          | Hay, tons                                                                                                                                 | 3.6 (2)   | 2.1 (2)        | 1.46 (3)     | 1.66 (3)             | 1.83 (3)     | 1.1 (2)          | 0.5 (2)         | 1.9 (2)    | 1.4 (2)       | 1.7               |
|                          |                                                                                                                                           |           |                |              |                      |              |                  |                 | ĺ          |               |                   |

| _                          |                     |              |                    |                    |           |           |           |                    |                     |           | Crop year    |
|----------------------------|---------------------|--------------|--------------------|--------------------|-----------|-----------|-----------|--------------------|---------------------|-----------|--------------|
| Crop                       |                     | 2005         | 2006               | 2007               | 2008      | 2009      | 2010      | 2011               | 2012                | 2013      | average      |
| Other                      |                     |              |                    |                    |           |           |           |                    |                     |           |              |
|                            | Hay, tons           | -            | -                  | -                  | 0.11(1)   | 4.3 (1)   | 2.4 (1)   | •                  | -                   | -         | 2.3          |
|                            |                     |              |                    |                    |           |           |           |                    |                     |           |              |
| Alfalfa                    |                     |              |                    |                    |           |           |           |                    |                     |           |              |
| _                          | Hay, tons           | 8.3 (1)      | 9.18 (1)           | 4.90 (1)           | 12.0 (1)  | 9.95 (1)  | 9.0 (1)   | 10.6 (1)           | 8.4 (1)             | 9.5 (1)   | 9.1          |
| Annual                     |                     |              |                    |                    |           |           |           |                    |                     |           |              |
| forage                     |                     |              |                    |                    |           |           |           |                    |                     |           |              |
| Forage                     |                     |              |                    |                    |           |           |           |                    |                     |           |              |
| sorghum                    | Han tone            |              |                    |                    |           |           |           | ( 0 (1)            | 1.9 (2)             | 1.7 (1)   | 3.5          |
|                            | Hay, tons           | -            | -                  | -                  | -         | -         | -         | 6.8 (1)            | 1.9 (2)             | 1.7 (1)   | 3.5          |
|                            |                     |              |                    |                    |           |           |           |                    |                     |           |              |
| Precipitation              | n inches            |              |                    |                    |           |           |           |                    |                     |           |              |
| (including a               | •                   | 15.0         | 15.4               | 27.3               | 21.7      | 15.7      | 28.9      | 5.3                | 10.0                | 13.2      | 16.9         |
| including a                |                     | 13.0         | 10.1               | 17.13              | 21.7      | 13.7      | 20.7      | 5.5                | 10.0                | 13.2      | 10.7         |
| By System                  |                     | inches       | inches             | inches             | inches    | inches    | inches    | inches             | inches              | inches    | inches       |
| _ <u></u>                  |                     | applied      | applied            | applied            | applied   | applied   | applied   | applied            | applied             | applied   | applied      |
| Total irriga               | tion water          |              |                    |                    | •         |           | •         |                    |                     |           |              |
| (system ave                | rage)               | 9.2 (26)     | 14.8 (26)          | 11.0 (25)          | 13.3 (23) | 11.5 (24) | 9.2 (24)  | 20.9 (27)          | 16.0 (26)           | 16.3 (29) | 13.6         |
|                            |                     | inches       | inches             | inches             | inches    | inches    | inches    | inches             | inches              | inches    | inches       |
| By <u>Crop</u>             | Irrigation          | applied      | applied            | applied            | applied   | applied   | applied   | applied            | applied             | applied   | applied      |
| Cotton                     | lint                | 8.7 (19)     | 14.3 (19)          | 11.3 (11)          | 12.2 (10) | 11.5 (15) | 7.6 (16)  | 23.2 (19)          | 14.8 (16)           | 18.4 (17) | 13.6         |
| Corn                       | grain               | 17.4 (3)     | 21.0 (4)           | 12.7 (4)           | 22.3 (8)  | 20.5 (4)  | 13.0 (10) | 21.2 (4)           | 22.2 (7)            | 22.0 (9)  | 19.1         |
| Corn                       | silage              | 18.0 (2)     | 24.0 (3)           | 14.3 (3)           | -         | 24.3 (1)  | 15.5 (3)  | 36.1 (3)           | 22.4 (4)            | 27.9 (4)  | 22.8         |
| Sorghum                    | grain               | 5.3 (3)      | 4.2(1)             | 6.6 (4)            | 12.3 (5)  | 9.4 (3)   | 6.1 (2)   | 27.8 (1)           | 19.7 (2)            | 16.9 (3)  | 12.0         |
| Sorghum                    | silage              | 15.0 (1)     | 9.0 (1)            | 11.6 (1)           | 11.5 (1)  | 15.7 (1)  | -         | -                  | -                   | -         | 12.6         |
| Wheat                      | grain               | -            | -                  | 5.3 (3)            | 7.7 (4)   | 6.4 (5)   | 4.8 (3)   | 7.9 (2)            | 4.2 (3)             | 8.2 (5)   | 6.4          |
| Wheat                      | silage              | 7.5 (1)      | 16.3 (1)           | -                  | 5.5 (1)   | 15.7 (1)  | -         | -                  | -                   | -         | 11.3         |
| Oat                        | silage              | -            | 4.3 (1)            | -                  | -         | 15.7 (1)  | -         | -                  | -                   | -         | 10.0         |
| Oat                        | hay                 | -            | 4.9 (1)            | -                  | -         | -         | -         |                    | -                   | -         | 4.9          |
| Triticale                  | silage              | 2.5 (1)      | 10.0 (1)           | 12.9 (1)           | -         | -         | 6.9 (2)   | 17.8 (2)           | 19.6 (1)            | 5.6 (1)   | 10.8         |
| Barley                     | grain               | -            | -                  | -                  | 12.8 (1)  | -         | -         | -                  | -                   | -         | 12.8         |
| Small grain                | (grazing)           | 0.0 (1)      | 0.0 (1)            | 0.0 (1)            | -         | - ( ( ( ) | -         | -                  | -                   | -         | 0.0          |
| Small grain                | (grains)            | -<br>F 0 (1) | - 10.2 (2)         | 5.3 (3)            | 8.7 (5)   | 6.4 (5)   | 3.8 (4)   | 7.9 (2)            | 4.2 (3)             | 8.2 (5)   | 6.4          |
| Small grain                | (silage)            | 5.0 (1)      | 10.2 (3)           | 12.0 (1)           | 5.5 (1)   | 15.7 (1)  | 6.9 (2)   | 17.8 (2)<br>24 (1) | 19.6 (1)            | 5.6 (1)   | 10.9<br>11.3 |
| Small grain<br>Small grain | (hay)<br>(all uses) | 2.5 (2)      | 4.9 (1)<br>5.9 (6) | 5.0 (1)<br>6.0 (5) | 8.2 (6)   | 8.0 (6)   | 3.6 (8)   | 13.9 (4)           | 7.2 (4)             | 7.8 (6)   | 7.0          |
| Small grain<br>Sunflower   | seed                | 6.0 (1)      | 5.9 (0)            | o.u (5)            | 9.6 (2)   | 8.0 (6)   | 3.0 (8)   | 13.9 (4)           | 7.2 (4)<br>15.1 (1) | 12.3 (4)  | 10.4         |
| Millet                     | seed                | 11.5 (1)     | 10.2 (1)           | 8.1 (2)            | 9.6 (2)   | - 0.9 (4) | 9.9(1)    | 14.4 (1)           | 22.7 (1)            | 18.3 (3)  | 14.9         |
| Dahl                       | seeu                | 11.3 (1)     | 10.2 (1)           | 0.1 (2)            | 9.0 (4)   | -         | 9.9(1)    | 17.7 (1)           | 44.7 (1)            | 10.3 (3)  | 14.7         |
| Dani                       | hay                 | 6.5 (2)      | -                  | 0 (1)              | 4.6 (1)   | _         | -         | -                  | _                   | _         | 3.7          |
|                            | seed                | -            | _                  | 6.1 (2)            | 9.4 (1)   | 8.5 (1)   | -         | _                  | 8.2 (1)             | _         | 7.6          |
|                            | grazing             | 0 (1)        | 11.4 (2)           | 5.5 (2)            | -<br>-    | 5.9 (2)   | 2.8 (2)   | 8.9 (2)            | 22.7 (1)            | 5.6 (2)   | 8.5          |
| Sideoats                   | Si dziiig           | V (1)        | 11.1(2)            | 5.5 (2)            |           | 5.7 (2)   | 2.0 (2)   | 0.7 (2)            | 22.7 (1)            | 5.0 (2)   | 0.0          |
| J.ucout5                   | seed                | 10.5 (2)     | 7.8 (2)            | 11.9 (2)           | 8.0 (3)   | 15.3 (3)  | 2.8 (2)   | 13.6 (2)           | 19.0 (2)            | 12.2 (2)  | 11.2         |
| Bermuda                    | 3364                | 10.0 (2)     | (2)                | 11.7 (1)           | 5.5 (5)   | 10.0 (0)  | 2.0 (2)   | 10.0 (1)           | 15.5 (2)            | 12.2 (2)  | 1110         |
|                            | grazing             | -            | -                  | 3.8 (1)            | 6.2 (1)   | 5.1 (1)   | 0 (1)     | 17.1 (1)           | 12.0 (1)            | -         | 7.4          |

|                                                    |                             |                     |                   |                   |                   |                   |                   |                   |                   |                   | Crop Year         |
|----------------------------------------------------|-----------------------------|---------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Crop                                               |                             | 2005                | 2006              | 2007              | 2008              | 2009              | 2010              | 2011              | 2012              | 2013              | Average           |
| By <u>Crop</u>                                     | Irrigation                  | inches<br>applied   | inches<br>applied | inches<br>applied | inches<br>applied | inches<br>applied | inches<br>applied | inches<br>applied | inches<br>applied | inches<br>applied | inches<br>applied |
| Other Perennials/Annuals                           |                             |                     |                   |                   |                   |                   |                   |                   |                   |                   |                   |
|                                                    | hay                         | -                   | 10.9 (3)          | 5.0 (1)           | 6.4 (2)           | 6.7 (2)           | 8.5 (1)           | 21.5 (2)          | 13.9 (2)          | 3.6 (1)           | 9.6               |
|                                                    | grazing                     | 1.0(1)              | 3.2 (3)           | 4.4 (4)           | 7.6 (4)           | 3.3 (2)           | 7.6 (5)           | 16.5 (2)          | 4.2 (1)           | 5.7 (2)           | 5.9               |
| Perennial gr                                       | Perennial grasses (grouped) |                     |                   |                   |                   |                   |                   |                   |                   |                   |                   |
|                                                    | seed                        | 10.5 (2)            | 7.8 (2)           | 9.0 (5)           | 8.6 (4)           | 13.6 (4)          | 2.8 (2)           | 13.6 (2)          | 15.4 (3)          | 12.2 (2)          | 10.4              |
|                                                    | grazing                     | 1.0 (3)             | 8.8 (4)           | 4.9 (4)           | 5.2 (3)           | 4.9 (4)           | 2.3 (4)           | 12.4 (3)          | 13.0 (2)          | 3.7 (3)           | 6.2               |
|                                                    | hay                         | 8.5 (4)             | 0(2)              | 0 (4)             | 1.9 (4)           | 0 (3)             | 0 (2)             | 0 (2)             | 0 (2)             | 0 (2)             | 1.2               |
|                                                    | all uses                    | 6.7 (6)             | 6.6 (6)           | 5.2 (7)           | 5.2 (7)           | 6.5 (7)           | 1.9 (6)           | 10.0 (5)          | 10.6 (5)          | 5.1 (5)           | 6.4               |
| Alfalfa                                            |                             |                     |                   |                   |                   |                   |                   |                   |                   |                   |                   |
|                                                    | all uses                    | 10.3 (1)            | 34.5 (1)          | 10.6 (1)          | 15.6 (1)          | 18.6 (1)          | 15.6 (1)          | 44.1 (1)          | 28.3 (1)          | 31.6 (1)          | 23.2              |
|                                                    |                             |                     |                   |                   |                   |                   |                   |                   |                   |                   |                   |
|                                                    |                             |                     |                   | Income            | and Expense       | , \$/system       | acre              |                   |                   |                   |                   |
| Projected re                                       | Projected returns           |                     | \$773.82          | \$840.02          | \$890.37          | \$745.82          | \$961.87          | \$951.66          | \$1,063.98        | \$1,171.08        | \$895.46          |
|                                                    | Costs                       |                     |                   |                   |                   |                   |                   |                   |                   |                   |                   |
|                                                    | e costs (all sites)         | \$444.88            | \$504.91          | \$498.48          | \$548.53          | \$507.69          | \$537.14          | \$658.68          | \$578.28          | \$709.95          | \$554.28          |
| Total fixed co                                     | ,                           | \$77.57<br>\$522.45 | \$81.81           | \$81.77           | \$111.98          | \$110.65          | \$153.55          | \$149.98          | \$135.53          | \$137.19          | \$115.56          |
|                                                    | Total all costs (all sites) |                     | \$586.72          | \$580.25          | \$660.51          | \$618.34          | \$690.69          | \$808.67          | \$713.80          | \$846.87          | \$669.81          |
|                                                    | Gross Margin                |                     |                   |                   |                   |                   |                   |                   |                   |                   |                   |
|                                                    | Per system acre (all sites) |                     | \$268.91          | \$341.54          | \$341.84          | \$238.13          | \$424.74          | \$313.83          | \$469.92          | \$454.90          | \$341.05          |
| Per acre-inch irrigation water (irrigated only)    |                             | \$33.51             | \$22.53           | \$34.01           | \$31.17           | \$22.95           | \$71.50           | \$24.76           | \$32.72           | \$33.45           | \$34.07           |
| Net returns over all costs                         |                             |                     |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| Per system acre (all sites)                        |                             | \$138.09            | \$187.10          | \$259.77          | \$229.86          | \$127.48          | \$271.19          | \$163.85          | \$334.39          | \$317.98          | \$225.52          |
| Per acre-inch of irrigation water (irrigated only) |                             | \$21.58             | \$15.88           | \$24.99           | \$20.89           | \$9.99            | \$43.71           | \$10.16           | \$22.89           | \$23.70           | \$21.53           |
| Per pound of nitrogen (all sites)                  |                             | \$1.62              | \$0.81            | \$2.34            | \$1.48            | \$0.87            | \$2.40            | \$1.92            | \$2.51            | \$2.78            | \$1.86            |

# **Terminated Site Data (2005-2014)**

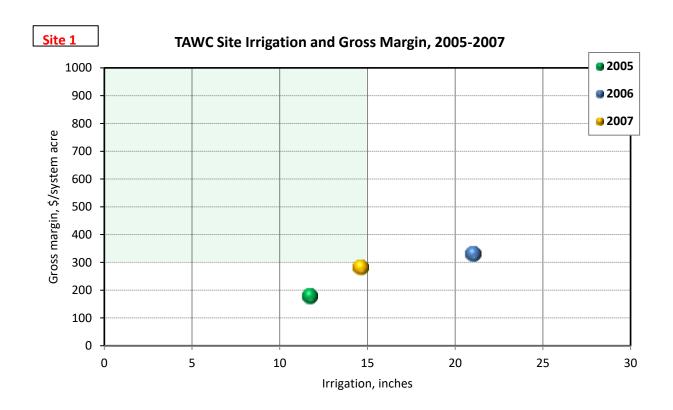
# Field 1 24.6 ac Field 3 37.7 ac Field 3 37.0 ac

# SITE 1 - TERMINATED 2007

Site acres: 135.2

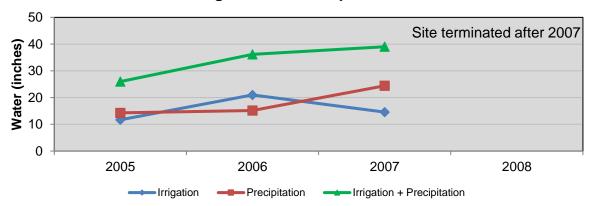
Soil types:

PuA-Pullman clay loam, 0 to 1%

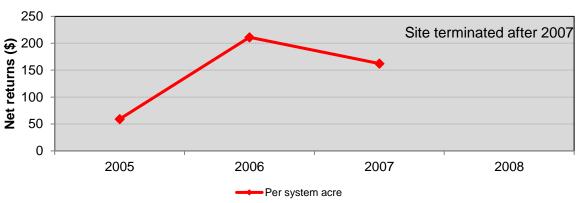

Irrigation:

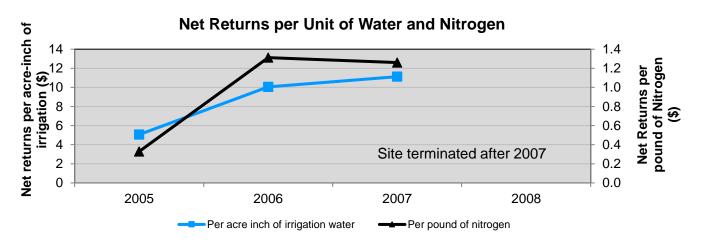
Sub-Surface Drip (SDI) 850 gpm

Number of wells: 2


Fuel Source: 1 Natural gas,

1 Electric





Site 1

## **Irrigation and Precipitation**



## **Net Returns per System Acre**





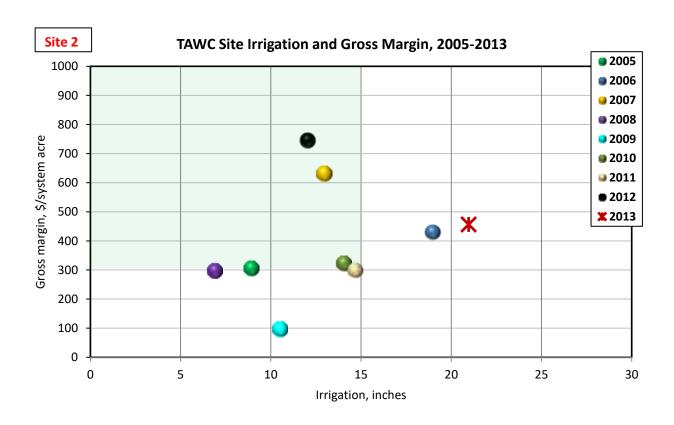
# SITE 2 - TERMINATED 2013



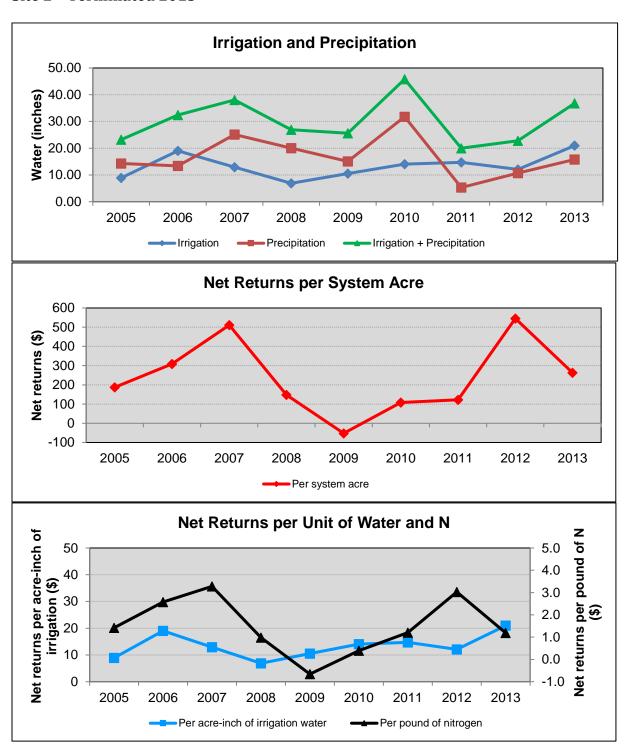
### **Description:**

Site acres: 60

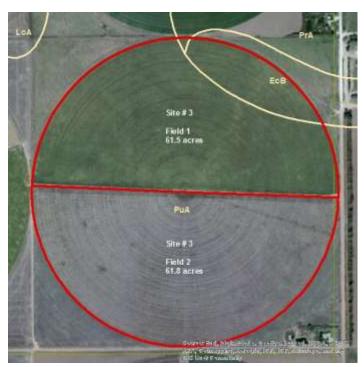
Soil types:


PuA-Pullman clay loam, 0 to 1% OcB-Olton clay loam, 1 to 3%

Irrigation:


Sub-Surface Drip (SDI) 3600 gpm

Number of wells: 2


Fuel Source: Electric



Site 2 - Terminated 2013



# SITE 3 - TERMINATED 2013

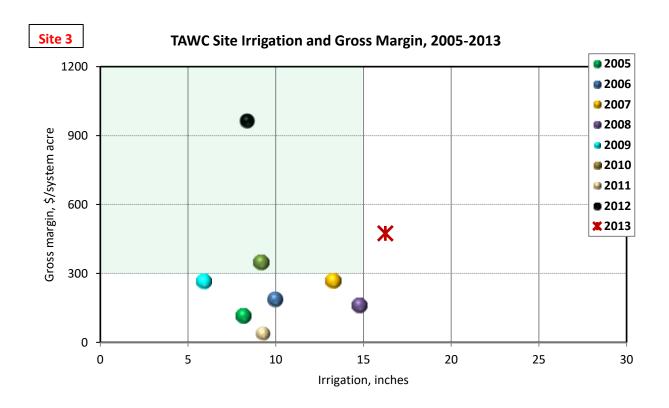


### **Description:**

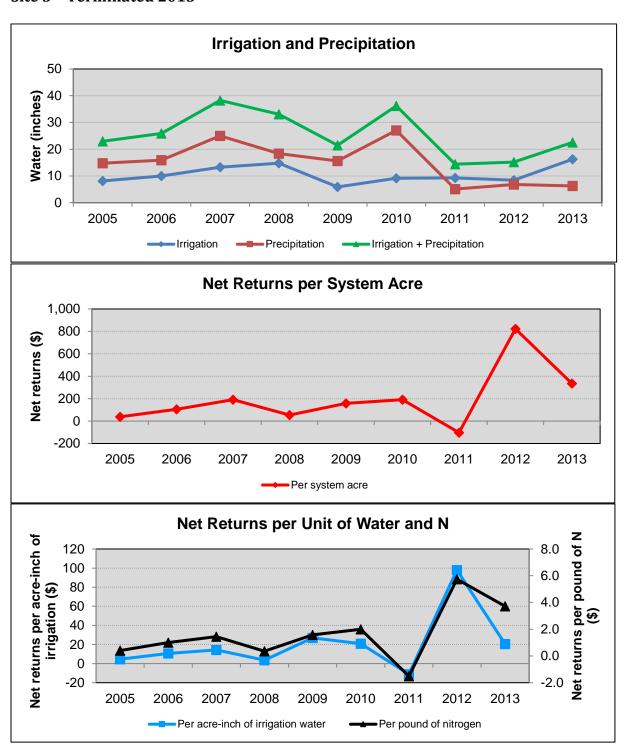
Site acres: 123.3

Soil types:

PuA-Pullman clay loam, 0 to 1% EcB-Estacado clay loam; 1 to 3%


Irrigation:

Center Pivot (MESA) 450 gpm


Number of wells: 2

Fuel Source: 1 Natural Gas,

1 Electric



Site 3 - Terminated 2013

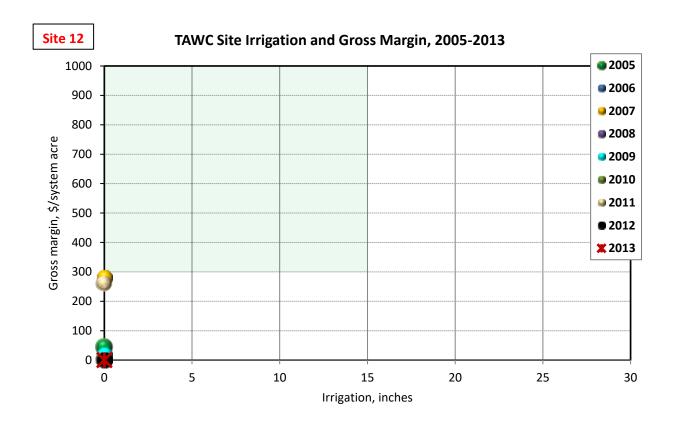


## SITE 12 - TERMINATED 2013

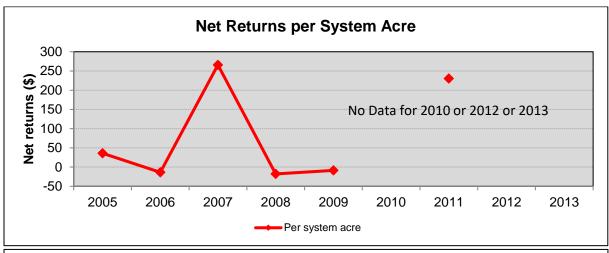


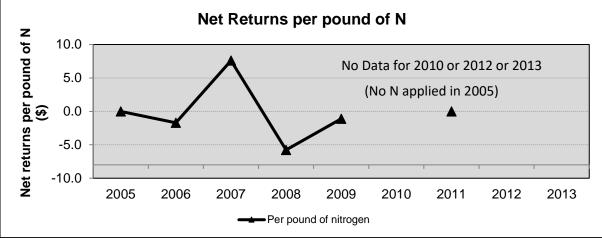
### **Description:**

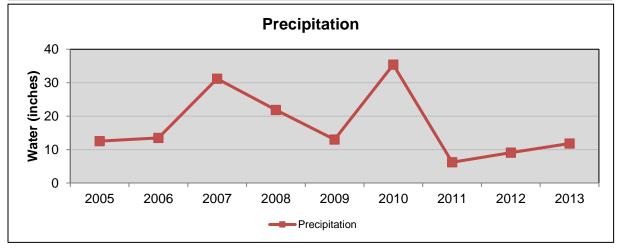
Site acres: 283.8


Soil types:

PuA-Pullman clay loam, 0 to 1%


Irrigation:


Dryland (DL) na gpm


Number of wells: na



Site 12 - Dryland Site



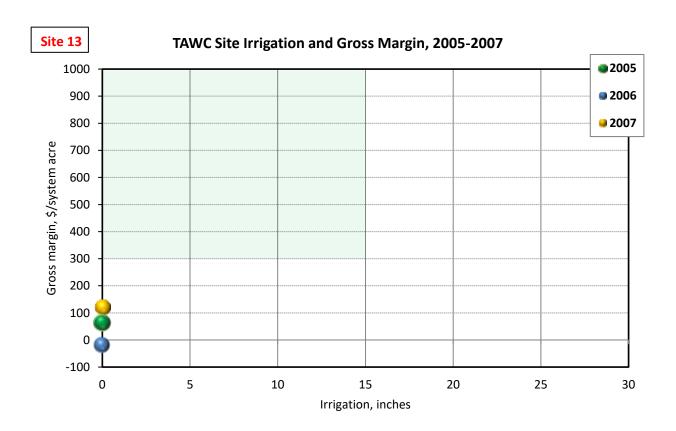




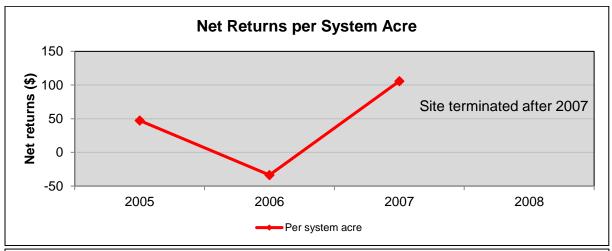
SITE 13 - TERMINATED 2007

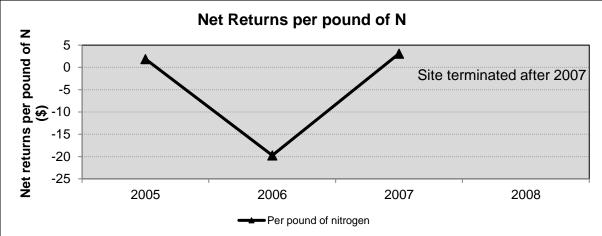


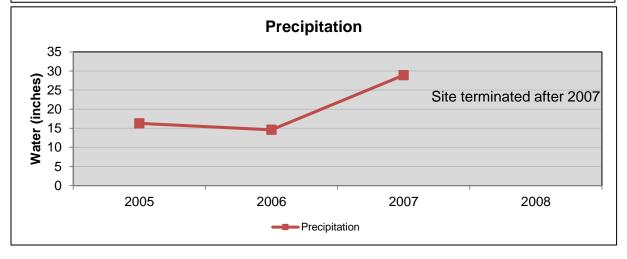
Site acres: 319.5


Soil types:

PuA-Pullman clay loam, 0 to 1%


Irrigation:


Dryland (DL) na gpm


Number of wells: na



Site 13 - Dryland Site







## SITE 16 - TERMINATED 2007

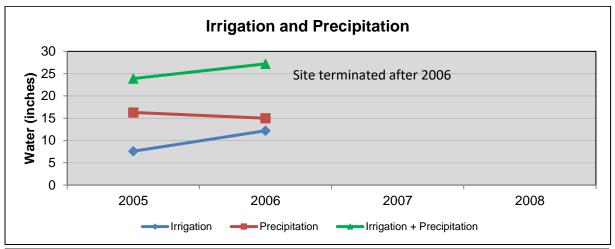


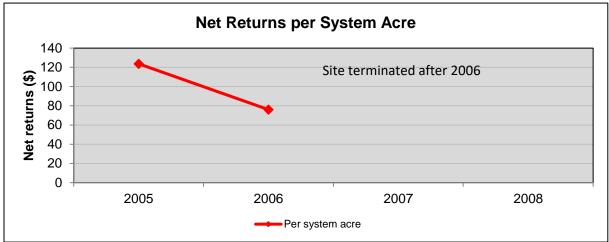
### **Description:**

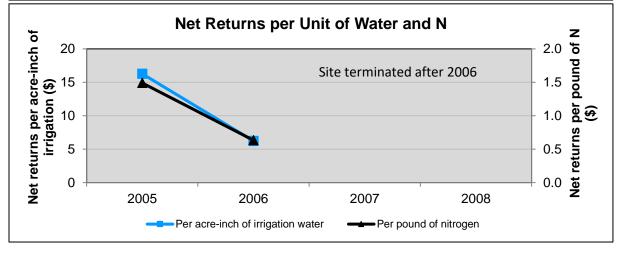
Site acres: 143.1

Soil types:

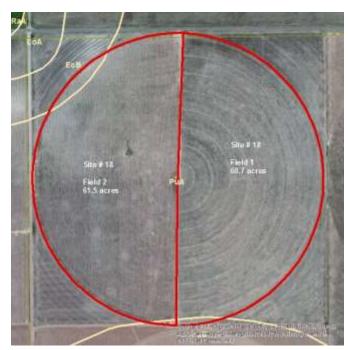
PuA-Pullman clay loam, 0 to 1%


Irrigation:


Center Pivot (LESA) 600 gpm


Number of wells: 3




**Site 16** 





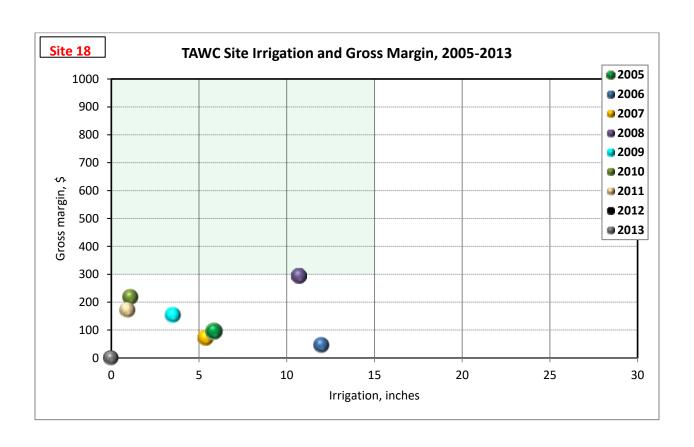


## SITE 18 - TERMINATED 2013

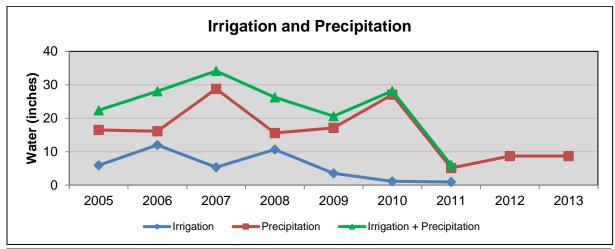


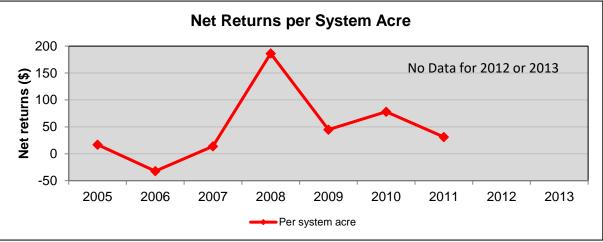
### **Description:**

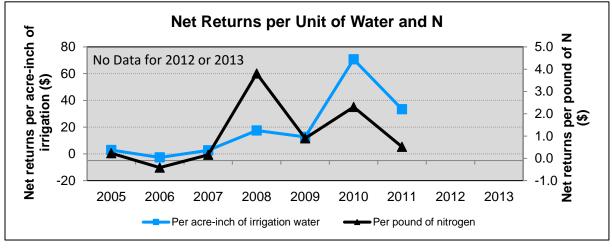
Site acres: 122.2


Soil types:

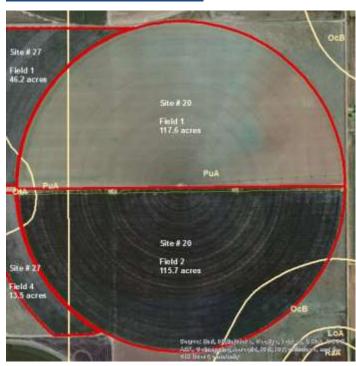
PuA-Pullman clay loam, 0 to 1% EcB-Estacado clay loam; 1 to 3%


Irrigation:


Center Pivot (LEPA) 250 gpm


Number of wells: 3




Site 18 - Terminated 2013



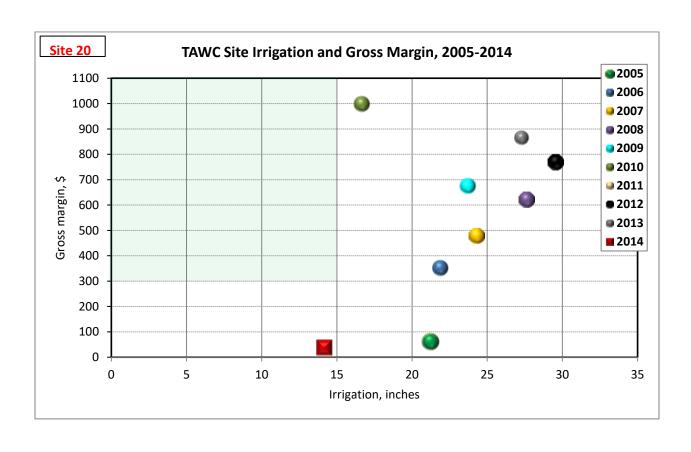




SITE 20 - TERMINATED 2014



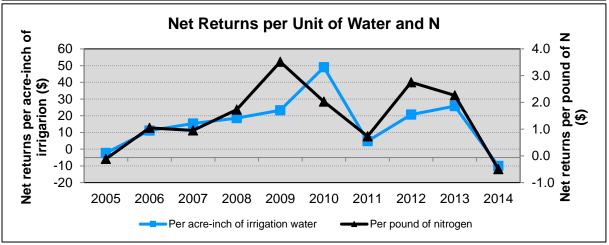
Site acres: 233.3


Soil types:

PuA-Pullman clay loam; 0 to 1% OcB-Olton clay loam, 1 to 3%


Irrigation:


Center Pivot (LEPA) 1000 gpm


Number of wells: 3




Site 20

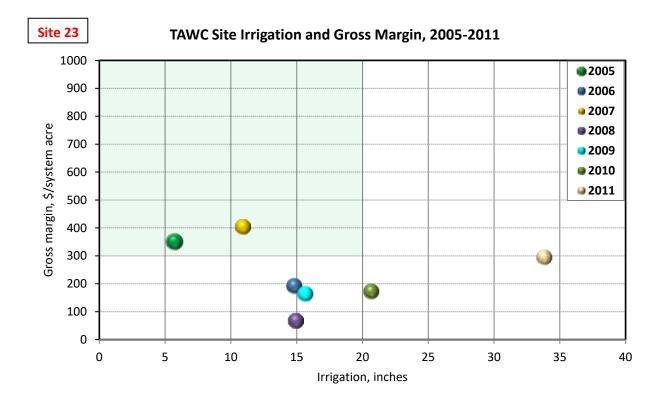




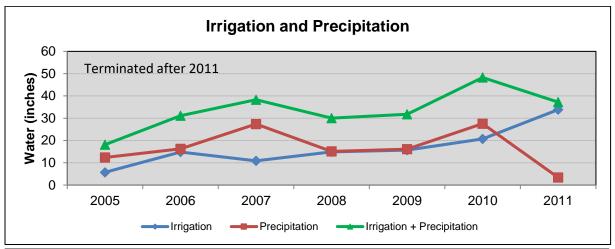


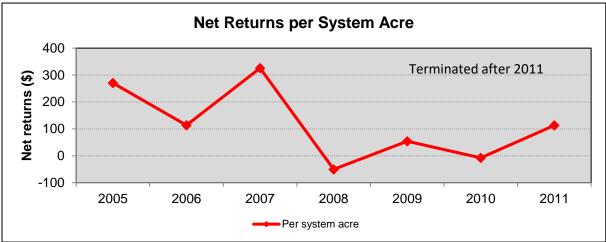
SITE 23 - TERMINATED 2011

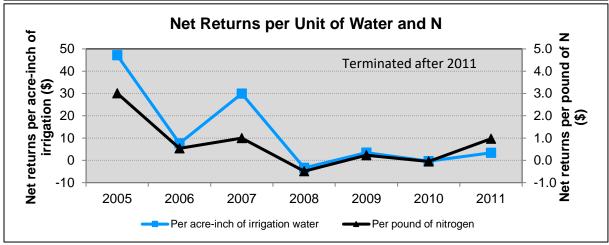



Site acres: 122.2

### Soil types:


PuA-Pullman clay loam, 0 to 1% EcB-Estacado clay loam; 1 to 3%


### Irrigation:


Center Pivot (LEPA) 250 gpm Number of wells: 3



**Site 23** 



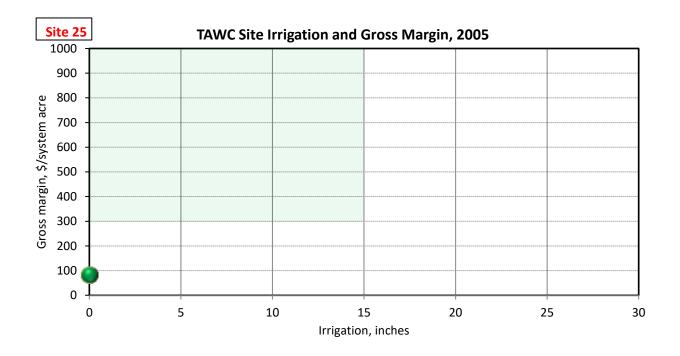




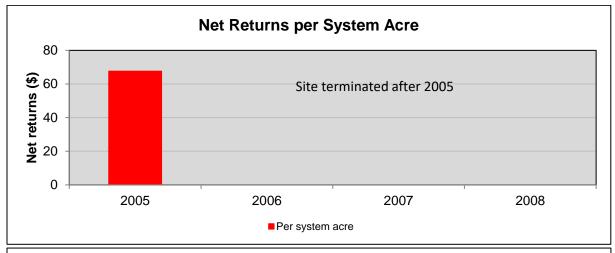
SITE 25 - TERMINATED 2006

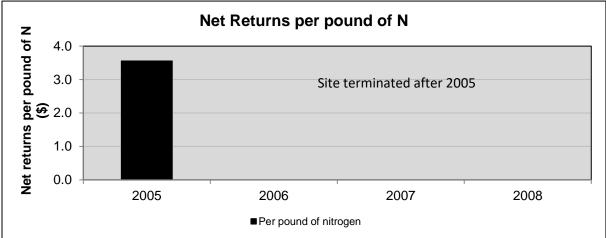


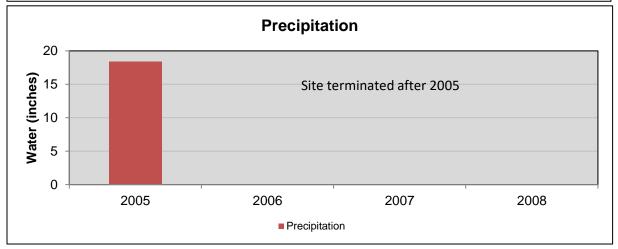
Site acres: 178.5


Soil types:

PuA-Pullman clay loam, 0 to 1%


Irrigation:


Dryland (DL) na gpm


Number of wells: na



Site 25 - Dryland





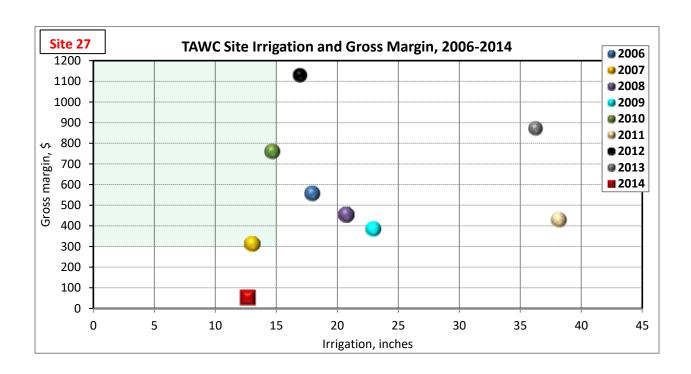


SITE 27 - TERMINATED 2014

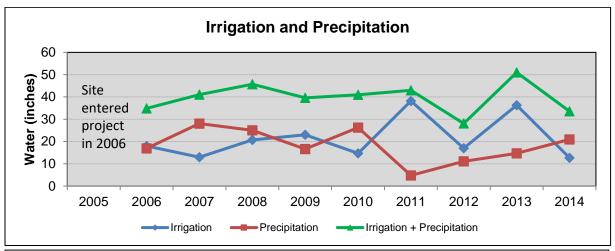


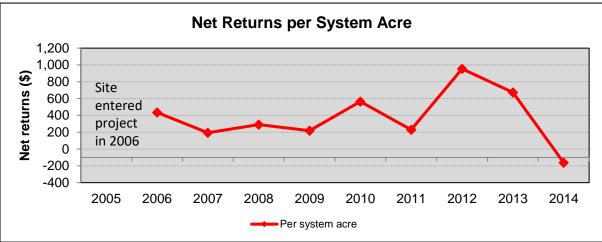
Site acres: 108.4

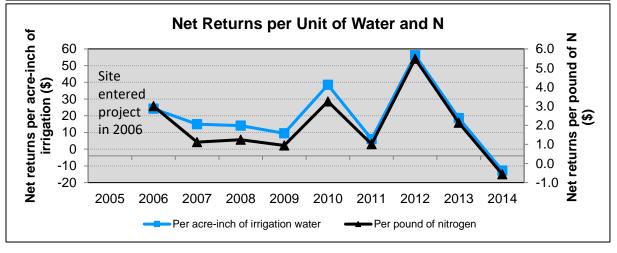
Soil types:


PuA-Pullman clay loam; 0 to 1%

OtA-Olton loam; 0 to 1% AcB-Acuff loam; 1 to 3%


Irrigation:


Sub-Surface Drip (SDI) 400 gpm


Number of wells: 2



**Site 27** 





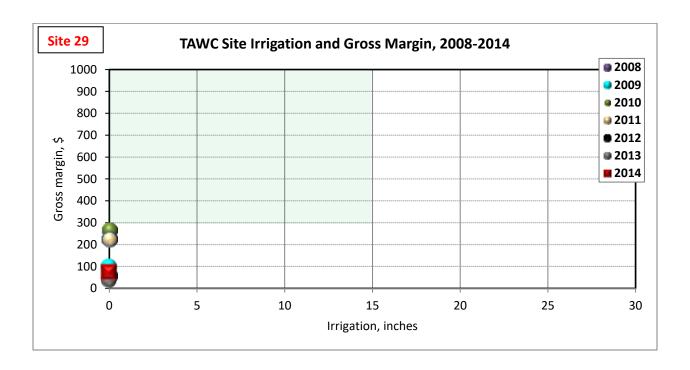


## SITE 29 - TERMINATED 2014

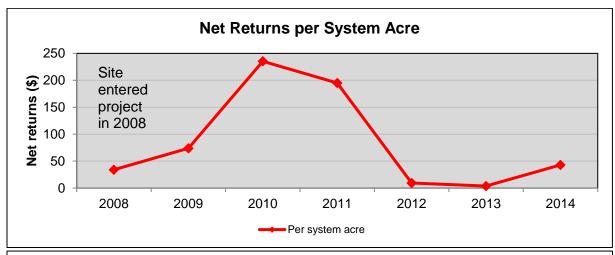


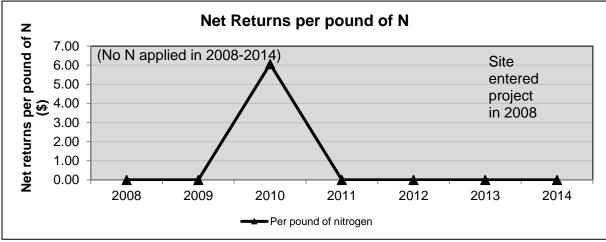
### **Description:**

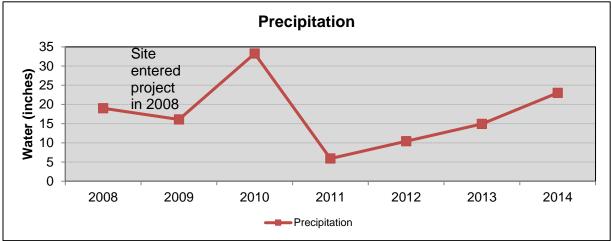
Site acres: 221.7


Soil types:

PuA-Pullman clay loam; 0 to 1% LoA-Lofton clay loam; 0 to 1% EcB-Estacado clay loam; 1 to 3%


Irrigation:


Dryland (DL) na gpm

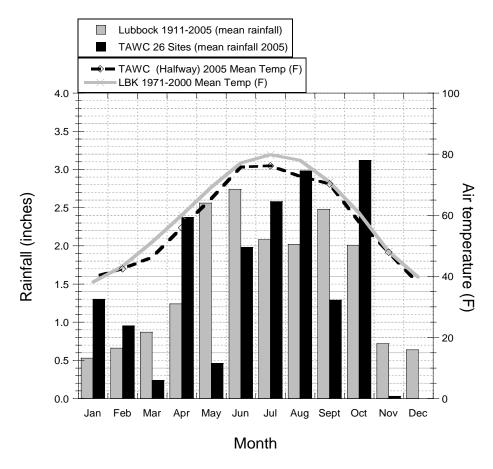

Number of wells: na



Site 29 - Dryland Site







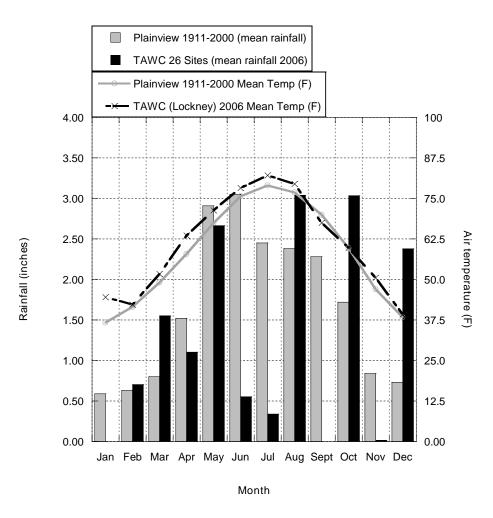

# Weather Data (Phase I - 2005-2013/Phase II - 2014-2015)

#### **2005**

The 2005 growing season was close to ideal in terms of temperatures and timing of precipitation. The precipitation and temperatures for this area are presented in Figure A1 along with the long-term means for this region. While hail events occurred in these counties during 2005, none of the specific sites in this project were measurably affected by such adverse weather events. Year 1, 2005, also followed a year of abnormally high precipitation. Thus, the 2005 growing season likely was influenced by residual soil moisture.

Precipitation for 2005, presented in Table A23, is the mean of precipitation recorded at the 26 sites during 2005, beginning in March when the sites were identified and equipped. Precipitation for January and February are amounts recorded at Halfway, TX; the nearest weather station.




**Figure A 1.** Temperature and precipitation for 2005 in the demonstration area compared with long term averages.

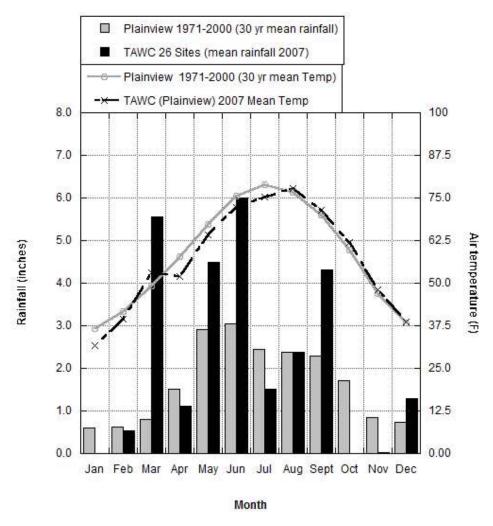
**Table A 25.** Precipitation by each site in the Demonstration Project in Hale and Floyd Counties during 2005.

| SITE    | Jan | Feb | March | April | May | June | July | Aug | Sept | Oct | Nov | Dec | Total |
|---------|-----|-----|-------|-------|-----|------|------|-----|------|-----|-----|-----|-------|
| 1       | 0   | 0   | 0.4   | 1.3   | 0.2 | 1.7  | 2.2  | 2.4 | 2    | 4.1 | 0   | 0   | 14.3  |
| 2       | 0   | 0   | 0.4   | 1.8   | 0.5 | 1.4  | 2.4  | 3.6 | 8.0  | 3.4 | 0   | 0   | 14.3  |
| 3       | 0   | 0   | 0.7   | 2     | 0.6 | 1.4  | 2.5  | 4   | 0.4  | 3.2 | 0   | 0   | 14.8  |
| 4       | 0   | 0   | 0.6   | 8     | 0.3 | 1.4  | 2.2  | 3.2 | 0.1  | 1   | 0   | 0   | 16.8  |
| 5       | 0   | 0   | 0.6   | 2.9   | 0.4 | 1.5  | 3.2  | 4.2 | 0.6  | 1.7 | 0   | 0   | 15.1  |
| 6       | 0   | 0   | 0.5   | 1.5   | 0.4 | 3    | 2.4  | 1   | 2    | 4.2 | 0   | 0   | 15.0  |
| 7       | 0   | 0   | 0.5   | 1.5   | 0.6 | 2.6  | 2.4  | 1.5 | 3.3  | 3   | 0   | 0   | 15.4  |
| 8       | 0   | 0   | 0     | 1.5   | 0.6 | 2.6  | 2.4  | 1.5 | 3.3  | 3   | 0   | 0   | 14.9  |
| 9       | 0   | 0   | 0.5   | 1.5   | 0.5 | 2.6  | 2    | 1   | 3    | 3.3 | 0   | 0   | 14.4  |
| 10      | 0   | 0   | 0.4   | 1     | 0.2 | 2    | 1.8  | 1   | 1.6  | 3.1 | 0   | 0   | 11.1  |
| 11      | 0   | 0   | 0     | 1.2   | 0.4 | 3    | 2    | 1.7 | 1.8  | 4.3 | 0   | 0   | 14.4  |
| 12      | 0   | 0   | 0     | 0.7   | 0.4 | 3.2  | 2    | 2.2 | 1.2  | 2.8 | 0   | 0   | 12.5  |
| 13      | 0   | 0   | 0     | 1.7   | 0.4 | 3.4  | 3    | 2.6 | 1.2  | 4   | 0   | 0   | 16.3  |
| 14      | 0   | 0   | 0     | 1.3   | 0.5 | 1.8  | 3    | 2.2 | 2.2  | 3   | 0   | 0   | 14.0  |
| 15      | 0   | 0   | 0.4   | 1.3   | 0.5 | 2    | 3.6  | 4   | 2    | 5.4 | 0   | 0   | 19.2  |
| 16      | 0   | 0   | 0     | 1.4   | 0.4 | 2    | 3.2  | 3.4 | 1.8  | 4.1 | 0   | 0   | 16.3  |
| 17      | 0   | 0   | 0     | 2     | 0.5 | 2.2  | 3    | 3.6 | 1.6  | 4.6 | 0   | 0   | 17.5  |
| 18      | 0   | 0   | 0     | 4     | 0.9 | 1    | 2.8  | 4.8 | 0    | 3   | 0   | 0   | 16.5  |
| 19      | 0   | 0   | 0     | 3.2   | 0.5 | 1    | 2    | 4.6 | 0    | 2.6 | 0   | 0   | 13.9  |
| 20      | 0   | 0   | 0     | 2.8   | 0.4 | 1.6  | 3.4  | 4   | 8.0  | 2   | 0.4 | 0   | 15.4  |
| 21      | 0   | 0   | 0     | 1.2   | 0.6 | 2.5  | 2    | 2.5 | 2    | 4   | 0.3 | 0   | 15.1  |
| 22      | 0   | 0   | 0     | 5.8   | 0.3 | 1.6  | 2.6  | 4   | 0.2  | 0.6 | 0   | 0   | 15.1  |
| 23      | 0   | 0   | 0     | 3     | 0.3 | 1.2  | 2.9  | 3.6 | 0.5  | 0.9 | 0   | 0   | 12.4  |
| 24      | 0   | 0   | 8.0   | 4.8   | 0.3 | 1    | 2.9  | 4   | 0.4  | 8.0 | 0   | 0   | 15.0  |
| 25      | 0   | 0   | 0     | 2.3   | 0.9 | 2    | 2.4  | 3.4 | 0    | 7.4 | 0   | 0   | 18.4  |
| 26      | 0   | 0   | 0     | 2     | 0.4 | 1.7  | 2.8  | 3.4 | 0.7  | 1.7 | 0   | 0   | 12.7  |
| Average | 0   | 0   | 0.2   | 2.4   | 0.5 | 2.0  | 2.6  | 3.0 | 1.3  | 3.1 | 0   | 0   | 15.0  |

The 2006 growing season was one of the hottest and driest seasons on record marked by the longest period of days with no measurable precipitation ever recorded for the Texas High Plains. Most dryland cotton was terminated. Rains came in late August and again in October delaying harvests in some cases. No significant hail damage was received within the demonstration sites.

Precipitation for 2006, presented in Figure A2 and Table A24, is the actual mean of precipitation recorded at the 26 sites during 2006 from January to December. The drought and high temperatures experienced during the 2006 growing season did influence system behavior and results. This emphasizes why it is crucial to continue this type of real-world demonstration and data collection over a number of years and sets of conditions.




**Figure A 2.** Temperature and precipitation for 2006 in the demonstration area compared with long term averages.

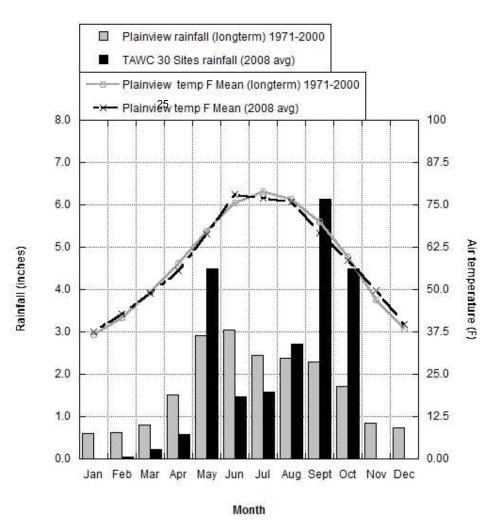
**Table A 26.** Precipitation by each site in the Demonstration Project in Hale and Floyd Counties during 2006.

| SITE    | Jan | Feb | March | April | May  | June | July | Aug  | Sept | Oct  | Nov | Dec | Total |
|---------|-----|-----|-------|-------|------|------|------|------|------|------|-----|-----|-------|
| 1       | 0   | 0.9 | 1.7   | 1.2   | 2.6  | 0.5  | 0.55 | 2.3  | 0    | 2.87 | 0   | 2.6 | 15.22 |
| 2       | 0   | 8.0 | 1.9   | 1.1   | 1.9  | 0.2  | 0    | 2.6  | 0    | 3.05 | 0   | 1.8 | 13.35 |
| 3       | 0   | 0.6 | 1.5   | 0.9   | 2.6  | 0.7  | 0.22 | 3    | 0    | 3.14 | 0   | 3.2 | 15.86 |
| 4       | 0   | 0.5 | 1.4   | 1.1   | 2.7  | 0.2  | 0.4  | 3.8  | 0    | 2.56 | 0   | 2.8 | 15.46 |
| 5       | 0   | 0.7 | 1.4   | 1.8   | 3.2  | 0.4  | 0.57 | 4    | 0    | 2.78 | 0   | 2.8 | 17.65 |
| 6       | 0   | 0.7 | 1.5   | 0.8   | 3    | 0.4  | 0.2  | 5.4  | 0    | 2.6  | 0   | 2.7 | 17.30 |
| 7       | 0   | 0.5 | 1.3   | 0.9   | 1.92 | 0.5  | 0.33 | 3.8  | 0    | 2.75 | 0   | 2.1 | 14.10 |
| 8       | 0   | 0.5 | 1.3   | 0.9   | 1.92 | 0.5  | 0.33 | 3    | 0    | 2.75 | 0   | 2.1 | 13.30 |
| 9       | 0   | 0.6 | 1.5   | 0.8   | 1.82 | 0.5  | 0.12 | 3.8  | 0    | 3.28 | 0   | 2.4 | 14.82 |
| 10      | 0   | 0.6 | 1.5   | 1     | 3    | 0.4  | 0.11 | 3.1  | 0    | 2.8  | 0.1 | 2.4 | 15.01 |
| 11      | 0   | 0.5 | 0.7   | 0.4   | 2.5  | 0.4  | 0.1  | 3.5  | 0    | 3.3  | 0   | 1.6 | 13.00 |
| 12      | 0   | 8.0 | 1.4   | 8.0   | 2.2  | 0.9  | 0.2  | 1.9  | 0    | 3.3  | 0   | 2   | 13.50 |
| 13      | 0   | 1   | 1.8   | 8.0   | 2.2  | 1.1  | 0.1  | 2.7  | 0    | 3.05 | 0   | 1.8 | 14.55 |
| 14      | 0   | 8.0 | 1.8   | 1     | 2.8  | 0.3  | 0    | 1.6  | 0    | 3.8  | 0   | 2.6 | 14.70 |
| 15      | 0   | 1.4 | 2.2   | 1.4   | 2.8  | 0.4  | 0    | 2    | 0    | 4.4  | 0.1 | 2.6 | 17.30 |
| 16      | 0   | 1   | 2.2   | 1.3   | 2    | 8.0  | 0.2  | 2.6  | 0    | 2.69 | 0   | 2.2 | 14.99 |
| 17      | 0   | 8.0 | 2     | 1.3   | 2    | 1    | 0.3  | 3.3  | 0    | 3.38 | 0.1 | 3.2 | 17.38 |
| 18      | 0   | 0.7 | 1.2   | 1.2   | 1.8  | 1.1  | 0.74 | 2.6  | 0    | 3.11 | 0   | 3.6 | 16.05 |
| 19      | 0   | 0.6 | 1.3   | 1.1   | 1.3  | 1.4  | 0.75 | 1.2  | 0    | 3.11 | 0   | 2.3 | 13.06 |
| 20      | 0   | 0.6 | 1.4   | 1.3   | 3.8  | 0.4  | 0.55 | 4.07 | 0    | 2.56 | 0   | 2.2 | 16.88 |
| 21      | 0   | 0.9 | 2.6   | 1.4   | 2.8  | 0.4  | 0.73 | 2.2  | 0    | 3.54 | 0.1 | 2.7 | 17.37 |
| 22      | 0   | 0.6 | 1.5   | 1.3   | 3.8  | 0.3  | 0.22 | 1.8  | 0    | 2.66 | 0   | 1.9 | 14.08 |
| 23      | 0   | 0.4 | 0.9   | 1.1   | 3.8  | 0.2  | 0.55 | 3.6  | 0    | 3.7  | 0   | 2   | 16.25 |
| 24      | 0   | 0.5 | 1.6   | 1.2   | 4    | 0.7  | 0.12 | 2.8  | 0    | 2.64 | 0   | 2.3 | 15.86 |
| 26      | 0   | 0.7 | 1.3   | 1.3   | 3    | 0.3  | 0.86 | 4.3  | 0    | 2.49 | 0   | 1.7 | 15.95 |
| 27      | 0   | 0.6 | 1.4   | 1.3   | 3.8  | 0.4  | 0.55 | 4.07 | 0    | 2.56 | 0   | 2.2 | 16.88 |
| Average | 0   | 0.7 | 1.6   | 1.1   | 2.7  | 0.6  | 0.3  | 3.0  | 0    | 3.0  | 0   | 2.4 | 15.40 |

Precipitation during 2007 totaled 27.2 inches (Table A25) and was well above the long-term mean (18.5 inches) for annual precipitation for this region. Furthermore, precipitation was generally well distributed over the growing season with early season rains providing needed moisture for crop establishment and early growth (Figure A3). Many producers took advantage of these rains and reduced irrigation until mid-season when rainfall declined. Growing conditions were excellent and there was little effect of damaging winds or hail at any of the sites. Temperatures were generally cooler than normal during the first half of the growing season but returned to normal levels by August. The lack of precipitation during October and November aided producers in harvesting crops.

Precipitation for 2007, presented in Figure A3 and Table A25, is the actual mean of precipitation recorded at the 26 sites during 2007 from January to December. Growing conditions during 2007 differed greatly from the hot dry weather encountered in 2006.




**Figure A 3.** Temperature and precipitation for 2007 in the demonstration area compared with long term averages.

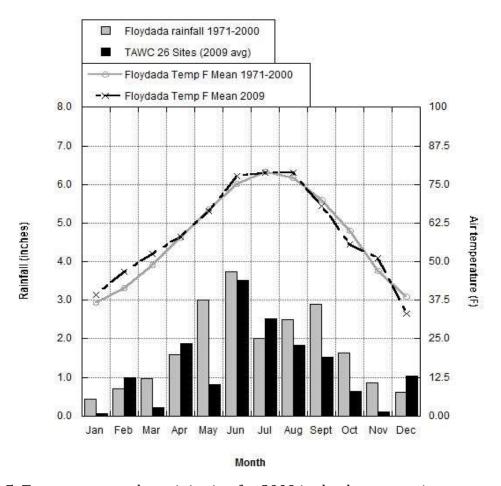
**Table A 27.** Precipitation by each site in the Demonstration Project in Hale and Floyd Counties during 2007.

| SITE    | Jan | Feb  | March | April | May  | June | July | Aug | Sept | Oct | Nov | Dec | Total |
|---------|-----|------|-------|-------|------|------|------|-----|------|-----|-----|-----|-------|
| 1       | 0   | 0.74 | 5.4   | 0.8   | 4.92 | 4.75 | 0.71 | 2.3 | 3.6  | 0   | 0   | 1.2 | 24.42 |
| 2       | 0   | 0.52 | 3.7   | 0.8   | 2.86 | 6.93 | 1.32 | 3   | 4.8  | 0   | 0   | 1.2 | 25.13 |
| 3       | 0   | 0.47 | 4.8   | 0.9   | 2.74 | 6.88 | 1.41 | 2.4 | 4.4  | 0   | 0   | 1   | 25.00 |
| 4       | 0   | 0.29 | 7.6   | 0.9   | 3.53 | 6.77 | 4    | 1.5 | 5    | 0   | 0   | 1   | 30.59 |
| 5       | 0   | 0.72 | 6     | 1.1   | 5.09 | 7.03 | 0.79 | 1.2 | 4.7  | 0   | 0   | 1.2 | 27.83 |
| 6       | 0   | 0.46 | 6     | 0.7   | 5.03 | 5.43 | 0.54 | 2   | 4.5  | 0   | 0   | 1.4 | 26.06 |
| 7       | 0   | 0.9  | 6.4   | 1     | 5.4  | 4.12 | 0.74 | 1.2 | 3.2  | 0   | 0   | 1.4 | 24.36 |
| 8       | 0   | 0.9  | 6.4   | 1     | 5.4  | 4.12 | 0.74 | 1.2 | 3.2  | 0   | 0   | 1.4 | 24.36 |
| 9       | 0   | 0.42 | 4.8   | 0.6   | 5.13 | 4.05 | 0.75 | 1.6 | 3    | 0   | 0   | 1   | 21.35 |
| 10      | 0   | 0.41 | 4.8   | 0.6   | 4.62 | 6.62 | 0.81 | 2.2 | 4.5  | 0   | 0   | 1.2 | 25.76 |
| 11      | 0   | 0.41 | 4.6   | 1.5   | 4.74 | 6.8  | 1.2  | 3.4 | 5.3  | 0   | 0   | 1   | 28.95 |
| 12      | 0   | 0.41 | 6.7   | 1.3   | 5.3  | 6.6  | 1.6  | 3   | 5.3  | 0   | 0   | 1   | 31.21 |
| 13      | 0   | 0.41 | 5.5   | 0.6   | 5    | 7.1  | 2    | 3   | 4    | 0   | 0   | 1.3 | 28.91 |
| 14      | 0   | 0.52 | 6.2   | 0.9   | 5.29 | 3.79 | 0.71 | 2.6 | 3.8  | 0   | 0   | 1.8 | 25.61 |
| 15      | 0   | 0.52 | 6.75  | 4     | 5.29 | 4.25 | 0.71 | 2.5 | 4    | 0   | 0   | 3   | 31.02 |
| 16      | 0   | 0.45 | 5     | 1     | 3.6  | 5.65 | 0.85 | 2.5 | 4.2  | 0   | 0   | 1   | 24.25 |
| 17      | 0   | 0.67 | 5.3   | 1     | 3.85 | 7.27 | 1.5  | 3.2 | 4.6  | 0   | 0   | 1.2 | 28.59 |
| 18      | 0   | 0.52 | 5.8   | 1.9   | 4.54 | 5.61 | 2.22 | 3   | 4    | 0   | 0   | 1.2 | 28.79 |
| 19      | 0   | 0.55 | 4     | 1     | 4.7  | 7.7  | 2.8  | 3.9 | 4.5  | 0   | 0   | 2   | 31.15 |
| 20      | 0   | 0.41 | 5.6   | 0.8   | 4.06 | 7.24 | 1.15 | 3   | 4.8  | 0   | 0   | 1   | 28.06 |
| 21      | 0   | 0.52 | 7.4   | 2     | 5.3  | 5.28 | 1.17 | 3.4 | 5.4  | 0   | 0   | 1.4 | 31.87 |
| 22      | 0   | 0.34 | 6.2   | 0.9   | 3.9  | 6.88 | 3.17 | 1.8 | 4    | 0   | 0   | 1   | 28.19 |
| 23      | 0   | 0.4  | 4.6   | 0.7   | 4.65 | 7.86 | 2.19 | 2   | 4.5  | 0   | 0   | 0.5 | 27.40 |
| 24      | 0   | 0.91 | 5.4   | 0.9   | 3.22 | 3.47 | 3.94 | 1.7 | 4.2  | 0   | 0   | 1.8 | 25.54 |
| 26      | 0   | 0.48 | 4     | 8.0   | 4.76 | 6.45 | 1.31 | 1   | 3.8  | 0   | 0   | 1.2 | 23.80 |
| 27      | 0   | 0.41 | 5.6   | 8.0   | 4.06 | 7.24 | 1.15 | 3   | 4.8  | 0   | 0   | 1   | 28.06 |
| Average | 0   | 0.5  | 5.6   | 1.1   | 4.5  | 6.0  | 1.5  | 2.4 | 4.3  | 0   | 0   | 1.3 | 27.20 |

Precipitation during 2008, at 21.6 inches, was above average for the year (Table A26). However, the distribution of precipitation was unfavorable for most crops (Figure A4). Beginning the previous autumn, little rain fell until December and then less than an inch of precipitation was received before May of 2008. Four inches was received in May, well above the average for that month. This was followed by below average rain during most of the growing season for crops. In September and October, too late for some crops and interfering with harvest for others, rain was more than twice the normal amounts for this region. Following the October precipitation, no more rain came during the remainder of the year. This drying period helped with harvest of some crops but the region entered the winter with below normal moisture.

Temperatures during 2008 were close to the long-term mean for the region (Figure A4).



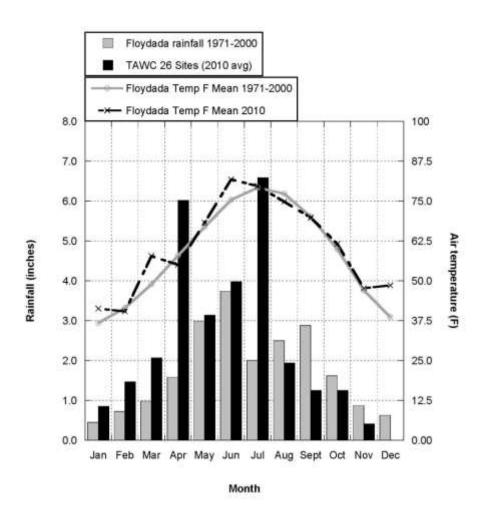

**Figure A 4.** Temperature and precipitation for 2008 in the demonstration area compared with long term averages.

**Table A 28.** Precipitation by each site in the Demonstration Project in Hale and Floyd Counties during 2008.

| SITE    | Jan | Feb  | March | April | May  | June | July | Aug  | Sept | 0ct | Nov | Dec | Total |
|---------|-----|------|-------|-------|------|------|------|------|------|-----|-----|-----|-------|
| 2       | 0   | 0    | 0.2   | 0.8   | 4.75 | 1.7  | 1    | 2.1  | 5.4  | 4.1 | 0   | 0   | 20.1  |
| 3       | 0   | 0    | 0.2   | 0.5   | 4.5  | 1.1  | 0.95 | 2    | 4.7  | 4.4 | 0   | 0   | 18.4  |
| 4       | 0   | 0    | 0.4   | 0.6   | 4    | 2.9  | 1.1  | 4.1  | 3    | 2.9 | 0   | 0   | 19.0  |
| 5       | 0   | 0    | 0     | 0.2   | 4    | 1.5  | 0.5  | 4.2  | 5    | 3.5 | 0   | 0   | 18.9  |
| 6       | 0   | 0    | 0.2   | 0.5   | 4.2  | 1.2  | 1.9  | 4    | 9.4  | 6   | 0   | 0   | 27.4  |
| 7       | 0   | 0    | 0     | 0.6   | 5.6  | 1.2  | 3.2  | 1.8  | 8.6  | 6.5 | 0   | 0   | 27.5  |
| 8       | 0   | 0    | 0     | 0.6   | 5.6  | 1.2  | 3.2  | 1.8  | 8.6  | 5.4 | 0   | 0   | 26.4  |
| 9       | 0   | 0    | 0     | 0.4   | 4.1  | 1    | 2.4  | 1.7  | 5.5  | 4   | 0   | 0   | 19.1  |
| 10      | 0   | 0    | 0     | 0.4   | 4.5  | 0.9  | 1    | 2.7  | 6.9  | 4.8 | 0   | 0   | 21.2  |
| 11      | 0   | 0    | 0.4   | 0.5   | 5.3  | 1.1  | 1.7  | 3.2  | 7.6  | 4.3 | 0   | 0   | 24.1  |
| 12      | 0   | 0    | 0.2   | 0.6   | 5    | 1.5  | 1.6  | 2.25 | 6.5  | 4.2 | 0   | 0   | 21.9  |
| 14      | 0   | 0.2  | 0.4   | 0.9   | 5    | 1.3  | 1.6  | 2.5  | 7.4  | 6   | 0   | 0   | 25.3  |
| 15      | 0   | 0.2  | 0.4   | 0.9   | 5    | 1.5  | 2.5  | 2.5  | 7.4  | 6   | 0   | 0   | 26.4  |
| 17      | 0   | 0    | 0.2   | 1.1   | 5    | 1.8  | 1.8  | 2.6  | 6.4  | 5.6 | 0   | 0   | 24.5  |
| 18      | 0   | 0.2  | 0.4   | 0.2   | 3.6  | 1.3  | 0.7  | 2.2  | 3    | 4   | 0   | 0   | 15.6  |
| 19      | 0   | 0.2  | 0.4   | 0.8   | 5    | 1    | 1.1  | 2.1  | 4.25 | 4.8 | 0   | 0   | 19.7  |
| 20      | 0   | 0    | 0.4   | 0.5   | 5    | 1.9  | 1.4  | 4.8  | 6.8  | 4.2 | 0   | 0   | 25.0  |
| 21      | 0   | 0.2  | 0.4   | 0.8   | 5    | 1.5  | 4    | 2.4  | 6    | 4.2 | 0   | 0   | 24.5  |
| 22      | 0   | 0    | 0.2   | 1     | 4.6  | 3    | 1.1  | 2.6  | 5    | 3.2 | 0   | 0   | 20.7  |
| 23      | 0   | 0    | 0.2   | 0.2   | 1.3  | 1.1  | 1    | 2.4  | 5.5  | 3.4 | 0   | 0   | 15.1  |
| 24      | 0   | 0    | 0.4   | 0.9   | 4.2  | 2.9  | 1.4  | 2.1  | 3.5  | 3   | 0   | 0   | 18.4  |
| 26      | 0   | 0    | 0.2   | 0.2   | 3.2  | 0.5  | 1.4  | 2.3  | 5.3  | 3.3 | 0   | 0   | 16.4  |
| 27      | 0   | 0    | 0.4   | 0.5   | 5    | 1.9  | 1.4  | 4.8  | 6.8  | 4.2 | 0   | 0   | 25.0  |
| 28      | 0   | 0    | 0     | 0.4   | 4.5  | 0.9  | 1    | 2.7  | 6.9  | 4.8 | 0   | 0   | 21.2  |
| 29      | 0   | 0    | 0     | 0.4   | 4    | 1    | 0.7  | 1.8  | 6.4  | 4.7 | 0   | 0   | 19.0  |
| Average | 0   | 0.04 | 0.2   | 0.6   | 4.5  | 1.5  | 1.6  | 2.7  | 6.1  | 4.5 | 0   | 0   | 21.6  |

Precipitation during 2009 totaled 15.2 inches averaged across all sites (Table A27). This was similar to precipitation in 2005 (Table A23). However, in 2005 above-average winter moisture was received followed by precipitation in April that was nearly twice the long-term mean. July, August, and October precipitation were also higher than normal in that year (Figure A5). In 2009, January began with very little precipitation that followed two months of no precipitation in the previous year (Figure A4). Thus, the growing season began with limited soil moisture. March and May saw less than half of normal precipitation. While June and July were near of slightly above normal, August, September, October and November were all below normal. December precipitation was above normal and began a period of higher than normal moisture entering 2010.

Temperatures in February and March were above the long-term mean and peak summer temperatures were prolonged in 2009. However, by September, temperatures fell below normal creating a deficit in heat units needed to produce an optimum cotton crop.

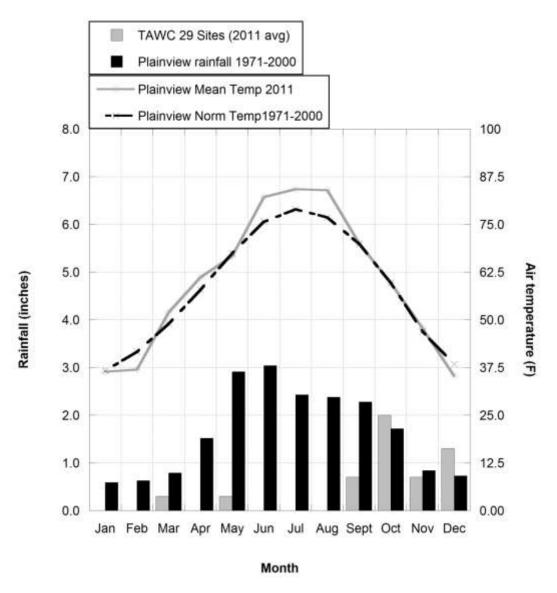



**Figure A 5.** Temperature and precipitation for 2009 in the demonstration area compared with long term averages.

**Table A 29.** Precipitation by each site in the Demonstration Project in Hale and Floyd Counties during 2009.

| SITE    | Jan  | Feb  | Mar  | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  | Total |
|---------|------|------|------|------|------|------|------|------|------|------|------|------|-------|
| 2       | 0.08 | 1.22 | 0.27 | 2.30 | 0.12 | 3.13 | 2.23 | 2.57 | 0.24 | 1.18 | 0.15 | 1.61 | 15.10 |
| 3       | 0.10 | 1.45 | 0.32 | 2.74 | 0.30 | 4.79 | 2.33 | 0.00 | 0.07 | 1.41 | 0.18 | 1.92 | 15.60 |
| 4       | 0.09 | 1.25 | 0.27 | 2.37 | 0.14 | 4.73 | 1.90 | 2.58 | 2.01 | 0.80 | 0.18 | 0.99 | 17.30 |
| 5       | 0.07 | 0.96 | 0.21 | 1.82 | 0.68 | 4.58 | 3.92 | 1.73 | 1.72 | 0.68 | 0.06 | 0.27 | 16.70 |
| 6       | 0.05 | 0.78 | 0.17 | 1.47 | 1.07 | 2.01 | 2.86 | 3.55 | 0.20 | 0.02 | 0.09 | 0.73 | 13.00 |
| 7       | 0.05 | 0.75 | 0.16 | 1.42 | 0.52 | 2.89 | 2.24 | 1.22 | 1.60 | 0.60 | 0.09 | 1.55 | 13.10 |
| 8       | 0.05 | 0.75 | 0.16 | 1.42 | 0.52 | 2.89 | 2.24 | 1.22 | 1.60 | 0.60 | 0.09 | 1.55 | 13.10 |
| 9       | 0.04 | 0.59 | 0.13 | 1.12 | 0.73 | 2.20 | 2.48 | 1.34 | 1.65 | 0.59 | 0.08 | 0.66 | 11.60 |
| 10      | 0.04 | 0.56 | 0.12 | 1.05 | 0.44 | 2.13 | 2.64 | 3.01 | 2.18 | 0.41 | 0.06 | 0.56 | 13.20 |
| 11      | 0.04 | 0.63 | 0.14 | 1.18 | 0.86 | 2.56 | 2.21 | 1.25 | 1.31 | 0.61 | 0.08 | 0.83 | 11.70 |
| 14      | 0.12 | 1.80 | 0.39 | 3.41 | 1.10 | 0.81 | 4.21 | 0.67 | 0.02 | 0.00 | 0.14 | 1.41 | 14.10 |
| 15      | 0.09 | 1.33 | 0.29 | 2.52 | 1.50 | 0.84 | 1.25 | 0.16 | 2.79 | 1.30 | 0.16 | 1.77 | 14.00 |
| 17      | 0.04 | 0.64 | 0.14 | 1.21 | 0.51 | 2.88 | 1.90 | 2.88 | 3.41 | 0.55 | 0.05 | 0.69 | 14.90 |
| 18      | 0.08 | 1.14 | 0.25 | 2.16 | 0.66 | 6.25 | 1.50 | 1.63 | 2.26 | 0.35 | 0.09 | 0.75 | 17.10 |
| 19      | 0.07 | 0.95 | 0.21 | 1.80 | 0.85 | 5.41 | 2.31 | 2.53 | 1.89 | 0.00 | 0.12 | 0.66 | 16.80 |
| 20      | 0.06 | 0.84 | 0.18 | 1.59 | 0.37 | 3.87 | 2.43 | 3.41 | 2.09 | 0.37 | 0.11 | 0.89 | 16.20 |
| 21      | 0.06 | 0.80 | 0.18 | 1.52 | 0.58 | 2.70 | 1.43 | 3.35 | 1.83 | 0.51 | 0.08 | 0.77 | 13.80 |
| 22      | 0.11 | 1.56 | 0.34 | 2.95 | 1.01 | 3.75 | 0.98 | 1.86 | 2.05 | 0.96 | 0.24 | 1.19 | 17.00 |
| 23      | 0.09 | 1.26 | 0.28 | 2.38 | 0.76 | 4.84 | 1.29 | 1.59 | 1.96 | 0.75 | 0.00 | 0.91 | 16.10 |
| 24      | 0.08 | 1.19 | 0.26 | 2.25 | 1.31 | 6.82 | 2.38 | 1.73 | 0.28 | 0.66 | 0.12 | 0.51 | 17.60 |
| 26      | 0.08 | 1.09 | 0.24 | 2.06 | 1.91 | 4.21 | 4.61 | 0.99 | 0.19 | 0.63 | 0.12 | 1.29 | 17.40 |
| 27      | 0.06 | 0.89 | 0.19 | 1.68 | 1.22 | 3.64 | 3.14 | 1.78 | 1.86 | 0.86 | 0.11 | 1.18 | 16.60 |
| 28      | 0.05 | 0.71 | 0.15 | 1.33 | 0.97 | 2.89 | 2.49 | 1.41 | 1.48 | 0.69 | 0.09 | 0.94 | 13.20 |
| 29      | 0.13 | 0.45 | 0.44 | 0.94 | 0.41 | 2.9  | 3.26 | 2.35 | 2.82 | 0.75 | 0.22 | 1.41 | 16.08 |
| 30      | 0.08 | 1.09 | 0.24 | 2.06 | 1.91 | 4.21 | 4.61 | 0.99 | 0.19 | 0.63 | 0.12 | 1.29 | 17.40 |
| Average | 0.07 | 0.99 | 0.23 | 1.87 | 0.82 | 3.52 | 2.51 | 1.83 | 1.51 | 0.64 | 0.11 | 1.05 | 15.15 |

The project sites and the region received above average rainfall for the 2010 calendar year with an average of 28.9 inches measured across the project, as indicated in Table A28 and illustrated in Figure A6. Much of this rainfall came in the late winter and early spring/summer months, with above average rainfall from January through July, and significant rainfall amounts in the months of April and July. Temperatures for the year were slightly above average during the late fall and early spring months across the TAWC sites, allowing for increased soil temperatures at planting, further stabilizing the germination and early growth stages of the upcoming crops. An average of 6.0 inches fell on the project sites in April and 6.5 inches in July which when combined with the favorable conditions of the previous three months, provided ideal conditions for the 2010 summer growing season. The abnormally high rainfall continued in July and October allowing for summer crops to receive needed moisture during the final stages of production. This record high rainfall allowed some producers to achieve record yields, specifically on cotton and corn, while maintaining or decreasing their irrigation use from previous years of the project.

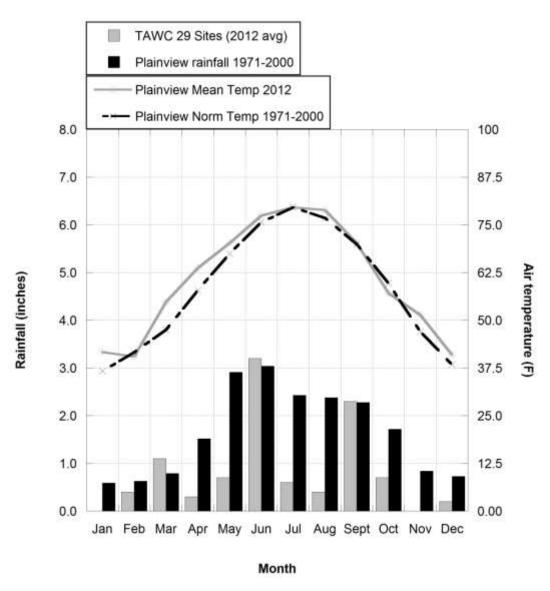



**Figure A 6.** Temperature and precipitation for 2010 in the demonstration area compared with long term averages.

 $\textbf{Table A 30.} \ \textbf{Precipitation by each site in the Demonstration Project in Hale and Floyd Counties during 2010.}$ 

| SITE    | Jan | Feb | Mar | Apr | May | Jun | Jul  | Aug | Sep | Oct | Nov | Dec | Total |
|---------|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|-------|
| 2       | 1.5 | 1.1 | 2.0 | 6.2 | 2.0 | 7.0 | 7.8  | 1.2 | 1.6 | 1.4 | 0.0 | 0.0 | 31.8  |
| 3       | 8.0 | 1.4 | 1.9 | 5.0 | 2.2 | 4.7 | 5.8  | 1.4 | 2.0 | 1.8 | 0.2 | 0.0 | 27.1  |
| 4       | 0.6 | 1.3 | 2.1 | 5.2 | 4.6 | 2.2 | 10.0 | 1.4 | 0.4 | 2.0 | 0.6 | 0.0 | 30.4  |
| 5       | 8.0 | 1.4 | 1.9 | 5.0 | 3.2 | 3.6 | 8.0  | 2.3 | 0.6 | 0.6 | 0.4 | 0.0 | 27.7  |
| 6       | 0.5 | 1.4 | 1.9 | 5.4 | 3.4 | 4.8 | 5.4  | 2.4 | 1.2 | 0.6 | 0.4 | 0.0 | 27.4  |
| 7       | 8.0 | 1.5 | 2.5 | 6.0 | 2.8 | 1.6 | 5.0  | 2.3 | 1.5 | 0.6 | 0.3 | 0.0 | 24.8  |
| 8       | 8.0 | 1.5 | 2.5 | 6.0 | 2.8 | 1.6 | 5.0  | 2.3 | 1.5 | 0.6 | 0.3 | 0.0 | 24.8  |
| 9       | 0.5 | 1.5 | 2.2 | 7.0 | 4.6 | 2.8 | 4.4  | 2.2 | 1.6 | 8.0 | 0.4 | 0.0 | 28.0  |
| 10      | 8.0 | 1.6 | 2.2 | 7.7 | 4.2 | 3.4 | 4.4  | 1.8 | 1.2 | 1.0 | 0.4 | 0.0 | 28.7  |
| 11      | 8.0 | 1.6 | 2.2 | 9.1 | 5.4 | 4.0 | 4.4  | 1.7 | 1.2 | 0.9 | 0.4 | 0.0 | 31.6  |
| 12      | 8.0 | 1.5 | 2.1 | 7.4 | 3.8 | 4.2 | 7.6  | 3.4 | 2.8 | 1.2 | 0.6 | 0.0 | 35.4  |
| 14      | 8.0 | 1.5 | 2.1 | 7.7 | 4.0 | 5.1 | 6.0  | 2.2 | 2.0 | 1.2 | 0.4 | 0.0 | 33.0  |
| 15      | 8.0 | 1.5 | 2.1 | 6.2 | 2.0 | 5.8 | 5.2  | 1.7 | 1.4 | 1.4 | 0.4 | 0.0 | 28.5  |
| 17      | 8.0 | 1.6 | 2.0 | 5.2 | 2.8 | 6.6 | 7.2  | 1.2 | 1.6 | 1.2 | 0.4 | 0.0 | 30.6  |
| 18      | 8.0 | 1.3 | 2.0 | 7.3 | 1.6 | 6.6 | 4.6  | 1.6 | 0.1 | 1.0 | 0.2 | 0.0 | 27.1  |
| 19      | 0.7 | 1.3 | 2.0 | 7.6 | 2.2 | 5.4 | 6.2  | 2.4 | 8.0 | 2.0 | 0.4 | 0.0 | 30.9  |
| 20      | 8.0 | 1.4 | 1.9 | 6.3 | 3.2 | 4.4 | 9.0  | 2.3 | 8.0 | 1.2 | 0.6 | 0.0 | 31.8  |
| 21      | 8.0 | 1.5 | 2.1 | 6.2 | 2.7 | 4.6 | 7.4  | 2.2 | 2.4 | 1.2 | 0.6 | 0.0 | 31.7  |
| 22      | 1.4 | 1.8 | 2.1 | 4.1 | 3.4 | 3.6 | 8.4  | 8.0 | 0.2 | 2.0 | 0.6 | 0.0 | 28.4  |
| 23      | 1.4 | 1.4 | 2.1 | 5.4 | 2.6 | 4.4 | 7.0  | 2.1 | 0.4 | 0.5 | 0.4 | 0.0 | 27.6  |
| 24      | 1.4 | 1.8 | 2.1 | 3.8 | 3.6 | 1.6 | 7.5  | 1.5 | 0.7 | 2.6 | 0.6 | 0.0 | 27.2  |
| 26      | 8.0 | 1.4 | 1.9 | 5.0 | 3.2 | 3.6 | 8.0  | 2.3 | 0.6 | 0.6 | 0.4 | 0.0 | 27.7  |
| 27      | 8.0 | 1.4 | 1.9 | 5.0 | 2.2 | 3.0 | 7.0  | 2.3 | 8.0 | 1.4 | 0.6 | 0.0 | 26.3  |
| 28      | 8.0 | 1.6 | 2.2 | 7.7 | 4.2 | 3.4 | 4.4  | 1.8 | 1.2 | 1.0 | 0.4 | 0.0 | 28.7  |
| 29      | 8.0 | 1.5 | 2.1 | 6.2 | 1.8 | 6.0 | 7.4  | 1.7 | 4.0 | 1.4 | 0.4 | 0.0 | 33.3  |
| 30      | 8.0 | 1.4 | 1.9 | 5.0 | 3.2 | 3.6 | 8.0  | 2.3 | 0.6 | 0.6 | 0.4 | 0.0 | 27.7  |
| 31      | 1.4 | 1.8 | 2.1 | 3.8 | 3.6 | 1.6 | 7.5  | 1.5 | 0.7 | 2.6 | 0.6 | 0.0 | 27.2  |
| 32      | 8.0 | 1.5 | 2.1 | 6.2 | 2.7 | 2.4 | 6.0  | 1.7 | 1.1 | 1.6 | 0.3 | 0.0 | 26.4  |
| 33      | 8.0 | 1.5 | 2.1 | 6.2 | 2.7 | 2.4 | 6.0  | 1.7 | 1.1 | 1.6 | 0.3 | 0.0 | 26.4  |
| Average | 0.9 | 1.5 | 2.1 | 6.0 | 3.1 | 3.9 | 6.6  | 1.9 | 1.2 | 1.3 | 0.4 | 0.0 | 28.9  |

The project sites and the region received below average rainfall for the 2011 calendar year with an average of 5.3 inches (Figure A7 and Table A29), compared with a long term average of 18.5 inches. This was the worst drought the Texas High Plains had seen since the 1930's in that virtually no rainfall was received during the normal growing season. Several fields within sites recorded zero crop yields in 2011 because irrigation was insufficient to produce yields high enough to merit the harvest costs.




**Figure A 7.** Temperature and precipitation for 2011 in the demonstration area compared with long term averages.

**Table A 31.** Precipitation by each site in the Demonstration Project in Hale and Floyd Counties during 2011.

| SITE    | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Total |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|
| 2       | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.1 | 1.0 | 2.2 | 0.6 | 1.3 | 5.3   |
| 3       | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 | 0.4 | 2.0 | 8.0 | 8.0 | 0.9 | 5.1   |
| 4       | 0.0 | 0.0 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 2.4 | 0.3 | 8.0 | 4.5   |
| 5       | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.6 | 1.7 | 0.4 | 1.1 | 4.3   |
| 6       | 0.0 | 0.1 | 0.6 | 0.0 | 0.4 | 0.0 | 0.0 | 0.0 | 0.6 | 2.1 | 1.0 | 1.1 | 5.9   |
| 7       | 0.0 | 0.0 | 1.0 | 0.0 | 0.3 | 0.0 | 0.0 | 0.0 | 0.6 | 1.7 | 0.9 | 0.8 | 5.3   |
| 8       | 0.0 | 0.0 | 1.0 | 0.0 | 0.3 | 0.0 | 0.0 | 0.0 | 0.6 | 1.7 | 0.9 | 0.8 | 5.3   |
| 9       | 0.0 | 0.0 | 0.4 | 0.0 | 0.6 | 0.0 | 0.0 | 0.0 | 0.7 | 2.2 | 1.0 | 1.2 | 6.0   |
| 10      | 0.0 | 0.0 | 0.4 | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.6 | 2.0 | 1.0 | 1.5 | 6.0   |
| 11      | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.0 | 0.0 | 0.0 | 0.6 | 1.8 | 1.0 | 1.0 | 4.7   |
| 12      | 0.0 | 0.1 | 0.4 | 0.0 | 0.3 | 0.0 | 0.0 | 0.2 | 0.7 | 2.2 | 1.2 | 1.1 | 6.2   |
| 14      | 0.0 | 0.1 | 0.0 | 0.0 | 0.3 | 0.0 | 0.0 | 0.0 | 8.0 | 2.0 | 1.0 | 1.2 | 5.4   |
| 15      | 0.0 | 0.1 | 0.0 | 0.0 | 0.4 | 0.0 | 0.0 | 0.0 | 8.0 | 2.0 | 1.0 | 1.2 | 5.5   |
| 17      | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.6 | 2.0 | 0.6 | 8.0 | 4.2   |
| 18      | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6 | 2.5 | 0.5 | 1.4 | 5.1   |
| 19      | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6 | 2.5 | 0.5 | 1.4 | 5.1   |
| 20      | 0.0 | 0.0 | 0.0 | 0.2 | 0.2 | 0.0 | 0.0 | 0.2 | 8.0 | 1.9 | 0.6 | 1.4 | 5.3   |
| 21      | 0.0 | 0.0 | 0.6 | 0.1 | 0.4 | 0.0 | 0.0 | 0.0 | 0.4 | 1.8 | 0.9 | 1.1 | 5.3   |
| 22      | 0.0 | 0.0 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9 | 2.1 | 0.3 | 8.0 | 4.7   |
| 23      | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.4 | 1.4 | 0.1 | 1.4 | 3.4   |
| 24      | 0.0 | 0.0 | 0.6 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.9 | 3.0 | 0.1 | 2.8 | 7.5   |
| 26      | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.6 | 1.7 | 0.4 | 1.1 | 4.3   |
| 27      | 0.0 | 0.0 | 0.0 | 0.1 | 0.5 | 0.0 | 0.0 | 0.0 | 1.0 | 1.6 | 0.4 | 1.2 | 4.8   |
| 28      | 0.0 | 0.0 | 0.4 | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.6 | 2.0 | 1.0 | 1.5 | 6.0   |
| 29      | 0.0 | 0.1 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.4 | 2.2 | 8.0 | 1.4 | 5.9   |
| 30      | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.6 | 1.7 | 0.4 | 1.1 | 4.3   |
| 31      | 0.0 | 0.0 | 0.6 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.9 | 3.0 | 0.1 | 2.8 | 7.5   |
| 32      | 0.0 | 0.1 | 0.0 | 0.0 | 0.4 | 0.0 | 0.0 | 0.0 | 8.0 | 2.0 | 1.0 | 1.2 | 5.5   |
| 33      | 0.0 | 0.1 | 0.0 | 0.0 | 0.4 | 0.0 | 0.0 | 0.0 | 8.0 | 2.0 | 1.0 | 1.2 | 5.5   |
| Average | 0.0 | 0.0 | 0.3 | 0.0 | 0.3 | 0.0 | 0.0 | 0.0 | 0.7 | 2.0 | 0.7 | 1.3 | 5.3   |

The project sites and the region again received below average rainfall for the 2012 calendar year, with an average of 10.0 inches measured across the project (Figure A8 and Table A30). Slightly above average rainfall was received in the months of March, June and September. Mean temperatures ran slightly above normal early in the season, but were close to normal during the growing season.



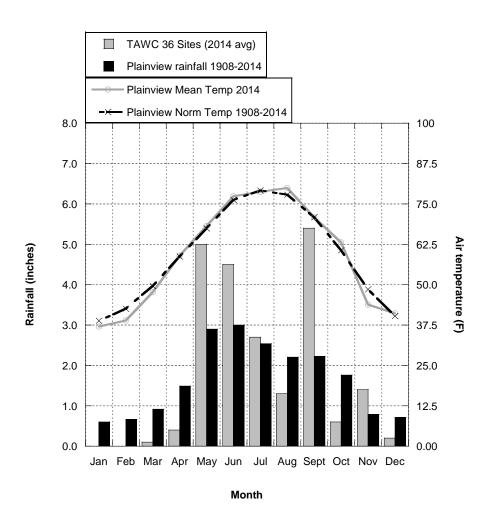
**Figure A 8.** Temperature and precipitation for 2012 in the demonstration area compared with long term averages.

**Table A 32.** Precipitation by each site in the Demonstration Project in Hale and Floyd Counties during 2012.

| SITE    | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Total |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|
| 2       | 0.0 | 0.5 | 1.0 | 0.7 | 1.0 | 3.3 | 8.0 | 0.6 | 2.0 | 0.6 | 0.0 | 0.2 | 10.7  |
| 3       | 0.0 | 0.4 | 1.2 | 8.0 | 0.6 | 0.7 | 0.4 | 0.6 | 1.4 | 0.7 | 0.0 | 0.0 | 6.8   |
| 4       | 0.0 | 0.5 | 1.2 | 0.0 | 1.6 | 2.9 | 0.5 | 0.4 | 3.3 | 8.0 | 0.0 | 0.2 | 11.3  |
| 5       | 0.0 | 0.6 | 8.0 | 0.0 | 0.4 | 2.9 | 1.0 | 0.2 | 2.8 | 1.5 | 0.0 | 0.0 | 10.2  |
| 6       | 0.0 | 0.3 | 0.0 | 0.0 | 0.0 | 3.7 | 0.6 | 0.3 | 2.0 | 0.1 | 0.0 | 0.4 | 7.3   |
| 7       | 0.0 | 0.2 | 1.0 | 0.4 | 0.3 | 5.2 | 0.1 | 0.4 | 2.2 | 0.2 | 0.0 | 0.2 | 10.2  |
| 8       | 0.0 | 0.3 | 1.0 | 0.4 | 0.3 | 5.2 | 0.1 | 0.4 | 2.2 | 0.2 | 0.0 | 0.2 | 10.3  |
| 9       | 0.0 | 0.3 | 1.0 | 0.4 | 0.4 | 4.9 | 1.4 | 0.4 | 4.2 | 0.5 | 0.0 | 0.2 | 13.7  |
| 10      | 0.0 | 0.6 | 1.4 | 0.2 | 0.6 | 3.4 | 0.4 | 0.2 | 2.2 | 0.2 | 0.0 | 0.3 | 9.5   |
| 11      | 0.0 | 0.4 | 2.0 | 0.2 | 8.0 | 4.2 | 0.1 | 0.2 | 2.6 | 0.2 | 0.0 | 0.2 | 10.9  |
| 12      | 0.0 | 0.5 | 1.9 | 0.4 | 0.9 | 2.5 | 0.2 | 0.1 | 1.9 | 0.4 | 0.0 | 0.3 | 9.1   |
| 14      | 0.0 | 0.4 | 1.8 | 0.1 | 0.6 | 3.3 | 0.2 | 0.4 | 2.2 | 0.4 | 0.0 | 0.3 | 9.7   |
| 15      | 0.0 | 0.4 | 1.8 | 0.1 | 0.7 | 2.9 | 0.2 | 0.4 | 2.2 | 0.2 | 0.0 | 0.4 | 9.3   |
| 17      | 0.0 | 0.4 | 1.0 | 0.7 | 1.0 | 2.7 | 0.7 | 0.4 | 2.4 | 0.5 | 0.0 | 0.2 | 10.0  |
| 18      | 0.0 | 0.3 | 0.5 | 0.0 | 8.0 | 2.6 | 0.2 | 8.0 | 2.4 | 1.0 | 0.0 | 0.1 | 8.7   |
| 19      | 0.0 | 0.4 | 1.0 | 1.2 | 1.2 | 3.3 | 0.4 | 1.0 | 2.8 | 1.0 | 0.0 | 0.2 | 12.5  |
| 20      | 0.0 | 0.4 | 1.2 | 0.2 | 0.4 | 3.4 | 1.4 | 1.0 | 2.4 | 1.0 | 0.0 | 0.4 | 11.8  |
| 21      | 0.0 | 0.5 | 1.5 | 0.2 | 8.0 | 2.9 | 0.2 | 0.1 | 2.1 | 0.5 | 0.0 | 0.1 | 8.9   |
| 22      | 0.0 | 0.6 | 1.0 | 0.0 | 1.0 | 3.4 | 1.2 | 0.5 | 3.1 | 8.0 | 0.0 | 0.1 | 11.7  |
| 24      | 0.0 | 0.2 | 2.0 | 1.5 | 0.7 | 4.0 | 3.0 | 0.3 | 1.8 | 3.6 | 0.0 | 0.1 | 17.2  |
| 26      | 0.0 | 0.6 | 8.0 | 0.0 | 0.4 | 2.9 | 1.0 | 0.2 | 2.8 | 1.5 | 0.0 | 0.0 | 10.2  |
| 27      | 0.0 | 0.5 | 1.0 | 0.0 | 0.5 | 2.7 | 1.4 | 0.9 | 2.2 | 1.8 | 0.0 | 0.1 | 11.1  |
| 28      | 0.0 | 0.6 | 1.4 | 0.2 | 0.6 | 3.4 | 0.4 | 0.2 | 2.2 | 0.2 | 0.0 | 0.3 | 9.5   |
| 29      | 0.0 | 0.4 | 1.3 | 0.2 | 1.4 | 2.8 | 0.4 | 1.2 | 2.0 | 0.4 | 0.0 | 0.3 | 10.4  |
| 30      | 0.0 | 0.6 | 8.0 | 0.0 | 0.4 | 2.9 | 1.0 | 0.2 | 2.8 | 1.5 | 0.0 | 0.0 | 10.2  |
| 31      | 0.0 | 0.5 | 1.2 | 0.0 | 1.6 | 2.9 | 0.5 | 0.4 | 3.3 | 8.0 | 0.0 | 0.2 | 11.3  |
| 32      | 0.0 | 0.4 | 0.0 | 0.0 | 0.7 | 2.9 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 | 0.4 | 4.6   |
| 33      | 0.0 | 0.4 | 0.0 | 0.0 | 0.7 | 2.9 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 | 0.4 | 4.6   |
| 34      | 0.0 | 0.3 | 0.0 | 0.0 | 0.0 | 3.2 | 0.7 | 0.6 | 2.4 | 0.1 | 0.0 | 0.2 | 7.5   |
| Average | 0.0 | 0.4 | 1.1 | 0.3 | 0.7 | 3.2 | 0.6 | 0.4 | 2.3 | 0.7 | 0.0 | 0.2 | 10.0  |

The project sites and the region again received below average rainfall for the 2013 calendar year with an average of 13.3 inches measured across the project, as indicated in Figure A9 and illustrated in Table A31. Below average rainfall was received in March through June, but nearly double average rainfall was received in July with about normal rain in August and September. Mean temperatures ran slightly above normal through the growing season with the exception of July which was about average for the long term means. As a result of the above average rainfall in July and warmer than normal temperatures, 2013 was a very good cropping year on average for the TAWC sites in the area.




**Figure A 9.** Temperature and precipitation for 2013 in the demonstration area compared with long term averages.

**Table A 33.** Precipitation by each site in the Demonstration Project in Hale and Floyd Counties during 2013.

| SITE    | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Total |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|
| 2       | 1.2 | 0.6 | 0.2 | 0.1 | 0.2 | 1.2 | 4.8 | 2.8 | 2.9 | 1.6 | 0.1 | 0.2 | 15.8  |
| 3       | 0.1 | 0.4 | 0.1 | 0.0 | 0.2 | 0.0 | 3.4 | 0.2 | 1.5 | 0.5 | 0.0 | 0.0 | 6.3   |
| 4       | 0.4 | 8.0 | 0.4 | 0.1 | 0.2 | 0.4 | 5.5 | 1.8 | 1.5 | 1.0 | 0.5 | 0.2 | 12.6  |
| 5       | 1.1 | 1.0 | 0.2 | 0.0 | 0.0 | 0.1 | 4.4 | 1.8 | 2.8 | 0.9 | 0.1 | 0.1 | 12.4  |
| 6       | 0.4 | 8.0 | 0.0 | 0.0 | 0.0 | 1.0 | 4.8 | 2.7 | 2.8 | 1.6 | 0.1 | 0.2 | 14.3  |
| 7       | 0.5 | 0.7 | 0.0 | 0.1 | 0.2 | 1.0 | 3.0 | 1.2 | 1.8 | 0.4 | 0.1 | 0.1 | 9.1   |
| 8       | 0.5 | 0.7 | 0.0 | 0.1 | 0.2 | 1.0 | 3.0 | 1.2 | 1.8 | 0.4 | 0.1 | 0.1 | 9.1   |
| 9       | 1.6 | 8.0 | 0.2 | 0.1 | 0.2 | 2.4 | 6.8 | 3.2 | 2.4 | 1.5 | 0.2 | 0.5 | 19.7  |
| 10      | 1.1 | 1.0 | 0.2 | 0.1 | 0.2 | 1.2 | 5.0 | 4.4 | 2.2 | 1.5 | 0.3 | 0.4 | 17.4  |
| 11      | 1.2 | 0.6 | 0.2 | 0.1 | 0.2 | 1.6 | 4.1 | 2.0 | 2.2 | 1.6 | 0.2 | 0.2 | 14.1  |
| 12      | 8.0 | 8.0 | 0.1 | 0.0 | 0.1 | 2.0 | 3.2 | 0.1 | 2.8 | 1.4 | 0.1 | 0.4 | 11.8  |
| 14      | 0.5 | 0.7 | 0.1 | 0.1 | 0.3 | 0.4 | 4.0 | 2.0 | 2.6 | 1.5 | 0.1 | 0.3 | 12.6  |
| 15      | 0.1 | 0.0 | 0.1 | 0.1 | 0.1 | 1.1 | 2.8 | 2.6 | 2.6 | 1.1 | 0.1 | 0.2 | 10.8  |
| 17      | 1.2 | 0.4 | 0.1 | 0.0 | 0.1 | 1.0 | 4.4 | 2.2 | 2.6 | 1.8 | 0.1 | 0.2 | 14.0  |
| 18      | 0.4 | 8.0 | 0.1 | 0.0 | 0.1 | 0.6 | 3.4 | 0.7 | 1.9 | 0.4 | 0.1 | 0.3 | 8.7   |
| 19      | 1.2 | 0.9 | 0.2 | 0.0 | 0.2 | 2.5 | 4.6 | 1.2 | 2.7 | 1.9 | 0.1 | 0.3 | 15.7  |
| 20      | 1.4 | 8.0 | 0.3 | 0.1 | 0.2 | 1.2 | 5.8 | 4.2 | 2.2 | 1.0 | 0.0 | 0.0 | 17.2  |
| 21      | 1.1 | 0.4 | 0.1 | 0.0 | 0.0 | 1.6 | 3.8 | 3.3 | 3.2 | 1.4 | 0.1 | 0.2 | 15.1  |
| 22      | 1.0 | 1.1 | 0.4 | 0.1 | 0.1 | 1.1 | 6.1 | 0.6 | 2.0 | 2.2 | 0.3 | 0.1 | 15.1  |
| 24      | 1.0 | 8.0 | 0.3 | 0.0 | 0.0 | 0.9 | 6.0 | 1.4 | 1.2 | 2.0 | 0.2 | 0.0 | 13.8  |
| 26      | 1.1 | 1.0 | 0.2 | 0.0 | 0.0 | 0.1 | 4.4 | 1.8 | 2.8 | 0.9 | 0.1 | 0.1 | 12.4  |
| 27      | 0.9 | 0.6 | 0.2 | 0.1 | 0.1 | 1.0 | 5.6 | 2.8 | 2.2 | 1.1 | 0.1 | 0.1 | 14.7  |
| 28      | 1.1 | 1.0 | 0.2 | 0.1 | 0.2 | 1.2 | 5.0 | 4.4 | 2.2 | 1.5 | 0.3 | 0.4 | 17.4  |
| 29      | 1.2 | 1.1 | 0.2 | 0.0 | 0.4 | 1.6 | 3.6 | 2.4 | 2.5 | 1.6 | 0.1 | 0.3 | 14.9  |
| 30      | 1.1 | 1.0 | 0.2 | 0.0 | 0.0 | 0.1 | 4.4 | 1.8 | 2.8 | 0.9 | 0.1 | 0.1 | 12.4  |
| 31      | 0.4 | 8.0 | 0.4 | 0.1 | 0.2 | 0.4 | 5.5 | 1.8 | 1.5 | 1.0 | 0.5 | 0.2 | 12.6  |
| 32      | 0.1 | 0.0 | 0.1 | 0.1 | 0.1 | 1.1 | 2.8 | 2.6 | 2.6 | 1.1 | 0.1 | 0.2 | 10.8  |
| 33      | 0.1 | 0.0 | 0.1 | 0.1 | 0.1 | 1.1 | 2.8 | 2.6 | 2.6 | 1.1 | 0.1 | 0.2 | 10.8  |
| 34      | 0.4 | 8.0 | 0.0 | 0.0 | 0.0 | 1.0 | 4.8 | 2.7 | 2.8 | 1.6 | 0.1 | 0.2 | 14.3  |
| 35      | 1.2 | 1.0 | 0.1 | 0.0 | 0.1 | 1.8 | 5.4 | 2.6 | 3.2 | 1.1 | 0.2 | 0.4 | 17.0  |
| Average | 8.0 | 0.7 | 0.2 | 0.0 | 0.1 | 1.1 | 4.4 | 2.2 | 2.4 | 1.3 | 0.1 | 0.2 | 13.4  |

#### 2014

The 36 project sites received above-average rainfall in 2014 with an overall mean of 21.7 inches, using Plainview, TX for the long-term average (Figure 12). Below-average rainfall was received in January through April. Precipitation in May, June and September was substantially above average, and occurred in relatively few heavy rain events. Such events typically lead to low efficiency of water use for crop production owing to runoff, soil-surface evaporation, and drainage below the root zone. Furthermore, the heavy May and June rains delayed planting of some crops, and crop water use for transpiration was low because crop canopies were underdeveloped. The heavy rains did help refill soil profiles that were quite depleted after the dry winter and early spring, which saved on irrigation needs during June. The September rain came while crop water needs were declining with crop maturity, so that rain had limited benefit for crop yields. Mean temperatures ran about normal through the growing season with the exception of August, which was hotter than normal. Rainfall by site (Table 2) indicated wide variation, such that some sites did not benefit from above-average precipitation.



**Figure A 10.** Temperature and precipitation for 2014 (Phase II Year 1) in the demonstration area compared with long term averages.

**Table A 34.** Precipitation by each site in the Demonstration Project in Hale and Floyd Counties during 2014 (Phase II Year 1).

| Site       | Jan | Feb | Mar  | Apr          | May        | Jun        | Jul | Aug        | Sep        | Oct        | Nov        | Dec        | Total        |
|------------|-----|-----|------|--------------|------------|------------|-----|------------|------------|------------|------------|------------|--------------|
| 4          | 0.0 | 0.0 | 0.2  | 0.8          | 3.0        | 4.1        | 1.8 | 0.1        | 3.9        | 0.6        | 1.0        | 0.2        | 15.7         |
| 5          | 0.0 | 0.0 | 0.1  | 0.0          | 6.3        | 4.8        | 2.7 | 0.2        | 3.5        | 0.6        | 1.3        | 0.1        | 19.6         |
| 6          | 0.0 | 0.0 | 0.1  | 0.3          | 5.4        | 6.7        | 2.8 | 2.2        | 5.3        | 0.6        | 2.0        | 0.1        | 25.5         |
| 7          | 0.0 | 0.0 | 0.1  | 0.4          | 4.5        | 3.5        | 2.6 | 1.2        | 3.2        | 0.7        | 1.6        | 0.5        | 18.3         |
| 8          | 0.0 | 0.0 | 0.1  | 0.4          | 4.5        | 3.5        | 2.6 | 1.2        | 3.2        | 0.7        | 1.6        | 0.5        | 18.3         |
| 9          | 0.0 | 0.0 | 0.1  | 0.5          | 8.2        | 4.5        | 3.1 | 1.0        | 6.8        | 0.8        | 2.2        | 0.5        | 27.7         |
| 10         | 0.0 | 0.0 | 0.2  | 0.5          | 5.3        | 5.5        | 3.0 | 2.5        | 7.6        | 0.7        | 2.2        | 0.1        | 27.6         |
| 11         | 0.0 | 0.0 | 0.1  | 0.6          | 5.7        | 5.2        | 3.6 | 2.5        | 7.0        | 0.6        | 2.2        | 0.3        | 27.8         |
| 14         | 0.0 | 0.0 | 0.2  | 0.6          | 5.1        | 2.4        | 3.0 | 0.6        | 6.4        | 0.7        | 1.2        | 0.1        | 20.3         |
| 15         | 0.0 | 0.0 | 0.1  | 0.4          | 5.1        | 4.2        | 3.0 | 8.0        | 3.4        | 0.3        | 0.6        | 0.1        | 18.0         |
| 17         | 0.0 | 0.0 | 0.2  | 0.5          | 3.7        | 2.6        | 2.2 | 8.0        | 4.8        | 0.4        | 1.4        | 0.2        | 16.8         |
| 19         | 0.0 | 0.0 | 0.1  | 0.2          | 6.3        | 5.4        | 3.5 | 0.2        | 4.2        | 0.7        | 1.3        | 0.0        | 21.9         |
| 20         | 0.0 | 0.0 | 0.1  | 0.5          | 7.9        | 4.7        | 2.4 | 0.5        | 4.9        | 0.5        | 1.7        | 0.2        | 23.4         |
| 21         | 0.0 | 0.0 | 0.1  | 0.4          | 5.9        | 3.8        | 3.7 | 3.1        | 6.4        | 0.7        | 2.5        | 0.3        | 26.9         |
| 22         | 0.0 | 0.0 | 0.2  | 0.5          | 5.3        | 4.8        | 2.2 | 0.2        | 3.8        | 0.8        | 1.5        | 0.2        | 19.5         |
| 24         | 0.0 | 0.0 | 0.2  | 0.7          | 5.3        | 5.3        | 2.2 | 0.4        | 4.5        | 0.7        | 2.0        | 0.2        | 21.5         |
| 26         | 0.0 | 0.0 | 0.1  | 0.0          | 6.3        | 4.8        | 2.7 | 0.2        | 3.5        | 0.6        | 1.3        | 0.1        | 19.6         |
| 27         | 0.0 | 0.0 | 0.5  | 0.3          | 7.2        | 4.7        | 2.4 | 0.1        | 4.0        | 0.5        | 1.5        | 0.1        | 21.3         |
| 28         | 0.0 | 0.0 | 0.2  | 0.5          | 5.3        | 5.5        | 3.0 | 2.5        | 7.6        | 0.7        | 2.2        | 0.1        | 27.6         |
| 29         | 0.0 | 0.0 | 0.2  | 0.4          | 6.0        | 4.2        | 2.8 | 1.1        | 5.4        | 0.8        | 2.0        | 0.1        | 23.0         |
| 30         | 0.0 | 0.0 | 0.1  | 0.0          | 6.3        | 4.8        | 2.7 | 0.2        | 3.5        | 0.6        | 1.3        | 0.1        | 19.6         |
| 31         | 0.0 | 0.0 | 0.2  | 8.0          | 3.0        | 4.1        | 1.8 | 0.1        | 3.9        | 0.6        | 1.0        | 0.2        | 15.7         |
| 32         | 0.0 | 0.0 | 0.1  | 0.4          | 5.1        | 4.2        | 3.0 | 8.0        | 3.4        | 0.3        | 0.6        | 0.1        | 18.0         |
| 33         | 0.0 | 0.0 | 0.1  | 0.4          | 5.1        | 4.2        | 3.0 | 8.0        | 3.4        | 0.3        | 0.6        | 0.1        | 18.0         |
| 34         | 0.0 | 0.0 | 0.1  | 0.3          | 5.4        | 6.7        | 2.8 | 2.2        | 5.3        | 0.6        | 2.0        | 0.1        | 25.5         |
| 35<br>650  | 0.0 | 0.0 | 0.1  | 0.5          | 5.3        | 6.2        | 3.5 | 1.7        | 5.1        | 0.8        | 2.4        | 0.2        | 25.8         |
| C50        | 0.0 | 0.0 | 0.01 | 0.4          | 4.4        | 3.0        | >   | 7.6        | 6.1        | 0.6        | 1.3        | 0.5        | 23.9         |
| C51        | 0.0 | 0.0 | 0.1  | 0.4          | 4.4        | 3.0        | >   | 7.6        | 6.1        | 0.6        | 1.3        | 0.5        | 24.0         |
| C52<br>C53 | 0.0 | 0.0 | 0.0  | $0.1 \\ 0.1$ | 2.5<br>2.5 | 3.6<br>3.6 | >   | 1.2<br>1.2 | 8.7<br>8.7 | 0.4<br>0.4 | 0.8<br>0.8 | 0.1<br>0.1 | 17.4<br>17.4 |
| C54        | 0.0 | 0.0 | 0.0  | 0.1          | 2.5        |            |     | 1.2        |            |            |            |            |              |
| C54        | 0.0 | 0.0 | 0.0  | 0.1          | 3.5        | 5.0        |     | 1.8        | 8.4        | 0.4        | 0.0        | 0.1        | 19.0         |
| C57        | 0.0 | 0.0 | 0.1  | 0.1          | 3.5<br>2.7 | 5.1<br>4.7 | >   | 5.8        | 4.5        | 0.5        | 0.0        | 0.0        | 19.0         |
| C58        | 0.0 | 0.0 | 0.02 | 0.0          | 6.2        | 5.0        | >   | 1.3        | 5.2        | 0.0        | 1.6        | 0.2        | 19.8         |
| C59        | 0.0 | 0.0 | 0.02 | na           | 5.2        | 5.0        | >   | 1.3        | 9.7        | 0.0        | 1.5        | 0.3        | 23.5         |
| C60        | 0.0 | 0.0 | 0.01 | 0.8          | 3.5        | 5.0        | >   | 5.6        | 4.5        | 0.4        | 1.6        | 0.4        | 22.1         |
| Avg        | 0.0 | 0.0 | 0.2  | 0.4          | 5.0        | 4.5        | 2.8 | 1.0        | 5.4        | 0.6        | 1.4        | 0.2        | 21.3         |
| _ Avg      | 0.0 | 0.0 | 0.1  | יים פיים     | 5.0        | 7.J        | ۷.0 | 1.0        | J.T        | 0.0        | 1.7        | 0.4        | 41.0         |

> totaled with August

# **Supplementary Grants To Project**

(Phase I - 2005-2013/Phase II - 2014-2015)

Grants directly used or partially used within the TAWC project sites are listed. Other grants and grant requests are considered complementary and outside of the TAWC project, but were obtained or attempted through leveraging of the base platform of the Texas Coalition for Sustainable Integrated Systems and Texas Alliance for Water Conservation (TeCSIS) program, and therefore represents added value to the overall TAWC effort.

#### <u>2006</u>

Allen, V. G., Song Cui, and P. Brown. 2006. Finding a Forage Legume that can Save Water and Energy and Provide Better Nutrition for Livestock in West Texas. High Plains Underground Water Conservation District No. 1. \$10,000 (funded).

#### <u>2007</u>

- Trostle, C.L., R. Kellison, L. Redmon, S. Bradbury. 2007. Adaptation, productivity, & water use efficiency of warm-season perennial grasses in the Texas High Plains. Texas Coalition, Grazing Lands Conservation Initiative, a program in which Texas State Natural Resource Conservation Service is a member. \$3,500 (funded).
- Li, Yue and V.G. Allen. 2007. Allelopathic effects of small grain cover crops on cotton plant growth and yields. USDA-SARE. Amount requested, \$10,000 (funded).
- Allen, V.G. and multiple co-authors. Crop-livestock systems for sustainable High Plains Agriculture. 2007. Submitted to the USDA-SARE program, Southeast Region, \$200,000 (funded).

#### **2008**

- Doerfert, D. L., Baker, M., and Akers, C. 2008. Developing Tomorrow's Water Conservation Researchers Today. Ogallala Aquifer Program Project. \$28,000 (funded).
- Doerfert, D.L., Meyers, C.. 2008. Encouraging Texas agriscience teachers to infuse water management and conservation-related topics into their local curriculum. Ogallala Aquifer Initiative. \$61,720 (funded).
- Request for federal funding through the Red Book initiatives of CASNR \$3.5 million.

  Received letters of support from Senator Robert Duncan, mayors of three cities in

  Hale and Floyd Counties, Glenn Schur, Curtis Griffith, Harry Hamilton, Mickey Black,
  and the Texas Department of Agriculture.
- Prepared request for \$10 million through the stimulus monies at the request of the CASNR Dean's office.

#### **2009**

- Texas High Plains: A Candidate Site for Long-Term Agroecosystems Research. USDA-CSREES 'proof of concept' grant. \$199,937 (funded).
- Building a Sustainable Future for Agriculture. USDA-SARE planning grant, \$15,000 (funded).
- Maas, S., A. Kemanian, & J. Angerer. 2009. Pre-proposal was submitted to Texas AgriLife Research for funding research on irrigation scheduling to be conducted at the TAWC project site.
- Maas, S., N. Rajan, A.C. Correa, & K. Rainwater. 2009. Proposal was submitted to USGS through TWRI to investigate possible water conservation through satellite-based irrigation scheduling.
- Doerfert, D. 2009. Proposal was submitted to USDA ARS Ogallala Aquifer Initiative.

#### **2010**

- Kucera, J.M., V. Acosta-Martinez, V. Allen. 2010. Integrated Crop and Livestock Systems for Enhanced Soil C Sequestration and Biodiversity in Texas High Plains. Southern SARE grant. \$159,999 (funded with ~15% applied directly to TAWC project sites).
- Calvin Trostle, Rick Kellison, Jackie Smith. 2010. Perennial Grasses for the Texas South Plains: Species Productivity and Irrigation Response, \$10,664 (2 years).

#### 2011

- Johnson, P., D. Doerfert, S. Maas, R. Kellison & J. Weinheimer. 2011. The Texas High Plains Initiative for Strategic and Innovative Irrigation Management and Conservation. USDA-NRCS Conservation Innovation Grant. Joint proposal with North Plains Groundwater Conservation District. \$499,848 (funded).
- Allen, V. 2011. Long-Term Agroecosystems Research and Adoption in the Texas Southern High Plains. Southern SARE grant. \$110,000 (funded).
- Maas, S. 2011. Auditing Irrigation Systems in the Texas High Plains. Texas Water Development Board. \$101,049 (funded).
- Maas, S. and co-authors. 2011. Development of a Farm-Scale Irrigation Management Decision-Support Tool to Facilitate Water Conservation in the Southern High Plains. USDA-NIFA. \$500,000 requested.

Trostle, C. 2011. Dryland reduced Tillage/No Tillage Cropping Sequences for the Texas South Plains. \$4,133 (funded from Texas State Support Committee, Cotton, Inc.,).

#### **2012**

- Allen, V. 2012. Long-Term Agroecosystems Research and Adoption in the Texas Southern High Plains. Southern SARE grant. \$110,000 (continued funding).
- Trojan, S. and co-authors. 2012. Adapting to drought and dwindling groundwater supply by integrating cattle grazing into High Plains row-cropping systems. USDA-NRCS Conservation Innovation Grant. \$348,847 requested.
- Trostle, C. 2012. Dryland reduced tillage/no tillage cropping sequences for the Texas South Plains. \$8,500 (funded from Texas Grain Sorghum Association).
- Trostle, C. 2012. Dryland reduced tillage/no tillage cropping sequences for the Texas South Plains. \$35,500 (funded from USDA Ogallala Aquifer Project).
- West, C. 2012. Calibration and validation of ALMANAC model for growth curves of warm-season grasses under limited water supply. USDA-ARS USDA Ogallala Aquifer Project. \$76,395 (funded).

#### *2013*

West, C. 2013. Long-term agroecosystems research and adoption in the Texas Southern High Plains. Southern SARE grant. \$100,000 (funded).

#### **2014**

Supplementary grants and grant requests were obtained or attempted through leveraging of the base platform of TAWC and the Texas Coalition for Sustainable Integrated Systems (TeCSIS), and therefore represent added value to the overall TAWC effort.

- West, C.P. 2014. Long-term agroecosystems research and adoption in the Texas Southern High Plains. Southern SARE grant. \$100,000. (Funded)
- West, C.P. 2014. Improving water productivity and new water management strategies to sustain rural economies. Ogallala Aquifer Program (USDA-ARS). \$20,000. (Funded)

# **Donations to Project**

# (Phase I - 2005-2013/Phase II - 2014-2015)

#### <u>2005</u>

City Bank, Lubbock, TX. 2003 GMC Yukon XL. Appraised value \$16,500.



## <u>2008</u>

#### July 31, 2008 Field Day sponsors:

| Coffey Forage Seeds, Inc.                      | \$500.00 |
|------------------------------------------------|----------|
| Agricultural Workers Mutual Auto Insurance Co. | \$250.00 |
| City Bank                                      | \$250.00 |
| Accent Engineering & Logistics, Inc.           | \$100.00 |
| Bammert Seed Co.                               | \$100.00 |
| Floyd County Supply                            | \$100.00 |
| Plainview Ag Distributors, Inc.                | \$100.00 |
| Production-Plus+                               | \$100.00 |

## <u>2010</u>

#### February 3, 2010 Field Day sponsors:

| Grain Sorghum Producers                             | \$250.00 |
|-----------------------------------------------------|----------|
| D&J Gin, Inc.                                       | \$250.00 |
| Ronnie Aston/Pioneer                                | \$500.00 |
| Floyd County Supply                                 | \$200.00 |
| Lubbock County                                      | \$250.00 |
| City Bank                                           | \$250.00 |
| High Plains Underground Water Conservation District | \$250.00 |

#### August 10, 2010 Field Day sponsors:

| Ted Young/Ronnie Aston                               | \$250.00 |
|------------------------------------------------------|----------|
| Netafim USA                                          | \$200.00 |
| Smartfield Inc.                                      | \$500.00 |
| Floyd County Soil & Water Conservation District #104 | \$150.00 |
| Grain Sorghum Producers                              | \$500.00 |

#### **2011**

#### February 24, 2011 Field Day sponsors:

| Texas Corn Producers Board | \$500.00 |
|----------------------------|----------|
| West Texas Guar, Inc.      | \$500.00 |

| Texas Grain Sorghum Producers<br>Happy State Bank | \$500.00<br>\$500.00 |
|---------------------------------------------------|----------------------|
|                                                   | \$300.00             |
| August 4, 2011 Field Day sponsors:                |                      |
| Texas Corn Producers Board                        | \$500.00             |
| City Bank                                         | \$500.00             |
| Texas Grain Sorghum Producers                     | \$500.00             |
| AquaSpy, Inc.                                     | \$250.00             |
| NetaFim USA                                       | \$200.00             |
| Panhandle-Plains Land Bank Association, FLCA      | \$ 50.00             |
|                                                   |                      |

## <u> 2012</u>

## August 4, 2012 Field Day sponsors:

| Texas Corn Producers Board                   | \$500.00 |
|----------------------------------------------|----------|
| City Bank                                    | \$500.00 |
| Texas Grain Sorghum Producers                | \$500.00 |
| AquaSpy, Inc.                                | \$250.00 |
| NetaFim USA                                  | \$200.00 |
| Panhandle-Plains Land Bank Association, FLCA | \$ 50.00 |

## January 17, 2013 Field Day sponsors:

| Texas Corn Producers Board         | \$500.00 |
|------------------------------------|----------|
| Plains Cotton Growers              | \$250.00 |
| Grain Sorghum Producers            | \$250.00 |
| Ronnie Aston                       | \$500.00 |
| Ag Tech                            | \$250.00 |
| Diversified Sub-Surface Irrigation | \$500.00 |

## <u>2013</u>

## August 15, 2013 Field Day sponsors:

| Texas Corn Producers Board       | \$ 500.00  |
|----------------------------------|------------|
| Texas Grain Sorghum Producers    | \$ 250.00  |
| Plains Cotton Growers            | \$ 250.00  |
| United Sorghum Check-Off Program | \$ 250.00  |
| Dupont-Pioneer                   | \$ 800.00  |
| AquaSpy                          | \$ 250.00  |
| Eco-Drip                         | \$ 250.00  |
| Hurst Farm Supply                | \$ 800.00  |
| Bayer Crop Science               | \$ 800.00  |
| Total                            | \$4 150 00 |

## <u>2014</u>

| AquaSpy              | \$ 250.00 |
|----------------------|-----------|
| Bayer CropScience    | \$ 800.00 |
| Bamert Seed          | \$ 250.00 |
| Texas Corn Producers | \$ 500.00 |

| Total                              | \$4,050.00 |
|------------------------------------|------------|
| Texas Grain Sorghum Producers      | \$ 250.00  |
| National Sorghum Check-Off Program | \$ 250.00  |
| Plains Cotton Growers              | \$ 250.00  |
| Hurst Farm Supply                  | \$ 500.00  |
| Helena Chemical                    | \$ 500.00  |
| DSI Drip Irrigation                | \$ 500.00  |

# Visitors to the Demonstration Project Sites (Phase I - 2005-2013/Phase II - 2014-2015)

| 2005<br>Total Number of Visitors | 190  |
|----------------------------------|------|
| 2006<br>Total Number of Visitors | 282  |
| 2007<br>Total Number of Visitors | 36   |
| 2008<br>Total Number of Visitors | 53   |
| 2009<br>Total Number of Visitors | 33   |
| 2010<br>Total Number of Visitors | 14 + |
| <u>2011</u>                      |      |
| Total Number of Visitors         | 11+  |
| <u>2012</u>                      |      |
| Total Number of Visitors         | 15 + |
| <u>2013</u>                      |      |
| Total Number of Visitors         | 230+ |
| <u>2014</u>                      |      |
| Total Number of Visitors         | 200+ |

# **Presentations**

(Phase I - 2005-2013/Phase II - 2014-2015)

## <u> 2005</u>

| 1-Mar  | Radio interview (KRFE)                                                          | Allen                  |
|--------|---------------------------------------------------------------------------------|------------------------|
| 17-Mar | Radio interview                                                                 | Kellison               |
| 17-May | Radio interview (KFLP)                                                          | Kellison               |
| 21-Jul | Presentation to Floyd County Ag Comm.                                           | Kellison               |
| 17-Aug | Presentation to South Plains Association of Soil & Water Conservation Districts | Kellison               |
| 13-Sep | Presentation at Floyd County NRCS FY2006 EQIP meeting                           | Kellison               |
| 28-Sep | Presentation at Floyd County Ag Tour                                            | Kellison/Trostle/Allen |
| 20-Oct | Presentation to Houston Livestock and Rodeo group                               | Allen/Baker            |
| 3-Nov  | Cotton Profitability Workshop                                                   | Pate/Yates             |
| 10-Nov | Presentation to Regional Water Planning Committee                               | Kellison               |
| 16-Nov | Television interview (KCBD)                                                     | Kellison               |
| 18-Nov | Presentation to CASNR Water Group                                               | Kellison/Doerfert      |
| 1-Dec  | Radio interview (KRFE)                                                          | Kellison               |
| 9-Dec  | Radio interview (AgriTALK – nationally syndicated)                              | Kellison               |
| 15-Dec | Presentation at Olton Grain Coop Winter Agronomy meeting                        | Kellison               |

## <u>2006</u>

| <u>Date</u> | <u>Presentation</u>                                                                                                                                                        | Spokesperson(s)        |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 24-26 Jan   | Lubbock Southwest Farm & Ranch Classic                                                                                                                                     | Kellison               |
| 6-Feb       | Southern Region AAAE Conference: The value of water: Educational programming to maximize profitability and decrease water consumption (poster presentation), Charlotte, NC | M. Norton/Doerfert     |
| 7-Feb       | Radio Interview                                                                                                                                                            | Kellison/Baker         |
| 2-Mar       | South Plains Irrigation Management Workshop                                                                                                                                | Trostle/Kellison/Orr   |
| 30-Mar      | Forage Conference                                                                                                                                                          | Kellison/Allen/Trostle |
| 19-Apr      | Floydada Rotary Club                                                                                                                                                       | Kellison               |

| 20-Apr | Western Region AAAE Conference: Conservation outreach communications: A framework for structuring conservation outreach campaigns (poster presentation), Boise, ID         | M. Couts/Doerfert                |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 27-Apr | ICASALS Holden Lecture: New Directions in Groundwater Management for the Texas High<br>Plains                                                                              | Conkwright                       |
| 18-May | Annual National AAAE Conference: The value of water: Educational programming to maximize profitability and decrease water consumption (poster presentation), Charlotte, NC | M. Norton/Doerfert               |
| 18-May | Annual National AAAE Conference: Conservation outreach communications: A framework for structuring conservation outreach campaigns (poster presentation), Charlotte, NC    | M. Couts/Doerfert                |
| 15-Jun | Field Day @ New Deal Research Farm                                                                                                                                         | Kellison/Allen/Cradduck/Doerfert |
| 21-Jul | Summer Annual Forage Workshop                                                                                                                                              | Trostle                          |
| 27-Jul | National Organization of Professional Hispanic NRCS Employees annual training meeting,<br>Orlando, FL                                                                      | Cradduck (on behalf of Kellison) |
| 11-Aug | 2006 Hale County Field Day                                                                                                                                                 | Kellison                         |
| 12-Sep | Texas Ag Industries Association Lubbock Regional Meeting                                                                                                                   | Doerfert (on behalf of Kellison) |
| 11-0ct | TAWC Producer meeting                                                                                                                                                      | Kellison/Pate/Klose/Johnson      |
| 2-Nov  | Texas Ag Industries Association Dumas Regional Meeting                                                                                                                     | Kellison                         |
| 10-Nov | 34th Annual Banker's Ag Credit Conference                                                                                                                                  | Kellison                         |
| 14-Nov | Interview w/Alphaeus Media                                                                                                                                                 | Kellison                         |
| 28-Nov | Amarillo Farm & Ranch Show                                                                                                                                                 | Doerfert                         |
| 8-Dec  | 2006 Olton Grain COOP Annual Agronomy Meeting                                                                                                                              | Kellison/Trostle                 |
| 12-Dec | Swisher County Ag Day                                                                                                                                                      | Kellison/Yates                   |
| 12-Dec | 2006 Alfalfa and Forages Clinic, Colorado State University                                                                                                                 | Allen                            |

# <u>2007</u>

| <u>Date</u> | <u>Presentation</u>                                                       | Spokesperson(s)   |
|-------------|---------------------------------------------------------------------------|-------------------|
| 11-Jan      | Management Team meeting (Dr. Jeff Jordan, Advisory Council in attendance) |                   |
| 23—25 Jan   | 2007 Southwest Farm & Ranch Classic, Lubbock, TX                          | Kellison/Doerfert |
| 6-Feb       | Cow/Calf Beef Producer Meeting at Floyd County Unity Center               | Allen             |
| 8-Feb       | Management Team meeting                                                   |                   |
| 13-Feb      | Grower meeting, Clarendon, TX                                             | Kellison          |
| 26-Feb      | Silage workshop, Dimmitt, TX                                              |                   |
| 8-Mar       | Management Team meeting                                                   |                   |
| 21-Mar      | Silage Workshop, Plainview, TX                                            | Kellison/Trostle  |

| 22-Mar            | Silage Workshop, Clovis, NM                                                                                                                                                                                                                                           | Kellison/Trostle                       |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 30-Mar            | Annual Report review meeting w/Comer Tuck, Lubbock, TX                                                                                                                                                                                                                |                                        |
| 2-Apr             | TAWC Producer meeting, Lockney, TX                                                                                                                                                                                                                                    |                                        |
| 11-Apr            | Texas Tech Cotton Economics Institute Research/Extension Symposium                                                                                                                                                                                                    | Johnson                                |
| 2-Apr             | Management Team meeting                                                                                                                                                                                                                                               |                                        |
| 21-Apr            | State FFA Agricultural Communications Contest, Lubbock, TX (100 high school students)(mock press conf. based on TAWC info)                                                                                                                                            | Johnson                                |
| <sup>7</sup> -May | The Lubbock Round Table meeting                                                                                                                                                                                                                                       | Kellison                               |
| -May              | Area 7 FFA Convention, Texas State University, San Marcos, TX (distributed 200 DVD and info sheets)                                                                                                                                                                   | Baker                                  |
| 0-May             | Management Team meeting                                                                                                                                                                                                                                               |                                        |
| 2-May             | RoundTable meeting, Lubbock Club                                                                                                                                                                                                                                      | Allen                                  |
| .5—17-May         | 21st Biennial Workshop on Aerial Photog., Videography, and High Resolution Digital Imagery for Resource Assessment: <i>Calibrating aerial imagery for estimating crop ground cover</i> , Terre Haute, IN                                                              | Rajan                                  |
| 80-May            | Rotary Club (about 100 present)                                                                                                                                                                                                                                       | Allen                                  |
| -Jun              | Lubbock Economic Development Association                                                                                                                                                                                                                              | Baker                                  |
| 4-Jun             | Management Team meeting                                                                                                                                                                                                                                               |                                        |
| 8-Jun             | Meeting with Senator Robert Duncan                                                                                                                                                                                                                                    | Kellison                               |
| 0-Jul             | Management Team meeting                                                                                                                                                                                                                                               |                                        |
| 24—26-Jul         | Universities Council on Water Resources (UCOWR)/National Institutes for Water Resources (NIWR) Annual Conference: <i>Political and civic engagement of agriculture producers who operate in selected Idaho and Texas counties dependent on irrigation</i> , Boise, ID | Doerfert                               |
| 0-Jul—3-Aug       | Texas Vocational Agriculture Teachers' Association Annual Conference, Arlington, TX (distributed 100 DVDs)                                                                                                                                                            | Doerfert                               |
| -Aug              | Management Team meeting                                                                                                                                                                                                                                               |                                        |
| 0-Aug             | Texas South Plains Perennial Grass Workshop, Teeter Farm & Muncy Unity Center                                                                                                                                                                                         | Kellison/Trostle                       |
| 3—15-Aug          | International Symposium on Integrated Crop-Livestock Systems conference, Universidade Federal do Parana in Curitiba, Brazil                                                                                                                                           | (Presentation made on behalf of Allen) |
| 3—14-Aug          | 2007 Water Research Symposium: Comparison of water use among crops in the Texas High Plains estimated using remote sensing, Socorro, NM                                                                                                                               | Rajan                                  |
| 4—17-Aug          | Educational training of new doctoral students, Texas Tech campus, Lubbock, TX (distributed 17 DVDs)                                                                                                                                                                   | Doerfert                               |
| 3-Aug             | Cattle Feeds and Mixing Program                                                                                                                                                                                                                                       |                                        |
| 2-Sep             | West Texas Ag Chem Conference                                                                                                                                                                                                                                         | Kellison                               |
| 8-Sep             | Floyd County Farm Tour                                                                                                                                                                                                                                                | Trostle                                |
| 0-Sep             | Management Team meeting                                                                                                                                                                                                                                               |                                        |
| -Oct              | Plant & Soil Science Departmental Seminar: Overview and Initial Progress of the Texas Alliance for Water Conservation Project                                                                                                                                         | Kellison                               |

| 8-Oct     | Plant & Soil Science Departmental Seminar: Estimating ground cover of field crops using multispectral medium, resolution satellite, and high resolution aerial imagery                               | Rajan                    |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 11-0ct    | Management Team meeting                                                                                                                                                                              |                          |
| 4—8-Nov   | American Society of Agronomy Annual meetings: <i>Using remote sensing and crop models to compare water use of cotton under different irrigation systems</i> (poster presentation), New Orleans, LA   | f <sub>Rajan</sub>       |
| 4—8-Nov   | American Society of Agronomy Annual meetings: Assessing the crop water use of silage corn and forage sorghum using remote sensing and crop modeling, New Orleans, LA                                 | Rajan                    |
| 7—9-Nov   | National Water Resources Association Annual Conference, Albuquerque, NM                                                                                                                              | Bruce Rigler (HPUWCD #1) |
| 8-Nov     | Management Team meeting (Comer Tuck in attendance)                                                                                                                                                   |                          |
| 12—15-Nov | American Water Resources Association annual meeting: Considering conservation outreach through the framework of behavioral economics: a review of literature (poster presentations), Albuquerque, NM | M. Findley/Doerfert      |
| 12—15-Nov | American Water Resources Association annual meeting: How do we value water? A multi-state perspective (poster presentation), Albuquerque, NM                                                         | L. Edgar/Doerfert        |
| 16-Nov    | Water Conservation Advisory Council meeting, Austin, TX                                                                                                                                              | Allen                    |
| 19-Nov    | Plant & Soil Science Departmental Seminar: Finding the legume species for West Texas which can improve forage                                                                                        |                          |
|           | quality and reduce water consumption                                                                                                                                                                 | Cui                      |
| 27—29-Nov | Amarillo Farm Show, Amarillo, TX                                                                                                                                                                     | Doerfert/Leigh/Kellison  |
| 2—4-Dec   | Texas Water Summit, San Antonio, TX                                                                                                                                                                  | Allen                    |
| 13-Dec    | Management Team meeting                                                                                                                                                                              |                          |
|           |                                                                                                                                                                                                      |                          |

## <u>2008</u>

| <u>Date</u> | <u>Presentation</u>                                                                                                              | Spokesperson(s)    |
|-------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 8-11-Jan    | Beltwide Cotton Conference Proceedings: Energy Analysis of Cotton Production in the Southern High Plains of Texas, Nashville, TN | Johnson/Weinheimer |
| 10-Jan      | Management Team meeting                                                                                                          |                    |
| 1-Feb       | Southwest Farm and Ranch Classic, Lubbock                                                                                        | Kellison           |
| 14-Feb      | Management Team meeting (Weinheimer presentation)                                                                                |                    |
| 14-Feb      | TAWC Producer Board meeting                                                                                                      | Kellison           |
| 5-Mar       | Floydada Rotary Club                                                                                                             | Kellison           |
| 13-Mar      | Management Team meeting                                                                                                          |                    |
| 25-Mar      | National SARE Conference: New American Farm Conference: Systems Research in Action, Kansas City, MO                              | Allen              |
| 27-Mar      | Media training for TAWC Producer Board                                                                                           | Doerfert/Kellison  |
| Apr         | Agricultural Economics Seminar: Transitions in Agriculture, Texas Tech University                                                | Weinheimer         |

| 10-Apr     | Management Team meeting                                                                                                                                                                                     |                                |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 5-May      | Pasture and Forage Land Synthesis Workshop: <i>Integrated forage-livestock systems research</i> , Beltsville, MD                                                                                            | Allen                          |
| 8-May      | Management Team meeting                                                                                                                                                                                     |                                |
| 9-Jun      | Walking tour of New Deal Research farm                                                                                                                                                                      | Allen/Kellison/Li/Cui/Cradduck |
| 10-12-Jun  | Forage Training Seminar: Agriculture and land use changes in the Texas High Plains, Cropland Genetics, Amarillo                                                                                             | Allen                          |
| 12-Jun     | Management Team meeting                                                                                                                                                                                     |                                |
| 14-Jul     | Ralls producers                                                                                                                                                                                             | Kellison                       |
| 14-Jul     | Water and the AgriScience Fair Teacher and Student Workshops                                                                                                                                                | Kellison/Brown/Cradduck        |
| 15-Jul     | Pioneer Hybrids Research Directors                                                                                                                                                                          | Kellison                       |
| 20-23-July | 9th International Conference on Precision Agriculture, Denver, CO                                                                                                                                           | Rajan                          |
| 31-Jul     | TAWC Field Day                                                                                                                                                                                              | all                            |
| 8-Aug      | TAWC Producer Board meeting                                                                                                                                                                                 |                                |
| 12-Aug     | Pioneer Hybrids Field Day                                                                                                                                                                                   | Kellison                       |
| 9-Sep      | Texas Ag Industries Association, Lubbock regional meeting                                                                                                                                                   | Allen                          |
| 11-Sep     | Management Team meeting                                                                                                                                                                                     |                                |
| 16-Sep     | Mark Long, TDA President, Ben Dora Dairies, Amherst, TX                                                                                                                                                     | Kellison/Trostle/ Cradduck     |
| 5-9-0ct    | American Society of Agronomy Annual meeting, Houston                                                                                                                                                        | Rajan                          |
| 8-0ct      | American Society of Agronomy Annual meeting, Houston                                                                                                                                                        | Maas                           |
| 15-0ct     | State Energy Conservation Office (SECO) meeting                                                                                                                                                             |                                |
| 16-0ct     | Management Team meeting                                                                                                                                                                                     |                                |
| 17-Oct     | Thesis defense: A Qualitative Investigation of the Factors that Influence Crop Planting and Water Management in West Texas.                                                                                 | Leigh                          |
| 20-Oct     | Farming with Grass conference, Soil and Water Conservation Society, Oklahoma City, OK                                                                                                                       | Allen                          |
| 23-Oct     | Thesis defense: Farm Level Financial Impacts of Water Policy on the Southern Ogallala Aquifer                                                                                                               | Weinheimer                     |
| 13-Nov     | Management Team meeting (Weinheimer presentation)                                                                                                                                                           |                                |
| 17-20-Nov  | American Water Resources Association Conference: Farm-based water management research shared through a community of practice model, New Orleans, LA                                                         | Leigh                          |
| 17-20-Nov  | American Water Resources Association Conference: The critical role of the community coordinator in facilitating an agriculture water management and conservation community of practice, New Orleans, LA     | Wilkinson                      |
| 17-20-Nov  | American Water Resources Association Conference: An exploratory analysis of the ruralpolitan population and their attitudes toward water management and conservation (poster presentation), New Orleans, LA | Newsom                         |
| 17-20-Nov  | American Water Resources Association Conference: <i>Developing tomorrow's water researchers today</i> (poster presentation), New Orleans, LA                                                                | C. Williams                    |
| 19-Nov     | TTU GIS Open House                                                                                                                                                                                          | Barbato                        |
|            |                                                                                                                                                                                                             |                                |

| Dec     | Panhandle Groundwater District: Farm Level Financial Impacts of Water Policy on the Southern Ogallala Aquifer, White Deer, TX | Johnson/Weinheimer                     |
|---------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 2-4-Dec | Amarillo Farm Show                                                                                                            | Doerfert                               |
| 3-Dec   | Dr. Todd Bilby, Ellen Jordan, Nicholas Kenny, Dr. Amosson (discussion of water/crops/cattle), Amarillo                        | Kellison                               |
| 6-Dec   | Lubbock RoundTable                                                                                                            | Kellison                               |
| 6-7-Dec | Meeting regarding multi-institutional proposal to target a future USDA RFP on water management, Dallas                        | Doerfert                               |
| 11-Dec  | Management Team meeting                                                                                                       |                                        |
| 12-Dec  | Olton CO-OP Producer meeting                                                                                                  | Kellison                               |
| 19-Dec  | TAWC Producer meeting                                                                                                         | Kellison/Schur/<br>Cradduck/Weinheimer |

# <u>2009</u>

| <u>Date</u> | <u>Presentation</u>                                                                                                                                                                       | Spokesperson(s)                       |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| 15-Jan      | Management Team meeting                                                                                                                                                                   |                                       |
| 21-Jan      | Caprock Crop Conference                                                                                                                                                                   | Kellison                              |
| 27-29 Jan   | Southwest Farm & Ranch Classic (TAWC booth), Lubbock                                                                                                                                      | Doerfert/Jones/Wilkinson/<br>Williams |
| 27-Jan      | Southwest Farm & Ranch Classic: Managing Wheat for Grain, Lubbock                                                                                                                         | Trostle                               |
| 27-Jan      | Southwest Farm & Ranch Classic: 2009 Planting Decisions – Grain Sorghum and Other Alternatives, Lubbock                                                                                   | Trostle                               |
| 28-Jan      | Southwest Farm & Ranch Classic: Profitability Workshop, Lubbock                                                                                                                           | Yates/Pate                            |
| Feb         | Floyd County crop meetings, Muncy                                                                                                                                                         | Trostle                               |
| Feb         | Hale County crop meetings, Plainview                                                                                                                                                      | Trostle                               |
| 12-Feb      | Management Team meeting                                                                                                                                                                   |                                       |
| 17-Feb      | Crops Profitability workshops, AgriLife Extension and Research Center, Lubbock                                                                                                            | Yates/Trostle                         |
| 5-Mar       | Crops Profitability workshops, AgriLife Extension and Research Center, Lubbock                                                                                                            | Yates/Trostle                         |
| 12-Mar      | Management Team meeting                                                                                                                                                                   |                                       |
| 1-Apr       | Texas Tech Cotton Economics Institute Research Institutes 9th Annual Symposium (CERI): Water Policy Impacts on High Plains Cropping Patterns and Representative Farm Performance, Lubbock | Johnson/Weinheimer                    |
| 9-Apr       | Management Team meeting                                                                                                                                                                   |                                       |
| 15-Apr      | Texas Tech Forage Class                                                                                                                                                                   | Kellison                              |
| 21-Apr      | Presentation to High Plains Underground Water District Board of Directors                                                                                                                 | Kellison                              |
| 14-May      | Management Team meeting                                                                                                                                                                   |                                       |
| 27-May      | Consortium for Irrigation Research and Education conference, Amarillo                                                                                                                     | Kellison                              |

| 11-Jun    | Management Team meeting                                                                                                                                                                                                                                                                                                                                                                                                    |                                |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 22-24-Jun | Joint Meeting of the Western Society of Crop Science and Western Society of Soil Science: <i>Evaluation of the bars soil line from reflectance measurements on seven dissimilar soils</i> (poster presentation), Ft. Collins, CO                                                                                                                                                                                           | g<br>Rajan                     |
| 26-Jun    | Western Agricultural Economics Association: Economics of State Level Water Conservation Goals, Kauai, HI                                                                                                                                                                                                                                                                                                                   | Weinheimer/Johnson             |
| 7-Jul     | Universities Council of Water Resources: Water Policy in the Southern High Plains: A Farm Level Analysis, Chicago, IL                                                                                                                                                                                                                                                                                                      | Weinheimer/Johnson             |
| 9-Jul     | Management Team meeting                                                                                                                                                                                                                                                                                                                                                                                                    |                                |
| 27-31-Jul | Texas Agriscience Educator Summer Conference, Lubbock                                                                                                                                                                                                                                                                                                                                                                      | Doerfert/Jones                 |
| 6-Aug     | Management Team meeting                                                                                                                                                                                                                                                                                                                                                                                                    |                                |
| 17-19-Aug | TAWC NRCS/Congressional tour and presentations, Lubbock, New Deal & Muncy                                                                                                                                                                                                                                                                                                                                                  | TAWC participants              |
| 27-Aug    | Panhandle Association of Soil and Water Conservation Districts                                                                                                                                                                                                                                                                                                                                                             | Kellison                       |
| 10-Sep    | Management Team meeting                                                                                                                                                                                                                                                                                                                                                                                                    |                                |
| 8-Oct     | Management Team meeting                                                                                                                                                                                                                                                                                                                                                                                                    |                                |
| 9-0ct     | Presentation to visiting group from Colombia, TTU campus, Lubbock                                                                                                                                                                                                                                                                                                                                                          | Kellison                       |
| 13-Oct    | Briscoe County Field day, Silverton, TX                                                                                                                                                                                                                                                                                                                                                                                    | Kellison                       |
| 1-5-Nov   | Annual Meetings of the American Society of Agronomy, oral presentations: Evapotranspiration of Irrigated and Dryland Cotton Fields Determined Using Eddy Covariance and Penman-Monteith Methods, and Relation Between Soil Surface Resistance and Soil Surface Reflectance, poster presentation: Variable Rate Nitrogen Application in Cotton Using Commercially Available Satellite and Aircraft Imagery," Pittsburgh, PA | Maas/Rajan                     |
| 10-12-Nov | Cotton Incorporated Precision Agriculture Workshop: Biomass Indices, Austin, TX                                                                                                                                                                                                                                                                                                                                            | Rajan/Maas                     |
| 12-Nov    | Management Team meeting                                                                                                                                                                                                                                                                                                                                                                                                    |                                |
| Dec       | United Farm Industries Board of Directors: Irrigated Agriculture, Lubbock                                                                                                                                                                                                                                                                                                                                                  | Johnson/Weinheimer             |
| Dec       | Fox 34 TV interview, Ramar Communications, Lubbock                                                                                                                                                                                                                                                                                                                                                                         | Allen                          |
| 1-3-Dec   | Amarillo Farm Show, Amarillo                                                                                                                                                                                                                                                                                                                                                                                               | Doerfert/Jones/Oates/ Kellison |
| 3-Dec     | Management Team meeting                                                                                                                                                                                                                                                                                                                                                                                                    |                                |
| 10-Dec    | TAWC Producer Board meeting, Lockney                                                                                                                                                                                                                                                                                                                                                                                       | Kellison/Weinheimer/Maas       |
| 14-Dec    | Round Table meeting with Todd Staples, Lubbock, TX                                                                                                                                                                                                                                                                                                                                                                         | Kellison                       |
| 12-18-Dec | Fall meeting, American Geophysical Union: Vegetation cover mapping at multiple scales using MODIS, Landsat, RapidEye, and Aircraft imageries in the Texas High Plains, San Francisco, CA                                                                                                                                                                                                                                   | Rajan/Maas                     |

# <u>2010</u>

| <u>Date</u> | <u>Presentation</u>                                                                                                                                       | Spokesperson(s)             |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 4-7-Jan     | Beltwide Cotton Conference: <i>Energy and Carbon: Considerations for High Plains Cotton</i> , New Orleans, LA                                             | Yates/Weinheimer            |
| 14-Jan      | TAWC Management Team meeting                                                                                                                              |                             |
| 3-Feb       | TAWC Farmer Field Day, Muncy, TX                                                                                                                          | TAWC participants           |
| 5-9-Feb     | Southern Agricultural and Applied Economics Association annual meeting: <i>Macroeconomic Impacts on Water Use in Agriculture</i> , Orlando, FL            | Weinheimer                  |
| 9-11-Feb    | Southwest Farm & Ranch Classic (TAWC booth), Lubbock                                                                                                      | Doerfert/Jones/Frederick    |
| l0-Feb      | Southwest Farm & Ranch Classic, Lubbock                                                                                                                   | Kellison/Yates/Trostle/Maas |
| 1-Feb       | TAWC Management Team meeting                                                                                                                              |                             |
| 9-March     | TAWC Producer Board Meeting, Lockney                                                                                                                      | TAWC participants           |
| 11-March    | TAWC Management Team meeting                                                                                                                              |                             |
| 31-March    | Texas Tech Forage Class                                                                                                                                   | Kellison                    |
| 3-April     | TAWC Management Team meeting                                                                                                                              |                             |
| 3-April     | Matador Land & Cattle Co., Matador, TX                                                                                                                    | Kellison                    |
| 13-May      | TAWC Management Team meeting                                                                                                                              |                             |
| l0-June     | TAWC Management Team meeting                                                                                                                              |                             |
| 30-June     | TAWC Grower Technical Working Group meeting, Lockney                                                                                                      | Glodt/Kellison              |
| 3-July      | TAWC Management Team meeting                                                                                                                              |                             |
| -July       | Southwest Council on Agriculture annual meeting, Lubbock                                                                                                  | Doerfert/Sell/Kellison      |
| 5-July      | Universities Council on Water Resources (UCOWR): Texas Alliance for Water Conservation: An Integrated Approach to Water Conservation, Seattle, WA         | Weinheimer                  |
| 25-27-July  | American Agricultural Economics Association annual meeting: Carbon Footprint: A New Farm Management Consideration on the Southern High Plains, Denver, CO | Weinheimer                  |
| 7-July      | Tour for Cotton Incorporated group, TAWC Sites                                                                                                            | Kellison/Maas               |
| August      | Ag Talk on FOX950 am radio show                                                                                                                           | Weinheimer                  |
| 0-Aug       | TAWC Field day, Muncy, TX                                                                                                                                 | TAWC participants           |
| 2-Aug       | TAWC Management Team meeting                                                                                                                              |                             |
| 0-Aug       | Tour/interviews for SARE film crew, TTU campus, New Deal and TAWC Sites                                                                                   | TAWC participants           |
| -Sept       | TAWC Management Team meeting                                                                                                                              |                             |
| 4-Sept      | Floyd County Farm Tour, Floydada, TX                                                                                                                      | Kellison                    |
| 4-Oct       | TAWC Management Team meeting                                                                                                                              |                             |

| 27-Oct       | Texas Agricultural Lifetime Leadership Class XII                                                                                                                                        | Kellison                 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 31-0ct—3-Nov | Annual Meetings of the American Society of Agronomy: <i>Carbon fluxes from continuous cotton and pasture for grazing in the Texas High Plains,</i> Long Beach, CA                       | Rajan/Maas               |
| 31-0ct—3-Nov | Annual Meetings of the American Society of Agronomy: Closure of surface energy balance for agricultural fields determined from eddy covariance measurements, Long Beach, CA             | Maas/Rajan               |
| 8-Nov        | Fox News interview                                                                                                                                                                      | Kellison                 |
| 8-Nov        | Fox 950 am radio interview                                                                                                                                                              | Doerfert                 |
| 9-Nov        | Texas Ag Industries Association Regional Meeting, Dumas, TX                                                                                                                             | Kellison                 |
| 18-Nov       | TAWC Management Team meeting                                                                                                                                                            |                          |
| 19-Nov       | North Plains Water District meeting, Amarillo, TX                                                                                                                                       | Kellison/Schur           |
| 1-3-Dec      | Amarillo Farm & Ranch Show (TAWC booth), Amarillo                                                                                                                                       | Doerfert/Zavaleta/Graber |
| 9-Dec        | TAWC Management Team meeting                                                                                                                                                            |                          |
| 12-18-Dec    | American Geophysical Union fall meeting: Vegetation cover mapping at multiple scales using MODIS, Landsat, RapidEye, and Aircraft imageries in the Texas High Plains, San Francisco, CA | Rajan/Maas               |

# <u>2011</u>

| <u>Date</u> | <u>Presentation</u>                                                                                                                  | Spokesperson(s)          |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 13-Jan      | High Plains Irrigation Conference                                                                                                    | Kellison                 |
| 13-Jan      | TAWC Management Team meeting                                                                                                         |                          |
| 18-Jan      | Fox Talk 950 AM radio interview                                                                                                      | Doerfert/Graber/Sullivan |
| 24-Jan      | Wilbur-Ellis Company                                                                                                                 | Kellison                 |
| 25-Jan      | Caprock Crop Conference                                                                                                              | Kellison                 |
| 4-Feb       | KJTV-Fox 34 Ag Day news program: <i>TAWC rep discusses optimal irrigation, Field Day preview,</i> Lubbock, TX                        | Glodt                    |
| 6-8-Feb     | American Society of Agronomy Southern Regional Meeting: Seasonal Ground Cover for Crops in The Texas High Plains, Corpus Christi, TX | Maas/Rajan               |
| 7-Feb       | KJTV-Fox 34 Ag Day news program: Risk management specialist gives best marketing options for your crop, Lubbock, TX                  | Yates                    |
| 8-Feb       | KJTV-Fox 34 Ag Day news program: <i>Producer Glenn Schur shares his water conservation tips</i> , Lubbock, TX                        | Schur                    |
| 8-10-Feb    | Southwest Farm & Ranch Classic (TAWC booth), Lubbock, TX                                                                             | Doerfert/Graber/Sullivan |

| 9-Feb        | Southwest Farm & Ranch Classic: <i>Managing Warm Season Annual Forages on the South Plains</i> , Lubbock, TX                                                                                                                                          | Trostle                                  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| 9-Feb        | KJTV-Fox 34 Ag Day news program: Rep of the HPWD discusses possible water restrictions, Lubbock, TX                                                                                                                                                   | Carmon McCain                            |
| 10-Feb       | Hale County Crops meeting, Plainview, TX                                                                                                                                                                                                              | Trostle                                  |
| 7-Feb        | TAWC Management Team meeting                                                                                                                                                                                                                          |                                          |
| 23-Feb       | Pioneer Hybrids                                                                                                                                                                                                                                       | Kellison                                 |
| 4-Feb        | 2011 Production Agriculture Planning Workshop, Muncy, TX                                                                                                                                                                                              | TAWC participants                        |
| 5-Feb        | KJTV-Fox 34 Ag Day news program: <i>Producers gain knowledge about water conservation at TAWC Field Day,</i> Lubbock, TX                                                                                                                              | Doerfert                                 |
| -Mar         | Texas Tech Forage class                                                                                                                                                                                                                               | Kellison                                 |
| 0-Mar        | TAWC Management Team meeting (Maas presentation)                                                                                                                                                                                                      |                                          |
| 0-Mar        | West Texas Mesonet (Wes Burgett), TTU Reese Center, Lubbock, TX                                                                                                                                                                                       | Kellison/Brown/Maas/Rajan<br>/Weinheimer |
| 31-Mar—1-Apr | Texas Cotton Ginners Show (TAWC booth), Lubbock, TX                                                                                                                                                                                                   | Doerfert/Graber/Sullivan                 |
| 3-Apr        | USDA-ARS/Ogallala Aquifer project (David Brauer), Lubbock, TX                                                                                                                                                                                         | Kellison/TAWC participants               |
| 3-Apr        | KJTV-Fox 34 Ag Day news program: TAWC introduces solution tools for producers, Lubbock, TX                                                                                                                                                            | Weinheimer                               |
| 4-Apr        | TAWC Management Team meeting                                                                                                                                                                                                                          |                                          |
| .8-Apr       | KJTV-Fox 34 Ag Day news program: Cotton overwhelmingly king this year on South Plains,<br>Lubbock, TX                                                                                                                                                 | Boyd Jackson                             |
| 8-Apr        | KJTV-Fox 34 Ag Day news program: Specialty, rotation crops not popular this growing season, Lubbock, TX                                                                                                                                               | Trostle                                  |
| 2-May        | TAWC Management Team meeting                                                                                                                                                                                                                          |                                          |
| 7-May        | KJTV-Fox 34 Ag Day news program: Tools available to maximize irrigation efficiency, Lubbock, TX                                                                                                                                                       | Kellison                                 |
| 8-May        | Floydada Rotary Club, Floydada, TX                                                                                                                                                                                                                    | Kellison                                 |
| -Jun         | TAWC Management Team meeting                                                                                                                                                                                                                          |                                          |
| 9-Jun—2-Jul  | Joint meetings of the Western Agricultural Economics Association/Canadian Agricultural Economics Society: Evaluating the Implications of Regional Water Management Strategies: A Comparison of County and Farm Level Analysis, Banff, Alberta, Canada | Weinheimer                               |
| .2-14-Jul    | UCOWR/NIWR Conference: Texas Alliance for Water Conservation: An Innovative Approach to Water Conservation: An Overview, Boulder, CO                                                                                                                  | Kellison                                 |
| 2-14-Jul     | UCOWR/NIWR Conference: Sunflowers as an Alternative Irrigated Crop on the Southern High Plains, Boulder, CO                                                                                                                                           | Pate                                     |
| 2-14-Jul     | UCOWR/NIWR Conference: Economic Considerations for Water Conservation: The Texas Alliance for Water Conservation, Boulder, CO                                                                                                                         | Weinheimer                               |
| 12-14-Jul    | UCOWR/NIWR Conference: Determining Crop Water Use in the Texas Alliance for Water Conservation Project, Boulder, CO                                                                                                                                   | Maas                                     |

| 12-14-Jul | UCOWR/NIWR Conference: What We Know About Disseminating Water Management Information to Various Stakeholders, Boulder, CO                                                                                                                    | Doerfert                                          |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| 12-14-Jul | UCOWR/NIWR Conference: Assessment of Improved Pasture Alternatives on Texas Alliance for Water Conservation, Boulder, CO                                                                                                                     | Kellison                                          |
| 12-14-Jul | UCOWR/NIWR Conference: Integrating forages and grazing animals to reduce agricultural water use, Boulder, CO                                                                                                                                 | Brown                                             |
| 21-Jul    | TAWC Management Team meeting                                                                                                                                                                                                                 |                                                   |
| 4-Aug     | KXDJ-FM news radio interview                                                                                                                                                                                                                 | Weinheimer                                        |
| 1-Aug     | TAWC Field Day, Muncy, TX                                                                                                                                                                                                                    | TAWC participants                                 |
| l1-Aug    | TAWC Management Team meeting                                                                                                                                                                                                                 |                                                   |
| 1-Sep     | KJTV-Fox 34 Ag Day news program: <i>High Plains producers struggling to conserve water in drought</i> , Lubbock, TX                                                                                                                          | Boyd Jackson                                      |
| 5-Sep     | KJTV-Fox 34 Ag Day news program: <i>New ideas, concepts emerging from surviving historic drought,</i> Lubbock, TX                                                                                                                            | Kellison                                          |
| 3-Sep     | TAWC Management Team meeting (Brown presentation)                                                                                                                                                                                            |                                                   |
| 29-Sep    | Texas & Southwestern Cattle Raiser Association Fall meeting, Lubbock, TX                                                                                                                                                                     | Kellison                                          |
| .3-0ct    | TAWC Management Team meeting (Maas presentation)                                                                                                                                                                                             |                                                   |
| 16-19-0ct | Annual Meetings of the American Society of Agronomy: Satellite-based irrigation scheduling, San Antonio, TX                                                                                                                                  | Maas/Rajan                                        |
| 16-19-0ct | Annual Meetings of the American Society of Agronomy: Comparison of carbon, water and energy fluxes between grassland and agricultural ecosystems, San Antonio, TX                                                                            | Maas/Rajan                                        |
| 16-19-0ct | Annual Meetings of the Soil Science Society of America: CO2 and N20 Fluxes in Integrated Crop Livestock Systems (poster presentation), San Antonio, TX                                                                                       | Lisa Fultz/Marko Davinic/Jennifer<br>Moore-Kucera |
| 16-19-0ct | Annual Meetings of the Soil Science Society of America: Dynamics of Soil Aggregation and Carbon in Long-Term Integrated Crop-Livestock Agroeceosystems in the Southern High Plains (poster presentation), San Antonio, TX                    | Lisa Fultz/Marko Davinic/Jennifer<br>Moore-Kucera |
| 16-19-0ct | Annual Meetings of the Soil Science Society of America: Long-Term Integrated Crop-Livestock Agroecosystems and the Effect on Soil Carbon (poster presentation), San Antonio, TX.                                                             | Lisa Fultz/Marko Davinic/Jennifer<br>Moore-Kucera |
| 16-19-0ct | Annual Meetings of the Soil Science Society of America: Soil Microbial Dynamics in Alternative Cropping Systems to Monoculture Cotton in the Southern High Plains, San Antonio, TX.                                                          | Marko Davinic/Lisa Fultz/Jennifer<br>Moore-Kucera |
| 16-19-0ct | Annual Meetings of the Soil Science Society of America: Soil Fungal Community and Functional Diversity Assessments of Agroecosystems in the Southern High Plains, San Antonio, TX.                                                           | Marko Davinic/Lisa Fultz/Jennifer<br>Moore-Kucera |
| 16-19-0ct | Annual Meetings of the Soil Science Society of America: Aggregate Stratification Assessment of Soil Bacterial Communities and Organic Matter Composition: Coupling Pyrosequencing and Mid-Infrared Spectroscopy Techniques, San Antonio, TX. | Marko Davinic/Lisa Fultz/Jennifer<br>Moore-Kucera |
| 5-10-Nov  | 47 <sup>th</sup> Annual American Water Resources Association: <i>The Use of Communication Channels Including Social Media Technology by Agricultural Producers and Stakeholders in the State of Texas</i> , Albuquerque, NM                  | Doerfert/Graber                                   |

| 6-10-Nov     | 47 <sup>th</sup> Annual American Water Resources Association: <i>What We Know About Disseminating Water Management Information to Various Stakeholders</i> , Albuquerque, NM                           | Doerfert, et al.                                |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 6-10-Nov     | 47 <sup>th</sup> Annual American Water Resources Association: <i>The Water Management and Conservation Instructional Needs of Texas Agriculture Science Teachers</i> , Albuquerque, NM                 | Doerfert/Sullivan                               |
| 6-10-Nov     | 47 <sup>th</sup> Annual American Water Resources Association: <i>The Attitudes and Opinions of Agricultural Producers Toward Sustainable Agriculture on the High Plains of Texas</i> , Albuquerque, NM | Doerfert, et al.                                |
| 6-10-Nov     | 47 <sup>th</sup> Annual American Water Resources Association: <i>The Issues That Matter Most to Agricultural Stakeholders: A Framework for Future Research</i> (poster presentation), Albuquerque, NM  | Sullivan/Doerfert, et al.                       |
| 10-Nov       | TAWC Management Team meeting                                                                                                                                                                           |                                                 |
| 18-Nov       | 39th Annual Bankers Agricultural Credit Conference, Lubbock, TX                                                                                                                                        | Kellison                                        |
| 22-Nov       | KJTV 950 AM AgTalk radio interview                                                                                                                                                                     | Trostle                                         |
| 29-Nov—1-Dec | Amarillo Farm Show (TAWC booth), Amarillo, TX                                                                                                                                                          | Doerfert/Graber/Sullivan/Kellison<br>/Borgstedt |
| 7-Dec        | Plainview Lions Club, Plainview, TX                                                                                                                                                                    | Kellison                                        |
| 8-Dec        | TAWC Management Team meeting                                                                                                                                                                           |                                                 |
| 13-Dec       | Channel Bio Water Summit (TAWC booth), Amarillo, TX                                                                                                                                                    | Borgstedt/Sullivan/Graber                       |

# <u>2012</u>

| <u>Date</u> | <u>Presentation</u>                                     | Spokesperson(s) |
|-------------|---------------------------------------------------------|-----------------|
| 6-Mar       | Lubbock Kiwanis Club                                    | Kellison        |
| 7-Mar       | Monthly Management Team Meeting                         | Kellison        |
| 23-Mar      | New Mexico Ag Bankers Conference                        | Kellison, Klose |
| 3-Apr       | AgriLife Extension Meeting                              | Kellison        |
| 12-Apr      | Monthly Management Team Meeting                         | Kellison        |
| 10-May      | Monthly Management Team Meeting                         | Kellison        |
| 10-May      | Carillon Center                                         | Kellison        |
| 11-May      | Tours-Comer Tuck with the Texas Water Development Board | Kellison        |
| 14-May      | Tours-Farm Journal Media                                | Kellison        |
| 17-May      | Tours-Secretary of State Group                          | Kellison        |
| 14-June     | Monthly Management Team Meeting                         | Kellison        |
| 19-June     | Lloyd Author Farm                                       | Kellison        |

| 20-June   | Blake Davis Farm                                            | Kellison                          |
|-----------|-------------------------------------------------------------|-----------------------------------|
| 21-June   | Glenn Schur Farm                                            | Kellison                          |
| 10-July   | Tours-Justin Weinheimer                                     | Kellison                          |
| 12-July   | Texas Agricultural Coop Council                             | Kellison                          |
| 12-July   | Texas Independent Ginners Conference                        | Kellison                          |
| 18-July   | Monthly Management Team Meeting                             | Kellison                          |
| 16-Aug    | Monthly Management Team Meeting                             | Kellison                          |
| 5-Sep     | Leadership Sorghum Class 1                                  | Kellison                          |
| 20-Sep    | Monthly Management Team Meeting                             | Kellison                          |
| 18-0ct    | Monthly Management Team Meeting                             | Kellison                          |
| 24-0ct    | Texas Agriculture Lifetime Leadership                       | Kellison                          |
| 30-0ct    | Special Management Team Meeting                             | Kellison                          |
| 8-Nov     | Monthly Management Team Meeting                             | Kellison                          |
| 27-28-Nov | Amarillo Farm & Ranch Show                                  | Borgstedt/Doerfert/Kellison       |
| 13-Dec    | Monthly Management Team Meeting                             | Kellison                          |
| 16-18-Nov | 48th Annual American Water Resources Association conference | Doerfert/Kellison/P. Johnson/Maas |
| 20-Nov    | Special Management Team Meeting                             | Kellison                          |
| 3-Jan     | KFLP Radio                                                  | Kellison                          |
| 7-9-Jan   | Beltwide Cotton Conference                                  | Doerfert                          |
| 15-Jan    | Fox 950 AM                                                  | Doerfert                          |
| 4-Feb     | Texas Seed Trade Association                                | Kellison                          |
| 14-Feb    | Monthly Management Team meeting                             | Kellison                          |
| 21-Mar    | Monthly Management Team meeting                             | Kellison                          |
| 29-30-Mar | Texas Gin Association Convention                            | Borgstedt/Doerfert                |
| 11-Apr    | Monthly Management Team meeting                             | Kellison                          |

| Field evaluation of a remote sensing based irrigation scheduling tool Beltwide Cotton Conference San Antonio, TX  13-Mar. John Deere Crop Sense capacitance probe use by TAWC – Lubbock, TX Pate  2 Apr. Southern Pasture Forage Crop Improvement Conference, Overton, TX West, Bro Data plans for the initiative for strategic and innovative irrigation management and conservation. presented at the Water Management and Conservation: Database Workshop – Lubbock, TX  8-May TAWC Update and Highlights – For D-2 County Agents – Lubbock, TX  Pate | own     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 13-Mar. John Deere Crop Sense capacitance probe use by TAWC – Lubbock, TX Pate  2 Apr. Southern Pasture Forage Crop Improvement Conference, Overton, TX West, Bro Data plans for the initiative for strategic and innovative irrigation management and conservation. presented at the Water Management and Conservation: Database Workshop – Lubbock, TX  8-May TAWC Update and Highlights – For D-2 County Agents – Lubbock, TX Pate                                                                                                                    | own     |
| 2 Apr. Southern Pasture Forage Crop Improvement Conference, Overton, TX West, Bro Data plans for the initiative for strategic and innovative irrigation  26-Apr. management and conservation. presented at the Water Management and Conservation: Database Workshop – Lubbock, TX  8-May TAWC Update and Highlights – For D-2 County Agents – Lubbock, TX Pate                                                                                                                                                                                           |         |
| Data plans for the initiative for strategic and innovative irrigation  26-Apr. management and conservation. presented at the Water Management and Kellison, J  Conservation: Database Workshop – Lubbock, TX  8-May TAWC Update and Highlights – For D-2 County Agents – Lubbock, TX Pate                                                                                                                                                                                                                                                                |         |
| 26-Apr. management and conservation. presented at the Water Management and Kellison, J Conservation: Database Workshop – Lubbock, TX  8-May TAWC Update and Highlights – For D-2 County Agents – Lubbock, TX Pate                                                                                                                                                                                                                                                                                                                                        | Johnson |
| Conservation: Database Workshop – Lubbock, TX  8-May TAWC Update and Highlights – For D-2 County Agents – Lubbock, TX Pate                                                                                                                                                                                                                                                                                                                                                                                                                               | Johnson |
| 8-May TAWC Update and Highlights – For D-2 County Agents – Lubbock, TX Pate                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| FI DITT PILLE PILLE DITT LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| 5-Jun. Radio Interview – Field Walk Update – KFLP Pate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
| 3-Jul. Radio Interview – Field Walk Update – KFLP Pate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
| 19-Jul. Texas Southwestern Cattle Raisers Association, Lubbock, TX Kellison                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
| 22-Jul. TAWC and Its Purpose – 4-H Ag. Ambassadors – Lubbock, TX Pate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |
| 9-Aug. Radio Interview – Field Walk Update – KFLP Pate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
| 13-Aug. High Plains Water District board of directors – Lubbock, TX Kellison                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| 19-Sept. International Grasslands Conference – Sydney, Australia Kellison, I                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Brown   |
| 25-Sept. TAWC update and highlights – Monsanto headquarters – St. Louis, Mo. Pate                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
| 26- Sept. Wayland Baptist University class – Lockney, TX Kellison                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
| 2-Oct. Congressman Frank Lucas – Lubbock, TX West, Kel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | llison  |
| 7-Oct. TAIA Annual Meeting Kellison                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
| 9-Oct. Congressman Mike Conway West, Kell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | llison  |
| 10-Oct. TAWC Field Walk – Lockney, TX Kellison                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |
| 2 Nov. Am. Soc. Agronomy, Tampa, FL. Modeling Old World bluestem grass West, Xio.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ong     |
| Remote sensing based water management from the watershed to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ion     |
| 14-15-Dec. field level. CIMMYT and the Gates Foundation- Mexico City                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | jan     |
| Remote sensing based soil moisture detection. Abstracts, Workshop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
| 14-15-Dec. "Beyond Diagnostics: Insights and Recommendations from Remote Shafian, M                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Maas    |
| Sensing." CIMMYT and the Gates Foundation- Mexico City                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
| 7-Jan. 2014 Sorghum U – Levelland, TX Kellison                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |

| 7 Jan. 2014  | Fieldprint Calculator: A measurement of agricultural sustainability in the Texas High Plains Beltwide Cotton Conference, New Orleans | Stokes, Johnson,<br>Robertson,<br>Underwood |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| 7-Jan. 2014  | Poster- LEPA vs. LESA Irrigation – Beltwide Cotton Conference – New Orleans, La.                                                     | Pate, Yates                                 |
| 16-Jan. 2014 | TWDB Director Bech Bruun & staff – Lubbock, TX                                                                                       | Kellison                                    |
| 28-Jan. 2014 | Randall County Producers                                                                                                             | Kellison                                    |
| 12-Feb. 2014 | Texas Panhandle-High Plains Water Symposium                                                                                          | Kellison                                    |
| 13 Feb. 2014 | Nebraska Independent Crop Consultants Assoc. annual meeting. Talk on TAWC                                                            | West                                        |
| 24-Feb. 2014 | TWDB Directors-Lubbock, TX                                                                                                           | Kellison                                    |

## <u>2014</u>

| <u>Date</u> | <u>Presentation</u>                                             | Spokesperson(s)     |
|-------------|-----------------------------------------------------------------|---------------------|
| 1/6/2014    | Beltwide Cotton conference, New Orleans, LA                     | A. Attia/N. Rajan   |
| 1/7/2014    | Sorghum U, Levelland, TX                                        | Rick Kellison       |
| 1/16/2014   | TWDB Director Bech Bruun and staff, Lubbock, TX                 | Rick Kellison       |
| 1/28/2014   | Texas Panhandle-High Plains Water Symposium, Amarillo, TX       | Rick Kellison       |
| 2/2-4/2014  | Annual Meeting Southern Branch American Society of Agronomy     | S. Sharma/          |
|             | Dallas, TX                                                      | N. Rajan/S. Maas    |
| 2/2-4/2014  | Annual Meeting Southern Branch American Society of Agronomy,    | S. Sharma/          |
|             | Dallas, TX                                                      | N. Rajan/S. Maas    |
| 2/13/2014   | Nebraska Independent Crop Consultants Assoc., Nebraska City, NE | Chuck West          |
| 2/25/2014   | Texas Water Development Board, Lubbock, TX                      | Rick Kellison       |
| 3/11/2014   | Plainview Producer Meeting, Plainview, TX                       | Rick Kellison       |
| 4/1/2014    | Cotton Irrigation Meeting, Plainview, TX                        | Jeff Pate           |
| 4/2/2014    | Doug Shaw, TWDB, Lubbock, TX                                    | Rick Kellison       |
| 4/23/2014   | Region O Water Planning Committee, Lubbock, TX                  | R. Kellison/C. West |
| 5/6/2014    | Lions Club Meeting, Idalou, TX                                  | Jeff Pate           |
| 5.6.2014    | Texas Tech Climate Science Center Seminar series, Lubbock, TX   | Chuck West          |
| 5/15/2014   | TAWC Field Walk, Lockney, TX                                    | Rick Kellison       |

| 5/19/2014   | Texas Water Summit, TAMEST, Austin, TX                    | Chuck West          |  |
|-------------|-----------------------------------------------------------|---------------------|--|
| 6/17/2014   | North Central Coordinating Committee-31, Grand Rapids, MI | Chuck West          |  |
| 6/24/2014   | Brownfield Chamber of Commerce, Brownfield, TX            | Rick Kellison       |  |
| 8/5/2014    | Stronger Economies Together, Littlefield, TX              | Jeff Pate           |  |
| 8/12/2014   | Radio Interview 950 AM, Lubbock, TX                       | Rick Kellison       |  |
| 9/29/2014   | Texas Speaker of the House Joe Straus &                   | Diele Vellieen      |  |
|             | Texas Rep. John Frullo, Lubbock, TX                       | Rick Kellison       |  |
| 11/2-5/2014 | ASA-CSSA-SSSA Annual Meeting, Long Beach, CA              | S. Sharma/          |  |
|             |                                                           | N. Rajan/S. Maas    |  |
| 11/2-5/2014 | ASA-CSSA-SSSA Annual Meeting, Long Beach, CA              | S. Sharma/          |  |
|             |                                                           | N. Rajan/S. Maas    |  |
| 12/11/2014  | Olton Co-op grain Winter Meeting, Olton, TX               | Jeff Pate           |  |
| 12/15-      |                                                           | C Chaffan C Maas    |  |
| 19/2014     | AGU Fall Meeting, San Francisco, CA                       | S. Shafian, S. Maas |  |
| 12/16/2014  | Swisher County Producer Meeting, Tulia, TX                | Rick Kellison       |  |
| 12/23/2014  | Texas Representative Dustin Burrows, Lubbock, TX          | Rick Kellison       |  |

# **Related Non-Refereed Publications**

(Phase I - 2005-2013/Phase II - 20014-2015)

- Rajan, N., and S. J. Maas. 2007. Comparison of water use among crops in the Texas High Plains estimated using remote sensing. Abstracts, 2007 Water Research Symposium, Socorro, NM.
- Rajan, N., and S. J. Maas. 2007. Calibrating aerial imagery for estimating crop ground cover. In R. R. Jensen, P. W. Mausel, and P. J. Hardin (ed.) Proc., 21st Biennial Workshop on Aerial Photog., Videography, and High Resolution Digital Imagery for Resource Assessment, Terre Haute, IN. 15-17 May. 2007. ASPRS, Bethesda, MD.
- Allen, V.G., D. Philipp, W. Cradduck, P. Brown, and R. Kellison. 2007. Water dynamics in integrated crop-livestock systems. Proc. Simpósio Internacional em Integração Lavoura-Pecuâria. 13, 14, and 15 August, 2007. Curitiba, Parana, Brazil.
- Acosta-Martínez, V., G. Burow, T.M. Zobeck, and V. Allen. 2007. Soil microbial diversity, structure and functioning under alternative systems compared to continuous cotton. Annual meeting of the American Society of Agronomy, New Orleans, LA. Nov. 4-8, 2007.
- Deycard, Victoria N., Wayne Hudnall, Vivien G. Allen. 2007. Soil sustainability as measured by carbon sequestration using carbon isotopes from crop-livestock management systems in a semi-arid environment. Annual meeting of the American Society of Agronomy, New Orleans, LA. Nov. 4-8, 2007.
- Doerfert, D., V. Allen, W. Cradduck, and R. Kellison. 2007. Forage sorghum production in the Southern Plains Region. Texas Alliance for Water Conservation, Summary of Research. Vol. 1, No. 1. Texas Tech Univ., Lubbock, TX.
- Leigh, K., D. Doerfert. 2008. Farm-based water management research shared through a community of practice model. 44<sup>th</sup> Annual American Water Resources Association (AWRA) Conference, New Orleans, LA.
- Rajan, N., and S. J. Maas. 2008. Acclimation of crops to soil water availability. Abstracts, Annual Meetings, Amer. Soc. Agronomy. 5-9 October, Houston, TX. (CD-ROM)
- Maas, S. J., and N. Rajan. 2008. Estimating plant transpiration and soil evaporation using remote sensing. Abstracts, Annual Meetings, Amer. Soc. Agronomy. 5-9 October, Houston, TX. (CD-ROM)

- Rajan, N., and S. J. Maas. 2008. Comparison of PVI and NDVI for estimating crop ground cover for precision agriculture applications. In Proc., 9th International Conference on Precision agriculture. 20-23 July, Denver, CO. (CD-ROM)
- Robertson, G. P., V. G. Allen, G. Boody, E. R. Boose, N. G. Creamer, L. E. Drinkwater, J. R. Gosz, L. Lynch, J. L. Havlin, L. E. Jackson, S. T.A. Pickett, L. Pitelka, A. Randall, A. S. Reed, T. R. Seastedt, R. B. Waide, and D. H. Wall. 2008. Long-Term Agricultural Research: A Research, Education, and Extension Imperative. BioScience 58(7):604-645.
- Johnson, J., P. Johnson, E. Segarra and D. Willis. 2009. Water conservation policy alternatives for the Ogallala Aquifer in Texas. *Water Policy*. 11: (2009) 537-552.
- Weinheimer, J., and P. Johnson. 2009. Energy and Carbon. Considerations for High Plains cotton. 2010 Beltwide Cotton Conference. January 2010, New Orleans, LA.
- Yates, J., J. Pate, J. Weinheimer, R. Dudensing, and J. Johnson. 2010. Regional economic impact of irrigated versus dryland agriculture in the Texas High Plains. Beltwide Cotton Conference. January, New Orleans, LA.
- Weinheimer, J., N. Rajan, P. Johnson, and S.J. Maas. 2010. Carbon footprint: A new farm management consideration in the Southern High Plains. Selected paper, Agricultural & Applied Economics Association Annual Meeting. July 25-27, Denver, CO.
- Weinheimer, J. 2010. Texas Alliance for Water Conservation: An integrated approach to water conservation. Universities Council on Water Resources. July, Seattle, WA.
- Doerfert, D.L., L. Graber, D. Meyers, and E. Irlbeck. 2012. Traditional and social media channels used by Texas agricultural producers. Proceedings of the 2012 American Association for Agricultural Education (AAAE) Research Conference, Ashville, NC.
- Doerfert, D., R. Kellison, P. Johnson, S. Maas, and J. Weinheimer. 2012. Crop production water management tools for West Texas farmers. Paper to be presented at the 2012 American Water Resources Association (AWRA) Annual Conference, November, Jacksonville, FL.
- Maas, S. 2012. Combining remote sensing and crop modeling: It's like baking a cake. Abstracts, Annual Meetings of the American Society of Agronomy, October, Cincinnati, OH. (abstract) CD-ROM.
- Rajan, N., and S. J. Maas. 2012. Inter-annual variation in carbon dioxide and water fluxes from a grazed pasture in the semi-arid Texas High Plains. Abstracts, Annual Meetings, Amer. Soc. Agronomy. October, Cincinnati, OH. (abstract) CD-ROM.

- Rajan, N., M. Roy, S. J. Maas and F.M. Padilla. 2012. Soil background effects on reflectance-based estimates of leaf area index of cotton. Abstracts, Annual Meetings, Amer. Soc. Agronomy. October, Cincinnati, OH. (abstract) CD-ROM.
- Maas, S., and N. Rajan. 2012. Spectral Crop Coefficient Approach: Its Development and Validation. Proceedings, 2012 UCOWR/NIWR Annual Conference, 17-19 July 2012, Santa Fe, NM. (abstract)
- Rajan, N., and S. Maas. 2012. Comparison of the Spectral Crop Coefficient and Standard Crop Coefficient Approaches. Proceedings, 2012 UCOWR/NIWR Annual Conference, 17-19 July 2012, Santa Fe, NM. (abstract).
- Doerfert, D., R. Kellison, R., S. Maas, P. Johnson, and J. Weinheimer. 2012. Crop production water management tools for west texas farmers. 48<sup>th</sup> annual American Water Resources Association (AWRA) conference in Jacksonville, FL, November 2012.
- Doerfert, D. 2012. The Texas Alliance for Water Conservation: An integrated water resources management model for agriculture. 48<sup>th</sup> annual American Water Resources Association (AWRA) conference in Jacksonville, FL, November, 2012
- Doerfert, D., and Rutherford, T. Use of multi-user virtual environments (MUVEs) for training purposes. 48<sup>th</sup> annual American Water Resources Association (AWRA) conference in Jacksonville, FL, November, 2012
- Graber, L., D. Doerfert, C.A. Meyers, and E.G. Irlbeck. 2012. Traditional and social media channels used by Texas agricultural producers. Proceedings of the American Association of Agricultural Education (AAAE) Western Region Conference, Bellingham, WA.
- Maas, S., and N. Rajan. Remote sensing based water management from the watershed to the field level. Workshop "Beyond Diagnostics: Insights and Recommendations from Remote Sensing." CIMMYT, Gates Foundation, 14-15 Dec 2013, Mexico City.
- Shafian, S., and S. Maas. Remote sensing based soil moisture detection. Abstracts, Workshop "Beyond Diagnostics: Insights and Recommendations from Remote Sensing." CIMMYT, Gates Foundation, 14-15 December 2013, Mexico City. (Invited)
- West, C.P., C.P. Brown, and V.G. Allen. 2013. Integrated crop/forage/livestock systems for the Texas High Plains. 67th Southern Pasture and Forage Crop Improvement Conference. 22-24 Apr., 2013, Tyler, Texas.
- Mitchell, D., P. Johnson, V. Allen, and C. Zilverberg. 2013. Integrating cotton and beef production in the Texas Southern High Plains: A simulation approach. Abstract for Southern Agric. Econ. Assoc., February 2-5, 2013, Orlando, FL.

- Mitchell, D., and P. Johnson. 2013. Economic impacts of the 2011 drought on the Southern High Plains. Abstract for Am. Agric. Econ. Assoc., August 4-6, 2013, Washington, DC.
- Stokes, K., P. Johnson, B. Robertson, and B. Underwood. 2014. FieldPrint Calculator: A measurement of agricultural sustainability in the Texas High Plains. 2014 Beltwide Cotton Conferences Proceedings, pg. 406-412. January 4-7, 2014, New Orleans, LA.
- Gillum, M. and P. Johnson. 2015. Fieldprint Calculator: Results from the Texas High Plains. 2015 Beltwide Cotton Conferences Proceedings, in press. Selected for presentation at the 2015 Beltwide Cotton Conference. Co-sponsored by the National Cotton Council and the Cotton Foundation, January 5-7, 2015, San Antonio, TX.
- Xiong, Y., C.P. West, and C.P. Brown. 2014. Digital image analysis of Old World bluestem canopy cover and leaf area. In Annual meetings abstracts [CD-ROM]. ASA, CSSA, and SSSA, Madison, WI.
- West, C.P., S.J. Maas, R. Kellison, C.P. Brown, S. Borgstedt, P.N. Johnson, D.L. Doerfert, J. Pate, and J. Yates. 2014. Promoting conservation of irrigation water in the Texas High Plains. In Annual meetings abstracts [CD-ROM]. ASA, CSSA, and SSSA, Madison, WI.
- West, C. 2014. Regional Opportunities and Challenges: High Plains. D. Reible (ed.). p. 36-39. 2014 Texas Water Summit Report: Securing our Economic Future. The Academy of Medicine, Engineering, and Science of Texas (TAMEST), Austin, TX. Available at: <a href="http://www.tamest.org/publications/event-publications.html">http://www.tamest.org/publications/event-publications.html</a>.
- West, C., R. Kellison, C.P. Brown, S.J. Maas, S. Borgstedt, P.N. Johnson, J. Pate. 2014. TAWC 2013 Annual report to Texas Water Development Board.
- West, C., R. Kellison, C.P. Brown, S.J. Maas, S. Borgstedt, P.N. Johnson, J. Pate. 2014. TAWC 2004-2013 Phase I Final report to Texas Water Development Board.

# **Related Refereed Journal Articles**

(Phase I - 2005-2013/Phase II - 2014-2015)

- Acosta-Martinez, V., T.M. Zobeck, and V. Allen. 2004. Soil microbial, chemical and physical properties in continuous cotton and integrated crop-livestock systems. Soil Science Society of America Journal 68:1875-1884.
- Allen, V.G., C.P. Brown, R. Kellison, E. Segarra, T. Wheeler, P.A. Dotray, J.C. Conkwright, C.J. Green, and V. Acosta-Martinez. 2005. Integrating cotton and beef production to reduce water withdrawal from the Ogallala Aquifer. Agronomy Journal 97:556-567.

- Philipp, D., V.G. Allen, R.B. Mitchell, C.P. Brown, and D.B. Wester. 2005. Forage nutritive value and morphology of three old world bluestems under a range of irrigation levels. Crop Science 45:2258-2268.
- Philipp, D., C.P. Brown, V.G. Allen, and D.B. Wester. 2006. Influence of irrigation on mineral concentrations in three old world bluestem species. Crop Science. 46:2033-2040.
- Allen, V.G., M.T. Baker, E. Segarra and C.P. Brown. 2007. Integrated crop-livestock systems in irrigated, semiarid and arid environments. Agronomy Journal 99:346-360 (Invited paper).
- Philipp, D., V.G. Allen, R.J. Lascano, C.P. Brown, and D.B. Wester. 2007. Production and water use efficiency of three old world bluestems. Crop Science. 47:787-794.
- Marsalis, M.A., V.G. Allen, C.P. Brown, and C.J. Green. 2007. Yield and nutritive value of forage bermudagrasses grown using subsurface drip irrigation in the Southern High Plains. Crop Science 47:1246-1254.
- Allen, V.G., C.P. Brown, E. Segarra, C.J. Green, T.A. Wheeler, V. Acosta-Martinez, and T.M. Zobeck. 2008. In search of sustainable agricultural systems for the Llano Estacado of the U.S. Southern High Plains. Agriculture Ecosystems and Environment 124:3-12. (Invited paper)
- Acosta-Martinez, V., S. Dowd, Y. Sun, V. Allen. 2008. Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biology and Biochemistry, doi:10.1016/j.soilbio.2008.07.022.
- Dudensing, J., J. Johnson, P., and C. Villalobos. 2008. Grazing alternatives in the face of declining groundwater: A case from the Southern High Plains of Texas. Texas Journal of Agriculture and Natural Resources 21:60-72.
- Wheeler-Cook, E., E. Segarra, P. Johnson, J. Johnson and D. Willis. 2008. Water conservation policy evaluation: The case of the southern Ogallala Aquifer. Texas Journal of Agriculture and Natural Resources 21:89-102.
- Maas, S. J., and N. Rajan. 2008. Estimating ground cover of field crops using medium-resolution multispectral satellite imagery. Agronomy Journal 100:320-327.
- Rajan, N., and S.J. Maas. 2009. Mapping crop ground cover using airborne multispectral digital imagery. Precision Agriculture 10(4). <a href="http://www.springerlink.com/content/1385-2256">http://www.springerlink.com/content/1385-2256</a>
- Allen, V.G., T. Sell, R. L. Kellison, P.N. Johnson, and P. Brown. 2009. Grassland environments: Factors driving change. In: Alan J. Franzluebbers (ed.) Farming with Grass: Achieving

- Sustainable Mixed Agricultural Landscapes. Soil Water Conservation Society e-book. <a href="http://www.swcs.org/en/publications/farming-with-grass/">http://www.swcs.org/en/publications/farming-with-grass/</a>.
- Acosta-Martinez, V., G. Burow, T.M. Zobeck, and V. Allen. 2010. Soil microbial communities and function in alternative systems to continuous cotton. Soil Science Society of America Journal 74:1181-1192.
- Acosta-Martinez, V., S.E. Dowd, Y. Sun, D. Wester, and V. Allen. 2010. Pyrosequencing analysis for characterization of soil bacterial populations as affected by an integrated livestock-cotton production system. Applied Soil Ecology 45:13-25.
- Maas, S., and N. Rajan. 2010. Normalizing and converting image DC data using scatter plot matching. Remote Sensing 2:1644-1661.
- Maas, S., N. Rajan, and J. Kathilankal. 2010. Estimating crop water use of irrigated and dryland cotton in the Southern High Plains. Agronomy Journal 102:1641-1651.
- Acosta-Martinez, V., et al. 2010. Long-term soil microbial community and enzyme activity responses to an integrated cropping-livestock system in a semi-arid region. Agriculture, Ecosystems and Environment 137:231-240.
- Davinic, M., L. M. Fultz V. Acosta-Martinez, F. J. Calderón, S. B. Cox, S. E. Dowd, V. G. Allen, J. C. Zak, and J. Moore-Kucera. 2011. Pyrosequencing and mid-infrared spectroscopy reveal distinct aggregate stratification of soil bacterial communities and organic matter composition. Soil Biology and Biochemistry 46:63-72.
- Zilverberg, C.J., P. Johnson, J. Weinheimer, and V.G. Allen. 2011. Energy and carbon costs of selected cow-calf systems. Rangeland Ecology and Management 64:573-584.
- Allen, V.G., C. Batello, E.J. Berretta, J. Hodgson, M. Kothmann, X. Li, J. McIvor, J. Milne, C. Morris, A. Peeters and M. Sanderson. 2011. An international terminology for grazing lands and grazing animals. Grass and Forage Science 66:2-28.
- Allen, V.G., C.P. Brown, R. Kellison, P. Green, C.J. P. Zilverberg, J. Johnson, J. Weinheimer, T. Wheeler, E. Segarra, V. Acosta-Martinez, T.M. Zobeck, and J.C. Conkwright. 2012. Integrating cotton and beef production in the Texas Southern High Plains. I. Water use and measures of productivity. Agronomy Journal 104:1625-1642.
- Zilverberg, C.J., V.G. Allen, C.P. Brown, P. Green, P. Johnson, and J. Weinheimer. 2012. Integrating cotton and beef production in the Texas Southern High Plains. II. Fossil fuel use. Agronomy Journal 104:1643-1651.
- Song, C., V.G. Allen, P.C. Brown, and D.B. Wester. 2013. Growth and nutritive value of three old world bluestems and three legumes in the semiarid Texas High Plains. Crop Science 53:329-340.

- Guo, W.S., and K. F. Bronson. 2012. Relationship between cotton yield and soil electrical conductivity, topography, and Landsat imagery. Precision Agriculture 13:678-692.
- Nair, S., S. Maas, C. Wang, and S. Mauget. 2012. Optimal field partitioning for center-pivot-irrigated cotton in the Texas High Plains. Agronomy Journal 105: 124-133.
- Johnson, P., J. Zilverberg, V.G. Allen, J. Weinheimer, C.P. Brown, R. Kellison, and E. Segarra. 2013. Integrating cotton and beef production in the Texas Southern High Plains: III. An economic evaluation. Agronomy Journal. 105:929-937.
- Davinic M., J. Moore-Kucera, V. Acosta-Martinez, J. Zak, and V. Allen. 2013. Soil fungal groups' distribution and saprophytic functionality as affected by grazing and vegetation components of integrated cropping-livestock agroecosystems. Applied Soil Ecology 66:61-70.
- Weinheimer, J., P. Johnson, D. Mitchell, J. Johnson, and R. Kellison. 2013. Texas High Plains imitative for strategic and innovative irrigation management and conservation. Journal of Contemporary Water Research & Education. 151:43-49.
- Rajan, N., S. Maas and C. Song. 2013. Extreme drought effects on carbon dynamics of a semi-arid pasture. Agronomy Journal 105:1749-1760.
- Li, Yue, F. Hou, J. Chen, C.P. Brown, and V.G. Allen. 2013. Steers grazing a rye cover crop influence growth of rye and no-till cotton. Agronomy Journal 105:1571-1580.
- Li, Yue, V.G. Allen, J. Chen, F. Hou, C.P. Brown, and P. Green. 2013. Allelopathic influence of a wheat or rye cover crop on growth and yield of no-till cotton. Agron. J. 105:1581.
- Fultz, L.M., J. Moore-Kucera, T.M. Zobek, V. Acosta-Martínez, and V.G. Allen. 2013. Aggregate carbon pools after 13-years of integrated crop-livestock management in semi-arid soils. Soil Science Society of America Journal 77:1659-1666.
- Zilverberg, C. J. and V. Allen. 2014. Technical Note: Repeated grazing affects quality and sampling strategies of 'WW B. Dahl' old world bluestem. The Texas Journal of Agriculture and Natural Resources 27:84-87.
- Rajan, N., S. Maas, and S. Cui. 2014. Extreme drought effects on evapotranspiration and energy balance of a pasture in the Southern Great High Plains. Ecohydrology. doi: 10.1002/eco.1574.
- Rajan, N and S. Maas. 2014. Spectral crop coefficient for estimating crop water use. Advances in Remote Sensing 3:197-207.
- Rajan, N., S. Maas, R. Kellison, M. Dollar, S. Cui, S. Sharma, and A. Attia. 2015. Emitter uniformity and application efficiency for center-pivot irrigation systems. Irrigation and Drainage 64:353-361.

Shafian, S., and S.J. Maas. 2015. Improvement of the trapezoid method using raw Landsat image digital count data for soil moisture estimation in the Texas (USA) High Plains. Sensors 15(1):1925-1944.

# **Popular Press**

## (Phase I - 2005-2013/Phase II - 2014-2015)

- Wolfshohl, Karl. 2005. Can they save the Ogallala (and the farmer?). Vistas 13(2):17-19.
- Blackburn, Elliott. 2006. Farmer-Initiated Water-Saving Programs Offer Fresh Approach. *Lubbock Avalanche-Journal*.
- PBS video: *State of Tomorrow*, Episode 101. Alphaeus Media, Austin, Texas. Filmed Fall 2006; originally aired Spring 2007. http://www.stateoftomorrow.com/episodes/episode01.htm
- Foster, Jerod. 2007. Learning to Conserve. *Archways* Vol. 2(1), p. 6-9.
- Tietz, Neil. 2008. Trouble in Texas. *Hay & Forage Grower*. January 2008, p. 6-8.
- Blackburn, Elliott. 2008. Aquifer's drop no cause for alarm just caution. *Lubbock Avalanche-Journal*.
- Martin, Norman. 2008. Texas Tech research farm field day focuses on forages. CASNR NewsCenter. http://www.depts.ttu.edu/agriculturalsciences/news
- Martin, Norman. 2008. Perennial forages look promising on the plains. CASNR NewsCenter. <a href="http://www.depts.ttu.edu/agriculturalsciences/news">http://www.depts.ttu.edu/agriculturalsciences/news</a>
- Martin, Norman. 2008. CASNR Distinguished Alumni honored at Merket Center. CASNR NewsCenter. <a href="http://www.depts.ttu.edu/agriculturalsciences/news">http://www.depts.ttu.edu/agriculturalsciences/news</a>
- Staff. 2008. Texas Alliance for Water Conservation Announces 2008 Field Day. *The Farmer-Stockman*. April 25, 2008.
- Martin, Norman. 2008. Water conservation field day set for July 31 in Muncy. CASNR NewsCenter. <a href="http://www.depts.ttu.edu/agriculturalsciences/news">http://www.depts.ttu.edu/agriculturalsciences/news</a>
- Chandler, Cory. 2008. Good prices lead some growers to swap cotton for grain. CASNR NewsCenter. <a href="http://www.depts.ttu.edu/agriculturalsciences/news">http://www.depts.ttu.edu/agriculturalsciences/news</a>
- Chandler, Cory. 2008. Hungry cows may extend life of Ogallala: Texas Tech Study. CASNR NewsCenter. <a href="http://www.depts.ttu.edu/agriculturalsciences/news">http://www.depts.ttu.edu/agriculturalsciences/news</a>

- Texas Tech Today/Communications and Marketing video: Saving the Ogallala. August 1, 2008. <a href="http://today.ttu.edu/2008/08/saving-the-ogallala-video">http://today.ttu.edu/2008/08/saving-the-ogallala-video</a>
- Texas Tech Graduate School: Highlighting our graduate students . . . Katie Leigh, Agricultural Communications.

  <a href="http://www.depts.ttu.edu/gradschool/profiles/Highlighttext10-08.php">http://www.depts.ttu.edu/gradschool/profiles/Highlighttext10-08.php</a>
- Doerfert, David. 2008. Farmer-Driven Water Demonstration Project Showing Results. September 22, 2008 Press Release.
- Cleveland, Sean. 2009. New recruiting coordinator joins Plant and Soil Science staff. CASNR NewsCenter. <a href="http://www.depts.ttu.edu/agriculturalsciences/news">http://www.depts.ttu.edu/agriculturalsciences/news</a>
- Blackburn, Jennifer. 2009. Working to Become Water Wise. *National Sorghum Producers Sorghum Grower*, Summer 2009.
- Martin, Norman. 2009. Texas Tech Awarded Grant for New Carbon Cycling Focus. Texas Tech Today. <a href="http://today.ttu.edu/2009/10/usda-grant-for-carbon-cycling">http://today.ttu.edu/2009/10/usda-grant-for-carbon-cycling</a>
- Martin, Norman. 2009. Texas Tech Awarded USDA Grant for New Carbon Cycling Focus. CASNR NewsCenter. <a href="http://www.depts.ttu.edu/agriculturalsciences/news">http://www.depts.ttu.edu/agriculturalsciences/news</a>
- Allen, Vivien Gore. 2009. Travel Course: Ecology and Grazing Lands Systems. *The Forage Leader*, p. 5.
- High Plains Underground Water Conservation District No. 1. 14 January 2010. Texas Alliance for Water Conservation Finalizes Program for 2010 Pioneers in Agriculture Field Day & Workshop. <a href="http://www.hpwd.com/news">http://www.hpwd.com/news</a>.
- Martin, Norman. 2010. CASNR's Hudson highlights Feb. 3 water conservation field day. CASNR NewsCenter. <a href="http://www.depts.ttu.edu/agriculturalsciences/news">http://www.depts.ttu.edu/agriculturalsciences/news</a>
- Smith, Ron. 11 March 2010. Farm Press discusses benefits of SmartCrop, other water conservation practices. *Farm Press*: posted online by Taber Black at <a href="http://www.smartfield.com/2010/03">http://www.smartfield.com/2010/03</a>.
- Smith, Ron. 12 April 2010. Ag carbon benefit may be indirect. *Southwest Farm Press*. <a href="http://www.southwestfarmpress.com/energy/ag-carbon-benefit-indirect-0412">http://www.southwestfarmpress.com/energy/ag-carbon-benefit-indirect-0412</a>.
- Yates, Samantha. 2010. Competing for Profit. ACC Newsletter, Issue XV May 2010, p. 1-5.
- McCain, Carmon. June 2010. Irrigation Water use can be managed with technology. *The Cross Section*, Volume 56 No. 6.

- McCain, Carmon. June 2010. Texas Alliance for Water Conservation announces August 10 field day. *The Cross Section*, Volume 56 No. 6.
- Dizon, Alyssa. 19 June 2010. Ground View. *Lubbock Avalanche-Journal*, pages A-1, A-9 and A-11.
- YouTube video: uploaded by MyPlainview on 11 August 2010. Texas Alliance for Water Conservation Field Day 2.wmv. <a href="http://www.youtube.com/watch?v=KDpMK2syVgQ">http://www.youtube.com/watch?v=KDpMK2syVgQ</a>
- Porter, Richard. 11 August 2010. Sen. Duncan keynote speaker for Texas Alliance for Water Conservation. *Plainview Daily Herald*. <a href="http://www.myplainview.com/news">http://www.myplainview.com/news</a>
- *Lubbock Avalanche-Journal* editorial/opinion. 27 August 2010. Conservation vital element of long-term water supply.
- Elkins, Hardy. 2010. Sustainability on the High Plains. *The Agriculturist*, Fall 2010, p. 46-47.
- Miller, Jessica. 22 November 2010. New technology helps producers monitor water use via phones. Fox 34 News, Ag Day Lubbock.

  <a href="http://www.myfoxlubbock.com/content/agdaylubbock/story/water-conservation-Aqua-Spy-cell-phones-Lockney/ZPwy-3pu3kWp11Ftx3LdZg.cspx">http://www.myfoxlubbock.com/content/agdaylubbock/story/water-conservation-Aqua-Spy-cell-phones-Lockney/ZPwy-3pu3kWp11Ftx3LdZg.cspx</a>
- Southwest Farm Press. 22 February 2011. Water growing concern for Texas producers. <a href="http://southwestfarmpress.com/management/water-growing-concern-texas-producers">http://southwestfarmpress.com/management/water-growing-concern-texas-producers</a>
- Black, Emily, KCBD NewsChannel 11. 2 March 2011. New website helps farmers battle drought. <a href="http://www.kcbd.com/story/15136451/new-website-helps-farmers-battle-drought">http://www.kcbd.com/story/15136451/new-website-helps-farmers-battle-drought</a>
- Martin, Norman. 15 March 2011. Wise Water Use; New irrigation, economic management tools launched. <a href="http://www.depts.ttu.edu/agriculturalsciences/news/?p=866">http://www.depts.ttu.edu/agriculturalsciences/news/?p=866</a>
- *Lubbock Avalanche-Journal* Lubbock Online local news. 17 March 2011. TAWC project offers irrigation management tools for farmers. <a href="http://lubbockonline.com/local-news/2011-03-17/tawc-project-offers-irrigation-management-tools-farmers">http://lubbockonline.com/local-news/2011-03-17/tawc-project-offers-irrigation-management-tools-farmers</a>
- Porter, Richard, *Plainview Herald*. 20 March 2011. Researcher: Area farmers should manage for maximum profit. <a href="http://www.myplainview.com/news/article-631b5c12-5243-11e0-8e54-001cc4c03286.html#user-comment-area">http://www.myplainview.com/news/article-631b5c12-5243-11e0-8e54-001cc4c03286.html#user-comment-area</a>
- Miller, Jessica, Fox KJTV-34 News Ag Day Lubbock. 18 April 2011. Cotton overwhelmingly king this year on South Plains.

- http://www.myfoxlubbock.com/news/local/story/Cotton-South-Plains-Ag-Day-Lubbock/VYH8A0qlG0eX4Dru1M5Kdw.cspx
- Tietz, Neil, *Hay & Forage Grower, Volume 26, No. 5.* 2 May 2011. Water Worries: Declining Aquifers Threaten Agriculture. <a href="http://hayandforage.com/hay/alfalfa/declining-aquifers-threaten-agriculture-0501">http://hayandforage.com/hay/alfalfa/declining-aquifers-threaten-agriculture-0501</a>
- Martin, Norman. 12 July 2011. Researchers fight brutal drought with new web-based tools for farmers. CASNR NewsCenter. <a href="http://today.ttu.edu/2011/07/texas-tech-researchers-fight-brutal-drought-with-web-based-tools-for-farmers">http://today.ttu.edu/2011/07/texas-tech-researchers-fight-brutal-drought-with-web-based-tools-for-farmers</a>
- Miller, Jessica, Fox KJTV-34 News Ag Day Lubbock. 20 July 2011. Texas Tech researchers develop drought-management tools.

  <a href="http://www.myfoxlubbock.com/content/agdaylubbock/story/Drought-Texas-Tech/mrHBvZQHzUyWfXH">http://www.myfoxlubbock.com/content/agdaylubbock/story/Drought-Texas-Tech/mrHBvZQHzUyWfXH</a> hMrSdw.cspx
- Miller, Jessica, Fox KJTV-34 News Ag Day Lubbock. 22 July 2011. TAWC to host water conservation field day.

  <a href="http://www.myfoxlubbock.com/content/agdaylubbock/story/TAWC-field-day-Muncy-Texas/kZP8t98sDkeNzGNs25GBkg.cspx">http://www.myfoxlubbock.com/content/agdaylubbock/story/TAWC-field-day-Muncy-Texas/kZP8t98sDkeNzGNs25GBkg.cspx</a>
- Black, Emily, KCBD NewsChannel 11. 25 July 2011. Texas Tech researchers provide a new tool in farming. <a href="http://www.kcbd.com/story/15135807/texas-tech-researchers-provide-a-new-tool-in-farming">http://www.kcbd.com/story/15135807/texas-tech-researchers-provide-a-new-tool-in-farming</a>
- Miller, Jessica, Fox KJTV-34 News Ag Day Lubbock. 27 July 2011. One form of irrigation proving effective in severe drought.

  <a href="http://www.myfoxlubbock.com/news/local/story/Irrigation/6UjBzEFuPUyXk8TUv4FZRw.cspx">http://www.myfoxlubbock.com/news/local/story/Irrigation/6UjBzEFuPUyXk8TUv4FZRw.cspx</a>
- Graham, Fiona. 5 August 2011. Digital cloud lets farmer know when to water. BBC News: <a href="http://www.bbc.co.uk/news/business-14392244">http://www.bbc.co.uk/news/business-14392244</a>.
- Smith, Ron. 8 August 2011. New regs, technology will prolong irrigation. *Southwest Farm Press*. <a href="http://southwestfarmpress.com/irrigation/new-regs-technology-will-prolong-irrigation">http://southwestfarmpress.com/irrigation/new-regs-technology-will-prolong-irrigation</a>
- Southwest Farm Press. 12 August 2011. Irrigation management critical during drought. http://southwestfarmpress.com/irrigation/irrigation-management-critical-during-drought
- Welch, Kirk. 25 August 2011. Strategic Steps: CASNR part of massive \$500k plains conservation project. <a href="http://www.depts.ttu.edu/agriculturalsciences/news">http://www.depts.ttu.edu/agriculturalsciences/news</a>

- Littlefield, Dee Ann. 25 August 2011. NRCS announces recipients of conservation innovation grants in Texas. *Southwest Farm Press:*<a href="http://southwestfarmpress.com/government/nrcs-announces-recipients-conservation-innovation-grants-texas">http://southwestfarmpress.com/government/nrcs-announces-recipients-conservation-innovation-grants-texas</a>
- Ledbetter, Kay. 29 August 2011. AgriLife Research: Soil moisture-monitoring tools will pay off. <a href="http://www.sunbeltagnet.com/story/15350979/agrilife-research-soil-moisture-monitoring-tools-will-pay-off">http://www.sunbeltagnet.com/story/15350979/agrilife-research-soil-moisture-monitoring-tools-will-pay-off</a>
- McCain, Carmon. August 2011. Area water conservation demonstration projects receive NRCS grant. *The Cross Section*, Volume 57 No. 8.
- McCain, Carmon. August 2011. August 5 TAWC Pioneers in Agriculture Workshop and Field Day. *The Cross Section*, Volume 57– No. 8.
- Smith, Ron. 1 September 2011. New regs, technology will prolong irrigation. *Southwest Farm Press*, Volume 38 No. 16.
- Ag Day Lubbock. By Jessica Miller, Fox 34 News, 1 September 2011. High Plains producers struggling to conserve water in drought.

  <a href="http://www.myfoxlubbock.com/news/local/story/Groundwater-water-conservation/3pY1hnvXoEenSc7X1Ymaag.cspx">http://www.myfoxlubbock.com/news/local/story/Groundwater-water-conservation/3pY1hnvXoEenSc7X1Ymaag.cspx</a>
- Ag Day Lubbock. By Jessica Miller, Fox 34 News, 5 September 2011. New ideas, concepts emerging from surviving historic drought.

  <a href="http://www.myfoxlubbock.com/news/local/story/Texas-drought/yXVogCdJxkKR\_gGuZBuI3g.cspx">http://www.myfoxlubbock.com/news/local/story/Texas-drought/yXVogCdJxkKR\_gGuZBuI3g.cspx</a>
- Smith, Ron. 15 September 2011. Record breaking drought exposes irrigation system shortfalls. *Southwest Farm Press*, Volume 38, Number 18.
- Fletcher, Kelsey. 23 September 2011. China agriculture prof joins ongoing Texas Tech water management project. CASNR NewsCenter. http://www.depts.ttu.edu/agriculturalsciences/news
- Fletcher, Kelsey. 13 October 2011. Texas Tech gets water conservation funding boost from NRCS. CASNR NewsCenter. <a href="http://today.ttu.edu/2011/10/texas-tech-gets-500000-water-conservation-funding-boost-from-nrcs">http://today.ttu.edu/2011/10/texas-tech-gets-500000-water-conservation-funding-boost-from-nrcs</a>
- Borgstedt, Samantha. 02 April 2012. Lubbock AgriLife Extension to host Conference on Tuesday. Lubbock Avalanche-Journal. http://lubbockonline.com/agriculture/2012-04-02/lubbock-agrilife-extension-host-
- Gomez, Ellysa. 03 April 2012. Ag conference addresses water impact. The district receive multiple phone calls concerning the district's rules. Lubbock Avalanche-Journal.

- http://lubbockonline.com/agriculture/2012-04-03/ag-conference-addresses-water-impact#.U\_yImY1tp1M
- Borgstedt, Samantha. 18 June 2012. Extension service holds meeting on irrigation in Lorenzo on Tuesday. Lubbock Avalanche-Journal. http://lubbockonline.com/filed-online/2012-06-18/extension-service-holds-meeting-irrigation-lorenzo-tuesday#.U\_yJYo1tp1M
- Borgstedt, Samantha. 31 July 2012. TAWC to hold field day in Plainview. Pete Laney will be the keynote speaker. Lubbock Avalanche-Journal. http://lubbockonline.com/local-news/2012-07-31/tawc-hold-field-day-plainview#.U\_yL3o1tp1N
- Yates, Jay. 26 March 2012. Lubbock County Ag Issues Conference April 3, 2012. South Plains Cotton Update. http://agrilife.org/southplainscotton/2012/03/26/lubbock-county-ag-issues-conference-april-3-2012/
- Borgstedt, Samantha. 28 March 2012. Lubbock County Agriculture Issues Conference, April 3. Texas Farm Bureau Daily News. http://www.texasfarmbureau.org/newsmanager/templates/DailyNews.aspx?articleid=12058&zoneid=1
- Trojan, S., and C. West. 2012. Conserving water while maintaining economic viability by grazing introduced perennial grasses. Rangeland Issues 1(3):1-6.
- Ag Day Lubbock. By Rebecca Rivers, Fox 34 News, 29 October 2013. Floyd County cotton harvest underway.

  <a href="http://www.myfoxlubbock.com/content/agdaylubbock/story/cotton-harvest-water-management/U-3ISR-Dh0vVFD0wdQYDuA.cspx">http://www.myfoxlubbock.com/content/agdaylubbock/story/cotton-harvest-water-management/U-3ISR-Dh0vVFD0wdQYDuA.cspx</a>
- Ehmke, Tanner. 2 October 2013. Conserving water on the Texas High Plains: Integrating Crops, Livestock, and New Technology. *Crop & Soils*, Volume 46, Number 5, p. 6-13. https://www.agronomy.org/publications/cns/articles/46/5/6
- Martin, Norman. 17 August 2013. Texas Alliance for Water Conservation holds Pioneers in Agriculture Field Day. CASNR NewsCenter. <a href="http://www.depts.ttu.edu/agriculturalsciences/news/?p=2855">http://www.depts.ttu.edu/agriculturalsciences/news/?p=2855</a>
- Borgstedt, Samantha. 25 July 2013. StepUp: Texas Alliance for Water Conservation holds field walk series. CASNR NewsCenter. <a href="http://www.depts.ttu.edu/agriculturalsciences/news/?p=2706">http://www.depts.ttu.edu/agriculturalsciences/news/?p=2706</a>
- Musico, Josie. 20 June 2013. Something to Moo about: Conference describes new trends in cattle industry. Texas and Southwest Cattle Raisers Association Lubbock Avalanche-Journal. <a href="http://lubbockonline.com/local-news/2013-07-20/something-moo-about-conference-describes-new-trends-cattle-industry#.U YG00og91M">http://lubbockonline.com/local-news/2013-07-20/something-moo-about-conference-describes-new-trends-cattle-industry#.U YG00og91M</a>
- Ag Day Lubbock. By Rebecca Rivers, Fox 34 News, 25 June 2014. Water management playing a vital role in production.

- http://www.myfoxlubbock.com/content/agdaylubbock/story/water-management-conservation-tawc/kTSCJH9Tpk6vPT-EWBTbHw.cspx
- Martin, Norman. 5 December 2013. TAWC recognized with major American Water Resources Association award. CASNR NewsCenter. <a href="http://www.depts.ttu.edu/agriculturalsciences/news/?p=2429">http://www.depts.ttu.edu/agriculturalsciences/news/?p=2429</a>
- Ag Day Lubbock. By Rebecca Rivers, Fox 34 News, 29 October 2013. Floyd County cotton harvest underway.

  <a href="http://www.myfoxlubbock.com/content/agdaylubbock/story/cotton-harvest-water-management/U-3ISR-Dh0vVFD0wdQYDuA.cspx">http://www.myfoxlubbock.com/content/agdaylubbock/story/cotton-harvest-water-management/U-3ISR-Dh0vVFD0wdQYDuA.cspx</a>
- Ehmke, Tanner. 2 October 2013. Conserving water on the Texas High Plains: Integrating Crops, Livestock, and New Technology. *Crop & Soils*, Volume 46, Number 5, p. 6-13. https://www.agronomy.org/publications/cns/articles/46/5/6
- Martin, Norman. 17 August 2013. Texas Alliance for Water Conservation holds Pioneers in Agriculture Field Day. CASNR NewsCenter. http://www.depts.ttu.edu/agriculturalsciences/news/?p=2855
- Borgstedt, Samantha. 25 July 2013. StepUp: Texas Alliance for Water Conservation holds field walk series. CASNR NewsCenter. <a href="http://www.depts.ttu.edu/agriculturalsciences/news/?p=2706">http://www.depts.ttu.edu/agriculturalsciences/news/?p=2706</a>
- Musico, Josie. 20 June 2013. Something to Moo about: Conference describes new trends in cattle industry. Texas and Southwest Cattle Raisers Association representatives describe new technologies and conservation measures in Friday conference. Lubbock Avalanche-Journal. <a href="http://lubbockonline.com/local-news/2013-07-20/something-moo-about-conference-describes-new-trends-cattle-industry#.U YGQ0og91M">http://lubbockonline.com/local-news/2013-07-20/something-moo-about-conference-describes-new-trends-cattle-industry#.U YGQ0og91M</a>
- Ag Day Lubbock. By Rebecca Rivers, Fox 34 News, 25 June 2014. Water management playing a vital role in production.

  <a href="http://www.myfoxlubbock.com/content/agdaylubbock/story/water-management-conservation-tawc/kTSCJH9Tpk6vPT-EWBTbHw.cspx">http://www.myfoxlubbock.com/content/agdaylubbock/story/water-management-conservation-tawc/kTSCJH9Tpk6vPT-EWBTbHw.cspx</a>
- Martin, Norman. 5 December 2013. TAWC recognized with major American Water Resources Association award. CASNR NewsCenter. <a href="http://www.depts.ttu.edu/agriculturalsciences/news/?p=2429">http://www.depts.ttu.edu/agriculturalsciences/news/?p=2429</a>

## Theses and Dissertations

## (Phase I - 2005-2013/Phase II 2014-2015)

- Dudensing, J. D'Wayne. 2005. An economic analysis of cattle weight gain response to nitrogen fertilization and irrigation on WW-B. Dahl Bluestem. M.S. Thesis, Texas Tech University, Lubbock.
- Duch-Carvallo, Teresa. 2005. WW-B. Dahl old world bluestem in sustainable systems for the Texas High Plains. Ph.D. Dissertation, Texas Tech University, Lubbock.
- Martin, Rebekka. 2005. Economic evaluation of an integrated cropping system with cotton. M.S. Thesis, Texas Tech University, Lubbock.
- Miller, Pamela. 2006. West Texas High School Agriscience Teachers' Knowledge, Confidence, and Attitudes towards Teaching Water Quantity-Related Topics. M.S.Thesis, Texas Tech University, Lubbock.
- Carr, Jessica Odette. 2007. An Examination of Rural Small Acreage Homeowners in Three West Texas Counties. M.S. Thesis, Texas Tech University, Lubbock.
- Pauley, Patrick Stephen. 2007. Political and civic engagement of agriculture producers who operate in selected Idaho and Texas counties dependent on irrigation. Ph.D. Dissertation, Texas Tech University, Lubbock.
- Rajan, Nithya. 2007. Estimation of crop water use for different cropping systems in the Texas High Plains using remote sensing. Ph.D. Dissertation, Texas Tech University, Lubbock.
- Weinheimer, Justin. 2008. Farm Level Financial Impacts of Water Policy on the Southern Ogallala Aquifer. Ph.D. Dissertation. Texas Tech University, Lubbock.
- Leigh, Katie. 2008. A Qualitative Investigation of the Factors that Influence Crop Planting and Water Management in West Texas. M.S. Thesis, Texas Tech University, Lubbock.
- Wilkinson, Jarrott. 2009. The Relationship of Trust and Personality Factors of a Knowledge Source on the Information-Seeking Behaviors of Agriculture Professionals. M.S. Thesis, Texas Tech University, Lubbock.
- Williams, Claire. 2009. The Effectiveness of Using a Workshop to Change Agriscience Teacher Behaviors Toward Agricultural Water Management Instruction. M.S. Thesis, Texas Tech University, Lubbock.

- Jones, Heather. 2010. The Influence of a Professional Development Workshop on Teachers' Intentions to Include Water Management Content into Their Local Agriscience Curriculum. M.S. Thesis, Texas Tech University, Lubbock.
- Li, Yue. 2011. Allelopathy in an integrated rye-cotton-beef cattle system. Ph.D. Dissertation. Texas Tech University, Lubbock.
- Cui, Song. 2011. Finding forage legumes adapted to West Texas for reduction of water and energy use and improvement of nutritive value for livestock. Ph.D. Dissertation. Texas Tech University, Lubbock.
- Graber, Lindsay. 2011. Traditional and Social Media Use by Texas Agricultural Producers. M.S. Thesis. Texas Tech University, Lubbock.
- Sullivan, Nichole. 2012. Determining the Water Management Instructional Needs of Texas Agriscience Teachers. M.S. Thesis, Texas Tech University, Lubbock.
- Hill, Nellie L. 2013. Social network analysis of Texas Alliance for Water Conservation producers. M.S. Thesis, Texas Tech University, Lubbock, TX.
- Harkey, Kelly L. 2014. Examination of the desktop computer and mobile device use of the Texas Alliance for Water Conservation website using Google Analytics<sup>TM</sup>. M.S. Thesis, Texas Tech University, Lubbock, TX.
- Xiong, Yedan (Victoria). 2014. Digital Image Analysis of Old World Bluestem Canopy Cover and Leaf Area. M.S. Thesis, Texas Tech University, Lubbock, TX.

# **Phase I - Budget**

**Table A 35.** Final task and expense budget for Phase I Years 1-9 of the demonstration project.

| 2005-358-014                        |           | Year 1                   | Year 2                   | Year 3                 | Year 4                 | Year 5                  | Year 6                | Year 7                | Year 8                | Final Year            |           |
|-------------------------------------|-----------|--------------------------|--------------------------|------------------------|------------------------|-------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------|
|                                     |           | (9/22/04 -<br>1/31/06)   | (2/01/06 -<br>2/28/07)   | (3/01/07 -<br>2/29/08) | (3/01/08 -<br>2/28/09) | (03/01/09 -<br>2/28/10) | 03/01/10 -<br>2/28/11 | 03/01/11 -<br>2/29/12 | 03/01/12 -<br>2/28/13 | 03/01/13 -<br>4/30/14 |           |
|                                     | Task      | revised                  | revised                  | , ,                    | , ,                    | , ,                     | , ,                   | , ,                   | , ,                   | , ,                   | Total     |
| Task Budget                         | Budget*   |                          |                          |                        |                        |                         |                       |                       |                       |                       | Expenses  |
| 1                                   | 4,537     | 4,537                    | 0                        | 0                      | 0                      | 0                       | 0                     | 0                     | 0                     | 0                     | 4,537     |
| 2                                   | 2,561,960 | 216,966                  | 335,319                  | 317,317                | 299,727                | 249,163                 | 299,550               | 296,282               | 249,082               | 371,233               | 2,631,949 |
| 3                                   | 675,402   | 21,112                   | 33,833                   | 80,984                 | 61,455                 | 56,239                  | 28,122                | 46,033                | 145,566               | 200,675               | 674,017   |
| 4                                   | 610,565   | 52,409                   | 40,940                   | 46,329                 | 53,602                 | 64,124                  | 43,569                | 117,206               | 118,858               | 60,525                | 597,564   |
| 5                                   | 376,568   | 42,428                   | 40,534                   | 47,506                 | 38,721                 | 51,158                  | 27,835                | 29,231                | 45,096                | 55,092                | 377,601   |
| 6                                   | 568,773   | 54,531                   | 75,387                   | 71,106                 | 60,257                 | 39,595                  | 60,473                | 52,444                | 56,865                | 97,256                | 567,913   |
| 7                                   | 306,020   | 37,014                   | 22,801                   | 30,516                 | 25,841                 | 11,497                  | 14,302                | 34,398                | 87,024                | 13,269                | 262,197   |
| 8                                   | 334,692   | 44,629                   | 43,089                   | 41,243                 | 43,927                 | 42,084                  | 42,984                | 37,157                | 38,169                | 5,948                 | 339,229   |
| 9                                   | 623,288   | 145,078                  | 39,011                   | 35,656                 | 82,844                 | 52,423                  | 65,785                | 32,971                | 76,416                | 110,886               | 627,160   |
| 10                                  | 162,970   | 0                        | 0                        | 0                      | 0                      | 0                       | 86,736                | 55,871                | 0                     | 0                     | 142,607   |
| TOTAL                               | 6,224,775 | 618,702                  | 630,914                  | 670,657                | 666,374                | 566,283                 | 669,355               | 701,594               | 817,075               | 914,885               | 6,224,775 |
|                                     |           | Year 1                   | Year 2                   | Year 3                 | Year 4                 | Year 5                  | Year 6                | Year 7                | Year 8                | Final Year            |           |
|                                     | Total     | (09/22/04 -<br>01/31/06) | (02/01/06 -<br>02/28/07) | (3/01/07 -<br>2/29/08) | (3/01/08 -<br>2/28/09) | (03/01/09 -<br>2/28/10) | 03/01/10 -<br>2/28/11 | 03/01/11 -<br>2/29/12 | 03/01/12 -<br>2/28/13 | 03/01/12 -<br>4/30/14 | Total     |
| Expense Budget                      | Budget*   | 01/31/06)                | 02/26/07)                | 2/29/06)               | 2/20/09)               | 2/26/10)                | 2/20/11               | 2/29/12               | 2/20/13               | 4/30/14               | Expenses  |
| Salary and Wages <sup>1</sup>       | 2,524,172 | 230,611                  | 304,371                  | 302,411                | 301,933                | 259,929                 | 293,198               | 307,459               | 300,033               | 288,676               | 2,588,620 |
| Fringe <sup>2</sup> (20% of Salary) | 370,655   | 28,509                   | 34,361                   | 36,263                 | 40,338                 | 37,180                  | 43,410                | 42,061                | 32,852                | 35,536                | 330,219   |
| Insurance                           | 186,600   | 13,634                   | 26,529                   | 25,302                 | 25,942                 | 21,508                  | 23,294                | 24,918                | 17,554                | 25,126                | 204,096   |
| Tuition and Fees                    | 199,922   | 8,127                    | 16,393                   | 21,679                 | 18,502                 | 13,277                  | 9,828                 | 21,803                | 35,299                | 34,565                | 179,473   |
| Travel                              | 158,482   | 14,508                   | 25,392                   | 14,650                 | 15,556                 | 16,579                  | 12,329                | 19,127                | 17,148                | 30,752                | 166,041   |
| Capital Equipment                   | 154,323   | 23,080                   | 13,393                   | 448                    | 707                    | 18,668                  | 95,993                | (146)                 | 0                     | 5,842                 | 157,983   |
| Expendable Supplies                 | 105,455   | 14,277                   | 16,100                   | 12,205                 | 18,288                 | 8,614                   | 4,802                 | 8,265                 | 21,058                | 73,705                | 163,314   |
| Subcon                              | 1,758,667 | 212,718                  | 103,031                  | 161,540                | 183,125                | 131,627                 | 115,587               | 131,779               | 335,505               | 353,396               | 1,697,245 |
| Technical/Computer                  | 61,364    | 9,740                    | 3,879                    | 16,225                 | 430                    | 7,990                   | 11,857                | 10,550                | 0                     | 0                     | 74,671    |
| Communications                      | 270,192   | 25,339                   | 41,374                   | 35,497                 | 23,062                 | 14,448                  | 18,300                | 45,344                | 17,002                | 22,315                | 242,681   |
| Reproduction (see                   |           |                          |                          |                        |                        |                         |                       |                       |                       |                       |           |
| comm)                               |           |                          |                          |                        |                        |                         |                       |                       |                       |                       | 0         |
| Vehicle Insurance                   | 2,000     | 0                        | 397                      | 235                    | 187                    | 194                     | 114                   | 130                   | 222                   | 0                     | 1,479     |
| Producer                            |           |                          |                          |                        |                        |                         |                       |                       |                       | 0                     |           |
| Compensation                        | 57,450    | 0                        | 0                        | 0                      | 0                      | 0                       | 0                     | 39,225                | 0                     |                       | 39,225    |
| Overhead                            | 375,493   | 38,160                   | 45,694                   | 44,202                 | 38,302                 | 36,270                  | 40,644                | 51,079                | 40,403                | 44,972                | 379,726   |
| Profit                              |           |                          |                          |                        |                        |                         |                       |                       |                       |                       |           |
| TOTAL                               | 6,224,775 | 618,702                  | 630,914                  | 670,657                | 666,374                | 566,283                 | 669,355               | 701,594               | 817,075               | 914,885               | 6,224,775 |

# **Phase I - Cost Sharing**

**Table A 36.** Final cost sharing figures for TTU, Texas A&M AgriLife, and HPUWCD for Phase I Years 1-9 of the demonstration project.

# **Cost Sharing Balance Summary** (estimated)

| Budget | Total Cost<br>Share<br>Budgeted | Actual Funds<br>Contributed | Balance       |
|--------|---------------------------------|-----------------------------|---------------|
| TTU    |                                 | 958,073.61                  |               |
| TAMU   |                                 | 417,512.95                  |               |
| HPUWCD |                                 | 200,053.70                  |               |
| TOTAL  | 1,300,000.00                    | 1,575,640.26                | (-275,640.26) |

| Expense Categories Salary & Wages Overhead | Total Expense<br>Budget | Actual Funds<br>Contributed<br>350,471.81<br>607,601.80 | Balance       |
|--------------------------------------------|-------------------------|---------------------------------------------------------|---------------|
| SubCon - TAMU<br>\$25,000/yr - HPUWCD      |                         | 417,512.95<br>200,053.70                                |               |
| TOTAL                                      | 1,300,000.00            | 1,575,640.26                                            | (-275,640.26) |