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1. Introduction

Texas Department of Transportation (TxDOT) analysts design roadways and proximal infrastructure.
A substantial fraction of transportation dollars, and hence design efforts, are spent on stormwater
drainage and conveyance infrastructure.

Methods currently and widely used by analysts to estimate the characteristic time or “watershed
timing parameter” contain watershed slope as a principal parameter such that the watershed timing
parameter is inversely proportional to the characteristic slope. Therefore, as topographic slope
decreases, the watershed timing parameter increases. Within hydrologic models, the decrease in
topographic slope produces a rightward shift in the time to equilibrium (steady state) and/or peak
discharge and a reduced value for that peak discharge. Furthermore, conservation of mass requires
that the reduced discharge rate be accommodated by storage (that is watershed runoff is stored by
the system for a longer time). Effectively, this storage requirement increases the time base of runoff
(stretches the hydrograph).

Thus, for some finite topographic slope, the hydraulic behavior approximated by a rainfall-runoff
model deviates from the assumptions used in the development of the method and unrealistic
estimates of watershed time response result. As a result, designers of projects in all districts and
area offices where low-relief terrain is prevalent, such as the Gulf Coast and the High Plains of
Texas, are challenged to account for low-slope hydraulic behavior using a combination of judgement
and current estimation tools.

The ability to appropriately estimate watershed travel time for low-slope conditions will reduce
uncertainty in predicting design discharges, resulting in improved decisions on structure size and
corresponding cost. The net result is improved use of financial resources, reduced risk of costly
overestimation of design discharge (size of structure), and reduced risk of underestimation (size
of structure) and the potential resulting damage to highway infrastructure and adjacent real
property.

The purposes of this research project were:

1. Identify from literature, data, modeling, and experiments, the dimensionless topographic slope
where conventional hydrologic methods become suspect and alternate approaches should be
considered;

2. Identify, develop, and document such alternate approaches and provide procedures and
guidelines for when and how to use them;

3. Develop a research plan (guidance, instrumentation selection and/or invention) for more
intensive study of low-slope watershed response should further work and supporting data be
deemed necessary by TxDOT.
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2. Watershed Slope

The parameters most important for understanding overland flow are topography, surface roughness,
soil infiltration characteristics (abstractions), and the distribution, duration, and intensity of
precipitation. Of these components, the focus of the research reported herein is the impact of
topographic slope on the hydraulics of overland and watershed channel flow.

2.1. Why Does Slope Matter?

Topographic slope appears in watershed time equations as a consequence of simplification of the
momentum equation for practical application in most topographic regimes. Figure 1 is a sketch of
an impervious, sloped surface with a constant rainfall intensity applied. The slope of the surface
affects the magnitude of the discharge and depth of flow at any fixed distance downstream.

Figure 1: Sketch for momentum equation. Adapted from Yu and McNown (1964).

Slope also affects direction of flow. Figure 2, upper panel, is a conceptual diagram that contains a
surface with a finite-length intensity rainfall field similar to that used by Yu and McNown (1964).
Precipitation (runoff) accumulates on the plane and produces a unidirectional flow in the downslope
direction. The lower panel is a depiction of a surface with zero slope. Flow moves away from the
centroid of the runoff-intensity field, either left or right depending on the location of the point of
interest relative to the intensity field.

Slope also impacts infiltration and storage abstractions — a low slope system provides more “ponding”
time for infiltration. Using Figure 2 as representative of the slope effect, the lower panel suggests
greater ponding depth (driving force for infiltration) as well as lower mean velocity in the flow
field, which extends the time for infiltration to occur at a location. Similarly, small irregularities in
the surface are less important for watersheds with substantial topographic slope. However, such
irregularities may constitute substantial storage in the zero-slope case.
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Figure 2: Conceptual diagram to illustrate importance of slope in flow models.

2.2. What is “Low Slope?”

2.2.1. Fundamental Matters

Equation 1 is a one dimensional equation of motion for runoff on an impervious surface1 with
reference to Figure 1 and adapted from Yu and McNown (1964).

∂u

∂t
+ u

∂u

∂x
= g

(
S0 −

τ

ρgh
− ∂h

∂x

)
− uσ

h
, (1)

where τ is the boundary stress (friction), σ is the rainfall intensity, h is the water depth, S0 is the
topographic slope, and u is the section average velocity.

The left-hand side of Equation 1 contains the convective and local acceleration terms, whereas the
right-hand side are the net forces on a unit mass resulting from gravity (S0), boundary shear (τ),
and an additional retarding term to represent rainfall (σ) impact on the free surface. At equilibrium,
the local acceleration term becomes zero and the convective acceleration, depth taper ∂h

∂x , and
rainfall retarding effect are relatively small compared to the gravitational term, gS0. The time to
reach this equilibrium condition is related to the time-of-concentration and other characteristic
response times.

1This development does not consider infiltration losses.
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Yu and McNown (1964), following fluid mechanics convention, equate the shear stress to a friction
factor (based on limited experimental data circa 1964) and substituting τ

ρ = fu2

8 , develop for
equilibrium conditions an equation of motion, Equation 2,

u =

√
8gh
f

√
S0. (2)

Equation 2 is a simplified equation of motion structurally similar to Manning’s equation of motion
— there is a constant associated with friction (f), a variable associated with the depth of flow (h),
and a driving term associated with local topographic slope (S0). If travel distance is considered, the
relation to time is recovered from x = ut, as in Equation 3,

t =
x√

8gh
f

√
S0

. (3)

The consequence of this simplification is that topographic slope is a fundamental component of the
equilibrium equation of motion and appears in the denominator of time equations. Later researchers,
the authors included, continued this simplification.

The analysis changes for relatively small slopes because the convective terms and the depth taper
are no longer negligible compared to the remaining terms (mainly because the gravitational term
completely vanishes in the limit). Furthermore, at x = 0 in the illustration, zero depth cannot be
achieved, thus the axis of symmetry will by necessity have non-zero depth, although the flow will
become bidirectional in such a case.

Therefore, “low slope” is postulated to begin where topographic slope is such that the convective
terms are no longer negligible. The remainder of this section is a review of literature where low-slope
behavior is examined with a goal to determine, from literature review, the dimensionless slope at
which the convective terms and depth taper are no longer negligible.

2.2.2. Literature-Derived Estimates of “Low-Slope” Behavior Initiation

When the topographic slope is less than 0.5% on an impermeable plane surface using a rainfall
simulator, de Lima and Torfs (1990) demonstrated that water depth at the upper boundary is non-
zero. This literature finding is one indicator of where “low-slope” begins — it is a topographic slope
where water depth must be non-zero (at the axis of symmetry) to sustain equilibrium flow.

Based on numerical backwater computations, van der Molen and others (1995) confirmed the findings
reported by de Lima and Torfs (1990). These results are depicted in Figure 3. The non-zero depth
accumulated at slopes of less than 0.2% (0.002) in these two studies is the first source of a value for
dimensionless slope where “low-slope” behavior begins.

Sheridan and Mills (1985) conducted hydrologic research on relatively low slope coastal plain
watersheds in the Southeast United States (near Tifton, Georgia). Their primary study area
is the 129-square mile Little River Watersheds (LRW) operated by the Southeast Watershed
Research Laboratory (SEWRL) of the USDA-Agricultural Research Service (ARS). Drainage areas
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Figure 3: Water depth at the top of the field as a function of slope and calculated water depth over
distance for several low slopes (≤ 0.5%), from van der Molen and others (1995, Figure 4).

for subwatersheds within LRW range from 1.0–44 square miles and main channel slopes from
0.10–0.81% (Sheridan, 2002).

Sheridan and Mills (1985) concluded that low-slope watersheds are damped hydrologic systems and
flows in the design storm range are spread across broad, flat, heavily vegetated floodplains. Because
energy and topographic gradients are relatively low, flow velocities in floodplain drainage networks
are quite low compared to traditional channel flow situations. Channel and watershed slopes did
not appear substantially important for time estimation, and they recommended the following simple
relations for estimating time of concentration and time to peak of hydrograph, based on stepwise
multiple regression analyses:

tc = 2.20MCL0.92, and (4)

tp = 1.33MCL0.89, (5)

where MCL is the main channel length (kilometers) and tc and tp have units of hours. In the
context of the time relation in Equation 3, the denominator is essentially constant (depending on
what particular characteristic time is sought, and that time’s relation to the characteristic length,
MCL).

The lack of importance of slope as an explanatory variable in Sheridan and Mills (1985), combined
with reported topographic slopes in Sheridan (2002) at less than 0.81% is a second source of a value

5



for dimensionless slope where “low-slope” behavior begins.

Su and Fang (2004a) developed a numerical model based on the two-dimensional (2D), depth-
integrated, shallow wave equations to simulate overland flow on the idealized rectangular geometry
depicted in Figure 4 — with the acceleration terms preserved. They simulated the behavior of a
10-meter by 35-meter watershed with no-flow boundaries (dashed lines in the figure)2 on three sides
and a variable width rectangular outlet on the fourth side. This “numerical” watershed could be
configured with different friction behavior (Manning’s n), different longitudinal slope, and different
outlet widths.

Figure 4: Rectangular simulation domain. Adapted from Su and Fang (2004a). The outlet is open
in this figure, width of opening was variable in their study — smallest opening can be visualized as
a slot on the end of the box.

The Su and Fang model was validated using experimental data from Izzard (1946) and field data from
Emmett (1970). Su and Fang used the model to compute the time to equilibrium discharge. The
time to equilibrium is analogous to the conventional meaning of Tc for full watershed contribution.
Su and Fang performed parametric studies wherein rainfall intensity, watershed slope, the friction
terms, and the outlet restriction were varied. In cases where the slopes used in the simulation
corresponded to those in the experimental and field data, their results agreed within 10% of those
of other researchers. The Su and Fang findings were presented as a set of dimensional charts and
tables specific to their geometry. Based on those results, some general comments are:

1. Tc increases as slope is decreased. The rate of increase is roughly one doubling of Tc for every
10-fold decrease in slope, with negligible change in Tc at slopes less than 0.0005;

2. At zero slope, Tc increases with increasing friction (Manning’s n) — the increase is superlinear
but not quadratic; roughly every doubling of the friction term increases Tc by a factor close to√

2;

3. Tc increases with increasing outlet restriction thus having the effect of reducing peak discharge
rate.

Finally Su and Fang (2004a) proposed Equation 6 for estimating Tc on watersheds of slopes less
than 0.0005.

Tc = Coutlet ×
n0.43L0.33

i0.4
(6)

2A boundary specification of no-flow is the glass wall assumption, which is common in 2D practice.
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where Coutlet is an outlet factor, i is the rainfall intensity, n is Manning’s n, and L is the basin
longitudinal length (35 meters in their study). Of particular note in this equation is the absence of
slope, similar to the findings of Sheridan and Mills (1985), and the dependence of Tc on roughness
and input intensity — a dependence that appears in other literature. The same model was later
applied to a practical case of drainage modeling in Beaumont, Texas (Fang and Su, 2006). The
results compared well to high-water marks from Tropical Storm Allison in 2001.

The relatively negligible change in Tc at slopes less than 0.05% in Su and Fang (2004a) is a third
source of a value for dimensionless slope where “low-slope” behavior begins.

Cleveland and others (2008) used a particle tracking model to compute an ensemble of travel
times based on an equation of motion structurally identical to Equation 2. They interpreted these
ensembles using a statistical-mechanical analog to generate watershed hydrographs. They found
that a significant increase in hydrograph prediction uncertainty occurred when watersheds with
slopes in the range 0.0002–0.002 were included. Cleveland and others speculated that use of the
dimensionless topographic slope in Equation 2 was invalid for slopes in this range. Although they
did not set out to examine low-slope behavior, this study represents a fourth source for a value for
dimensionless slope (0.002) where “low-slope” behavior begins.

Li and others (2005) and Li and Chibber (2008) developed regression equations for Tc time of
concentration from laboratory data collected from terrains with slope ranging from 0.24% to 0.48%.
They included terrain slope as an independent variable in power-law models, but later concluded
that the exponent of the slope parameter is nearly one order of magnitude less than those of existing
models (based on larger scale studies) and therefore the importance of slope as an explanatory
variable is minimal. This result is similar to the conclusion described by Sheridan and Mills (1985).
Li and others and Li and Chibber ultimately reported that the contribution of slope to time
parameter estimation is negligible for laboratory terrains with slope less than 0.5%.

Riggs (1976) suggested a “simplified” slope-area method for estimation of high-magnitude peak
streamflow in natural channels. The slope-area method is commonly used by USGS personnel and
others for post-flood estimation of peak streamflow based on high-water marks. The high-water
marks are used to determine the water-surface slope. The estimates of water-surface slope are
combined with multiple estimates of cross-sectional area and other hydraulic properties to develop
multiple estimates of peak streamflow, from which is selected a representative estimate. Riggs
(1976) sought a quick, reproducible, and inexpensive alternative or complement to the slope-area
method.

Figure 5 is a plot of the relation between roughness coefficient and dimensionless water-surface slope,
using values extracted from Riggs (1976, Figure 1) . Although these data are attributed to Barnes
(1967), they were augmented by Riggs. The datapoints were digitized by W. H. Asquith from a
scanned image of the Riggs figure. The relation is reasonably well-defined, and Riggs concludes that
“a relation of this type might be used to modify an estimated n [roughness] according to slope; or
one might conclude that the two variables are so highly related that only one of the two [slope or
roughness] is needed [for] computing [peak streamflow].”

The Riggs quote triggered author interest in a regression equation between dimensionless water-
surface slope and Manning’s n as another means to explore the onset of “low-slope” behavior as

7
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Formula: log10(S) ~ a - b * exp(-c * n)

Parameters:
  Estimate  Std.Error t-value Pr(>|t|)    
a  -1.6137     0.1748  -9.230 2.10e-10
b  13.6867     5.1870   2.639   0.0129
c  88.9271    19.2092   4.629 6.20e-05

Residual standard error: 0.2882 on 31 degrees of freedom

Number of iterations to convergence: 4 
Achieved convergence tolerance: 6.921e-06 

● Data from Riggs (1976)
Regression line as shown below

log   (S) = −1.61 − 13.69 × exp(−88.93 × n)10

Figure 5: Relation between Manning’s roughness and dimensionless water-surface slope for the data
provided in Riggs (1976, Figure 1).

a function of slope. Because the channel topographic slope is substituted for water-surface slope
for normal flow (negligible depth taper), the regression equation could subsequently be substituted
for slope in watershed-timing equations. Such a regression line is depicted on Figure 5 as the solid
curve passing among the markers in the plot. Based on this curve, “steeper” watersheds require
relatively large values of roughness to agree with observations. Similarly (and important for the
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research), at relatively small values of slope the roughness term rate of change is comparatively
small for a logarithmic change in slope.

Using an estimate of Manning’s n of 0.030 as a representative value for a natural system, the
corresponding anticipated slope is 0.003 (0.3%). Furthermore, a reduction of the slope by an order
of magnitude results only in a decrease of estimated roughness by one-third (and into numerical
values associated with engineered channel surfaces).

Although examination of low-slope behavior was not an objective of Riggs (1976), the comparatively
independent analysis produces a fifth source of a value for dimensionless slope (0.003) for which
watersheds with slopes less than this value exhibit “low-slope” behavior.

The results of the various estimates of topographic slope that define the onset of “low-slope” behavior
are listed in Table 1. These values constitute literature-based estimates of the threshold for onset of
low-slope behavior in computations of watershed behavior. A significant part of the remainder of
this report comprises extension of these estimates through examination of results from experimental
watersheds (both field plots and laboratory test beds) and through use of a numerical hydrodynamic
model to extend experimental results. This work is documented in subsequent sections of this
report.

Table 1: Dimensionless Slope (S0) where “Low-Slope” Behavior is in Effect.

Slope (S0) Methods Reference(s)
0.0005 Numerical Model Experiments Su and Fang (2004a)
0.002 Numerical Model Experiments van der Molen and others (1995)
0.002 Numerical Model Experiments Cleveland and others (2008)
0.003 Observed Data Analysis Current authors using Riggs (1976)
0.005 Physical Model Experiments Li and others (2005) and Li and Chibber

(2008)
0.005 Physical Model Experiments de Lima and Torfs (1990)
0.008 Observed Data Analysis Sheridan and Mills (1985)
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3. Developing Alternate Models for Low-Slope Conditions

The second component of this research was to identify, develop, and document alternate methods
for use in low-slope conditions. For this component of the research, experiments were conducted at
Texas A&M University. The experiments used two small field plots and the Texas A&M laboratory
rainfall simulator. Experimental conditions were relatively controlled. The intent was to accomplish
two tasks, (1) to extend the existing rainfall-runoff database the research team assembled in previous
studies and (2) to develop data for calibration of a two-dimensional hydrodynamic model.

The hydrodynamic model was used to conduct parametric studies of the relation between slope,
rainfall rate, travel distance, and losses to identify alternate hydrologic methods for use in low-slope
situations. The hydrodynamic model was used to identify values that are appropriate for an equation
structurally similar to Equation 7,

Tc = β0
nβ1Lβ2

iβ3(SLB + S0)β4
, (7)

where n is Manning’s n, β0, β1, β2, β3, and β4 are parameters, L is the characteristic length (of either
the main channel or overland flow), i is the rainfall intensity, SLB is a lower bound or threshold of
slope, and S0 is a measure of watershed slope.

3.1. Experiment Description

Two types of experiments were conducted — the first comprised passive field studies of small field
plots (reflective of how one would collect data on an actual outdoor watershed) and the second was
use of a controlled indoor simulator (such that both slope and rainfall application rate could be
controlled).

3.1.1. Small-Plot Field Studies

Texas A&M University personnel instrumented two small field plots with recording raingages and
flow measurement equipment. The pair of research watersheds are located at the Texas A&M
University Riverside campus. The distance between the field plots was a few hundred feet. The
surface of the first plat was concrete and the other was an open field of prairie.

The concrete-surface field plot is a portion of an abandoned airstrip taxiway. The plot area is
a rectangular plot with dimensions of 100 ft by 50 ft. The outlet was located in one corner of
the rectangle. The 5,000 ft2 area is bordered by a 7 inch tall soil berm. The slope along the
main diagonal is 0.0025. Figure 6 is an image of the concrete plot looking upstream from the
outlet towards the far corner. The H-flume used to measure discharge from the watershed and the
tipping-bucket raingage are both evident in Figure 6.

The grass field plot is also located at the Texas A&M University Riverside campus about 500 ft from
the concrete plot. The grass watershed is also a 100 ft by 50 ft rectangle with the outlet located in
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Figure 6: Photograph looking upstream from the outlet for the concrete surface watershed. Diagonal
dimension from H-flume to orange cone in far corner is ≈ 111 feet. Dimensionless slope along the
diagonal is 0.0025

one corner of the rectangle. Similar to the concrete plot, the grass 5,000 ft2 plot is bordered by
soil berms. Site surface was maintained by mowing. The slope along the main diagonal is 0.0025.
Figure 7 is an image of the research watershed looking upstream from the outlet towards the far
corner. The H-flume that is used to measure discharge from the watershed and the tipping bucket
raingage are also shown on Figure 7.

The instrumentation for both sites comprised an ISCO tipping-bucket rain gage and an ISCO
sampler equipped with a bubbler flow module located in a 0.75 ft H-flume. The raingage records
accumulated rainfall depths in 0.01 in resolution every minute. The bubbler flow module records
instantaneous depth in the H-flume at 0.001 ft resolution every minute. The instrumentation is
manually connected and powered ahead of each forecasted rainfall event. The recorder is set to
trigger (store data) when rainfall intensity exceeds 0.01 inches per hour or the flume discharge depth
is over 0.003 ft.

The recorded raw data were adjusted because instrument zero was difficult to maintain. For example,
the depth reading by the bubbler should be zero in dry conditions but often recorded a substantial
departure. The Texas A&M team treated these initial readings as offsets that should be subtracted
from flow depths measured later during a recording event. The raw data are adjusted using the
following procedure:

1. Remove the discharge depth offset values from the recorded depth time series.

2. Calculate the instantaneous discharge from the watershed using the adjusted H-flume3 depth
3Equation 8 was provided by the flume manufacturer. D is the measured depth in feet
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Figure 7: Photograph looking upstream from the outlet for the concrete surface watershed. Diagonal
dimension from H-flume to the far corner (left of the orange machinery in the image background) is
≈ 111 feet. Dimensionless slope along the diagonal is 0.0025

using Equation 8;

Qcfs(t) = 35.3146667× 100.0351+2.6434 log10(0.3048D)+0.2243 log10(0.3048D)2 (8)

3. Calculate total volumes of rainfall and discharge expressed as watershed depth for data
QA/QC.

During the research project 26 events were recorded for the concrete study watershed and 4 events
were recorded for the grass watershed. Figure 8 is an annotated plot of the adjusted data recorded
during the field studies. The rainfall input is the thick stair-step trace on the plot4 that in nearly
all cases defines the upper boundary for the plot, that is, the maximum value of the rainfall exceeds
all other values on the plot. The trace that will appear to have variable shading is the observed
runoff5. The solid trace that tends to be smoother than others is a unit hydrograph model used in
data analysis. The unit hydrograph model represents an exponential hydrograph (a Gamma model
with shape parameter of unity) and was used to compute characteristic response times for later
analysis.

4If this report is printed in color, the rainfall input will be the blue trace
5If this report is printed in color, the observed runoff will be the black-grey trace.

12



0 500 1000 1500

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

2009-1011-Runway-1min.csv

Time (minutes)

D
e
p
th

 (
in

c
h
e
s
)

Cumula&ve Rainfall 

Cumula&ve Observed Runoff 

Exponen&al Hydrograph Model 
(used in data analysis) 

Figure 8: An example rainfall-runoff time-series plot from the field studies. Figure 16 in the next
section was constructed from the time values extracted from these time series.
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3.1.2. Rainfall Simulator Studies

Texas A&M University personnel conducted a series of controlled simulator studies on an indoor
artificial watershed. Water was supplied by a rainfall simulator (controlled intensity) on a bare soil
bed (controlled slope). Five longitudinal slopes were examined. They were 0.00, 0.001, 0.002, 0.005,
and 0.01.

The artificial watershed is a steel-framed bed 30 ft long by 6 ft wide. The bed is filled with soil to a
depth of about 1 ft. Figure 9 is an image of the test-bed in the rainfall simulator enclosure. The
rainfall simulator is a nozzle-type design suspended above the test bed. (The rainfall simulator is
not shown in the image.) Unique to the watershed design is that the nozzle-array tilts with the bed
so the distance from nozzle to the soil bed is constant regardless of the slope. Such an arrangement
means that the impact velocity of a water drop onto the test bed is the same regardless of slope.
The Texas A&M team filled the bed with clay and then compacted soil with a lawn roller. The bed
was stored outdoors for more than a month before simulator tests were conducted6. The rainfall
simulator can produce a sustained rainfall intensity up to 4.5 inches per hour.

Figure 9: Photograph looking upstream from the outlet for the rainfall-simulator watershed.
Longitudinal dimension from the outlet (foreground) to the end of the watershed is 30 ft.

Two bubbler flow modules were used to record discharge depth and surface runoff depth near the
outlet with a resolution of 0.001 ft. Values are recorded at one-minute intervals. The discharge is
measured using a 22.5◦ V-notch weir box. Rainfall intensity is measured using an inline flowmeter
connected to the rainfall simulator. A recording tipping-bucket raingage was used as an independent
check of supply rate.

The experimental procedure used for the simulator experiments is as follows:
6The month-long storage was a consequence of scheduling time in the simulator rather than any research forethought.
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1. Saturate soil until surface runoff appears;

2. Drain the surface runoff by raising the slope up to 20 percent. The resulting condition is
initial saturation;

3. Set the bed to the intended slope;

4. Start rainfall by choosing a flow rate. Maintain a constant flow rate (and constant intensity);

5. Measure the discharge rate in the weir box;

6. Stop rainfall application after maximum discharge rate is observed for a short interval (at
least a few minutes);

7. Continue recording the discharge rate until system is drained.

The raw data in these experiments are adjusted in a fashion similar to the field experiments. The
adjustment procedure for the simulator experiments is:

1. Remove the discharge depth offset values from the recorded depth time series;

2. Calculate the instantaneous discharge from the watershed using the adjusted V-notch weir
box7 depth using Equation 9,

Qcfs(t) = 0.4979D2.5 (9)

where D is the measured depth in feet.

3. Calculate total volumes of rainfall and discharge expressed as watershed depth for data
QA/QC.

A total of 30 experiments were conducted at the five different slopes with two different rainfall
intensities. Results were similar to those from the field studies. The collective results (from both
field plots and artificial watershed) were used to fit a hydrograph similar to that depicted in Figure 8
for each experimental time series. These fitted results were combined with prior work to produce
Figure 16, which is described later in the report.

3.2. Modeling Description

Modeling was conducted to examine the interaction of multiple parameters (slope, cover, intensity,
and so forth) as a parametric study to develop alternative methods for application in low-slope
settings. Two types of modeling were conducted — the first was a parametric study using a
hydrodynamic model, and the second was a statistical analysis of collected data. The hydrodynamic
model used the DHM code (Hromadka and Yen, 1986) to first calibrate to field plot and simulator
studies collected as part of the research reported herein, then to explore an alternative approach
for low-slope settings. The data analysis used unit-hydrograph-type interpretation to search for a
behavioral trend explainable by slope and other conventional variables.

7Equation 9 was provided by the weir-box manufacturer.
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3.2.1. Diffusion Hydrodynamic Model (DHM)

The diffusion hydrodynamic model (DHM), developed by Hromadka and Yen (1986), is a two-
dimensional numerical model based on the diffusion equation to approximate the horizontal mo-
mentum of vertically-averaged free-surface flow. The governing equations for DHM include the
continuity equation and two equations of motion.

Equation 10 is the continuity equation at the centroid of a computational grid cell. The variables
qx and qy are the discharge per unit width in the x and y directions and H is the water-surface
elevation,

∂H

∂t
+
∂qx
∂x

+
∂qx
∂y

= 0. (10)

Equation 11 is the x-component of the momentum equation on the computational grid. The variables
h and g are the flow depth and gravitational acceleration,
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∂
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(
q2x
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)
+
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(qxqy
h

)
+ gh

(
Sfx +

∂H

∂x

)
= 0. (11)

Equation 12 is the y-component of the momentum equation on the computational grid,

∂qy
∂t

+
∂

∂y

(
q2y
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+
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)
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(
Sfy +

∂H

∂y

)
= 0. (12)

The resulting set of coupled equations (Equations 10–12) is solved by integrated finite-difference
methods on a regular grid (Hromadka and Yen, 1986).

The friction slope component in the previous two equations is approximated using Manning’s equation
and assuming quasi-steady flow (steady within a computational time step). The precipitation input
depth is converted into a volume by a product of the input depth over a time interval and the
computational cell area. The rainfall volume is then added into the continuity equation as an
internal source term at each computational cell. DHM was used by its original authors to model
overland flow hydrographs, develop synthetic unit hydrographs in five test catchments and was
compared with runoff hydrographs developed using SCS dimensionless unit hydrographs, hence the
tool was suitable and has been previously used for the kind of examination in this research.

DHM on impervious surfaces

The Auburn University research team developed a utility program to construct DHM input files for
different watersheds. DHM was tested using measured rainfall and runoff data collected from two
lab testing impervious surfaces by Yu and McNown (1964). The slopes of impervious surfaces were
2% (500 ft long watershed) and 0.5% (252 ft long watershed). Simulated discharge hydrographs from
DHM agreed well with observed discharge hydrographs for constant and variable rainfall inputs.
DHM was then used to simulate discharge hydrographs from the Texas A&M field experiments.
Rainfall hyetographs and runoff hydrographs were observed and recorded for 26 rainfall events
between April 2009 and March 2010.

Figure 10 is a typical result of the DHM application. The simulated and observed discharges are
in reasonable agreement. This result is important because DHM is characterized by watershed

16



geometry, slope, cover type, and a grid-spacing specification and in that context constitutes a
testbed for the more detailed parametric study.

Figure 10: Typical result for DHM model applied to Texas A&M impervious (runway) experimental
conditions.

Figure 11 is a plot of cumulative precipitation and discharge. The impact of different outlet boundary
conditions and grid spacing are displayed. Based on results presented in Figure 11, the effect of grid
spacing is minor as is the effect of outlet boundary condition.

The Nash-Sutcliffe efficiency, E, is a statistical measure of goodness of fit used in evaluation of
hydrologic models (Legates and McCabe, Jr., 1999). For hydrograph simulations, a good agreement
between simulated results and the measured data is considered to be obtained when the E exceeds
a value of 0.7 (Bennis and Crobeddu, 2007). The average E for hydrographs simulated using
DHM was 0.74 for the 26 rainfall events. Therefore, simulated discharges are considered to have
reasonable agreement with observed discharges for the rainfall events recorded on the outdoor
concrete surface.

One option in DHM is a kinematic-wave model8 for the momentum equation. The Auburn team
attempted use of the kinematic-wave simplification because it is often used in hydrologic modeling.
They learned that the kinematic model would not work at zero slope. However, the diffusion form

8The kinematic-wave equation is a simplification of the momentum equation in which conservation of momentum
occurs when the friction slope is equal to the bed topographic slope.
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Figure 11: Typical result for DHM model applied to Texas A&M impervious (runway) experimental
conditions, cumulative values. Variable computational grid size is examined in the figure — grid
spacing and discharge condition have minor effect in this simulation.

of the momentum equation (Equations 11 and 12) produce results where the topographic-slope of
the solution domain is zero. Differences between the kinematic wave and DHM simulated results
increased as watershed topographic slope decreased9.

A set of numerical experiments was conducted using DHM to estimate the watershed time of
concentration Tc. The practical determination of such a time from experimental data and numerical
modeling is varied (Ben-Zvi, 1984). In this study, Tc is selected as the time when the discharge
reaches 98 percent of the equilibrium flow. In the numerical experiments conducted for this study,
the slope is varied and the Tc is recorded. Of particular note is that at zero slope Tc is finite (the
DHM flow depth is surely reflective of the zero topographic slope, but the depth taper transports
water out of the model). Figure 12 is a depiction of one set of numerical experiments.

In other studies (Izzard, 1946; Ben-Zvi, 1984; Su and Fang, 2004b; Wong, 2005), a variety of
threshold values of discharge were used to identify the characteristic time (Tc). Examples are
80, 95, and 97 percent of the equilibrium flow. In each approach, a particular value was used to
accommodate the asymptotic nature of the arithmetic in the model studies.

9At zero slope, no solution exists for the kinematic-wave equation because depth grows without bound as slope
approaches zero.
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Figure 12: DHM functionally impervious surface parametric study.

Results from the numerical experiments were used as input data for exploration using regression
methods. The objective of the regression exploration was to choose a threshold topographic slope
where low-slope (asymptotic) behavior begins. Figure 13 is a depiction of results from the analysis.
In Figure 13, the asymptotic value for the simulated system is 100 minutes. The plot of Tc versus
slope intersects this value at a slope of about 0.0001. That is, from the numerical experiments, the
threshold value for defining “low-slope” is about 0.0001. However, the estimate of the threshold
derived from the literature is approximately one order of magnitude greater.

On Figure 13, the regressions were developed based on the assumption that low-slope behavior
is exhibited for watersheds slopes of 0.0005 and 0.003, respectively. Differences between the two
lines are relatively minor and both intersect the asymptotic value at the same order of magnitude.
Therefore, the researchers chose a dimensionless slope of 0.003 as the inception of low-slope behavior
(largely based on the literature examination and the departure of the DHM values from a straight
line in Figure 13 at that value). Based on these results, the researchers suggest that low-slope
behavior is likely for watersheds with slopes less than about 0.003 and should be assumed for those
watersheds with slopes less than 0.0005.

DHM was used to generate a suite of estimates of Tc for 90 different combinations of slope, distance,
surface conditions, excess precipitation intensity, and outlet size. These values were used to develop
Equation 13 to estimate Tc for functionally impervious terrains with topographic slope ranging from
zero to 10 percent.
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Figure 13: Regression analysis to select threshold of topographic slope to define “low-slope” behavior.
The vertical dashed line is at dimensionless slope of 0.0005.

Tc =
Cn0.6175L0.551

i0.388(SLB + S)0.436
(13)

where C is the outlet factor, n is Manning’s n, L is the characteristic length (of either the main
channel or overland flow), i is the rainfall intensity, SLB is a low slope threshold, and S is the
topographic slope.

Equation 14 is an equation developed in the same analysis for estimating the outlet factor, C,
described in Su and Fang (2004b) and appearing in Equation 13. To obtain the outlet factor, critical
depth at the watershed outlet was assumed. The researchers varied flow lengths and found that
while there was some sensitivity to length, the topographic slope itself had far more impact on the
numerical value of the factor.

C = 1.612− 1.196
S

SLB + S
(14)

where C is the outlet factor, SLB is a low slope threshold, and S is topographic slope.

Equations 13 and 14 constitute an alternative model for estimating Tc in low-slope situations. These
equations are developed without regard for functionally impervious versus pervious conditions.

DHM on pervious surfaces

The analytical approach used for impervious surfaces was also applied to results from the field
and laboratory experiments conducted by Texas A&M personnel (the grass plot and the rainfall
simulator studies). Figures 14 and 15 are typical results from DHM application to the grass plot
studies. Only a few hydrologic events produced runoff from the grass plots and most of these
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produced little runoff. This was an unanticipated result. The poor agreement of DHM results and
field observations is attributed to the low volume of runoff from the grass plots. Because little runoff
occurred, obtaining a reasonable estimate of rainfall losses was practically impossible.

Figure 14: Typical incremental result for DHM model applied to Texas A&M grass-plot experimental
conditions.

The Auburn team added a Green-Ampt model to DHM to allow estimation of surface infiltration
(prior to this addition, losses were external to the program). The modified program was used to
reexamine the grass-plot experiments and the rainfall simulator studies.

When DHM was applied to results from the rainfall simulator experiments, which used soil similar
to the grass plot studies, results were comparable to the impervious plot studies. Therefore, the
validated DHM model and the rainfall simulator results were used to develop parametric studies for
low-slope alternative timing models applicable to pervious surfaces.

For development of a dataset for use in developing the alternative timing model for pervious surfaces,
soil properties were grouped into three categories — sand, loam, and clay. Each category was
examined using DHM and adjusting other variables in the timing model to develop a relation
between soil properties, slope, and Tc. Ranges in the parameters used in DHM are listed in Table 2.
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Figure 15: Typical cumulative result for DHM model applied to Texas A&M grass-plot experimental
conditions.

Saturated hydraulic conductivity (Ksat) and the soil type assigned to the particular range of values
are included in Table 2. The remaining infiltration parameters were adjusted to be appropriate
for the soil type as per values reported in Rawls and Brakensiek (1982). Including non-pervious
components, over 1,000 combinations of roughness (Manning’s n), slope, rainfall intensity, plot
length, saturated hydraulic conductivity, suction pressure, and moisture deficit were examined.

Unlike the result from DHM modeling of watersheds with impermeable surfaces, no single structure
model was found. Therefore, a time adjustment (an additive offset to Tc from the low-slope
time response model for impervious surfaces) for each soil type was constructed. The general
model structure is comprised of an impervious component and a pervious additive component.
Equation 15 is the general structure of the model, with a temporal offset (∆Tpervious) computed
using Equations 16, 17, or 18,

Tc = 1.82
n0.61L0.57

i0.39(SLB + S)0.32
+ ∆Tpervious, (15)

where the ∆Tpervious for the three different soil groups computed from

∆Tpervious-sand = 82.2
n0.09L0.13K2.29

sat ψ
1.06D0.70

i2.85(SLB + S)0.12
, (16)
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Table 2: Parameter values used for pervious surface, low-slope parametric modeling.

Variable Symbol Low Value High Value Remarks
Slope S0 0.000 0.10
Length (ft) L 65 820
Hyd. Conductivity (in/hr) Ksat 0.01 0.06 Clay Group
Hyd. Conductivity (in/hr) Ksat 0.24 0.50 Loam Group
Hyd. Conductivity (in/hr) Ksat 1.00 5.00 Sand Group
Manning’s n n 0.085 0.80 Appropriate for Soil Type
Intensity (in/hr) i 0.32 10.0 Varied for Soil Type
Soil Suction (in) ψ 1.8 12.6 Appropriate for Soil Type
Moisture Deficit D 0.01 0.45

∆Tpervious-loam = 53.6
n0.13L0.22K0.83

sat ψ
0.58D0.74

i1.66(SLB + S)0.05
, or (17)

∆Tpervious-clay = 22.0
n0.21L0.18K0.46

sat ψ
0.28D0.68

i1.41(SLB + S)0.19
. (18)

3.3. Summary

Field experiments were conducted to develop measured data to calibrate and validate a hydrodynamic
model. Use of a calibrated hydrodynamic model allows geometric and material parameters to be
varied to examine the effect of slope on runoff production. These parametric studies were conducted
using DHM, which was modified to incorporate a rainfall loss model. The result was a dataset from
which a set of regression models were developed to estimate watershed response time for low-slope
conditions.

The resulting regression models are appropriate for use where the topographic slope is less than
about 0.003. A slope offset is used in the denominator of the resulting equations that has a value of
SLB = 0.0005 to ensure that the denominator of the timing models does not vanish. Although the
value chosen (0.0005) is somewhat arbitrary, its magnitude is supported by both the hydrodynamic
modeling of impervious surfaces and published literature.

Two sets of timing parameter (regression) equations were developed. The first is intended for use
with watersheds that have functionally impervious surfaces and the second for use with watersheds
with pervious surfaces that can be described by soil textural description and Green-Ampt parameters.
The mathematical structure of the two sets are similar. The equations are presented to document
the research but are not suggested for practical use because of a circular dependence of intensity
and time. Instead an adaptation of the existing Kerby-Kirpich approach is suggested and discussed
later in the report.
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4. Data Acquisition in Low-Slope Watersheds

Figure 16 is a plot of observed time of peak discharge (Tp) for more than 100 Texas watersheds.
Based on prior research, Tp and Tc are highly correlated and convey similar information. Data from
various studies of Texas watersheds conducted by the Texas Department of Transportation (0–4193,
0–4194, 0–4696) were plotted along with data collected from the Texas A&M field plots and rainfall
simulator.

Figure 16: Relation of Time to Peak (Tp) and the ratio of area to adjusted slope for Texas watersheds.

In general, results from the extended research database and those from the Texas A&M laboratory
watershed fall near the regression line superimposed on Figure 16. The exception, which was
unanticipated by the research team, are results from the two field-scale plots used by the Texas
A&M team. The researchers are of the opinion that the unusual behavior of these two watersheds is
partly an instrumentation issue. The approach used by A&M personnel was sound, the tools used
are certainly state-of-the-practice, yet the results are unanticipated.

The earlier work of Li and others (2005), and Li and Chibber (2008) produced findings similar to
those reported herein. That is, the characteristic time of low-slope watersheds was much greater
than anticipated. The work reported by Li and others (2005) and Li and Chibber (2008) used
an experimental approach and instrumentation similar to that used by the Texas A&M team.
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However, based on what was learned by the research team, use of H-flumes and other conventional
critical-depth devices is limited for low-slope watersheds. The primary reason is that a low-slope
system (by definition) has insufficient drop at the measurement location for the devices to work
properly. That is, standard instrumentation requires sufficient energy (head) to develop critical
depth. In a low-slope environment, the result is that the “pond” formed upstream from the device
results in sufficient storage to affect the measurement. Therefore, the unusual results from the
Texas A&M field sites are likely a consequence of the H-flume requirement to be at grade with the
watershed itself and subtle, unmeasurable, adverse alignments of the device itself. The results are
further complicated because precipitation depths from many events were insufficient to satisfy the
hydrologic abstractions on the grass plot for events that occurred during the course of this research
project.

Therefore, a component of this research project was to examine alternative data acquisition concepts
in anticipation of the needs of future researchers and engineers to estimate discharge in low-slope
systems. The likely approach in low-slope systems is to leverage existing culvert (cross drainage)
structures and use depth differences across the culvert structure to estimate discharge from a low-
slope contributing area. The measurement technologies could be conventional, but the researchers
have explored emergent technologies that might enhance understanding of low-slope, shallow-flow
behavior.

4.1. Data Acquisition in Low-Slope Watersheds Using Culvert Hydraulics

Task 3B of the project, which is titled “Design of a Low-Slope Data Acquisition Program,” involves
research commentary regarding “technical challenges” of monitoring streamflow in low-slope en-
vironments. In this section of the report, the researchers address findings related to streamflow
monitoring using culvert-based hydraulic computations. The authors suggest that there are two
strongly interrelated purposes of culvert-based hydraulic computations: (1) the design of culverts
based on discharge criteria with possible addition of either headwater or tailwater criteria, and (2)
the forensic estimation of discharge (usually peak discharge) given observed headwater and tailwater
data. Infrastructure engineers, such as many TxDOT designers, perform the former; whereas,
hydrology monitoring agencies, such as the USGS, perform the later. Readers of this section are
expected to be well versed in the basics of culvert hydraulics and the discussion is written with this
assumption.

The design of culverts can be based on the HY8 program of the Federal Highway Administration10

based on methods described by Normann and others (1985). In contrast, computation of peak
discharge based on culvert hydraulics can be completed using the USGS CAP11. For the specific
needs of TxDOT designers, Charbeneau and others (2002, 2006) provide potential refinements to
culvert design in Texas; however, although informative, for the purposes of this section the findings
of Charbeneau and others are not directly applicable.
10HY8 is available from http://www.fhwa.dot.gov/engineering/hydraulics/software/hy8/ at the time of this

writing.
11The CAP program is available from http://water.usgs.gov/software/CAP/ at the time of this writing.
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The authors acknowledge that either of the previously referenced software programs (and possibly
others) can be used for either design or forensic discharge determination. Furthermore, the literature
and engineering textbooks abound with refinements. Perhaps the most accessible sources on culvert
hydraulics for the purposes of Task 3B of the project are the techniques monograph by Bodhaine
(1968) and the CAP user manual (Fulford, 1998).

Recently established USGS streamflow-gaging stations located on several low-slope watersheds in
the Texas Panhandle (funded by a cooperative program between TxDOT and the USGS) resulted
in the availability of some data. The authors acquired culvert geometry, approach section geometry
(often at the edge of right-of-way), and other relevant data from the lead hydrologist on the project
(Glenn Harwell, USGS, Fort Worth). Mr. Harwell reported in fall of 2009 considerable difficulty
and lack of success in performing computations using the CAP software for several culvert systems
having what are believed to be prevailing conditions of low slope. Further evaluation by one of the
authors (Asquith) using other computational means yielded the same result.

After conducting research into potential problems with lack of computable results and some
heuristic12 arguments, the authors concluded that a discharge solution is only possible if the velocity
head in the approach section was ignored and pure ponding conditions on the inlet prevailed. A
blanket assumption of ponding conditions is not philosophically attractive and the need for such an
assumption is a problem.

The source of the problem is the small geometric conditions (focus on cross sectional area) at the
approach section relative to the flow cross section in the culvert system. The small geometric
conditions of the approach appear in small low-sloped watersheds of the Texas High Plains and
presumably similar settings because the thalweg or “main channel” (if even definable) can have such
small cross sectional area that computationally the approach flow appears supercritical. Because
velocity head scales with the square of velocity, the addition of the approach velocity head on
the headwater specific energy causes the culvert computations to iteratively grow a discharge to
infinity—that is, there is no possibility of numerical convergence and no discharge results.

Occurrence of supercritical flow in an approach section in a low-slope watershed appears inconsistent
with the general hydraulic conditions of the setting. So what can be done for the objective of
discharge data acquisition in low-slope watersheds using culvert hydraulics? Before providing an
answer, the authors acknowledge that a water-surface control point could exist between a surveyed
approach section and the culvert inlet in which resulting culvert computations would be unreliable.
However, the authors suggest that this should seldom be a problem unless the borrow ditch in the
right-of-way is relatively deep near the stream crossing. Assuming therefore that the approach
section was surveyed in a reliable location and the hydraulics are sufficiently characterized to make
a discharge measurement using culvert hydraulic computations, the authors suggest that three
watershed areas (“the subarea triplet”) be determined: (1) the watershed area sourcing to the left
borrow ditch and arriving along the borrow ditch, (2) the watershed area sourcing to the right
borrow ditch and arriving along the borrow ditch, and (3) the watershed area sourcing the main
channel and the approach section.
12Heuristic—Computing proceeding to a solution by trial and error or by rules that are only loosely defined, adapted

from Dictionary.app from www.apple.com.
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Figure 17 is a sketch of the triplet concept. The sketch shows a plan view of a stream crossing
running vertical in the sketch (the stream could be quite small). The roadway runs horizontal in the
sketch, and a culvert system is depicted in the middle of the sketch. The borrow ditches are the two
small streams running parallel to the roadway and intersecting the main stream a short distance
from the culvert system. The approach section and inlet section relative positions on the upstream
side of the culvert are also shown on the sketch. The implication is that the approach section is
located beyond where the borrow ditches drain into the culvert system. The three arrows on the
inlet side of the sketch depict the approach flow (running downward in the sketch), and the left
and right borrow ditch contributions. The three watershed areas as described above are depicted
on the sketch and would be determined by conventional delineation techniques, or by engineering
judgement where the topographic relief is too ambiguous.

Watershed areas (1) and (2) provide water perpendicular to the direction of flow through the culvert
and hence do not provide additional energy in the form of velocity. The authors suggest that
because the watersheds in question are small that the relative timing of the arrival of the flood wave
along each of these three areas is reasonably contemporaneous. Therefore, the percent of flow to
“route” through the approach section for purposes of computing velocity head at the culvert inlet
and frictional losses between the approach and the culvert inlet should be computed as:

η =
Aapproach

Aleft +Aright +Aapproach
, (19)

where η is also known as fraction.of.flow13 and is an additional property of the approach section
and the three Ai’s represent the three subareas or conceptual regions of the water that contribute
flow to the culvert. The total contributing drainage area of the water is the sum of the three
subareas, which are formally described in the previous paragraph.

For example, if about one third of the total watershed area resides in each of the three subareas
(η = 0.33), then the discharge to use in computation of approach velocity head and frictional losses
between the approach and the culvert inlet is 0.33Qi for Qi representing the total discharge through
the culvert system for the ith iteration of the computations. This concept is suggested as a way to
reduce the velocity head when computing discharge from stage measurements around such culverts,
without resorting to a ponding assumption.

Numerical experimentation with selected culverts from the current (2010) USGS and TxDOT
streamflow-gaging program in Texas demonstrates that approach flow can be held to subcritical
and discharge convergence will occur for values of η that seem well within logical application of
engineering judgement (η ≈ 0.3–0.8). Readers might grasp that the η correction also can be thought
of as a correction for a channel or approach section that is skewed to the roadway. In essence,
η behaves similarly to a vector projection or cosine correction. However, the uniqueness of the
discussion in this section is that such a correction might be needed for low-slope watersheds although
geometrically the main channel is not skewed to the flow axis through the culvert system. In
conclusion, the use of the triplet subarea concept provides an objective method to apply to culvert
13The authors show fraction.of.flow as a “variable” because one of the authors (Asquith) wrote a culvert analysis

program using the R programming language in which such a variable is used, thereby implementing results from
this research project.
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Figure 17: Sketch to illustrate watershed sub-area triplet concept.

hydraulic computations to accommodate more realistic hydraulic conditions when gaging small
low-sloped watersheds using the principles of culvert flow.

4.2. Emergent Technologies

Culvert hydraulics and adaptations of computational methods previously presented in this research
report stimulated some emergent technologies that will be of value in future low-slope environments.
USGS researchers considered several technical modifications to typical streamflow-gaging techniques
for monitoring low-slope hydraulics. Research into video capture technology with frame-by-frame ve-
locimetry was initiated. Energy losses are potentially small over “gageable” reach lengths. Therefore,
gage-height monitoring to better than 0.01 feet (the USGS standard) likely is required. Researchers
conceptually developed variations on laser-based gage-height recording within comparatively short
“stilling wells” with reflective floats. Lasers promise small footprints and greater and more reliable
accuracy than pressure transducers. (Experience in recent years is showing that small footprint
autonomous pressure loggers have difficulty operating in situations in which extended dry periods

28



are followed by submersion — data record can exhibit various degrees of unreliability.)

Further, out of concerns for differential movement of the ground surface during wet-up and dry-down
periods in clay-dominated low-slope environments, lateral lasers offer a mean to continuous monitor
differential movement of two or more stage sensing locations. Laser range-finding is a venerable
technology but with limited adoption in surface-water hydrology. Many manufacturers exist and
most “units” use serial communication. The USGS infrastructure is heavily invested, but not
uniquely dependent, on the SDI-12 (serial digital interface) protocol. One or more manufacturers
build inexpensive serial (RS232 interface) to SDI-12 converters. However, the promise of using
the laser at high sampling rates likely will overwhelm the speed of the SDI-12 sensor bus and
direct programming communication with the RS232 interface is required. Recent discussions with
manufacturers conducted by USGS researchers indicates that conventional data loggers can be
programmed to communicate with various laser-based systems.

The research team successfully experimented with laser technology, but was unable to examine its
utility outside the research laboratory for this project. Software was developed to interpret results
and was incorporated into the culvert hydraulics already discussed.

An imaging approach that uses low-power infrared LED arrays was discovered late in this project
and is currently under study external to this project. This technology is one that could potentially
leverage existing camera systems and is as promising as laser-based systems and anticipated to be
lower cost.
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5. Application

There are two principal findings from the research conducted for this project. The first is identification
of the topographic slope at which “low-slope” effects are anticipated. The second is a hydrologic
timing model for consideration for low-slope conditions. The purpose of this chapter is to provide
guidance for application of the findings of this research project. A secondary purpose is to provide
a few examples of application of the research results.

5.1. Guidance for Application of Research Results

The approaches for timing estimation on small slopes, runoff generation, and other calculations of
interest explored in this research are:

1. Application of conventional techniques, but using a small offset to the topographic slope — the
researchers suggest the offset should be 0.0005 (0.05 percent added slope). Such an approach is
reasonably well justified from the impervious field site and its corresponding numerical model
simulation. In the simulation the response time asymptotically approached a constant at a
dimensionless slope of 0.0001–0.0005 (Figure 13). This is the simplest adaptation of existing
techniques to low-slope conditions and is the suggested approach for low-slope conditions for
hydrologic modeling. An illustration is provided later in this section of the report.

2. Application of the pervious surface model as described by Equations 15, 16, 17, and 18 for cases
where small distances are involved over a pervious surface. Confounding the computations
in this model is that the rainfall intensity (and hence some sense of duration) is part of the
model. Therefore the result is implicit and the analyst is presented with a circular problem of
needing to specify time to compute an intensity, then needing intensity to compute a time.
The solution requires iteration but yields both time and intensity.

The intensity appears in the denominator and the motivation of the study was to keep time
from approaching huge values, so the researchers suggest that the smallest intensity that
produced runoff (in their experiments) is a reasonable surrogate lower bound that provides an
initial upper bound watershed response time for hydrologic modeling. The values from the
parametric study that represent the lowest runoff producing intensities for sand, loam, and
clay soil textures are 1.5, 0.32, and 0.2 inches per hour, respectively. This model combines
a loss model with the timing estimation, and while such a situation is acknowledged to be
realistic, the separation of slope effects from soil effects was not possible.

The impervious surface model as described by Equation 13 is appropriate for cases where small
distances are involved over a functionally impervious surface. It is a subset of the pervious
models and has a similar issue with regards to intensity being part of the timing estimate.

For practical use the researchers suggest the adaptation of the conventional approach with a slope
offset. The offset is suggested to be applied at dimensionless slopes less than 0.003 and the offset
value is SLB = 0.0005. The choice of when to use the alternate occurs at a slope where the asymptotic
timing behavior becomes apparent in Figure 13. The offset value is chosen as described earlier.
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5.2. Use of the Slope Offset for Estimation of Time of Concentration in Texas for
Low-Slope Conditions

5.2.1. Introduction

Formal guidance for estimation of time of concentration (critical storm duration) for watersheds
characterized as having limited topographic slope is provided in this supplement. Limited topographic
slope watersheds are those watersheds having main-channel slopes less than about 0.05 percent
or 0.0005 dimensionless. Main-channel slope Sc is computed as the change in elevation from the
watershed divide to the watershed outlet divided by the curvilinear distance of the main channel
(primary flow path) between the watershed divide and the outlet.

The authors emphasize that there is ambiguity in the meaning of low-slope watersheds and the
primal objective of this project was for objective mitigation for conditions in which the engineer
computes S → 0 (slope effectively vanishing) with the result that traditional methods for estimating
watershed response time produce unreasonable results. The guidance described in this supplement
is an adaptation and extension of the supplement in Roussel and others (2005, pp. 33–34). That
supplement is extended here to watersheds with limited topographic slope. Such watersheds are
predominant in the High Plains and Coastal Regions of Texas.

Roussel and others (2005) concluded that the watershed time estimation methods of Kerby (1959)
and Kirpich (1940) should be considered for general application in Texas. These methods are
combined as “the Kerby-Kirpich approach” for estimating watershed time of concentration Tc. The
Kerby-Kirpich approach requires comparatively few input parameters, is straightforward to apply,
and produces readily interpretable results. The Kerby-Kirpich approach produces Tc estimates
consistent with watershed time values independently derived from real-world storms and runoff
hydrographs. Application of the Kerby-Kirpich is demonstrated in the context of a low-slope
watershed in this supplement.

5.2.2. The Modified Kerby Method

For small watersheds where overland flow is an important component of overall travel time, the
Kerby (1959) method modified for a base slope can be used. The modified Kerby equation is

Tc = K(LN)0.467(SLB + So)−0.235, (20)

where Tc is overland flow time of concentration, in minutes; K is a units conversion coefficient, in
which K = 0.828 for traditional units and K = 1.44 for SI units; L is an overland-flow length, in
feet or meters as dictated by K; N is a dimensionless retardance coefficient; SLB is a base slope
value (offset) that provides mitigation for vanishing topographic slope So; and So is dimensionless
slope of terrain conveying the overland flow. In the development of the Kerby equation, the length
of overland flow was as much as about 1,200 feet (366 meters). Hence, this length is considered an
upper limit and shorter values in practice generally are expected. The dimensionless retardance
coefficient used is similar in concept to the well-known Manning’s roughness coefficient. However, for
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Table 3: Typical values of retardance coefficient N of Kerby (1959) method for overland flow

Generalized terrain description Retardance coefficient (N)
Pavement 0.02
Smooth, bare, packed soil 0.10
Poor grass, cultivated row crops, or moderately
rough packed surfaces

0.20

Pasture, average grass 0.40
Deciduous forest 0.60
Dense grass, coniferous forest, or deciduous forest
with deep litter

0.80

a given type of surface, the retardance coefficient for overland flow will be considerably larger than
n for open-channel flow. Typical values for the retardance coefficient are listed in Table 3.

5.2.3. The Modified Kirpich Method

For channel-flow component of runoff, the modified Kirpich (1940) equation is

Tc = KL0.770(SLB + Sc)−0.385, (21)

where Tc is the time of concentration in minutes, K is a units conversion coefficient, in which
K = 0.0078 for traditional units and K = 0.0195 for SI units, L is channel-flow length in feet or
meters as dictated by K, SLB is a base slope value (offset) that provides mitigation for vanishing slope
Sc, and Sc is dimensionless main-channel slope as determined in Roussel and others (2005).

5.2.4. Example Application

An example application of the Kerby-Kirpich method for a watershed is informative. A schematic
of the longitudinal profile and other properties of the example watershed is shown in Figure 18.
For this example, suppose a hydraulic design is needed to convey runoff from a watershed with a
drainage area of 0.5 square miles. On the basis of field examination and topographic maps, the
length of the main channel from the watershed outlet (the design point) to the watershed divide is
5,280 feet. Elevation of the watershed at the outlet is about 3,400 ft. From a topographic map,
elevation along the main channel at the watershed divide is estimated to be 3,401.1 feet. The analyst
assumes that overland flow will have an appreciable contribution to the time of concentration for
the watershed. The analyst estimates that the length of overland flow is about 500 ft. The area
representing overland flow is average grass (N = 0.40). The slope for the overland-flow component
is 0.03 percent (So = 0.0003).
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Figure 18: Schematic of longitudinal profile of main channel for example computations

5.2.5. Time of overland flow

For the overland-flow Tc, the analyst applies the Kerby equation

Tc = 0.828(500× 0.40)0.467(0.0003)−0.235, (22)

from which Tc is about 73 minutes. In the analyst’s professional opinion, this result might be greater
than what was expected. The overland flow slope is not very large, particularly when compared with
a value typical of many applications (about 0.01). Therefore, the analyst believes a low-slope setting
is possible and decides to reevaluate the overland flow TC given a low-slope assumption.

For the overland-flow Tc, the analyst applies the modified Kerby equation with a base slope suggested
by the authors that represents a transition from gravitationally dominated flow to differential depth
driven flow. Using the base slope of SLB = 0.0005, the modified Kerby equation is

Tc = 0.828(500× 0.40)0.467(0.0005 + 0.0003)−0.235, (23)

from which Tc is about 53 minutes, which is about 20 minutes less than the previous computa-
tion.

5.2.6. Time of main channel flow

For the channel Tc, the analyst applies the Kirpich equation, but first dimensionless main-channel
slope is required

S =
3401.1− 3400

5280
= 0.00021 (24)

or about 0.021 percent. For this application, the overland flow length is subtracted from the main
channel length14, such that L = 5280− 500 = 4780 ft. The value for slope and the channel length
14Depending on the particular watershed, it is not always the case that the characteristic overland flow length for

estimating the overland flow Tc is colinear with the main channel. In some cases, the characteristic overland
flow component is not aligned with the main channel. One of the authors (Thompson) chooses several candidate
locations on a watershed to estimate the characteristic (representative) overland flow Tc, estimates Tc for those
locations, and then chooses a reasonable value.
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are used in the Kirpich equation

Tc = 0.0078(5280− 500)0.770(0.00021)−0.385, (25)

from which Tc is about 138 minutes. Similar to the result from the overland flow analysis, the
analyst believes a low-slope condition has been encountered and decides to reevaluate the main
channel Tc under that assumption.

For the channel Tc, the analyst applies the modified Kirpich equation with a base slope suggested
by the authors that represents a transition from gravitationally dominated flow to differential depth
driven flow. Using the base slope of SLB = 0.0005, the modified Kirpich equation is

Tc = 0.0078(5280− 500)0.770(0.0005 + 0.00021)−0.385, (26)

from which Tc is about 87 minutes, which is 51 minutes shorter than the previous computation.

5.2.7. Consideration of the watershed time values

The values for watershed Tc are:

• Adding the overland flow and channel flow components of Tc from the Kerby-Kirpich approach
gives a watershed Tc of about 211 minutes (73 + 138).

• Adding the overland flow and channel flow components of Tc from the modified Kerby-Kirpich
approach gives a watershed Tc of about 140 minutes (53 + 87).

For design purposes, the Tc = 140 minutes is preferred. The Tc = 211 minutes is too long.

Finally, as a quick check, the analyst can evaluate the Tc by using an ad hoc method representing
Tc, in hours, as the square root of drainage area, in square miles. For the example, the square root
of the drainage area yields a Tc estimate of about 0.71 hour or about 42 minutes, which is expected
to be considerably less than the previous two estimates of watershed Tc because the estimate is
based on community engineering experience in Texas with normal (not low-slope) watersheds.

34



6. Summary

Methods currently used to estimate the timing parameter for a watershed contain some form of
watershed slope as a principal parameter. That time response (travel time or time of concentration)
is usually inversely proportional to topographic slope.

The research team identified, from literature, data, modeling, and physical experiments, the
dimensionless topographic slope where alternate hydrologic approaches should be considered. The
dimensionless slope suggested for consideration of alternate approaches is 0.003.

The project team examined several alternate approaches from parametric studies using the Diffusion
Hydrodynamic Model (DHM). Inclusion of a rainfall loss model in DHM was required to address
results from field experiments and rainfall simulator experiments. Initial results retained rainfall
intensity as part of the timing estimate creating an implicit estimation problem. A simple slope
offset was also explored and is suggested as an adaptation of current technology. The offset value
suggested is 0.0005 and an illustrative example is presented in this report.

The project team developed a research plan for more intensive study of low-slope hydrology
should further work and supporting data be needed. The principal findings are that current
streamgaging techniques are not well suited to low-slope hydrologic studies and different measuring
methods are suggested. Several promising emerging technologies are presented as worthy of further
exploration.

6.1. Recommended Future Research

The parametric studies combined rainfall loss issues with timing issues. While watershed loss has
been studied before in Texas (and elsewhere) the effect in low-slope conditions is poorly understood
in both a scientific and an engineering sense. Therefore, the integrated loss/low-slope hydraulics15

is an area worthy of further study. Low-slope hydraulics is amenable to existing tools (HEC-RAS,
SWMM, etc.) but what fraction of the incoming precipitation actually becomes discharge is still
poorly understood. The initial-abstraction, constant loss-rate approach (Asquith and Roussel, 2007)
should be re-examined for applicability in low-slope conditions in the context as a tool for use in
integrated hydrology/hydraulics modeling.

The research teams noticed something unusual about low-slope response based on results from the
field plots. It is the researchers’ opinion that the problem is probably an instrumentation issue,
but increased rainfall losses because of relatively long detention time is relevant. The researchers
suggest the following list of future research topics to consider in low-slope as need and funding
emerge.

1. Identify and instrument a comparatively large “low-slope” watershed near transportation
infrastructure that is drained by culverts or similar structures. The instrumentation should
include the emerging technologies described in this report in parallel with more conventional
technologies to explore both the instrumentation issue and the timing/loss issue at a meaningful

15The choice of “hydraulics” is intentional!
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physical scale. The watersheds should be selected in several parts of the state — at least the
coastal plains and the Panhandle region. The goal of these studies would be to further refine
the timing model suggested in this research or discover a way to directly model hydraulics
and loss behavior.

2. Develop documentation for how to model low-slope watersheds using existing tools. A
particular question is how to manage the integrated loss and hydraulics components in a
practical sense with the goal to develop a guidance document (or a modeler-training manual).

3. The parametric studies required unusual values of Manning’s n to produce results the re-
searchers believed to be meaningful. This finding is not reported in detail, but occurs elsewhere
in the literature. A study to determine if the unusual values arise because of the low topo-
graphic slope or because of the relatively shallow flows encountered in the experiments is
worth pursuing.

4. The effect of slope on flow direction is mentioned in this report, but this research did not
attempt to address the direction effect. A study of how to establish meaningful potential flow
directions in low-slope regimes would be a worthy future research topic. A caveat is that in
certain regimes, direction could change with inundation so this research would be necessarily
multi-dimensional model dependent.

36



References

Asquith, W. H. and M. C. Roussel (2007). An initial-abstraction, constant-loss model for unit
hydrograph modeling for applicable watersheds in texas. Scientific Investigations Report 2007–5243,
U.S. Geological Survey.

Barnes, H. H. (1967). Roughness characteristics of natural channels. U.S. Geological Survey
Water-Supply Paper 1849 , 213.

Ben-Zvi, A. (1984). Runoff peaks from two-dimensional laboratory watersheds. Journal of hydrol-
ogy 68 (1–4), 115–139.

Bennis, S. and E. Crobeddu (2007). New runoff simulation model for small urban catchments.
Journal of hydrologic engineering 12 (5), 540–544.

Bodhaine, G. L. (1968). Measurement of peak discharges at culverts by indirect methods. U.S.
Geological Survey Techniques of Water-Resources Investigations Book 3 (Chapter A3), 60.

Charbeneau, R., A. Henderson, R. Murdock, and L. Sherman (2002). Hydraulics of channel
expansion leading to low-head culverts. Texas department of transportation research report
FHWA/TX–03–2109–1, Center for Transportation Research, University of Texas, Austin, Texas.

Charbeneau, R., A. Henderson, and L. Sherman (2006). Hydraulic performance curve for highway
culverts. Journal Hydraulic Engineering 132 (5), 474–481.

Cleveland, T. G., D. B. Thompson, X. Fang, and X. He (2008). Synthesis of unit hydrographs from
a digital elevation model. ASCE Journal of Irrigation and Drainage Engineering 134 (2), pp. 212
– 221.

de Lima, J. L. M. P. and P. J. J. F. Torfs (1990). Upper boundary conditions for overland flow.
Journal of hydraulic engineering 116 (7), 951–957.

Emmett, W. W. (1970). The hydraulics of overland flow on hillslopes. Number 622-A in Professional
Paper. Washington, D.C.: U. S. Geological Survey.

Fang, X. and D. Su (2006, June). An integrated one- and two-dimensional urban stormwater flood
simulation model. Journal of the American Water Resources Association 42 (3), pp. 713–724.

Fulford, J. M. (1998). User’s guide to the u.s. geological survey culvert analysis program, version
97-08. Water-Resources Investigations Report WRIR 98–4166, U.S. Geological Survey.

Hromadka, T. and C. Yen (1986). A diffusion hydrodynamic model (DHM). Advances in water
resources 9 (3), 118–170.

Izzard, C. F. (1946). Hydraulics of runoff from developed surfaces. In Proceedings, Highway Research
Board, Volume 26, pp. 129–146.

Kerby, W. S. (1959). Time of concentration for overland flow. Civil Engineering 29 (3), 174.

37



Kirpich, Z. P. (1940). Time of concentration of small agricultural watersheds. Civil Engineering 10 (6),
362.

Legates, D. R. and G. J. McCabe, Jr. (1999). Evaluating the use of “goodness of fit” measures in
hydrologic and hydroclimatic model validation. Water resources research 35 (1), 233–241.

Li, M.-H. and P. Chibber (2008). Overland flow time of concentration on very flat terrains.
Transportation Research Record: Journal of the Transportation Research Board (2060), 133–140.

Li, M.-H., P. Chibber, and A. Cahill (2005). Overland flow time of concentration on very flat
terrains. In 2005 ASAE annual international meeting, Tampa, Florida. American Society of
Agricultural Engineers.

Normann, J. M., R. J. Houghtalen, and W. J. Johnson (1985). Hydraulic design of highway culverts.
Hydraulic Design Series FHWA-HDS-5 2nd. Ed., Federal Highway Administration.

Rawls, W. J. and D. L. Brakensiek (1982). Estimating soil water retention from soil properties.
Amer. Soc. of Civil Engin., J. of Irrig. and Drain. 108 (IR2), 166–171.

Riggs, H. C. (1976). A simplified slope-area method for estimating flood discharges in natural
channels. Journal Research of U.S. Geological Survey, 4 (3), pp 285–291.

Roussel, M. C., D. B. Thompson, X. Fang, T. G. Cleveland, and C. A. Garcia (2005). Time-
parameter estimation for applicable texas watersheds. Texas Department of Transportation
Research Report 0–4696–2, Lamar University, Beaumont, Texas.

Sheridan, J. M. (2002). Peak flow estimates for coastal plain watersheds. Transaction of the
ASAE 45 (5), 1319–1326.

Sheridan, J. M. and W. C. Mills (1985). Hydrologic research on coastal plain watersheds of the
Southeastern United States. Transportation Research Record No. 1017 1017, 16–23.

Su, D. and X. Fang (2004a). Estimating traveling time of flat terrain by 2-dimensional overland flow
model. In G. Jirka and W. Uijttewaal (Eds.), Shallow Flows, pp. 629–635. Balkema Publishers.

Su, D. and X. Fang (2004b). Estimating traveling time of flat terrain by 2-dimensional overland
flow model. In G. Jirka and W. Uijttewaal (Eds.), Shallow flows, Roterdam, The Netherlands, pp.
623–625. Balkema.

van der Molen, W., P. Torfs, and J. de Lima (1995). Water depths at the upper boundary for
overland flow on small gradients. Journal of hydrology 171, 93–102.

Wong, T. (2005). Assessment of time of concentration formulas for overland flow. ASCE Journal of
Irrigation and Drainage Engineering 131 (4), 383–387.

Yu, Y. and J. McNown (1964). Runoff from impervious surfaces. Journal of Hydraulic Research 2 (1),
3–24.

38



Multidisciplinary Research in Transportation

Theodore G. Cleveland, 
David B. Thompson, 
Xing Fang, Ming-Han Li

Texas Department of Transportation

Establish Effective Lower 
Bounds of Watershed Slope 
for Traditional Hydrologic 
Methods
 

Report #: 0-6382-1
www.techmrt.ttu.edu/reports.php                                                                                      July 2012

Multidisciplinary Research in Transportation

Texas Tech University | Lubbock, Texas 79409
P 806.742.3503 | F 806.742.4168




