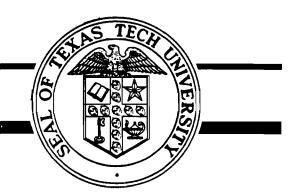
# CATHODIC PROTECTION FOR REINFORCED CONCRETE BRIDGE DECK - BIG SPRING

Prepared by:


Phillip T. Nosh Harry W. Parker Robert W. Feingold Texas Tech University Lubbock, Texas 79409

Submitted to:

Texas Department of Transportation

August 1994

Research Study No: 1-10-85-500



## CATHODIC PROTECTION FOR REINFORCED CONCRETE BRIDGE DECK - BIG SPRING

by

Phillip T. Nash

Harry W. Parker

Robert W. Feingold

Research Report Number 1-10-85-500

conducted for

**Texas Department of Transportation** 

by the

### **COLLEGE OF ENGINEERING**

**TEXAS TECH UNIVERSITY** 

February 1994

| 1, Pepart No. ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . Government Access             | sion No.                              | 3. Rectrient's Cotolog No.               |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------|------------------------------------------|--|--|--|
| 500-2F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . contained Actes               |                                       |                                          |  |  |  |
| 4. Title ond Subtitle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |                                       |                                          |  |  |  |
| Cathodic Protection for Reinforced C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6. Performing Organization Code |                                       |                                          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                                       | 8. Performing Orgonization Report No.    |  |  |  |
| 7. Author's)<br>Phillip T. Nash, Harry W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                                       |                                          |  |  |  |
| 9. Performing Organization Name and Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <br>                            |                                       | 10. Work Unit No. (TRAIS)                |  |  |  |
| College of Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |                                       |                                          |  |  |  |
| Texas Tech University                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |                                       | 11. Contract or Grant No.<br>1-10-85-500 |  |  |  |
| Box 43103, Lubbock, Texas 79409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                                       |                                          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                                       | 13. Type of Report and Period Covered    |  |  |  |
| 12. Sponsoring Agency Name and Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |                                       | Draft March 1992 - December 1993         |  |  |  |
| U.S. Department of Transportation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |                                       | (Final)                                  |  |  |  |
| Federal Hignway Administration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |                                       |                                          |  |  |  |
| Work was performed in cooperation<br>(DTFH-84-34-TX-18) (DFTH-71-83-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |                                       | 14. Sponsoring Agency Code               |  |  |  |
| 15. Supplementary Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                       |                                          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>n</b>                        |                                       |                                          |  |  |  |
| Texas Department of Transportation<br>P.O. Box 5051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11                              |                                       |                                          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                                       |                                          |  |  |  |
| Austin, Texas 78763                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                                       |                                          |  |  |  |
| <pre>pass structure in Big Spring, Texas. The cathodic protection systems were installed in October 1988 as<br/>a demonstration project to compare the various systems. Three distributed anode types were used to<br/>protect the bridge deck: (1) titanium mesh; (2) conductive polymer; and (3) carbon strand. A hot-<br/>sprayed zinc conductive coating anode was applied to sidewalks and a median on the bridge deck, and a<br/>conductive paint anode was applied to a bridge bent. Performance data have been collected for each<br/>system since installation.</pre> The purpose of this study was to assess the performance of the five different cathodic protection system<br>installed on the Big Spring bridge. The system assessment included determining the effectiveness of eac<br>system, performing a cost effectiveness study of the systems used to protect the bridge deck, preparing<br>training aids for TXDOT personnel, and recommending a schedule for future evaluations and data<br>collections. Only the titanium mesh distributed anode system continues to function. The hot-sprayed<br>zinc anode system failed early in the study, and the reason for its failure is probably existing<br>conditions of the sidewalk and median prior to system installation. The conductive paint has failed and<br>the conductive coating is peeling and flaking extensively. A present value cost analysis is presented<br>that considers bridge decks with and without cathodic protection. New and existing bridge decks were<br>compared in the present value cost analysis. |                                 |                                       |                                          |  |  |  |
| 17. Key Words                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 | 18. Distribution State                | ment                                     |  |  |  |
| Anode systems, bridge decks, cathodic protection,<br>corrosion, reinforcing No restrictions. This document is available to<br>public through the National Technical Informatic<br>Service, Springfield, VA 22161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                                       |                                          |  |  |  |
| 19. Security Classif. (af this report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20. Security Class              | if, (of this page)                    | 21. No. of Pages 22. Price               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 | · · · · · · · · · · · · · · · · · · · | 135                                      |  |  |  |

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views or policies of the Texas Department of Transportation. This report does not constitute a standard, specification, or regulation.

There was no invention or discovery conceived or first actually reduced to practice in the course of or under this contract, including any art, method, process, machine, manufacture, design or composition of matter, or any new and useful improvement thereof, or any variety of plant which is or may be patentable under the patent laws of the United States of America or any foreign country.

.

#### ACKNOWLEDGMENTS

The authors extend their appreciation to the following for providing valuable background information, comments, and assistance throughout the conduct of this research project:

| Mr. William G. Burnett, P.E. | - | Executive Director |
|------------------------------|---|--------------------|
| Mr. Michael V. Chetty, P.E.  | - | Odessa District    |
| Mr. David R. Elmore          | - | Abilene District   |
| Ms. Lisa Lukefahr, P.E.      | - | Research           |
| Mr. Greg A. Malatek, P.E.    | - | Research           |

Special thanks are also extended to Dr. John Borrelli for his guidance during the cost effectiveness study and to Ms. Heather K. Adams for her assistance in preparing the text of the final report.

|                                    | Approximate Cor         | versions to Metri  | . Maasurea         |                 | Approximate Conversions from Matric Maa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$4183                                  |
|------------------------------------|-------------------------|--------------------|--------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Symbol                             | When You Know           | Multiply by        | To Find            | Symbol          | Image: Strate in the interval of the interval  | find Symbol                             |
|                                    |                         |                    |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|                                    |                         |                    |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|                                    | *                       | LENGTH             |                    |                 | mm millimuters 0,04 inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ches in                                 |
|                                    |                         |                    |                    |                 | S cm continutors 0.4 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ches in                                 |
| in                                 | inches                  | *2.5               | Continutors        | cm              | - meters 3.3 fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| h                                  | leat                    | 30                 | Contimeters        | C #             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rda yd<br>Iss mi                        |
| yd                                 | yarde                   | 0.9                | meters             | *               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ilas mi                                 |
| mi                                 | milee                   | 1.5                | kilometer L        | km              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|                                    |                         |                    |                    |                 | AREA<br>AREA<br>Com <sup>2</sup> com <sup>2</sup> continuetors 0.4 in<br>m maters 0.4 in<br>m m m maters 0.4 in<br>m m m m m m m m m m m m m m m m m m m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |
|                                    | <del></del>             | AREA               |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|                                    |                         |                    |                    | ,               | n cm square centimeters 0,15 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | juare inches in <sup>2</sup>            |
| in <sup>2</sup>                    | equare inches           | \$,\$              | Equare Centimeters |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | luare yards yd <sup>2</sup>             |
| n <sup>2</sup>                     | square less             | 0.09               | square metere      | ^               | km <sup>2</sup> square kilometers 0.4 sq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | juare mitas mi <sup>2</sup>             |
| yd <sup>2</sup><br>mi <sup>2</sup> | Equare yards            | ů, <b>i</b>        | square meters      | ~ <sup>2</sup>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r98                                     |
| mif                                | square miles            | 2.5                | Squere kilometers  | km <sup>2</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|                                    | 8C/85                   | 0.4                | hecteres           | ha              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|                                    |                         | HASS (weight)      |                    |                 | Image: Section of the section of t |                                         |
|                                    |                         |                    |                    |                 | <sup></sup> <sup></sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MC+0 04                                 |
| 07                                 | BUNCES                  | 28                 | grams.             | 8               | kg kilograms i2.2 po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | unds <sup>1</sup> b                     |
| 16                                 | pounds                  | 0.45               | hilograms          | hg              | t tonnes (1000 kg) 1,1 sh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | iart tons                               |
|                                    | short tons<br>(2000.16) | 0,9                | 100035             | 4               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|                                    | 1                       | VOLUME             |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|                                    | ******                  |                    |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 189                                | 1###poone               | 6                  | millititers        | mi              | mi miljilitars 0.03 (h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | uid aunces 🕴 er                         |
| lbsa                               | isbles poons            | 15                 | mittiffers         | mi              | i liters 2.1 pi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nte pe                                  |
| ll or                              | livid cunces            | 30                 | milliliters        | mi              | u l titers 1,06 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | aris qi                                 |
| 4                                  | Cupt                    | 0,24               | liters             | 1               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ilions gel<br>ibic feet fl <sup>3</sup> |
| pł                                 | pinte                   | 0,47               | fotes.             | t               | m <sup>3</sup> cubic mitter# 35 cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |
| ąt –                               | quarts                  | 0.95               | laters.            | 1               | - m <sup>3</sup> cubic motors 1.3 cv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ibic yards ys <sup>3</sup>              |
| 421<br>I 44                        | gellons                 | 3,8                | leters.            | 1               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 4 <sup>)</sup>                     | cubic feet              | 0.03               | cuhic meters       | ~,<br>~         | TEMPERATURE (exact)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |
| ¥d3                                | cubic yords             | 0.76               | cubic meters       | m <sup>3</sup>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|                                    | TEMI                    | PERATURE (exect)   |                    |                 | ··· ·· ·· Celsius 9/5 (then /al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | hranhait                                |
|                                    |                         |                    |                    |                 | temperature add 321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | temperature                             |
|                                    | Fahranhait              | 5/9 fallar         | Outsive            | *c              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|                                    | temper e lut e          | subtracting<br>32} | temperature        |                 | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *r<br>22                                |
|                                    |                         |                    |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 200                                   |
|                                    |                         |                    |                    |                 | ╶ <sub>┇</sub> ───┋ <mark>╠</mark> ─── <sub>┛</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |
|                                    |                         |                    |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80 100<br>*c                            |
|                                    |                         |                    |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|                                    |                         |                    |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |

۲

**=**:

METRIC CONVERSION FACTORS

.

#### SUMMARY

Five individual cathodic protection systems were installed on the U.S. 87 Missouri Pacific Railroad overpass structure in Big Spring, Texas. The cathodic protection systems were installed in October 1988 as a demonstration project to compare the various systems. Three distributed anode types were used to protect the bridge deck: (1) titanium mesh; (2) conductive polymer; and (3) carbon strand. A hot-sprayed zinc conductive coating anode was applied to sidewalks and a median on the bridge deck, and a conductive paint anode was applied to a bridge bent. Performance data have been collected for each system since installation.

The purpose of this study was to assess the performance of the five different cathodic protection systems installed on the Big Spring bridge. The system assessment included determining the effectiveness of each system, performing a cost effectiveness study of the systems used to protect the bridge deck, preparing training aids for TxDOT personnel, and recommending a schedule for future evaluations and data collections.

Only the titanium mesh distributed anode system continues to function. The hotsprayed zinc anode system failed early in the study, and the reason for its failure is probably existing conditions of the sidewalk and median prior to system installation. The conductive paint has failed and the conductive coating is peeling and flaking extensively. A present value cost analysis is presented that considers bridge decks with and without cathodic protection. New and existing bridge decks were compared in the present value cost analysis.

#### **IMPLEMENTATION STATEMENT**

Findings and results from this study will be used to choose the most appropriate bridge protection system for future projects. Recommendations from the evaluation will serve as a basis for including cathodic protection system options in future bridge design guidelines. These guideline supplements will be provided as they become available.

This final report was prepared to serve as a guideline for training TxDOT personnel in the principles and applications of cathodic protection. This document will reduce dependence upon outside contractors for system evaluations and help reduce any bias in evaluating future systems.

## TABLE OF CONTENTS

| ACKNOWLEDGMENTS                                                 | . i   |
|-----------------------------------------------------------------|-------|
| METRIC CONVERSION FACTORS                                       |       |
| SUMMARY                                                         |       |
| IMPLEMENTATION STATEMENT                                        |       |
| LIST OF TABLES                                                  |       |
| LIST OF FIGURES                                                 |       |
|                                                                 | , •11 |
| 1. INTRODUCTION                                                 | . 1   |
| 2. PROBLEM STATEMENT                                            | . 3   |
| 3. OBJECTIVES OF THE STUDY                                      | . 3   |
| 4. HISTORY AND BASIC PRINCIPLES OF CATHODIC PROTECTION          |       |
| 4.1 Description of Corrosion                                    |       |
| 4.2 Galvanic Cell                                               |       |
| 4.3 Electromotive Force (Galvanic) Series.                      | . 7   |
| 4.4 Cathodic Protection of Reinforced Concrete Bridges          | . 11  |
| 4.5 Cathodic Protection System Components.                      | . 12  |
| 4.5.1 External DC Power Source                                  |       |
| 4.5.2 Current Distribution Hardware                             | . 14  |
| 4.5.3 Conducting Electrolyte                                    | . 17  |
| 4.5.4 Protected Metal (Reinforcing Steel) and Completed Circuit |       |
| (Wiring)                                                        | 20    |
| 4.5.5 Evaluation and Control Devices (Probes, Reference Cells,  | . 20  |
| Controllers)                                                    | 20    |
| · · · · · · · · · · · · · · · · · · ·                           |       |
| 4.5.6 Remote Monitoring Systems                                 |       |
| 4.5.7 Other Considerations                                      | . 20  |
| 5. CATHODIC PROTECTION SYSTEMS ON THE U.S. 87 RAILROAD          |       |
| OVERPASS BRIDGE - BIG SPRING                                    | . 31  |
| 6. RESULTS AND FINDINGS                                         | 35    |
| 7. COST EFFECTIVENESS STUDY                                     | 55    |
| 8. CONCLUSIONS                                                  | 63    |
| 9. RECOMMENDATIONS                                              | 65    |
| APPENDIX A: List of References                                  | 66    |
| APPENDIX B: Data Listing                                        | 70    |

## LIST OF TABLES

| 1.  | Measures to Protect Reinforcing Steel from Corrosion<br>(ACI, 1992)             |
|-----|---------------------------------------------------------------------------------|
| 2.  | Electromotive Force Series (Morgan, 1959)9                                      |
| 3.  | Effect of Mix Design and Cover Depth on Chloride<br>Migration (Clear, 1974)     |
| 4.  | Comparison of Electrochemical Methods of Corrosion<br>Measurement (SHRP, 1992)  |
| 5.  | Effect of Applied Current on Splitting Tensile Strength<br>(Vrable, 1977)       |
| 6.  | Effect of Applied Voltage on Bond Strength<br>(Research by Scott, Vrable, 1977) |
| 7.  | Available CP Systems and Estimated Costs and Lives                              |
| 8.  | Evaluation Summary of U.S. 87 Overpass in Big Spring,<br>Texas (Smith, 1990)    |
| 9.  | Anode Types, Protected Zones and Circuits                                       |
| 10. | Cost Element Items, Costs and Service Lives                                     |
| 11. | Present Values for Bridge Deck Alternatives                                     |

## LIST OF FIGURES

| 1.           | Simple Cell and Equivalent Circuit (Morgan, 1959)                | 6  |
|--------------|------------------------------------------------------------------|----|
| 2.           | Effect of pH on Corrosion of Iron in Aerated Soft Water          |    |
|              | at Room Temperature (Uhlig, 1985)                                | 12 |
| 3.           | Effect of Mix Design Parameters (Clear, 1974)                    | 19 |
| 4.           | Effect of Water-Cement Ratio and Thickness on the                |    |
|              | Diffusion of Oxygen Through Mortar and Concrete (ACI, 1992)      | 19 |
| 5.           | Cell for Measuring Polarization (Uhlig, 1985)                    | 21 |
| 6.           | Typical Tafel Diagram for Big Spring Bridge (Smith, 1990)        | 23 |
| 7.           | Effect of Current Density on Ultimate Bond Stress (Vrable, 1977) | 28 |
| 8.           | Effect of Applied Current on Ultimate Bond Stress (Vrable, 1977) | 28 |
| 9.           | Layout of Cathodic Protection Systems on U.S. 87 Overpass,       |    |
|              | Big Spring, Texas (Smith, 1990)                                  | 32 |
| 10.          | Anode Current, Quarterly Averages Titanium Mesh Anode            | 39 |
| 11.          | Anode Voltage, Quarterly Averages Titanium Mesh Anode            | 40 |
| 12.          | Anode Conductance, Quarterly Averages Titanium Mesh Anode        | 40 |
| 13.          | Reference Cell Voltage, Quarterly Averages Titanium Mesh Anode   | 41 |
| 14.          | Instant-Off Reference Cell Voltage, Quarterly                    |    |
|              | Averages Titanium Mesh Anode                                     | 41 |
| 15.          | Rebar Probe Voltage, Quarterly Averages Titanium Mesh Anode      | 42 |
| 1 <b>6</b> . | Anode Current, Quarterly Averages Conductive Polymer Anode       | 43 |
| 1 <b>7</b> . | Anode Voltage, Quarterly Averages - Conductive Polymer Anode     | 43 |
| 1 <b>8</b> . | Anode Conductance, Quarterly Averages - Conductive               |    |
|              | Polymer Anode                                                    | 44 |
| 1 <b>9</b> . | Reference Cell Voltage, Quarterly Averages Conductive            |    |
|              | Polymer Anode                                                    |    |
| <b>2</b> 0.  | Instant-Off Reference Cell Voltage, Quarterly                    |    |
|              | Averages Conductive Polymer Anode                                | 45 |
| 21.          | Rebar Probe Voltage, Quarterly Averages Conductive               |    |
|              | Polymer Anode                                                    | 45 |
| 22.          | Anode Current, Quarterly Averages Carbon Strand Anode            | 46 |
| 23.          | Anode Voltage, Quarterly Averages - Carbon Strand Anode          | 47 |
| 24.          | Anode Conductance, Quarterly Averages – Carbon Strand Anode      | 47 |
| 25.          | Reference Cell Voltage, Quarterly Averages Carbon Strand Anode   | 48 |
| 26.          | Instant-Off Reference Cell Voltage, Quarterly                    |    |
|              | Averages Carbon Strand Anode                                     | 48 |
| 27.          | Rebar Probe Voltage, Quarterly Averages Carbon Strand Anode      |    |

.

| 28.         | Anode Current, Quarterly Averages Sprayed Zinc Anode              | 50 |
|-------------|-------------------------------------------------------------------|----|
| 29.         | Anode Voltage, Quarterly Averages Sprayed Zinc Anode              | 50 |
| 30.         | Anode Conductance, Quarterly Averages - Sprayed Zinc Anode        | 51 |
| 31.         | Reference Cell Voltage, Quarterly Averages Sprayed Zinc Anode     | 51 |
| 32.         | Instant-Off Reference Cell Voltage, Quarterly                     |    |
|             | Averages Sprayed Zinc Anode                                       | 52 |
| 33.         | Rebar Probe Voltage, Quarterly Averages Sprayed Zinc Anode        | 52 |
| 34.         | Anode Current, Quarterly Averages Conductive Paint Anode          | 53 |
| 35.         | Anode Voltage, Quarterly Averages Conductive Paint Anode          | 54 |
| 36.         | Anode Conductance, Quarterly Averages Conductive Paint Anode      | 54 |
| 37.         | Reference Cell Voltage, Quarterly Averages Conductive Paint Anode | 55 |
| <b>38</b> . | Instant-Off Reference Cell Voltage, Quarterly                     |    |
|             | Averages Conductive Paint Anode                                   | 55 |
| 39.         | Rebar Probe Voltage, Quarterly Averages Conductive Paint Anode    | 56 |
| 40.         | Cost Schedule for New Bridge Construction With                    |    |
|             | and Without Cathodic Protection                                   | 60 |
| 41.         | Cost Schedule for Repairing 30-Year Old Bridge With               |    |
|             | and Without Cathodic Protection                                   | 61 |
| 42.         | Cost Schedule for Repairing 20-Year Old Bridge With               |    |
|             | and Without Cathodic Protection                                   | 62 |
| 43.         | Cost Schedule for Repairing 30-Year Old Bridge With               |    |
|             | and Without Cathodic Protection                                   | 63 |

.

#### **1. INTRODUCTION**

Deterioration of highway bridges through corrosion has become an extremely costly problem in both the United States and abroad. The Federal Highway Administration (FHWA) estimates that of the nation's 577,000 bridges, 226,000 (39% of the total) were deficient, and that 134,000 (23% of the total) were classified as structurally deficient, (SHRP, 1993 and FHWA, 1991). Structurally deficient bridges are those that are closed, restricted to light vehicles only, or that require immediate rehabilitation to remain open. The predominant cause of damage to most bridges is corrosion of the steel reinforcement. The United States Department of Transportation estimates that \$90.9 billion will be needed to repair the damage on these existing bridges (FHWA, 1991). Similar problems exist in other countries. The head of the Structural Group of the United Kingdom's Transport and Road Research Laboratory states that concrete bridges were first constructed in the U.K. some 90 years ago (Tilly, 1987). In the time since then, the concrete bridges performed very well until the mid 1960's when rock salt was introduced for deicing during winter months. Consequential problems of corrosion of the reinforcing and prestressing steel have taken several years to become evident but are quickly becoming a significant problem.

The American Concrete Institute (ACI, 1992) classifies measures that can be taken in reinforced concrete construction to protect the steel against corrosion into three categories:

- 1. Design and construction practices that maximize the protection afforded by the portland cement concrete
- 2. Treatments that penetrate or are applied on the surface of the reinforced concrete member to exclude chloride ion from the concrete
- 3. Techniques that prevent corrosion of the reinforcement directly

The ACI suggests a number of measures (ACI, 1992) to protect against corrosion in new construction. A summary of suggested measures is given in Table 1.

Highway bridges in the State of Texas have experienced deterioration similar to other bridges in the U.S. Problems of epidemic proportions were realized in the early 1960's (Texas Bridge Design Guide) even though only a portion of the state lies above the "deicing salt line." Bridge deck deterioration was manifested by cracking, scaling, and delamination of the concrete. Texas concluded that delaying the penetration of moisture would increase the durability of reinforced concrete bridge decks.

| Category                               | Measure                                              |  |
|----------------------------------------|------------------------------------------------------|--|
| Design and construction practices      | Provide adequate drainage                            |  |
|                                        | Provide adequate depth of cover to reinforcing steel |  |
|                                        | Provide low permeability concrete                    |  |
|                                        | Limit chloride content in concrete                   |  |
|                                        | Control concrete cracking                            |  |
| Excluding external sources of chloride | rces of chloride Waterproof membranes                |  |
| ion from concrete                      | Polymer impregnation                                 |  |
|                                        | Polymer concrete overlays                            |  |
|                                        | Portland cement concrete overlays                    |  |
|                                        | Low-slump concrete overlays                          |  |
|                                        | Latex-modified concrete overlays                     |  |
| Protecting reinforcing steel from      | Non-corrosive steels                                 |  |
| chloride ion                           | coatings                                             |  |
| Corrosion control                      | Chemical inhibitors                                  |  |
|                                        | Cathodic protection                                  |  |

## TABLE 1. MEASURES TO PROTECT REINFORCING STEEL FROM CORROSION (ACI, 1002)

Corrosion protection methods concentrate on delaying moisture intrusion and include the following:

- 1. Tight concrete specification requiring more cement, less water, cleaner aggregates, air entrainment, controlled placement temperature, better consolidation, improved curing, and longer protection from loads
- 2. Two-course asphaltic surface treatment or one course of latex asphalt and lightweight aggregate covered with a layer of asphaltic concrete
- 3. Linseed oil as a standard protective coating for all bridge decks that are not covered with asphaltic materials

A variety of experimental treatments have been tried in Texas including polymer impregnation, epoxy, polymer and polyester overlays, wax beads and cathodic protection. Cathodic protection is considered effective but expensive, while the other treatments are considered ineffective.

Corrosion protection measures for new bridges in Texas fall into one of the following categories:

- 1. Against corrosion from above
- 2. Against corrosion from below

Guidelines are specified according to geographical area with a number of recommended procedures including a variety of sealer applications, several configurations of epoxy coated reinforcing steel, and combinations of the recommended procedures. Final implementation is decided within districts leading to a lack of uniform guideline adherence. Presently, there is a complete lack of guidelines for cathodic protection systems within the State of Texas. Although national studies have concluded that cathodic protection is possibly the only practical method of arresting corrosion, it has not yet been fully proved for reinforced concrete bridges in service and requires maintenance throughout its life.

Two basic approaches to cathodic protection have been investigated in the past (Vrable, 1977): (1) Sacrificial anodes; and (2) Impressed current. Sacrificial anode methods of cathodic protection employ an anode more active in the electromotive force series than the metal to be protected. Impressed current methods of cathodic protection use an externally applied electrical current to maintain an electromotive potential in the metal being protected below the potential required for corrosion to proceed. Only systems employing impressed current were evaluated in the study reported herein. Vrable notes that although cathodic protection ranks highest among the available ways to prevent corrosion of reinforcing steel in bridge decks, it is the only available method for arresting corrosion in existing bridge decks. Furthermore, the Federal Highway Administration (FHWA) stated its position on cathodic protection systems in 1982 as follows:

The only rehabilitation technique that has proven to stop corrosion in salt-contaminated bridge decks regardless of the chloride content of the concrete is cathodic protection (Jackson, 1982).

#### **2. PROBLEM STATEMENT**

In a cooperative program with the Federal Highway Administration (FHWA) Demonstration Division, the Texas Department of Transportation (TxDOT), District 8 applied cathodic protection systems to the U.S. 87 Missouri Pacific Railroad overpass structure in Big Spring, Texas. Five individual cathodic protection systems were installed on the single structure to provide for a systematic and comparative evaluation of each system with regard to the ease of installation, effectiveness of operation, and ease of routine and major maintenance. The purpose of this study is to analyze data from the five cathodic protection systems and evaluate the performance of these systems to determine their effectiveness in preventing the corrosion of the reinforcing steel. The study also offers the opportunity to train TxDOT personnel in evaluation techniques and procedures and to develop recommendations for scheduling and data collection for future projects.

#### **3. OBJECTIVES OF THE STUDY**

The principal objective of this research is to assess the performance of the five different bridge protection systems installed on the U.S. 87 Missouri Pacific Railroad overpass structure in Big Spring, Texas. The system assessment included determining the effectiveness of each system, identifying the most cost-effective system, training TxDOT personnel for future in-house evaluations, and recommending a schedule of future evaluations and data collections. Specific objectives of the study are described below:

1. Determine the effectiveness of each system in preventing corrosion of the reinforcing steel. The five cathodic protection systems have been installed on the structure for more than five years. Post-installation and activation testing of the systems was performed just after their completion and at 45 and 90 days after initial energization (Smith, 1990). The first objective is to collect additional data to determine performance after the initial testing.

2. Identify the most cost-effective system. A major concern for cathodic protection systems is their cost effectiveness. Smith (Smith, 1990) provided a breakdown of the overall actual cost for installing the five cathodic protection systems, but noted that true costs could only be determined by monitoring the system over a period of at least 15 to 25 years. One objective of this study is to perform a second cost analysis and lay the groundwork for future evaluations and cost analyses for long-term considerations.

3. Provide training for TxDOT personnel to facilitate future in-house evaluations. The development and application of cathodic protection systems to reinforced concrete bridges in Texas is in its early stages. Most of the technology to date has been developed for individual proprietary systems, and system developers are generally biased in recommending their own technology. One objective of this study is to provide TxDOT with an unbiased assessment of potential cathodic protection systems and provide training for TxDOT personnel for future in-house evaluations free from bias towards any particular cathodic system. This final report includes an extensive discussion of the history and principles of cathodic protection and is intended to provide a summary of the state-of-the art cathodic protection that can serve as a training tool.

4. Recommend a schedule of future evaluations and data collection. Long-term monitoring of the five cathodic protection systems located at the Big Spring site or any other systems to be installed in the future requires a plan for performing future evaluations and data collections. A part of this study is to develop a logical plan of action for collecting and analyzing data over a long period of time and accomplishing the requisite evaluations.

#### 4. HISTORY AND BASIC PRINCIPLES OF CATHODIC PROTECTION

Corrosion is the degradation of metal by chemical attack. Most metals originate from ores as oxides, sulfides, or carbonates. Energy is required to extract the metals from the ores. In corrosion, the process is reversed and the metal degrades. Consequently, metals that are easily obtained or require simple smelting are less susceptible to corrosion than metals that require extensive processing (Morgan, 1959). For example, gold is found in its metallic state and does not corrode. Likewise, silver is readily obtainable and is highly resistant to corrosion.

#### 4.1 Description of Corrosion.

Most corrosion occurs through the interaction of the two common processes of solution and oxidation (Van Vlack, 1967). Material components can be combined into solutions in a variety of ways. For example, sugar dissolves as molecules into water and the total amount of sugar that will dissolve is temperature dependent. Other materials dissolve as ions. Salt dissolves as sodium (Na<sup>+</sup>) and chloride (Cl<sup>-</sup>) ions. The sodium ion has one electron in its valence shell while the chloride ion readily adds one electron to its valence shell. Likewise, iron (Fe) in mild steel dissolves into ferrous (Fe<sup>2+</sup>) and ferric (Fe<sup>3+</sup>) ions as expressed in Equations 1 and 2. Removal of electrons from the atom is defined as metal oxidation.

Fe 
$$\implies$$
 Fe<sup>2+</sup> + 2e<sup>-</sup> (1)  
Fe<sup>2+</sup>  $\implies$  Fe<sup>3+</sup> + e<sup>-</sup> (2)

The following generalizations may be made about chemical solution:

- 1. Small molecules and ions dissolve most readily.
- 2. Solution occurs more readily when the solvent and solute are structurally similar.
- 3. The presence of two solutes may produce greater solubility than the presence of only one.
- 4. The rate of solution increases with temperature.

Wollaston (circa 1815) regarded corrosion to be an electrochemical process and later it was suggested that rusting was also an electrochemical phenomenon (Morgan, 1959). Sir Humphry Davy (in 1823) was commissioned by the British Admiralty to investigate the corrosion of the copper sheathing of the hulls of wooden naval ships. Davy showed that when two dissimilar metals were electrically connected and immersed in water, the corrosion of one was accelerated while the other received a degree of protection. Later, de la Rive showed that impure zinc was corroded rapidly by the great number of bimetallic junctions that it contained. The corrosion of the zinc was attributed to numerous corrosion cells setup between the zinc and the impurities. Similar corrosion through local cells can occur in any metal in the presence of moisture. Some of the earliest studies of corrosion and electrochemical action were published by Luigi Galvani, a physician in Bologna, Italy (Uhlig, 1985). A combination of two electrical conductors or electrodes immersed in an electrolyte is called a Galvanic cell. Faraday, through a series of corrosion experiments, was able to derive his laws of electrochemical action that give the relationship between the current flowing and the associated corrosion.

#### 4.2 Galvanic Cell.

A combination of two electrical conductors (electrodes) immersed in an electrolyte is called a Galvanic cell in honor of Luigi Galvani (Uhlig, 1985). A Galvanic cell converts chemical energy into electrical energy as illustrated in Figure 1. When a low-resistance wire is attached to each electrode current flows through the metallic path from the positive electrode to the negative electrode. Electrons travel from the negative to the positive pole. Positive carriers flow in the opposite direction. Current is carried through the electrolyte by both negative and positive carriers known as ions. Ions are electrically charged atoms or groups of atoms. The net current in the electrolyte of a cell is always exactly equivalent to the total net current carried in the metallic path by electrons alone.

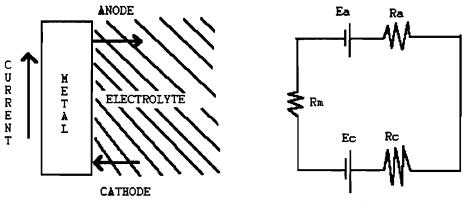



Figure 1. Simple Cell and Equivalent Circuit (Morgan, 1959)

Ohm's law relates current to electromotive potential and electrical resistance through the following equation:

$$I = E / R \tag{3}$$

where: I = current (amps) E = potential difference (volts) R = resistance (ohms).

Galvanic corrosion always involves two different electrodes: a cathode and an anode. These electrodes may be large, physically separated electrodes, or microscopic areas on the same piece of metal. The former configuration is employed in laboratory research and teaching, and the latter is most often is the way corrosion actually occurs in practice. The reactions that occur at each electrode are termed half-cell reactions, since half of the net overall reaction occurs at each electrode. Corrosion occurs at the anode converting useful metal into metal ions and electrons. The electrons are removed by flow of electrical current. For corrosion of iron, the half-cell reactions is as follows:

 $Fe \Rightarrow Fe^{++} + 2e^{-}$ 

The half-cell reactions can be reversed. Ferrous ions are converted to metallic iron by supplying electrons to the electrode in the process of electroplating. Depending upon the

nature of the electrolyte three different reactions commonly occur at the cathode as follows:

 $2H^{+} + 2e^{-} \Rightarrow H_{2} \qquad (in acids)$  $O_{2} + H_{2}O + 4e^{-} \Rightarrow 40H^{-} (in presence of oxygen)$  $O_{2} + 2H_{2} + 4e^{-} \Rightarrow 2H_{2}O (both acids and oxygen)$ 

The second cathodic reaction above occurs in the corrosion of rebar in concrete.

#### 4.3 Electromotive Force (Galvanic) Series.

A common method for quantifying the rate of chemical reactions is the Gibbs freeenergy change (Uhlig, 1985). The value of Gibbs free-energy change can be either positive or negative with the more negative the value of the Gibbs free-energy change, the greater the tendency for the reaction to occur. Although the Gibbs free-energy change cannot be used to measure corrosion tendency, it is certain that for reaction conditions with positive values of Gibbs free-energy change, the corrosion reaction will not occur. For reaction conditions with negative values of Gibbs free-energy change, the reaction and thus corrosion will occur and the reaction rate can be either rapid or slow. Because corrosion is an electrochemical process, a better method of assessing the tendency of corrosion reactions is to report the electromotive force (emf) between the anode and cathode cells that are an integral part of the corrosion process. The electromotive force expressed in volts is the potential difference (E) as given in Equation 3. The greater the value of E for any Galvanic (corrosion) cell, the greater the tendency for the overall reaction of the cell. Corrosion cells can develop in a variety of types. Uhlig (1985) describes the following three main types of cells:

1. Dissimilar Electrode Cells. An example of a dissimilar electrode cell is a dry cell battery. Electrodes in the cell are made from two different materials separated by an electrolyte designed to create chemical reduction at the positive pole and oxidation at the negative pole when a short circuit or load is placed between the two poles. Current flows as the electrodes react and the greater the flow of current, the greater the corrosion (consumption) of the electrodes.

2. Concentration Cells. Concentration cells have electrodes made of identical metals in contact with a solution of differing composition. One type of concentration cell is a salt concentration cell. A Galvanic cell with one electrode exposed to a concentrated solution of electrolyte and the other electrode exposed to a diluted solution of electrolyte is an example of a salt concentration cell. A second type of concentration cell is the aeration cell. In an aeration cell, one electrode (cathode) is exposed to thoroughly aerated electrolyte while the other electrode (anode) is exposed to deaerated electrolyte. Differences in the oxygen concentration produce a potential difference and creates electricity (current) flow. Aeration corrosion cells can develop in aqueous environments such as seawater.

7

3. Differential Temperature Cells. Electrodes exposed to electrolyte at significantly different temperatures can also create current flow and resulting corrosion. Examples of temperature cells can occur in heat exchangers, boilers, immersion heaters, and similar equipment.

The electric potential developed between any two macroscopic half-cells can be measured in the laboratory and their relative potentials listed in a table of half-cell reactions as shown in Table 2. The potential developed can also be calculated based on the Gibbs free energy associated with the reaction. These potentials are stated at standard conditions, usually 25 C and 1.0 M concentration of ions in the electrolyte, with respect to reference cell reaction. The standard reference cell is the hydrogen electrode, the first cathodic reaction above. The hydrogen electrode has been selected because it is easily reversible and stable. Unfortunately, it is expensive and awkward to use. It requires a catalytic platinum surface on which the reaction takes place and a source of pure hydrogen. For this reason, other electrodes are generally used for experimental measurements. Some of these practical reference cells will be discussed later in this report.

The ions produced by the half-cell may react further and/or combine to form precipitates, (insoluble products). In the case of rebar corrosion, ferrous ions can be further oxidized to ferric ions with the loss of another electron. These iron ions can then combine with the hydroxide ions produced at the cathode to produce mixtures of ferric and ferrous hydroxide. Finally, the iron hydroxides can lose water to become iron oxides, (rust). The resulting rust occupies more space than the iron from which it was made, so internal pressures are generated within the concrete structure, causing it to crack and spall.

Looking at the table of half-cell voltages, one would expect iron to corrode rather rapidly in the presence of moisture and oxygen, since the potential difference between the anodic reaction and the second cathodic reaction is 0.84 volts. Rebar in concrete normally does not corrode because the iron is passive at very high pH's, as noted by the decreased corrosion rate at high pH's in Figure 3. Similarly, the stainless steel is stainless because it remains passive, even in low pH acid solutions, due to its chromium content. Passivity is the result of destroying the electrochemical activity of the anode surface with an exceedingly thin, and sometimes fragile, film which is electrochemically deposited. Unfortunately, for rebar in concrete, minor amounts of chloride ions in the concrete can destroy the passivity of iron even at high pH's. This fact is the primary electrochemical basis for the rebar corrosion problem.

|                                                                                                                          | Oxidation (corrosion) reaction                    | hydrogen electrode) |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------|
| . +                                                                                                                      | Au → Au³+ + 3 <i>e</i> -                          | + 1.498             |
|                                                                                                                          | $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$             | + 1.229             |
|                                                                                                                          | Pt → Pt²+ + 2 <i>e</i> -                          | + 1.200             |
| More cathodic                                                                                                            | Ag → Ag⁺ + e⁻                                     | + 0.799             |
|                                                                                                                          | $2Hg \rightarrow Hg_2^2^+ + 2e^-$                 | +0.788              |
| (less tendency to corrode)                                                                                               | $Fe^{2^+} \rightarrow Fe^{3^+} + e^-$             | + 0.771             |
|                                                                                                                          | $4[OH]^- \rightarrow O_2 + 2H_2O + 4e^-$          | + 0.401             |
|                                                                                                                          | $Cu \rightarrow Cu^{2+} + 2e^{-}$                 | + 0.337             |
|                                                                                                                          | $Sn^{2+} \rightarrow Sn^{4+} + 2e^{-}$            | +0.150              |
| eactions are written as anodic half-cells. The more negative half-cell reaction, the more anodic the reaction is and the | $H_2 \rightarrow 2H^+ + 2\Theta^-$                | 0.000               |
| ater the tendency for corrosion or oxidation to occur.                                                                   | $Pb \rightarrow Pb^{2+} + 2e^{-}$                 | -0.126              |
|                                                                                                                          | $Sn \rightarrow Sn^{2+} + 2e^{-}$                 | -0.136              |
|                                                                                                                          | $Ni \rightarrow Ni^{2+} + 2e^{-}$                 | - 0.250             |
|                                                                                                                          | $Co \rightarrow Co^{2^+} + 2e^-$                  | -0.277              |
| More enodic                                                                                                              | $Cd \rightarrow Cd^{2+} + 2e^{-}$                 | -0.403              |
|                                                                                                                          | $Fe \rightarrow Fe^{2-} + 2e^{-}$                 | -0.440              |
| (greater tendency to corrode)                                                                                            | $C_{\Gamma} \rightarrow C_{\Gamma}^{2+} + 3e^{-}$ | - 0.744             |
|                                                                                                                          | $Zn \rightarrow Zn^{2+} + 2e^{-}$                 | -0.763              |
|                                                                                                                          | $A \rightarrow A^{3+} + 3e^{-}$                   | - 1.662             |
|                                                                                                                          | $M_{a} \rightarrow M_{a}^{2+} + 2e^{-}$           | - 2.363             |
| 4                                                                                                                        | $Na \rightarrow Na^+ + e^-$                       | -2.714              |

#### TABLE 2. STANDARD ELECTRODE POTENTIALS AT 25° Electrode potential, # (volts vs. standard

A corrosion (Galvanic) cell is formed when any piece of metal is immersed in an electrolyte due to small variations in potential over the surface of the metal or variations in the electrolyte concentration. Variations in electrolyte temperature or other parameters can also initiate corrosion cells. Depending upon specific conditions, the metal surface may divide simply into large anodic and cathodic areas or the whole surface may consist of a multitude of small cells. Anodes and cathodes can be as small as metal grain crystals. A typical corrosion cell and its representation as an equivalent electrical circuit are shown in Figure 1 (Morgan, 1959).  $E_a$  and  $E_c$  are the half-cell potentials associated with the anode and cathode respectively. The metal has a resistance  $R_m$ ,  $R_a$  is the resistance associated with the cathode. The rate of corrosion depends upon the current that flows in the cell and the rate of metal weight loss increases as current increases. Current (i) flowing in the cell can be defined from Ohm's law in the following equation:

$$i = \frac{(Ea - Ec)}{(Rm + Ra + Re)} \tag{4}$$

The resistance associated with the metal is frequently very low, and the resistance associated with the electrolyte may vary greatly, depending upon the electrolyte composition and geometry of the cells. The resistance associated with the electrochemical surface of the anode and cathode is important in explaining corrosion processes. This electrochemical resistance is controlled by the net rates at which the electrode reactions can actually occur. The electrical potentials shown in Table 2 are for zero current flow or no net reaction on the electrode surface. To have a net reaction rate, it is necessary to displace the electrode potential from this condition of zero current flow by applying external voltage. The ratio of displacing voltage to resulting current has the units of ohms, the resistance associated with the electrode. Connecting two half-cells together displaces the no current voltage of both cells and causes net current to flow. In the case of electrical batteries, the result is the desired generation of electric power. In the case of galvanic corrosion the result is destruction of the metal structure. In regard to electrochemistry, this resistance associated with the electrode surface is termed polarization.

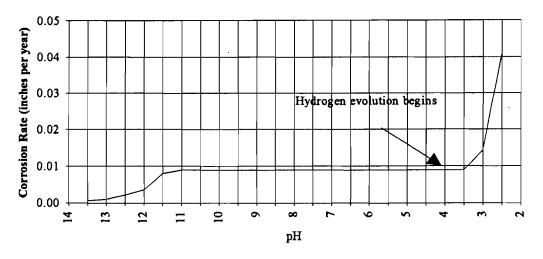
It follows from the above discussion that if the electrical potential of the anode can be displaced in the positive direction, corrosion will cease and the anode will really become a cathode. This process is termed cathodic protection. For an ideal, small electrode, no net current flow would result in no corrosion. For a large corroding surface, large numbers of small local anodes and cathodes exist, and we normally observe no net external current flow. To achieve effective cathodic protection, sufficient current must be drawn from the structure to eliminate every local anode on the structure. Determining this current flow required to prevent corrosion, and the electrical potential required to achieve that current flow is the science and art of utilizing cathodic protection. The required electrical potential can be produced by an external reactive anode composed of a metal lower in the galvanic series than iron. Frequently, aluminum, zinc, or magnesium are used. An example is the magnesium rod found in hot water heaters to protect them from corrosion. Another option is to use an inert external anode and then supply the necessary dc. current from a power supply.

Sir Humphry Davy recommended cathodic protection of copper-sheathed ships in 1824. He proposed to use sacrificial blocks of iron attached to the copper hull. The technique was successful in reducing corrosion, but created fouling of the hull by marine organisms. The fouling reduced the speed of the ships and the idea was abandoned. Later, Davy's cousin Edmund Davy successfully protected the iron work of buoys by attaching zinc blocks. In 1840, Robert Mallet produced a zinc alloy particularly suited as a sacrificial anode for ship hulls. The first application of impressed electric current for protection of underground structures took place in England and in the United States, about 1910-1912 (Uhlig, 1985). Impressed current is used to cathodically protect buried pipelines, buried cables, canal gates, condensers, submarines, water tanks, marine pilings, offshore oil-drilling structures, and chemical equipment. The application of cathodic protection techniques to reinforced concrete bridges is a relatively recent event.

Stratfull (1957) investigated deterioration of the reinforced concrete on the San Mateo-Hayward bridge and determined the reinforcing steel in the concrete exhibited the same general galvanic properties of corrosion as does steel in soil or aqueous solutions. The relatively permeable concrete allowed salt-laden moisture to contact the reinforcing steel. The corrosion problem was further complicated due to an insufficient surface cover of concrete over the reinforcing steel. The chloride concentration in concrete adjacent to the corroded steel was as great as 0.86 percent of the dry weight of the mortar. Investigations of the bridge included both potential resistivity measurements at numerous locations on the bridge and other reinforced concrete members located near the bridge. Two types of reference cells were used to measure electrical potentials. One reference cell

consisted of a porous cup filled with a saturated copper sulfate solution and a pure copper electrode. This reference cell was left in place during the period of measurement. The other reference cell was similar to the first but was constructed by filling a polyethylene bottle with saturated copper sulfate and a pure copper electrode. The second type of reference cell was hand held. Potential differences as great as 0.45 volts were detected at the concrete surface over distances of several feet or more. Resistivity measurements were made using four-electrode methods common in the geophysical and corrosion investigations of soils. In general, the resistivity of the concrete was found to decrease as the deterioration of the concrete increased. Continuing corrosion was evident in areas that had been repaired with shotcrete or overlays. Stratfull concluded it appeared worthwhile to develop a reliable method to cathodically protect the reinforced concrete.

### 4.4 Cathodic Protection of Reinforced Concrete Bridges.


In another study, Stratfull reported the results of investigating 22 bridges (Stratfull, 1975). Important findings from the study included the following:

- 1. The quantity of chlorides in concrete associated with the incidence of active corrosion of the steel is approximately 1.0 lbs/yd<sup>3</sup> (0.59 kg / m<sup>3</sup>) of concrete.
- 2. The average potential of the steel in delaminated concrete was found to be -0.180 volts saturated copper copper sulfate half-cell (CSE). For delaminated concrete, the average potential in small isolated areas was -0.385 volts whereas the average of the minimum and maximum values found in large corroding areas was -0.334 and -0.453 volts CSE respectively. For electrical potential greater than -0.35 volts CSE, there is great assurance of active corrosion.

Corrosion can occur in some circumstances in the absence of chloride ions (ACI, 1992). However, chloride ions are considered to be the major cause of premature corrosion of steel reinforcement. Chloride ions are common in nature (i.e., seawater) and small amounts are usually unintentionally contained in mix ingredients of concrete. Certain admixtures increase the chloride content in concrete. Exposure to deicing salts also increases chloride ion content in concrete. When oxygen and moisture are present in the concrete along with the chloride ions, corrosion can occur. The chloride laden, wet concrete serves as the electrolyte in a galvanic cell, and corrosion proceeds at a rate determined by various factors such as the following:

- 1. Gradients in chloride ion Differences in chloride concentration can setup concentration cells (as described previously) and lead to macrocell corrosion.
- 2. Heterogeneities in the concrete and steel Differences in the electromotive potential of the steel and concrete can create current flow leading to corrosion.
- 3. pH of the concrete pore water The corrosion rate of iron is reduced as the

pH is increased. Concrete usually has a pH higher than 12.5 and protects steel from corrosion (Figure 2). Increases in chloride content cause loss of passivity in the steel and corrosion rates increase rapidly.



One inch = 2.54 cm Figure 2. Effect of pH on Corrosion of Iron in Aerated Soft Water at Room Temperature (Uhlig, 1985)

- 4. Carbonation of the portland cement paste Increases in carbon dioxide content decrease the pH of the concrete and increase the likelihood of corrosion activity.
- 5. Cracks in the concrete Cracks allow rapid intrusion of chloride ions into the concrete.
- Stray currents Electric currents emanating from electric railways or other sources can create current flow pathways and greatly increase corrosion. Stray currents from electric traction systems caused major damage to pipelines buried nearby in the early 1900's.
- 7. Galvanic effects due to contact between dissimilar metals The set effects up dissimilar electrode galvanic cells.
- 8. Depth of concrete cover Depth slows the intrusion of chloride ions and delays contact with steel reinforcement.

#### 4.5 Cathodic Protection System Components.

As previously stated, cathodic protection controls corrosion of steel in concrete by applying an external source of direct current to reverse the current flow in the electrochemical process. In 1911, a German, Herman Geppert, obtained letters patent on "a method of protecting articles from earth currents" and substantially described cathodic protection (Morgan, 1959). Thomas Edison tried to achieve cathodic protection of a ship at sea from a trailing impressed current anode but the materials and techniques available to him in the 1890s proved to be inadequate. Cathodic protection is used in protecting prestressed concrete water pipelines, buried reinforced concrete water tanks, steel reinforcement and linings of nuclear reactor containment vessels, and concrete coated pilings (SHRP, 1993). Cathodic protection can be applied using a sacrificial anode or an impressed current anode. Sacrificial anodes employ metals more noble in the electromotive series to prevent corrosion. The geometries of bridge decks preclude effective use of sacrificial anodes, so they are not discussed further. Impressed current systems are comprised of the following basic components:

- 1. External DC Power Source (Rectifier)
- 2. Current Distribution Hardware (Anode)
- 3. Conducting Electrolyte (Concrete)
- 4. Protected Metal (Reinforcing Steel)
- 5. Completed Circuit (Wiring)
- 6. Evaluation and Control Devices (Probes, Reference Cells, Controllers)

#### 4.5.1 External DC Power Source

In a sacrificial anode system, the electromotive potential differences between the anode (more noble) and the cathode create a direct current flow and the cathodic metal is thus protected. Impressing direct current into the galvanic cell controls the current flow and likewise prevents corrosion of the metal being protected. Furthermore, sacrificial anodes are limited in their driving voltage. Impressed current systems can be adjusted to increase voltage and provide increased ranges of protection. The most convenient source of power for impressed current systems is standard alternating current (a.c.) commercially available. The a.c. current is converted to direct current (d.c.) power by a transformer rectifier and output power requirements can be selected. The cathodic protection of a large structure can consume a considerable amount of power. Protection current is regulated by controllers ranging from simple resistor circuits to sophisticated microprocessor controls. Constant current power supplies are frequently employed in cathodic protection systems. The constant current power supply automatically adjusts the applied voltage to compensate for changes in electrical resistivity of the system due to temperature, moisture content, etc. The current is frequently adjusted manually to meet criteria for adequate cathodic protection, but arrangements can be made for automatic current adjustment in response to reference cell voltages.

Not all structures requiring cathodic protection are near convenient commercial power sources. Other energy sources can be used to generate the d.c. power. Portable power generators, wind driven power generators, and more recently, solar-powered generators are used to provide the necessary power to impressed current cathodic protection systems. Both wind and solar-powered generators require battery storage to insure power availability upon demand. Wind-powered cathodic protection systems have been installed in Russia (Morgan, 1959) and a solar electric unit was installed as early as 1977 to power a cathodic protection system on the George Washington Parkway in the Washington D.C. area (SHRP, 1993).

#### 4.5.2 Current Distribution Hardware

In a study for the Transportation Research Board (TRB), Vrable concluded that the essential electrical parameter for cathodic protection of a bridge deck in either sacrificial anode or impressed current systems is uniform current flow of appropriate value from a well-distributed anode system located on the deck surface (Vrable, 1977). In most cases, cathodic protection systems have only been installed on reinforced concrete bridges that have suffered deterioration (SHRP, 1993). Generally, the deteriorated concrete is removed and the anode is placed on the repaired, original top deck surface. In some cases, the concrete has been removed around the top mat steel and the anode placed beneath the top mat prior to concrete placement. Most installations are atop saltcontaminated concrete with the steel in most need of protection closest to the anode. Cathodic protection can also be cost effective in preventing corrosion when applied to new construction.

Various types of current distribution systems are available and are described in detail in a report by the Strategic Highway Research Program (SHRP, 1993). Summary descriptions of several anode types will be given in the subsequent discussion following categories given in SHRP, 1993. Two terms important to the discussion are primary anode and secondary anode defined in the following:

- 1. Primary Anode Any anode material that acts as a contact medium for the secondary anode and distributes current from the power supply line to the secondary anode. The primary anode is sometimes called the anode conductor.
- 2. Secondary Anode Any anode material that distributes the cathodic protection current to the entire surface of the structure under cathodic protection. The secondary anode is sometimes simply referred to as the anode.

<u>Conductive Overlays.</u> - The concept of a conductive overlay system is to deliver current through a primary anode to a pavement overlay system capable of distributing the current over a larger area. Materials used in the pavement overlay must be conductive. Mixtures of asphalt and metallurgical coke from coal (in place of a conventional aggregate) were first employed as conductive overlays.

Mr. Richard Stratfull and co-workers in the Caltrans developed a coke-asphalt system on the Sly Park Road Overcrossing bridge deck of U.S. Route 50 (Stratfull, 1975). Stratfull reasoned that carbon in the form of coke had long been used as an anode backfill material in cathodic protection systems and was an excellent candidate for current distribution systems in asphalt pavements. The specific electrical resistance of dry coke is 52 ohm-cm, which is about twice the electrical resistance of seawater and much less than water-saturated concrete at 10,000 ohm-cm. The primary anodes were iron-alloy discs 10 inches (25.4 cm) in diameter and 1.25 inches (3.2 cm) thick. Three rows of primary anodes were attached to the bridge deck with 12-feet (3.6-m) center-to-center spacing. A fast setting epoxy adhesive attached the anodes to the concrete. A tack coat of asphalt emulsion was applied to the bridge deck and the coke-breeze asphaltic concrete was placed in 10-foot (3.04-m) widths. Thicknesses of coke-breeze asphaltic concrete varied from 2.5 to 3.5 inches (6 to 9 cm). The conductive overlay continued to function for more than 11 years without major changes other than replacement of the power source. Caltrans installed seven additional coke-asphalt overlay systems in 1974-1975 and FHWA promoted and funded projects involving cathodic protection of reinforced concrete structures through Demonstration Project No. 34. Fourteen additional coke-asphalt overlay cathodic protection systems were demonstrated from 1975 to 1980 (Jackson, 1982). Various other coke-asphalt systems have been installed in the U.S. (SHRP, 1993) and have operated effectively in arresting corrosion. Minor problems have included structural degradation of the overlay, increased dead load to the bridge, and required modifications to drains, expansion joints, approaches, and curbing due to the increased height of the pavement.

The Ontario Ministry of Transportation and Communications refined the original coke-asphalt overlay system by adding conventional aggregate to the coke-asphalt mix to improve stability and resistance to traffic loading. The conductive layer thickness is commonly 1.5 inches (4 cm) with a wearing course of conventional asphaltic concrete also 1.5 inches (4 cm) thick. Cables to the primary anode are placed in slots cut in the portland cement deck. Thirty of the coke-asphalt overlay systems were constructed in Ontario through 1984 and other similar systems have been installed in other parts of Canada. Research programs conducted by the Ontario Ministry of Transportation are discussed briefly in a paper by Schell (Schell, 1989).

<u>Slotted Systems.</u> - Another anode type developed in the mid 1970s involves platinized wires closely spaced to effectively distribute protective current over the bridge deck (SHRP, 1993). The wire is commonly 0.031 and 0.062 inches (0.8 and 1.6 mm) in diameter with a platinum layer 25-50 microinches (635 to 1270 micro meters) and various materials used as the wire core. The anode wire is placed in small slots cut into the deck with spacing of the slots no more than 1 foot (30 cm), as recommended by FHWA. Conductive backfill material is used to cover the wires. Early backfill materials produced gases and acids that attacked the platinized wire. Several proprietary backfill materials were tested with the platinized wire but were unsuccessful for various reasons including acid attack and poor durability (Highlands, 1991). Subsequently, the FHWA developed a conductive polymer grout with a compressive strength of 4,000 psi (28 mpa) in 4 hours, a resistivity of less than 10 ohm-cm, and excellent bond to concrete and freeze-thaw durability (SHRP, 1993). More than 100 slotted bridge deck cathodic protection systems were installed and operational by 1989.

Slotted bridge deck cathodic protection systems have evolved with regard to primary anode layout and materials. Redundancy in the system is provided by laying the wire in two directions to form a grid pattern. Multi-filament carbon strands are used to lower cost and increase tensile strength. Slot sizes and spacing were decreased to provide better performance. Later, titanium ribbon with a precious metal oxide coating was developed as a primary anode and the slot is backfilled with cementitious non-shrink grout. Titanium ribbon systems are currently being field tested (SHRP, 1993).

Distributed Anodes with Concrete Encapsulation. - An alternative method of distributing the protective current over the bridge deck was developed by placing the platinized wire directly on the concrete deck and mounding the conductive polymer concrete over the anode wires and strands. The mounded configuration is thought to improve current distribution and protect against acid attack. Conventional concrete or latex modified concrete are placed to complete the rigid overlay system. An alternate anode (Raychem Ferex) is also used with rigid overlays or other forms of concrete encapsulation. The anode is a copper conductor surrounded by a flexible polymeric anode material which does not require a conductive backfill. The anode can be woven into a mesh to evenly distribute the current and the conductive wires are sometimes held together with conductive cleats to increase redundancy. More than 50 demonstration projects have included the Raychem Ferex anode. Several field installations have exhibited problems with anode degradation and embrittlement. Problems are thought to result from local hot spots in the anode system.

A mixed metal oxide catalyst is sintered to a titanium mesh to form an Elgard anode system. The Elgard system has reported long life, uniform current distribution, stable, and sufficiently redundant characteristics. The anode operates below the chlorine discharge potential, and therefore, is not subject to acid attack. More than 100 mesh anode cathodic protection systems have been installed in 19 states. The mesh is rolled out onto and fastened to the concrete deck surface. Concrete is then placed on the mesh to encapsulate the wire. This anode has become the most widely used in recent years (SHRP, 1993).

Conductive Coatings. - NCHRP Project 12-19B, initiated in late 1982, was designed to develop the use of conductive coatings as secondary anodes for protecting concrete bridge substructures (Perenchio, 1985). Platinized wire is placed on the concrete surface and serves as the primary anode. The surface including the platinized wire is covered with the secondary anode consisting of forms of carbon dispersed in solvent or water based paints. Conductive paste or polymer grout is sometimes used to connect the wire with the paint. The conductive paint is black and is usually covered with a lighter colored paint for finishing. Early systems suffered problems in wet, freeze-thaw and splash zone environments. During installation, care must be taken to remove conductors in contact with the steel to be protected. Short-circuits waste power and can cause the steel in the area of the short-circuit to become anodic and undergo accelerated corrosion. Also, openings in the conductive coating can drastically increase its electrical resistance. Perenchio reports that openings as narrow as 0.01 inches (0.25 mm) increase resistance by a factor of 100 (Perenchio, 1985). Water-based conductive coatings were tested on the concrete piers of two bridges in Virginia (Clemena, 1990). Clemena concluded the waterbased coating was promising with regard to relative ease of application and decreased health hazards compared to sprayed zinc.

Flame-sprayed zinc has also been developed as a conductive coating. The zinc coating in thicknesses ranging from 0.2 to 0.5 millimeters serves as a secondary anode covering the entire surface of the concrete being protected. Thermal-sprayed zinc anodes have been tested in several field trials (Berndt, 1993) in California, Virginia, Florida, and Canada. Protected structures include a pier of the Richmond-San Rafael bridge (San Francisco, California), soffit and top of the East Camino undercrossing bridge deck (Placerville, California), and pier bents of the Leslie Street Bridge (Ontario, Canada). Challenges to large-scale usage of thermal-sprayed anode technology include

- 1. Reducing costs via appropriate automation of the spraying process.
- 2. Determining the thermal spray parameters, surface preparation procedures and coating thickness that will maximize the quality of the coating-toconcrete (or metal) bond as well as optimize system economics.
- 3. Learning how the anodes can take advantage of the inherent porosity of sprayed coatings.
- 4. Predicting the long-term performance of thermal spray coatings.
- 5. Writing specifications that can be directly implemented by civil engineers.
- 6. Developing nondestructive methods for evaluating thermal-spray coatings.

Other Anode Systems - The following anode systems are being investigated for use in cathodic protection systems:

- 1. Conductive portland cement concrete.
- 2. Conductive ceramics.
- 3. Conductive rubber.
- 4. Precast conductive polymer anodes.

#### 4.5.3 Conducting Electrolyte

Chloride ions are considered to be the major cause of premature corrosion of steel reinforcement. Oxygen and moisture must also be present for the concrete to act as an electrolyte and the electrochemical corrosion to occur.

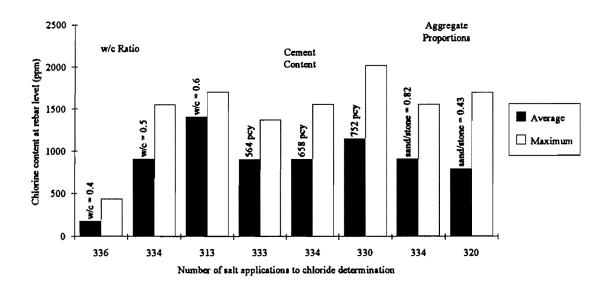
Clear reported the effect of concrete mix design on chloride content at the level of reinforcing steel in a laboratory test slab (Clear, 1974). Data from Clear's study are given in Table 3 and is shown in Figure 3. He concluded that conventional bridge deck concrete, placed with strictest quality control is not impermeable to chlorides. The water-cement ratio of the concrete appears to be the primary determinant of the ability of portland cement concrete to resist chloride intrusion. Water-cement ratio also

significantly affects the rate of diffusion of oxygen into concrete saturated with water (ACI, 1992).

|               | Numbe            | er Numb          | er Cov | ver      | of Reinforcir | ntent at Level<br>ng Steel (ppm<br>ncrete (basis) | Number       |
|---------------|------------------|------------------|--------|----------|---------------|---------------------------------------------------|--------------|
|               | of               | of               | Dept   | •        | •••••         |                                                   | of Salt      |
| Description   | Slabs            | Cores            | (in.)  | <br>(mm) | Average       | Range                                             | Applications |
| Water-cemei   |                  |                  | (,     | ()       |               |                                                   |              |
| ratio         |                  |                  |        |          |               |                                                   |              |
| 0.4           | 2                | 10               | 1.0    | 25       | 179           | 15 to 437                                         | 336          |
|               | 2                | 10               | 2.0    | 50       | 18            | 13 to 28                                          | 337          |
|               | 2<br>2<br>2      | 10               | 3.0    | 75       | 18            | 13 t0 23                                          | 337          |
|               | 1                | 3                | 0.25   | 6        | 2,355         | 2,289 to 2,450                                    | 359          |
| 0.5           | 2                | 10               | 1.0    | 25       | 912           | 386 to 1,555                                      | 334          |
|               | 1<br>2<br>2<br>2 | 10               | 2.0    | 50       | 250           | 23 t0 562                                         | 348          |
|               | 2                | 10               | 3.0    | 75       | 20            | 10 to 77                                          | 344          |
|               | 1                |                  | 0.25   | 6        | 3,249         | 2,437 to 4,332                                    | 341          |
| 0.6           | 1                | 3                | 1.0    | 25       | 1,407         | 960 to 1,701                                      | 313          |
|               | 1                | 3                | 2.0    | 50       | 1,093         | 679 to 1,581                                      | 354          |
|               | 2                | 6                | 3.0    | 75       | 189           | 105 to 255                                        | 316          |
|               | 1                | 3<br>3<br>6<br>3 | 0.25   | 6        | 3,757         | 2,965 to 4,666                                    | 313          |
| Cement Con    | tent             | •                |        | -        | -,            |                                                   |              |
| (lb/cubic yar |                  |                  |        |          |               |                                                   |              |
| 563           | _,<br>2          | 6                | 1.0    | 25       | 904           | 235 to 1,369                                      | 333          |
| 658           | 2                | 10               | 1.0    | 25       | 912           | 386 to 1,555                                      | 334          |
| 752           | 2                | 6                | 1.0    | 25       | 1,147         | 444 to 2,010                                      | 330          |
| Sand-stone    | _                | -                |        |          |               |                                                   |              |
| 0.822         | 2                | 10               | 1.0    | 25       | 912           | 386 to 1,555                                      | 334          |
| 0.429         | 2                | 6                | 1.0    | 25       | 792           | 309 to 1,693                                      | 320          |

| TABLE 3. EFFECT OF MIX DESIGN AND COVER DEPTH ON CHLORIDE MIGRATION |  |  |  |  |
|---------------------------------------------------------------------|--|--|--|--|
| (Clear, 1974)                                                       |  |  |  |  |

Moisture in concrete affects the rate of oxygen diffusion into concrete and also the electrical resistivity of the concrete as shown in Figure 4. (ACI, 1992). Some researchers indicate that when concrete electrical resistivity exceeds a level of 50 to 70 X  $10^3$  ohm-cm steel corrosion is negligible. Other authors believe steel corrosion is unlikely at concrete electrical resistivity above 10 X  $10^3$  ohm-cm. Perenchio reported that the electrical resistance of concrete with 1.5 pounds of chloride ion per cubic yard (0.89 kg/m<sup>3</sup>) of concrete was approximately 10 times that of concrete with 15 pounds per cubic yard (8.9 kg/m<sup>3</sup>) (Perenchio, 1985).



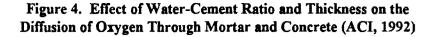



Figure 3. Effect of Mix Design Parameters (Clear, 1974)

In a study of Galvanic (sacrificial) anodes, Whiting noted that environmental factors play an important role in system functioning (Whiting, 1981). Highest current outputs and mostly negative potentials were encountered during warm, moist periods in mid-to-late spring. Under dry or cold conditions, current output decreases and some polarization was lost.





#### 4.5.4 Protected Metal (Reinforcing Steel) and Completed Circuit (Wiring)

Stratfull emphasized the necessity of electrical continuity of the structure being protected in his report to the Transportation Research Board (Stratfull, 1975). He warns that portions of the structure under cathodic protection that are not electrically connected to the system can be caused to corrode by stray currents at an accelerated rate. In most reinforced concrete bridge decks, there are numerous steel bars. Any of the bars that is not electrically continuous can be damaged by stray current and the damage will be the same as experienced from electrochemical corrosion. It is imperative to ensure electrical continuity in the steel reinforcement being cathodically protected. Steel ties used in normal construction procedures are generally closely spaced and increase the likelihood of electrical continuity in the steel reinforcement. Stratfull tested for electrical continuity at 4 locations of the 3,300 square feet (1000 square meters) of bridge deck cathodically protected (Stratfull, 1975). The recommended procedure for establishing electrical continuity of the reinforcing steel leaves much to the judgment of the individual. Procedures require visual inspection to determine which areas are to be tested, marking and recording locations of the reinforcing steel grid, and testing for electrical connectivity in accordance with ASTM test method C876 (SHRP, 1993).

#### 4.5.5 Evaluation and Control Devices (Probes, Reference Cells, Controllers)

As discussed earlier, corrosion can occur in small, local-action Galvanic cells or macro-Galvanic cells involving large electrodes. Cathodic protection mechanisms employ external current to polarize the cathodic elements of local-action cells to the open-circuit potential of the anodes. At the threshold of protection, the surface becomes equipotential (cathode and anode potentials become equal), and corrosion currents no longer flow (Uhlig, 1985).

If external current density is high enough, a net positive current enters the metal at all areas of the metal surface and there is no tendency for ions of the metal being protected to enter into solution. It is necessary to determine the net current flow in the Galvanic cell with no externally applied current in order to specify the level of externally applied current needed to provide cathodic protection. The electrical potential in the Galvanic cell caused by net current to or from an electrode, measured in volts, is called polarization. Polarization is measured using a reference cell as illustrated in Figure 5 (Uhlig, 1985). A two-compartment cell is separated by a sintered glass disk G. In Figure 5, electrode B is to be polarized by current from electrode D with uniform current density at electrode D. The probe L (sometimes called Luggin capillary) of reference cell R (or of a salt bridge between R and B) is placed close to the surface of B, thereby minimizing extraneous potentials caused by IR drop through the electrolyte. The electric potential of cell B-R is recorded for each value of current as read on ammeter A, allowing sufficient time for steady-state conditions. Polarization of B, whether anode or cathode, is recorded in volts with reference to half-cell electrode R for various values of current density. The potentials are often converted to the standard hydrogen scale. This method is called the direct method for measuring polarization and is the method frequently employed in corrosion studies. The simple electrical instrumentation in Figure 5 is replaced with computerdriven electronics for rapid and accurate data collection in modern laboratories. The

conditions for idealized measurements in laboratory are far different from those encountered in the field. In the laboratory, the effective position of the reference cell is within mm's of the electrode surface, in contrast to positioning a reference cell in the concrete, or on the exposed surface of the concrete. In the laboratory, the electrolyte solution is uniform in concentration, and the electrodes are small homogeneous, in contrast to actual field conditions. These differences between field and laboratory conditions make electrochemical measurements of rebar corrosion rates in the field a considerable challenge. This challenge has been reviewed recently (SHRP, 1992)

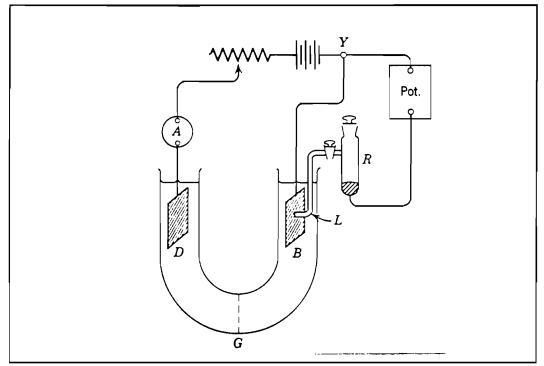



Figure 5. Cell for Measuring Polarization (Uhlig, 1985)

A portable reference cell (often referred to as a half-cell) is used to measure electrical (corrosion) potential at various locations on reinforced concrete bridge decks and assess the corrosion rates and need for cathodic protection. Results from such a survey are usually plotted on contour maps to identify corrosion activity of the reinforcing steel in the concrete. Permanent reference cells are embedded in the concrete to monitor the effectiveness of the cathodic protection system. In his early study of reinforced concrete bridge deck corrosion, Stratfull used two types of reference cells to measure electric potential (Stratfull, 1957). A hand held reference cell was used to measure electric potential on overhead and vertical surfaces. The hand-held reference cell was constructed by filling a polyethylene bottle with saturated copper sulfate and a pure copper electrode. Electrical connection was made to the copper electrode by bringing the thin copper electrode through a cork in the top of the bottle. Electrical junction to the copper sulfate solution was made by inserting a wick-filled glass tube through the cork to the solution. The external wicking was then placed in between a sponge used to actually contact the concrete and a wooden container used to hold the complete cell assembly. A

plexiglas handle was attached to the wooden container to prevent "electrical shorting" of the cell through the operator. The second type of reference cell consisted of a porous cup filled with a saturated copper sulfate solution and a pure copper electrode. This reference cell was left in place during the period of measurement. In a later study (Stratfull, 1975), Stratfull demonstrated the use of half-cells to nondestructively determine the corrosion activity of steel in concrete. He measured half-cell potentials for 8 bridges having concrete delamination. For large areas of delamination, two or more measurements were made. The average of the maximum potentials was -0.453 volts and the average of the minimum potential within the same delaminations was -0.334 volts. In locations where the concrete was not delaminated, the average of all potential measurements was -0.180 volts. Perenchio describes preparations and measurements of half-cell potentials (Perenchio, 1985) and the use of half-cells to approximate "instant-off" potential. The instant-off potential measures the minimum negative polarization above the "free-corrosion potential" or the amount of depolarization that occurs after the protective current is interrupted. To accomplish the measurement, a voltmeter is setup in the circuit while the cathodic protection system is on and current is being delivered to the conductive anode. Then, the protective current is interrupted, and the potential is read immediately, say within a second or two of shutoff. This measurement approximates the "instant-off" potential. The structure is permitted to "depolarize" toward its "free-corrosion" condition. When the potential stabilizes at the "free-corrosion" condition, it is again measured. The time required to attain rough potential stability after depolarization might be as short as an hour, but some authorities believe that complete depolarization might take as long as a week. The potential difference between the two readings is the negative potential shift imparted by the cathodic protection system. In field trials, Perenchio observed slight seasonal variations in reference cell readings with potentials higher in winter and spring than in summer and fall (Perenchio, 1985).

<u>E log I Test.</u> The E log I test is often used to initially energize a cathodic protection system, but can also be performed on cathodic protection systems while in service (SHRP, 1993). For systems in service, the structure must be allowed to depolarize before performing the E log I test. Once the structure is depolarized to an equilibrium state, protective current to the structure is gradually increased and the resulting structure-toreference cell potential is recorded for each current increment. The reference cell potential versus the logarithm of the applied current are plotted. Various relationships are postulated to describe the level of polarization necessary to bring about the specific anode and cathode reactions. One such relationship depends upon the particular reaction and the current density and is given by the following:

$$h = a + b \log i i_0$$
(10)

Equation 10 is known as the Tafel equation and is named after J. Tafel who first proposed a similar equation to express hydrogen overvoltage as a function of current density (Uhlig, 1985). A typical Tafel diagram is shown in Figure 6. The current required for cathodic protection is the value determined to occur at the beginning of linear behavior of the plot. Accuracy of the Tafel diagrams is subject to interpretation for field measurements..

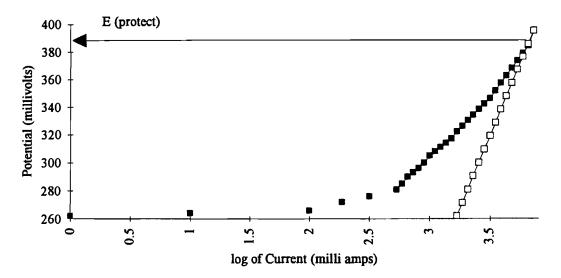



Figure 6. Typical Tafel Diagram for Big Spring Bridge (Smith, 1990)

<u>Macro-cell Rebar Probes.</u> Small lengths of reinforcing steel (rebar) can be used to monitor the typical flow of electric current at specific locations in the cathodically protected bridge deck. Usually the macrocell probes are cast in backfill containing a high concentration of salt to create the most "anodic" location in the area to be monitored. An insulated wire is connected between the macro-cell probe and the rebar system through a shunt resistor. The shunt resistor permits convenient observation of macro-cell currents. Rebar probe current flow is determined by measuring the potential across a shunt resistor and calculating the current from Ohm's law. If the macrocell rebar probe proves to be protected (current flow is net-cathodic) the reinforcement steel is considered protected from corrosion. The macrocell probes are not alone sufficient as a cathodic protection criterion, but do provide an indication of corrosion activity.

<u>Electrical Resistance Measurements.</u> The measurement of the resistance between various components of the cathodic protection system can provide valuable information on system effectiveness or help identify component problems (SHRP, 1993). The two most common measurements are the anode-to-structure and structure-to-reference cell resistance. Increasing anode-to-structure resistance can be a signal that the anode is depleting or that portions of the anode are no longer in the circuit. If the anode-to-structure resistance is low, an electrical short between the anode and steel reinforcement may be present. A change in structure-to-reference cell resistance can indicate a reference cell malfunction or other circuit problem. An AC resistance meter is generally used to measure electrical resistance.

Electrochemical methods of measuring corrosion rates were assessed in a study by the Strategic Highway Research Program (SHRP, 1992) and a summary of findings is given in Table 4. Furthermore, several commercially developed corrosion rate devices were evaluated, and their performance was reported. Because the commercial instruments operate on different principles they give different values of current. However, linear regression techniques were applied to develop interrelationships between currents measured by the different devices.

| TECHNIQUES                | ADVANTAGES                                                                             | DISADVANTAGES                                        |
|---------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------|
| Polarization Curves       | Give information about<br>steel's behavior<br>at potentials other than<br>E(corrosion) | Sometimes destructive<br>Takes long time             |
| Tafel Slope Extrapolation | Simultaneous determination<br>of anodic and<br>cathodic constants                      | IR drop effect is significant                        |
| Linear Polarization       | Fast method (short measuring time)                                                     | Sweep rate dependence of polarization resistance     |
|                           | Small perturbation (minimal disturbance of interface)                                  | Separate measurement of<br>Tafel<br>slope required   |
|                           | Simple method and low<br>equipment cost                                                | IR drop effect is significant                        |
| AC Impedance              | Suitable for low conductivity media                                                    | Long measuring time (for<br>low<br>frequency region) |
|                           | Simultaneous determination<br>of anodic and<br>cathodic constants                      | Interpretation of results is difficult               |
|                           |                                                                                        | Extrapolation is needed sometimes                    |
|                           |                                                                                        | Equipment is costly                                  |

TABLE 4. COMPARISON OF ELECTROCHEMICAL METHODS OF CORROSIONMEASUREMENT (SHRP, 1992)

A permanent corrosion monitoring system was developed by the Institute for Building Materials Research at TH Aachen, Germany (Schiessl, 1992). The system is designed to indicate the corrosion risk for the reinforcement in concrete structures. Several macrocells are placed in the actual concrete structure at defined cover depths. Each macrocell consists of black steel (anode) and a noble metal (cathode). For passive conditions, the electrical current between the two electrodes is negligible. If, however, a critical chloride content is reached, or if the pH of the concrete decreases due to carbonation, the steel surface of the anode is no longer protected and current flows in the macrocell. Corrosion risk is monitored by measuring the electrical current in the macrocell.

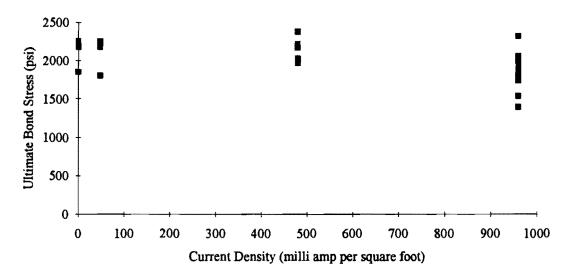
<u>100 mv Decay Measurements.</u> The National Association of Corrosion Engineers, NACE, includes the 100 mv decay measurements as one criteria for the adequacy of cathodic protection. (NACE Standard RP0290-90). In this measurement, the reference electrode potential should decay, (become more positive), by 100 mv with respect to the instant off reference cell voltage within 4 hours. A major advantage of this technique is that it does not require long-term stability of the reference electrode. The method does not permit calculation of a corrosion rate. The 100 mv decay infers that current previously flowing to the anode structure has caused a favorable, cathodic, shift in potential near the structure being protected, since this favorable shift decays when the current is turned off. The choice of the 100 mv criteria is the result of consensus among experienced corrosion protection personnel. This technique was applied when the cathodic protection system on the U.S. 87 overpass was examined 45 and 90 days after being energized. It was also applied by Texas Tech personnel in the summer of 1993 to adjust several of the cathodic protection loops.

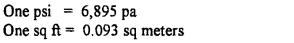
#### 4.5.6 Remote Monitoring Systems

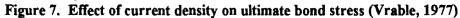
Although recommended procedure is to monitor cathodic protection systems monthly, in practice, 35 percent of the systems are monitored less frequently and some are never monitored (SHRP, 1993). Accomplishing the various measurements is a tedious and repetitive job involving mobilizing personnel to sometimes remote locations. However, advanced systems are developed to remotely monitor measurements from the cathodic protection system site. Remote monitoring systems consist of a data recorder unit, a modem and a personal computer in the office. Remote monitoring system options are available to meet the specific needs of the user and can include real-time measurements or storage at the remote site for later collection. Some systems can even turn the rectifier "on" and "off" and adjust the current or voltage output. Clemena reports remotely collecting 30 channels of performance data from conductive coating anode systems on ten piers in Virginia (Clemena, 1990).

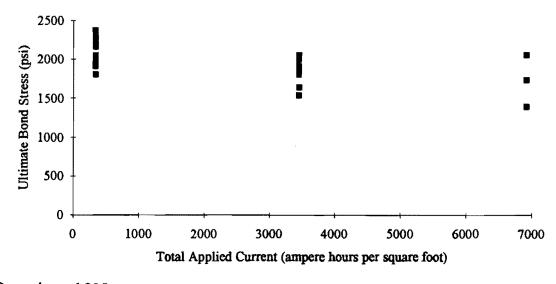
#### 4.5.7 Other Considerations

Several researchers have investigated possible adverse effects of cathodic protection on concrete, reinforcing steel, and the bond between concrete and reinforcing steel. Vrable exposed concrete cylinders to various levels of applied current and evaluated the resulting tensile strength of the concrete (Vrable, 1977). Results from the concrete tensile strength testing are summarized in Table 5. Vrable concluded that after 300 days of exposure to cathodic-protection current flow, there was no apparent degradation of the concrete due to current flow. Performance variations were attributed to test specimen quality.


Hydrogen embrittlement has been another concern regarding cathodic protection (SHRP, 1993). During application of cathodic protection, oxygen reduction occurs at the cathode surface. If the steel potential is driven more negative than -1.05 volts with the pH at 12.5, monatomic hydrogen can evolve. The hydrogen can diffuse into the metal lattice and collect at grain boundaries resulting in the phenomenon of hydrogen embrittlement. This phenomenon is more effective on high strength steels and not conventional reinforcement. FHWA has active research programs investigating the possibility of hydrogen embrittlement of prestressing or post-tensioning steels.


Vrable also investigated the effect of cathodic protection current flow on concreteto-rebar bond strength (Vrable, 1977). He found the loss of bond strength is much less with increasing current density than with an increasing total ampere hour/square foot of applied current (Figures 7 and 8). He attributed the loss of bond strength to the formation of alkali hydroxides on the steel surface. The hydroxides are believed to attack the calcium and aluminum silicates within the concrete to form soluble silicates of much less strength. Vrable reported other work by the Jersey Production Research Company that showed the bond strength between the high-strength concrete and deformed reinforcing bars did not depend on the applied voltage or current, but on the total, applied ampere hours per square foot of embedded steel surface (Vrable, 1977). He also presented results from a study by Scott as given in Table 6. Cathodic protection system designers recommend that electrical potentials not be more negative than 1.1 volts in order to prevent detrimental effects of overprotection.


| Specimen          |         | Total<br>Load<br>(pounds) | Splitti<br>Tensil<br>Streng<br>(psi) | le<br>gth                    |
|-------------------|---------|---------------------------|--------------------------------------|------------------------------|
| Control - 30 day  | cure    |                           |                                      |                              |
| Α                 |         | 56,500                    | 500                                  |                              |
| В                 |         | 53,500                    | 473                                  |                              |
| С                 |         | 46,500                    | 411                                  |                              |
|                   | Average | 61,500                    | 461                                  |                              |
| 300 days exposu   | re to   |                           |                                      |                              |
| 0.5 mA applied c  | urrent  |                           |                                      |                              |
| 1                 |         | 65,000                    | 575                                  | 80% shear                    |
| 2                 |         | 60,000                    | 531                                  |                              |
| 3                 |         | 59,500                    | 527                                  | 80% shear                    |
|                   | Average | 61,500                    | 544                                  |                              |
| 300 days exposu   |         |                           |                                      |                              |
| 1.0 mA applied c  | urrent  | 40.000                    | 42.4                                 | and the second second        |
| 4                 |         | 49,000                    | 434                                  | sandy pocket                 |
| 5                 |         | 51,000                    | 451                                  | sandy section through center |
| 6                 | Average | 65,000<br><u>55,000</u>   | 575<br><u>487</u>                    | 100% shear                   |
| 300 days exposui  | re to   |                           |                                      |                              |
| 2.0 mA applied c  |         |                           |                                      |                              |
| 7                 |         | 64,500                    | 570                                  | 80% shear, good matrix       |
| 8                 |         | 57,500                    | 509                                  | 75% shear                    |
| 9                 |         | 63,000                    | 558                                  | 90% shear                    |
| -                 | Average | <u>61,660</u>             | 546                                  |                              |
| Control - 300 day | y cure  |                           |                                      |                              |
| A                 | -       | 52,000                    | 460                                  | 75% shear, erratic break     |
| В                 |         | 59,000                    | 523                                  | 80% shear                    |
| С                 |         | 51,000                    | 452                                  | 80% shear, sandy matrix      |
|                   | Average | 54,000                    | <u>478</u>                           |                              |


| TABLE 5. | EFFECT OF APPLIED CURRENT ON SPLITTING TENSILE STRENGTH (Vrable, |
|----------|------------------------------------------------------------------|
|          | 1977)                                                            |

One pound = 0.454 kgOne psi = 6,895 pa











Ali suggests cathodic protection could have shortcomings regarding its effects on concrete strength (Ali, 1993). He reports the cathodic protection generates hydroxyl ion at the cathodic steel surface and a buildup of sodium and potassium ions in the hydrated cement at regions near the reinforcing bar due to the action of the impressed current. The generated hydroxyl ion raises the concentration of pore fluid levels. His study focused on concerns for alkali-silica reactions and found that increases in the pore fluid level can cause severe cracking and disintegration of the concrete. Ali warns against using cathodic protection on structures that might contain aggregates susceptible to alkali-silica reaction.

| TABLE 6. EFFECT OF APPLIED VOLTAGE ON BOND STRENGTH |  |
|-----------------------------------------------------|--|
| (Research by Scott, Vrable, 1977)                   |  |

| Applied Voltage | Specimen Potential                           | Results of Exposure            |  |  |
|-----------------|----------------------------------------------|--------------------------------|--|--|
| (volts)         | (polarized potential of the steel rod        |                                |  |  |
|                 | measured to copper sulfate reference, volts) |                                |  |  |
|                 |                                              |                                |  |  |
| 0.75            | -0.812                                       | No loss of bond after 880 days |  |  |
| 1.14            | -1.052                                       | No loss of bond after 880 days |  |  |
| 1.54            | -1.148                                       | No loss of bond after 994 days |  |  |
| 2.14            | -1.156                                       | Rod pulled out in 197 days     |  |  |

Recent research raises additional concerns for chloride intrusion of concrete structures submerged in sea-water (Nagataki, 1993). Nagataki reports that chloride ions can intrude in the concrete by condensation of the water-soluble chloride ion. He concludes that the presence of reinforcing steel bars in cement matrix containing internal chloride ion will result in higher internal chloride ion concentration around the steel bar than is found in other portions of the cement matrix.

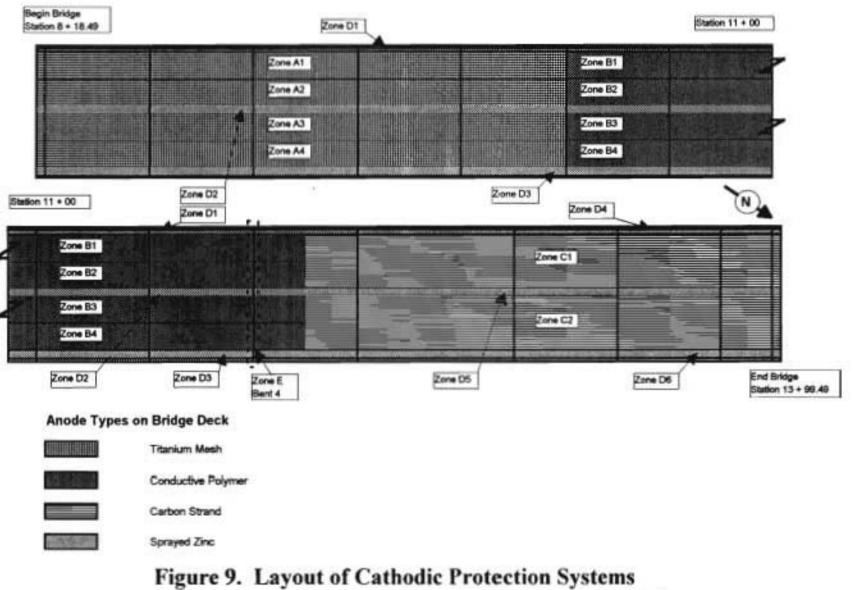
<u>Costs and Service Life.</u> The following cost elements must be considered when estimating the total cost of a cathodic protection system:

- 1. Bridge evaluation
- 2. Removal of damaged concrete
- 3. Design of the cathodic protection system
- 4. Anode system
- 5. Rectifier
- 6. Monitoring Devices
- 7. Remote monitoring system
- 8. Maintenance

Cathodic protection system costs (for large installations) were identified in SHRP 1993 and are summarized in Table 7. None of the estimates given in Table 7 include the cost of traffic control, patching, or structural repair.

|                                                           |               | Estimated                   |               |
|-----------------------------------------------------------|---------------|-----------------------------|---------------|
|                                                           |               | Constructi                  |               |
|                                                           | _             | on Cost,                    |               |
|                                                           | Structures    | 1991 U.S.                   | Estimated     |
|                                                           |               | \$/square                   | Service Life, |
|                                                           |               | foot                        | ¥7            |
| Anode System                                              | Protected     | (\$/meter                   | Years         |
|                                                           |               | square)                     |               |
| Coke-Asphalt<br>Overlay                                   | Decks         | \$6 (\$65)                  | 20            |
| Slotted<br>Conductive<br>Polymer Grout                    | Decks         | \$6 (\$65)                  | 15            |
| Mounded<br>Conductive<br>Polymer<br>w/Concrete<br>Overlay | Decks         | \$9 (\$97)                  | 20            |
| Titanium Mesh<br>w/<br>Concrete<br>Overlay                | Decks         | \$9 (\$97)                  | 35            |
| Titanium Mesh<br>w/<br>Shotcrete                          | Substructures | \$14 <b>(</b> \$150)        | 35            |
| Conductive Paint                                          | Substructures | \$5 (\$54)                  | 5             |
| Sprayed Zinc                                              | Substructures | <b>\$</b> 9 ( <b>\$</b> 97) | 15            |

# TABLE 7. AVAILABLE CP SYSTEMS AND ESTIMATED COSTS AND LIVES


#### 5. CATHODIC PROTECTION SYSTEMS ON THE U.S. 87 RAILROAD OVERPASS BRIDGE - BIG SPRING

Five cathodic protection systems were installed on the U.S. 87 Missouri-Pacific Railroad overpass in Big Spring, Texas (Smith, 1990). The bridge structure was constructed in the early 1960's and is 581 feet (177 meters) long and 67 feet (20.4 meters) wide. The bridge has very steep grades and is often treated with deicing salts during winter months. Evaluation of the structure to determine the need for cathodic protection included measuring half-cell potentials, chloride content and percent of delamination of the concrete surface. Results from the evaluation are summarized in Table 8. The south end of the bridge is station 8 + 18.49 and the north end of the bridge is station 13 + 99.49.

Three distributed anode cathodic protection systems were installed on the bridge deck, and conductive coating systems were installed on the sidewalk portion of the bridge deck and one of the supporting bents. Smith (1990) presents a complete description of the bridge preparation and installation of the cathodic protection systems. The traffic lanes were milled approximately 2 inches (5.1 cm) on the bridge and approaches in preparation for installing the anodes and placing a dense concrete overlay. Each anode system and its installation is described in the following discussion.

Expanded Titanium Mesh (Manufactured by Elgard) Four separate zones were protected with titanium mesh anodes. A separate circuit energized each zone. The four zones were placed across the 67-foot (20-meter) width of the bridge deck and each zone was approximately 14 feet (4.3 meters) wide, as shown in the layout of cathodic protection systems given in Figure 9. Each zone was approximately 200 feet (61 meters) long. Concrete loosened by the milling operation was removed so that the exposed surface was sound concrete. Continuity of metallic surfaces in the concrete and the reinforcing steel was ensured. Special care was exercise to avoid anode placement closer than a quarter inch (6 mm) from embedded metals. The titanium mesh was spread over the surface of the zone to be protected and tacked down with insulating fasteners in preparation for concrete placement. Smith reports the titanium mesh was very easy to install but was the most difficult to maintain during placement of the dense concrete overlay. Problems occurred with the mesh tending to float during concrete placement. A short between the mesh and a concrete tie wire was easily discovered and corrected during construction.

<u>Ferex 100 Anode Strand (Manufactured by Raychem Corporation).</u> A flexible conductive polymer anode was used to distribute protective current in another four zones across the width of the bridge deck as shown in Figure 9. These four zones were also approximately 200 feet long. The same precautions as before were taken to ensure soundness of the repaired surface, electrical continuity of the reinforcing steel and other embedded metal, and separation of the anode from the embedded metal. The anode strands were anchored to the concrete surface with special fasteners and large loops (approximately 9 inches (23 cm)) were used as a method of bending the cables without



on US 87 Overpass, Big Spring, Texas (Smith, 1990)

|       | Test Results    |                    |                     |                  |
|-------|-----------------|--------------------|---------------------|------------------|
| Slab  | Station         | Delamination Area, | Half-cell Potential | Chloride Content |
| No.   | (Area, Sq. Ft.) | Sq. Ft./           | Average Readings    | (pounds per      |
|       |                 | % of slab          | (Negative Volts)    | cubic yard)      |
|       | 8 + 19.28       |                    |                     |                  |
| 1     | 8 + 60.61       | 141.2 / 6.1        | 0.3                 | *                |
|       | (2,314.28)      |                    |                     |                  |
| 2     | 9 + 01.71       | 96.6 / 4.2         | 0.25                | *                |
|       | (2,301.60)      |                    |                     |                  |
| 3     | 9 + 42.81       | 341.8 / 14.85      | 0.22                | *                |
|       | (2,301.60)      |                    |                     |                  |
| 4     | 9 + 83.91       | 250.8 / 10.9       | 0.18                | *                |
|       | (2,301.60)      |                    |                     |                  |
| 5     | 10 + 25.01      | 474.0 / 20.59      | 0.24                | 3.3              |
|       | (2,301.60)      |                    |                     |                  |
| 6     | 10 + 66.11      | 462.6 / 20.1       | 0.22                | 4.8              |
|       | (2,301.60)      |                    |                     |                  |
| 7     | 11 + 07.21      | 435.0 / 18.9       | 0.2                 | 2.9              |
|       | (2,301.60)      |                    |                     |                  |
| 8     | 11 + 48.31      | 233.6 / 10.15      | 0.16                | 3.7              |
|       | (2,301.60)      |                    |                     |                  |
| 9     | 11 + 89.41      | 284.2 / 12.35      | 0.19                | *                |
|       | (2,301.60)      |                    |                     |                  |
| 10    | 12 + 30.74      | 247.6 / 10.7       | 0.19                | 3.6              |
|       | (2,314.48)      |                    |                     |                  |
| 11    | 12 + 63.74      | 63.7 / 3.45        | 0.16                | *                |
|       | (1,848.00)      |                    |                     |                  |
| 12    | 12 + 97.74      | 285.6 / 15.0       | 0.22                | 3.2              |
|       | (1,904.00)      |                    |                     |                  |
| 13    | 13 + 31.74      | 261.8 / 13.75      | 0.17                | *                |
|       | (1,904.00)      |                    |                     |                  |
| 14    | 13 + 65.74      | 326.5 / 17.15      | 0.15                | *                |
|       | (1,904.00)      |                    | · · ·               |                  |
| 15    | 13 + 98.74      | 19.4 / 1.15        | 0.11                | *                |
|       | (1,680.00)      |                    |                     |                  |
| Total | (32,281.76)     | 3924.4 / 12.16     |                     |                  |

# TABLE 8. EVALUATION SUMMARY OF U.S. 87 OVERPASS IN BIG SPRING, TEXAS(Smith, 1990)

# \* no samples were taken in this area

One square foot = 0.093 square meters

One pound per cubic yard = 0.59 kg per cubic meter

kinking or breaking the primary anode wire. Smith reports the polymer anode was slightly more time consuming to install than the titanium mesh, but the system provided no interference to the placement of the dense concrete overlay (Smith, 1990). A corrosion engineering firm contracted to inspect the cathodic protection system installation found some wiring errors for the polymeric anode system at the junction box, but the errors were easily corrected.

<u>Carbon Strand System (Manufactured by Rescon).</u> The carbon strand system was employed in two zones across the width of the bridge deck as shown in Figure 9; therefore, each zone was twice as wide as zones used for the titanium mesh or conductive polymer anodes. Each zone was approximately 200 feet (61 meters) long. A platinized wire with carbon filament secondary strands comprised the primary anode. As discussed earlier, the carbon strands increase the strength of the anode and decrease cost. The secondary anode used to distribute the current was made of a carbon based backfill material (65 percent coke breeze) that was mounded over the primary anode. Mixing the conductive backfill material required a technical representative from the manufacturer and placement was accomplished by hand. The quantity of conductive backfill mixed was kept below the amount that could be placed in 30 minutes, and special care was required not to allow the backfill material to touch metal embedded in the concrete. Smith reports the carbon strand system was the most difficult to install and required several days. Furthermore, the process produced toxic fumes requiring frequent rotation of workers. Subsequent placement of the concrete was trouble-free.

<u>Sprayed Zinc.</u> Sidewalks and medians on the bridge were cathodically protected using a sprayed zinc conductive surface anode. The protected areas are shown in Figure 9. The six separate zones protected with sprayed zinc anodes were generally narrow (less than 5 feet (1.5 meters)) and long (approximately 400 feet (122 meters)). Concrete surfaces were cleaned and embedded metals were masked to prevent direct or near contact with the sprayed zinc. Hot zinc was sprayed onto the surface to form a layer 20 mils thick (tolerance of 3 mils plus or minus). Current distributing lead wires were AWG No. 10 stranded copper with THHN insulation. Placement of the sprayed zinc required a licensed individual. The application was uneven and because the location was on the sidewalk, non-conductive surfacing was required atop the zinc to prevent exposing pedestrians to the system. However, cracking of the top surface was discovered soon after installation of the sprayed zinc system and the corrosion engineering contractor reported several erratic electrical isolations in the zinc anode coating (Smith, 1990).

<u>Conductive Paint Anode (Porter DAC-85).</u> One pier cap was cathodically protected using conductive paint as the anode. Electrical continuity of the embedded metal and reinforcing steel was checked and exposed metal was masked to prevent contact or near contact with the conductive paint. Platinum wire formed the primary anode, and the conductive coating was graphite/acrylic with 42 percent solids. The conductive coating was required no less than 16 mils thick (dry). Smith reports installing the conductive paint was fairly simple and similar to many other operations of cap repair and maintenance. The cathodic protection system in each zone was connected to the rectifier through an individual circuit. Each anode type, zone, and associated circuit number is identified in Table 9.

| Anode Type                            | Zone       | Circuit No. |
|---------------------------------------|------------|-------------|
| Titanium Mesh                         | A1         | 1           |
|                                       | A2         | 2           |
|                                       | A3         | 3           |
|                                       | <u>A</u> 4 | 4           |
| <b>Conductive Polymer</b>             | B1         | 5           |
| (Ferex 100 Strand)                    | B2         | 6           |
|                                       | <b>B</b> 3 | 7           |
|                                       | <b>B</b> 4 | 8           |
| Carbon Strand                         | <b>C</b> 1 | 9           |
| (Rescon)                              | C2         | 10          |
|                                       | D1         | 11          |
| Sprayed Zinc                          | D2         | 12          |
|                                       | D3         | 13          |
|                                       | D4         | 14          |
|                                       | D5         | 15          |
|                                       | D6         | 16          |
| Conductive Paint<br>(Porter DAC - 85) | E          | 17          |
| (Ponter DAC - 05)                     |            |             |

TABLE 9. ANODE TYPES, PROTECTED ZONES AND CIRCUITS

<u>Reference Cells.</u> One silver - silver chloride reference cell was installed in each of the 17 cathodically protected zones. The cathodic protection engineer determined locations for the reference cells, but failed to properly document their exact locations.

<u>Rebar Probes.</u> Short pieces of reinforcing steel were embedded as rebar probes in each of the 17 cathodically protected zones. Exact locations of each rebar probe were not documented.

<u>Linear Polarization Probes.</u> Three electrode linear polarization (3LP) probes were installed in 20 permanent locations on the bridge and a portable device was purchased to provide measurements at other locations. Two permanent probes were embedded in each cathodically protected zone on the bridge deck traffic lanes (2 probes in each of 10 zones). Two areas were provided for portable rate of corrosion measurements in zones not in the traffic lanes. Portable measurements included locations on the sidewalks, median and on the bent below the bridge deck.

Salt Applications. Deicing salt is applied to the U.S. 87 overpass bridge on an as needed basis. The salt is mixed with small rocks before application. Salt applications usually occur between November and February. Information obtained from TxDOT

record salt applications for the period December 1992 through December 1993 on the following days:

December 1992:4, 5, 13, 14, 15, 21, 22, and 31January 1993:1, 2, 10, 11, 13, 14, 18, 19, 20, and 29December 1993:22

#### 6. RESULTS AND FINDINGS

The performance for each of the cathodic protection systems was periodically assessed by monitoring several data items including the following (Parker, 1992):

- 1. Anode current
- 2. Anode Voltage
- 3. Anode Conductance (not measured directly)
- 4. Reference Cell Voltage
- 5. Instant-off Reference Cell Voltage
- 6. Rebar Probe Voltage
- 7. Corrosion Rates via 3LP Procedure

There are two reasons for gathering and analyzing the data items listed above: first, to determine if the systems are performing as designed and adjusted for cathodic protection of the reinforced concrete bridge, and second, to estimate if the specified level of cathodic protection is adequate to prevent corrosion. The significance of each of the data items will be discussed before considering the performance of each type of cathodic protection system individually.

<u>Anode Current.</u> Anode current is the primary variable directly adjusted by the engineer to provide adequate cathodic protection of the bridge. Inadequate current may result in ineffective cathodic protection of the bridge, and excessive current may directly damage the bonding of concrete to the rebar and/or cause hydrogen embrittlement of the rebar. Criteria by which the adequacy of cathodic protection are determined have been discussed in the literature (Stratfull, 1983), and recommended practice established (SHRP, 1993).

A cathodic protection consultant during the installation of the cathodic protection systems established the desired currents for each of the 17 circuits based on E vs log(I) data taken on each circuit. Sufficient current was supplied to cause the protected rebar potential, with respect to the reference cell, to be in the linear, all-cathodic region, observed on the E vs log (I) plot. Exceptions were made to this adjustment criteria when the current required would be in excess of the manufacturers recommendation for the particular anode system. After approximately 45 and 90 days of operation, the anode current settings for each cathodic protection system were adjusted on the basis of a positive depolarization shift of 100 to 150 mv. The depolarization shift is the potential between the reference cell and the rebar measured at instant-off conditions and after 4 hours without power, and initial measurements are reported in Table 16 of the consultants report (Smith, 1990). Based upon depolarization shifts, currents to the anode systems were adjusted as listed in Table 23 of the consultants report (Smith, 1990). The current adjustments have not been changed since the adjustment after 90 days of operation.

<u>Anode Voltage</u>. The anode voltage is automatically adjusted by each rectifier circuit to supply the current selected for each cathodic protection circuit. The maximum available anode voltage is determined by the rectifier design. For the rectifier system installed at the Big Spring bridge, the maximum available voltage is 25 volts for circuits 1 through 13 and 50 volts for circuits 14 through 17. If the resistance in a cathodic protection circuit increases, the voltage is automatically increased by the rectifier to provide the selected current until the maximum voltage available from the circuit is achieved.

<u>Anode Conductance.</u> Anode conductance is calculated by dividing the anode current by the anode voltage. Its units are reciprocal ohms, frequently called mhos. This parameter has been found useful in observing the failure of the cathodic protection circuits on the Big Spring bridge. As the conductance of a circuit approaches zero, the resistance of the circuit approaches infinity, and it is impossible to supply the required amount of current to the system.

<u>Reference Cell Voltage.</u> The electrochemical potential of a section of steel rebar determines its susceptibility to corrosion. This potential is measured by comparison with the potential of a stable reference cell. Although the steel is always negative with respect to the reference cell, the minus sign has been omitted when recording and graphing the data. Thus, a larger value indicates that the steel is more negative, i.e., more cathodic and better protected against corrosion.

For the bridge deck, silver chloride reference cells were placed near the center of each protected zone. The locations of the reference cells in the other systems were not documented. If the reference cells are stable, observed changes in reference cell potential reflect changes in the potential of the rebar, with respect to the electrolyte (concrete) in the vicinity of the reference cell. Unfortunately, reference cell potentials may not be stable over long periods or extremes of temperature. Reference cell stability has been discussed in the literature (Schell, 1989). The problem of reference cell stability is minimized when polarization shifts are used to evaluate the adequacy of the current supplied to a cathodic protection circuit, as the consultant did in his 45- and 90- day adjustments of the currents to the present cathodic protection systems. Even with a stable reference cell the observed

reference cell voltages fluctuate considerably. Voltage fluctuations have been attributed to the varying availability of oxygen to the cathode, due to changes in moisture within the concrete (Stratfull, 1983). The voltage gradients induced in the concrete by the anode current are also measured as a part of the observed reference potentials. Voltage gradient problems are circumvented by using "instant-off" reference cell voltages as discussed in the next paragraph.

Instant-off Reference Cell Voltages. The voltage gradients in the slab caused by the current flowing through the slab can be eliminated by turning the current off, and instantly measuring the reference cell voltage. In this case, the term "instant" must be defined since the anode begins to depolarize "instantly." The instructions provided to personnel taking data at the Big Spring bridge were to record the second reading on the digital voltmeter after cut-off of the anode current.

<u>Rebar Probe Voltage.</u> The rebar probe voltage is actually measured across a 10ohm shunt connecting the rebar probe to the remainder of the rebar being cathodically protected, so it really is a measurement of rebar probe current, and the voltage value can be multiplied by 100 to get the rebar current in milliamps. If the current flowing from the rebar probe is positive, the probe is negative with respect to the remaining rebar and so is more cathodic and better protected than the remaining rebar. If the current flow is negative, the rebar probe is actually corroding. The rebar probe current is not an absolute measurement of corrosion rates, since the probe could contain both anodic and cathodic sections, and we are observing only the net external current flow. To obtain an actual measurement of corrosion rates, more complex procedures are required.

<u>Corrosion Rates via 3LP Measurement.</u> Corrosion rates can be directly measured by the linear polarization method. This technique is based on proven theory, and has been adapted for use in reinforced concrete structures. However, 3LP measurements cannot be used while the bridge is being cathodically protected (Clear, 1989). The cathodic protection consultant recorded three sets of measurements prior to energizing the cathodic protection system, and after approximately 45 and 90 days of operation. Results from the initial 3LP measurements are given in Table 19 of the consultant's report (Smith, 1990). The data indicated corrosion rates of about 2 mils per year at six locations, which would normally predict slab failure in 2 to 10 years (Clear, 1989). Measurements with the 3LP system require the cathodic protection system current be turned off for 24 to 48 hours prior to testing, so measurements exhibit little or no relation to corrosion rates observed while the bridge is under cathodic protection. One additional set of 3LP measurements was gathered after 546 days of operation.

Data from each cathodic protection circuit will be considered in groups that contain the same anode materials. Monthly data records are presented in the appendix. In order to illustrate the system performance, monthly readings are averaged by calendar quarter (three months) and plotted in the following figures. In some cases, data were recorded more or less than three times during the quarter. The quarterly averages presented were calculated based upon the number of data collections. <u>Elgard 150 titanium mesh (Bridge deck zones A1 - A4, Rectifier Circuits 1 - 4).</u> Circuits protected by Elgard 150 titanium mesh exhibited stable, long term operation. The desired anode current is maintained without significant increases in anode voltage. The rebar probe remains positive, indicating the probe is cathodic with respect to the remainder of the rebar. Circuits 1 and 4 exhibit some evidence of irregular behavior with regard to anode current beginning in January 1993. Reference cell voltage and instant-off reference cell voltage indicate problems with Circuit 1 began in January 1991. It is likely the problems are associated with the reference cell and not the cathodic protection system.

Swiat tested Elgard 150 titanium mesh anode systems (with modified HCR Thorotop overlay) on bridge piers in a northern climate (Swiat, 1987). The study also included an Elgard 210 titanium mesh with a latex modified concrete overlay. No delamination or disbondment was found for the Elgard 150 system on the piers throughout the 18-month evaluation. Several cracks were observed on sidewalks protected by the Elgard 210 anode system. The cracks were first observed at 6 months and increased throughout the study and eventually led to concrete delamination. Swiat investigated the delaminated areas by coring the concrete. He concluded the cracks originated from damage which had not been repaired properly during placement of the anode systems.

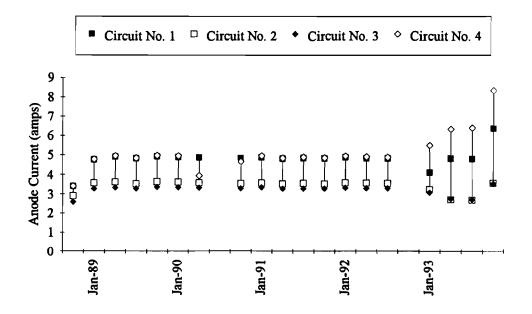



Figure 10. Anode Current, Quarterly Averages - Titanium Mesh Anode

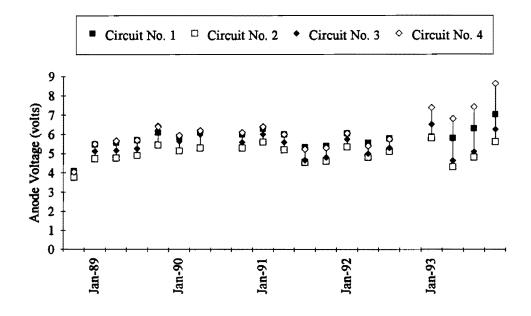



Figure 11. Anode Voltage, Quarterly Averages - Titanium Mesh Anode

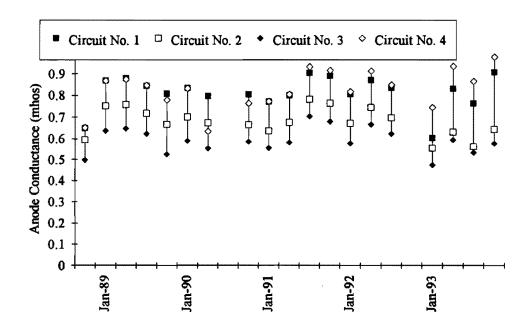



Figure 12. Anode Conductance, Quarterly Averages - Titanium Mesh Anode

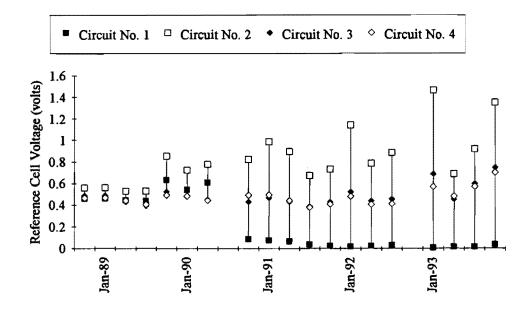



Figure 13. Reference Cell Voltage, Quarterly Averages - Titanium Mesh Anode

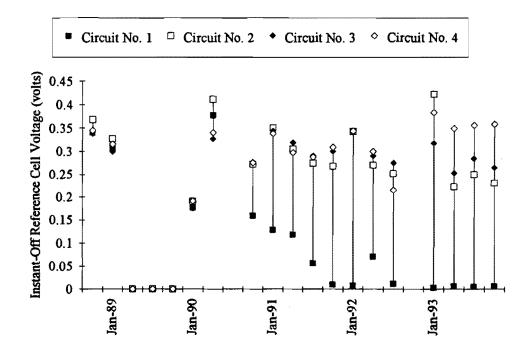



Figure 14. Instant-off Reference Cell Voltage, Quarterly Averages - Titanium Mesh Anode

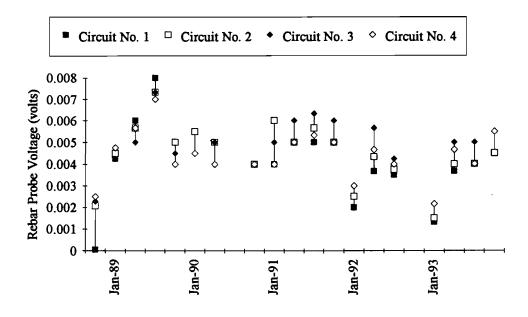



Figure 15. Rebar Probe Voltage, Quarterly Averages - Titanium Mesh Anode

Raychem Ferex 100 Conductive Polymer (Bridge deck zones B1 - B4, Rectifier circuits 5 - 8). Circuits protected by Raychem Ferex 100 performed satisfactorily until the third quarter of 1990 (approximately 500 days) at which time voltage increases were necessary to maintain the desired anode current. By the second quarter of 1991, (approximately 1,000 days) the rectifier was unable to supply sufficient voltage to maintain the current, so the anode current began to decrease. In the third quarter of 1991, (approximately 1,100 days) none of the circuits were receiving a significant amount of electrical current. Deterioration of the circuits is better seen in the plot of circuit conductance versus time. The conductance decreases linearly from January 1990 until the third quarter of 1991. All circuits with Raychem Ferex 100 have failed.

In another research program, Swiat tested the Raychem Ferex 100 flexible polymeric material with a latex modified concrete overlay on a bridge deck in a northern climate (Swiat, 1987). The general appearance of the concrete was good throughout the 18-month evaluation and no delamination was detected. The concrete cover over the top of the strand popped out over a small length (less than an inch) and exposed the strand. He observed current fluctuations several times during the study but concluded the fluctuations were due to controller malfunction or voltage limitations.

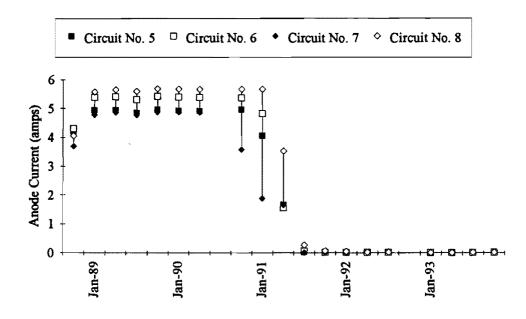



Figure 16. Anode Current, Quarterly Averages - Conductive Polymer Anode

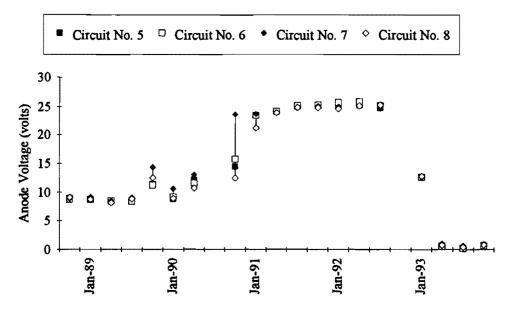



Figure 17. Anode Voltage, Quarterly Averages - Conductive Polymer Anode

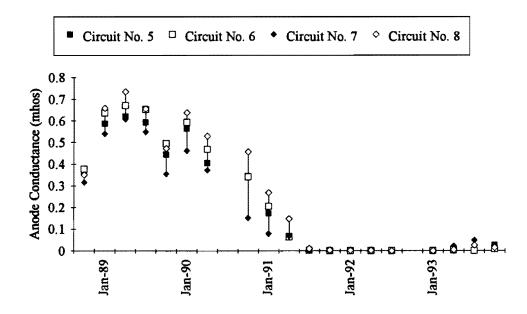



Figure 18. Anode Conductance, Quarterly Averages - Conductive Polymer Anode

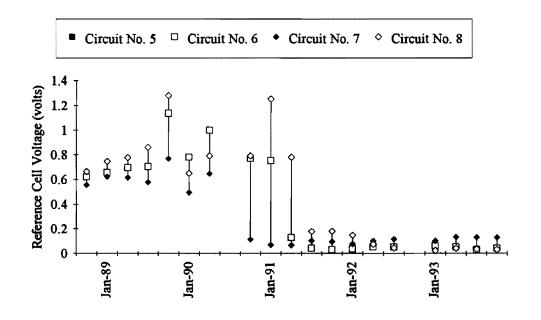



Figure 19. Reference Cell Voltage, Quarterly Averages - Conductive Polymer Anode

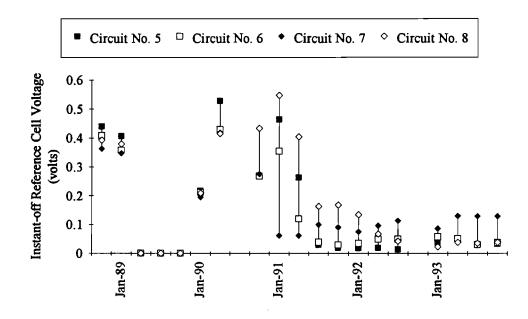



Figure 20. Instant-off Reference Cell Voltage, Quarterly Averages - Conductive Polymer Anode

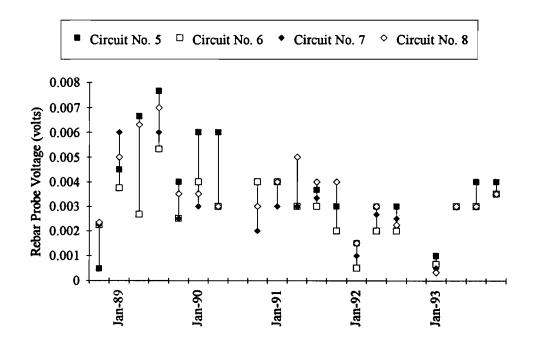



Figure 21. Rebar Probe Voltage, Quarterly Averages - Conductive Polymer Anode

<u>Rescon Rigid Conductive Polymer Concrete, Carbon Strand (Bridge deck zones</u> <u>C1 and C2, Circuits 9 and 10)</u>. The desired anode current has been maintained in circuits 9 and 10 since installation. Circuit 10 required increases in voltage to maintain current beginning in January 1993 with a corresponding decrease in reference cell voltage. The relatively rapid changes could be an indication of future difficulties for the two circuits using the Rescon anodes. The rectifier can supply up to 25 volts to circuits 9 and 10.

Swiat tested a conductive polymer slotted anode system on a bridge in a southern marine environment (Swiat, 1987). He reported the system provided effective corrosion control to the reinforcing steel of the bridge deck. However, visual inspection of the bridge deck over a 23-month period revealed discoloring of the concrete at high current discharge areas. Swiat attributed the discoloration to the formation of acid which was attacking concrete. The acid attack led to disbondment of a small area of concrete (1 square inch (6.5 square cm)) but no other disbondment was noted.

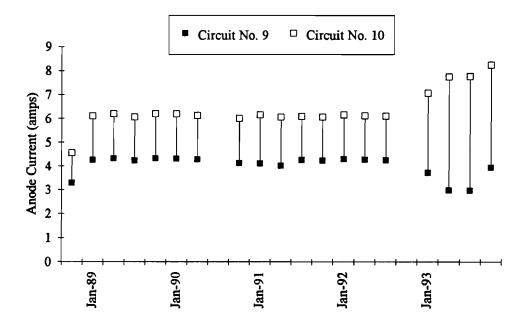



Figure 22. Anode Current, Quarterly Averages - Carbon Strand Anode

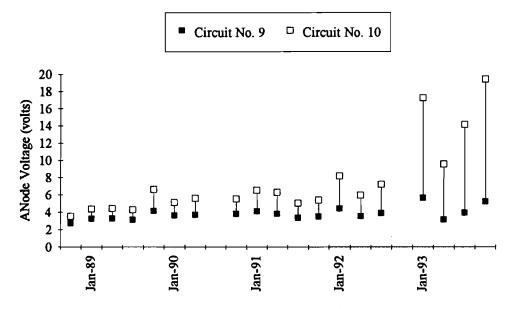



Figure 23. Anode Voltage, Quarterly Averages - Carbon Strand Anode

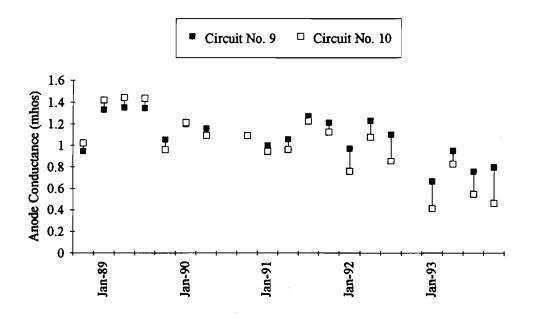



Figure 24. Anode Conductance, Quarterly Averages - Carbon Strand Anode

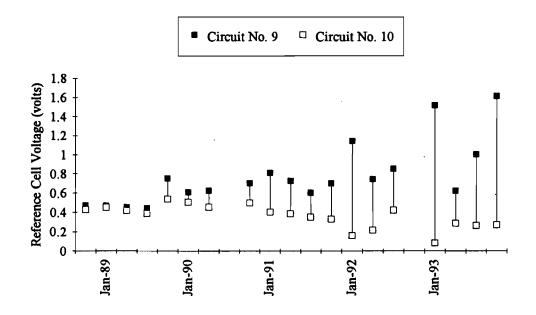



Figure 25. Reference Cell Voltage, Quarterly Averages - Carbon Strand Anode

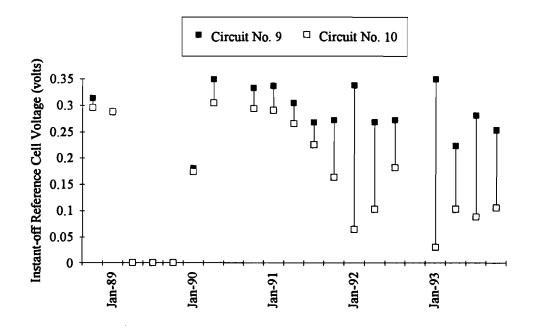



Figure 26. Instant-off Reference Cell Voltage, Quarterly Averages - Carbon Strand Anode

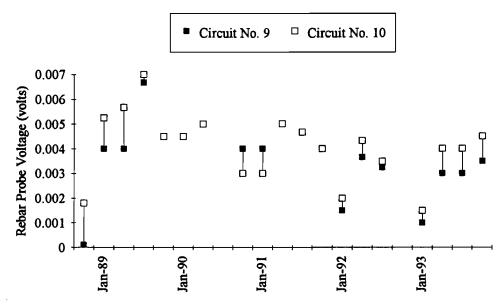



Figure 27. Rebar Probe Voltage, Quarterly Averages - Carbon Strand Anode

Hot Sprayed Zinc (Sidewalks and Median zones D1 - D6, Circuits 11 - 16). Based upon anode currents and voltages, it appears that all of the zinc sprayed circuits have failed. In fact, this failure occurred rather quickly, in the third quarter of 1989 (approximately 200 days). Failures are detected by the steep rise in anode voltage to the maximum possible supplied by the rectifier. A similar conclusion can be drawn by looking at the plots of conductance. Table 20 in the consultant's report (Smith, 1990), noted high resistances and increasing resistances in three of the circuits, 11, 12, and 13, in the first 90 days of operation. It appears that a combination of disbondment and cracking of the zinc caused these failures. The rebar currents have been quite low after failure to supply current to the anodes, and some times they were negative indicating that the rebar probe was anodic with respect to the remaining rebar. In contrast, the instant-off cell voltages have remained relatively constant. Current to circuits 11 through 16 was turned off in the second quarter of 1993.

Swiat tested a zinc spray anode system on a reinforced concrete bridge pier in a southern marine environment (Swiat, 1987). After 23 months, the general appearance of the pier was in good condition except for one small rust stain at a location of a short to rebar. Two delaminations of about 2-inch (5 cm) diameter were found near rebar chairs that were not electrically continuous with the cathodic protection system. No other delaminations were observed during the 23-month evaluation.

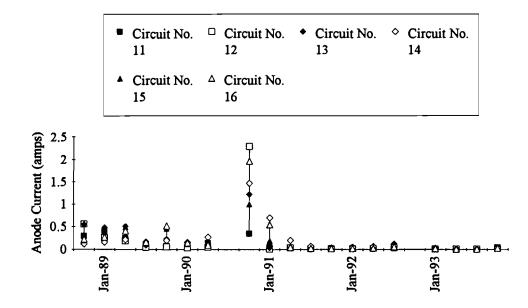



Figure 28. Anode Current, Quarterly Averages - Sprayed Zinc Anode

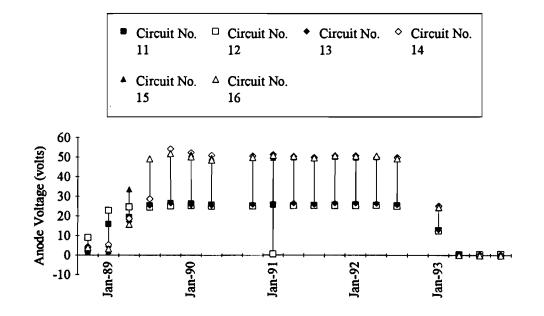



Figure 29. Anode Voltage, Quarterly Averages - Sprayed Zinc Anode

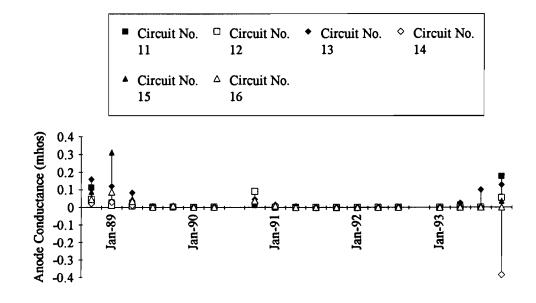



Figure 30. Anode Conductance, Quarterly Averages - Sprayed Zinc Anode



Figure 31. Reference Cell Voltage, Quarterly Averages - Sprayed Zinc Anode

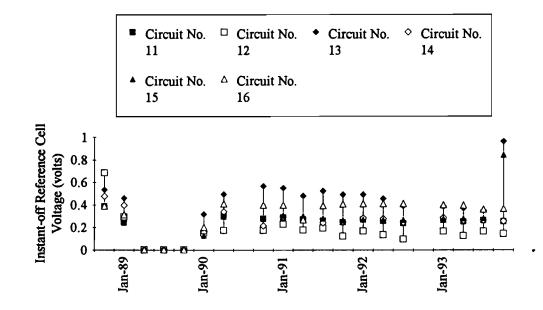



Figure 32. Instant-off Reference Cell Voltage, Quarterly Averages - Sprayed Zinc Anode

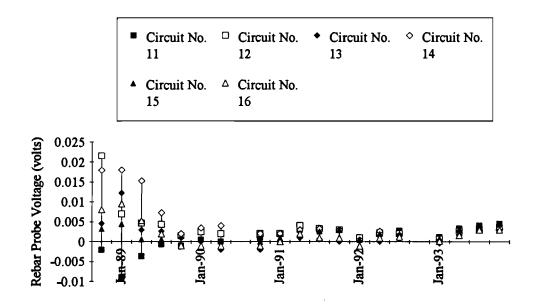



Figure 33. Rebar Probe Voltage, Quarterly Averages - Sprayed Zinc Anode

<u>Porter DAC-85 Conductive Paint (Pier cap zone E, Circuit 17).</u> The current to circuit 17 was adequate but erratic until mid-1992. As the conductive paint anode began to fail maximum voltage in the circuit (50 volts) was required to try and maintain current. The system has failed and the conductive paint is peeling and flaking from the bridge pier.

Swiat tested a conductive polymer spray anode system on a bridge pier in a southern marine environment (Swiat, 1987). Discoloration of the decorative overcoat was found near the end of all the primary anode platinum wires. Dot-size rust stains were also observed over the entire pier at the 9-month evaluation. Swiat believes the rust stains indicate locations of electrically discontinuous rebar chairs, which will eventually lead to concrete disbondment. Later, the conductive polymer suffered blistering throughout the columns. The decorative overcoat appeared darker (black shadowing) with time. Perenchio observed scaling of conductive coatings on cathodically protected bridge piers and attributed the scaling to acid production or chlorine gas generation (Perenchio, 1985). He also noted freeze-thaw problems drastically affect coating adherence.

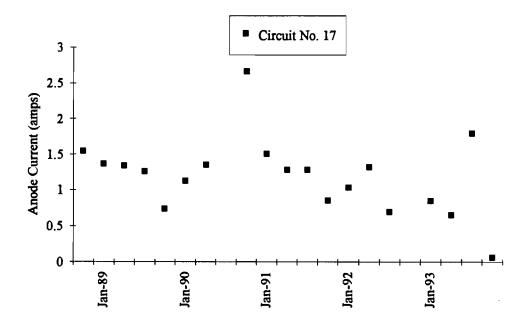



Figure 34. Anode Current, Quarterly Averages - Conductive Paint Anode

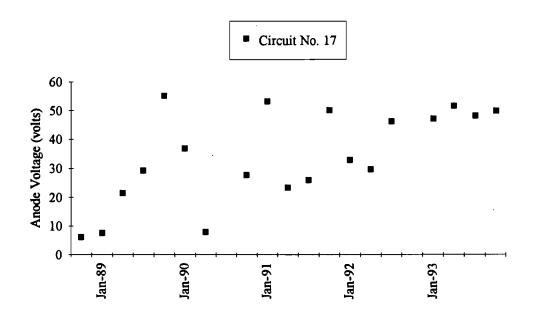



Figure 35. Anode Voltage, Quarterly Averages - Conductive Paint Anode

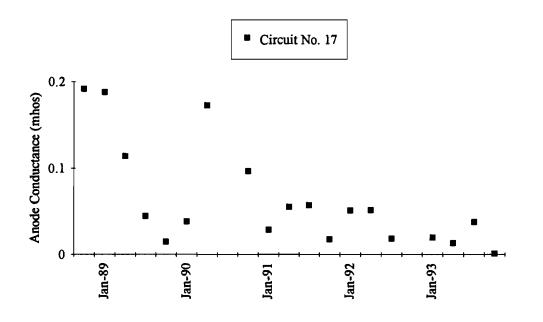



Figure 36. Anode Conductance, Quarterly Averages - Conductive Paint Anode

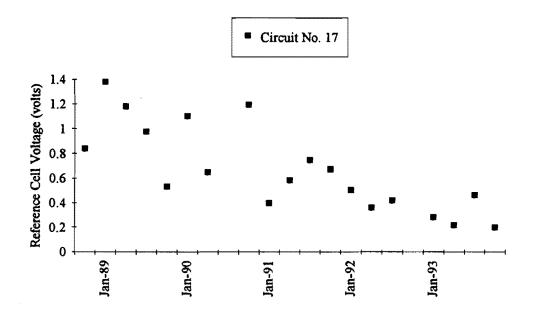



Figure 37. Reference Cell Voltage, Quarterly Averages - Conductive Paint Anode

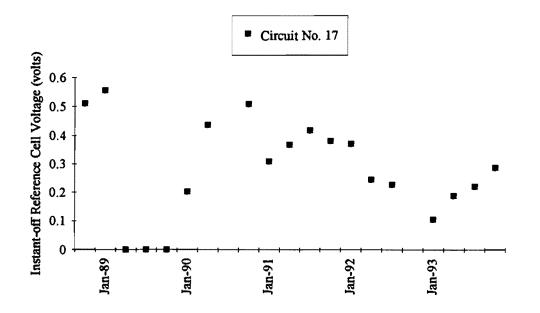



Figure 38. Instant-off Reference Cell Voltage, Quarterly Averages - Conductive Paint Anode

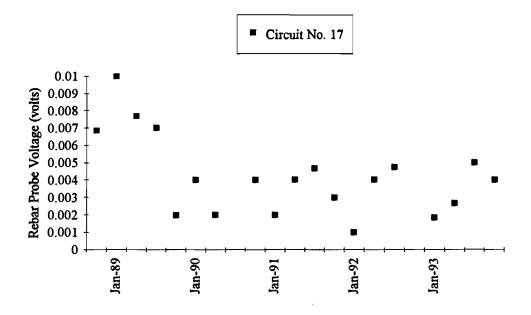



Figure 39. Rebar Probe Voltage, Quarterly Averages - Conductive Paint Anode

#### 7. COST EFFECTIVENESS STUDY

Present value life cycle cost methods were used to compare several alternatives for bridge deck construction or repair. Alternatives included bridge decks with and without cathodic protection. Sprayed zinc and conductive paint anodes were not included in the comparison because neither is intended for protecting bridge decks. Following accepted methods (Silano, 1993, Grant, 1982), steps in the life cycle cost analysis included the following:

- 1. A base life of 80 years was considered. Most references consider a normal bridge to have a life span of 40 years (Jackson, 1982). For the purposes of this study, it was assumed an effective cathodic protection system will double the life span of the bridge being protected (80 years). Bridge life spans are determined by a number of factors in addition to deck deterioration (e.g., changes in traffic patterns and routing). A base life of 80 years represents two life spans of a typical bridge and one life span of a cathodically protected bridge.
- 2. The cost of money was arbitrarily taken as 7.5 per cent per annum. Rates of 6.0 and 10.0 were also considered.
- 3. Cost element items, costs and expected service lives were identified for bridge decks with and without cathodic protection (Table 10). Details of each cost element are described in the following:

## Without Cathodic Protection

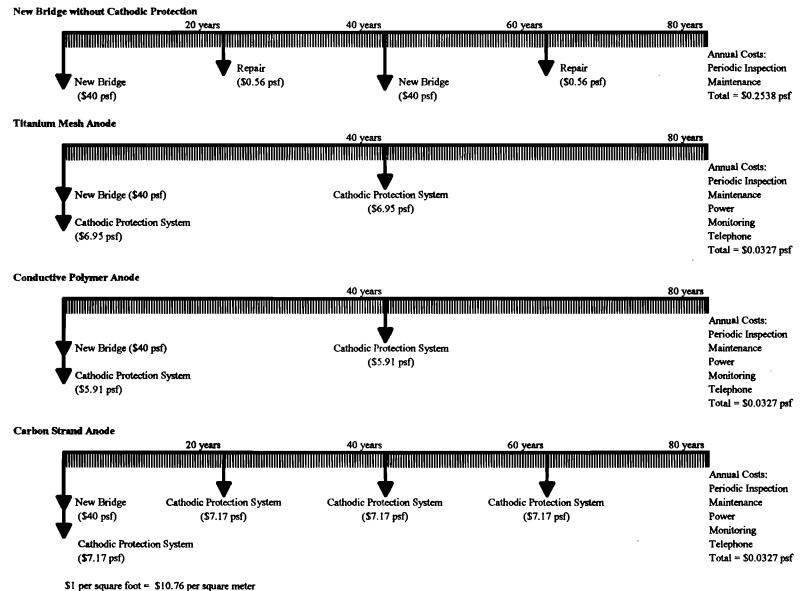
- a. Construct New Bridge and Replace Bridge Deck Several bridge decks have been constructed or replaced in the Big Spring area with costs ranging from \$35 to \$45 per square foot (psf). An average cost of \$40 psf (\$430 per square meter, psm) was selected. The service life of 40 years was chosen based upon average bridge life.
- Repair Bridge Deck In the analysis, major repairs are expected every 20 years throughout the life of the bridge. Repairing the Big Spring bridge deck in preparation of installing the cathodic protection systems cost \$18,075 for 3,615 square yards of surface (\$0.56 psf, \$6.02 psm).
- c. Periodic Inspection Approximately 100 hours of labor was required to inspect the bridge deck for damage before installing the cathodic protection systems. Periodic inspections after major bridge deck repair are required on a biannual basis. cost of the biannual inspection is 4 hours at \$28/per hour for the total area being protected (\$0.0017 psf, \$0.018 psm, annually).
- d. Maintenance The Big Spring bridge required approximately \$82,000 in maintenance the 10 years prior to installing the cathodic protection systems. Based upon the total bridge deck area, the average annual cost for maintenance was \$0.252 psf (\$2.71 psm) in the analysis.

### With Cathodic Protection

- a. Construct New Bridge Deck The same cost was used as for bridge decks without cathodic protection.
- b. Anode Systems Costs reported by Smith (Smith, 1990) were used for each anode. Service lives were approximated based upon recommendations from SHRP, 1993.
- c. Repair Bridge Deck Repairs should not be required if the cathodic protection system is effective.
- d. Periodic Inspection Annual costs were estimated the same as for bridge decks without cathodic protection.
- e. Maintenance Thus far no maintenance has been required on the

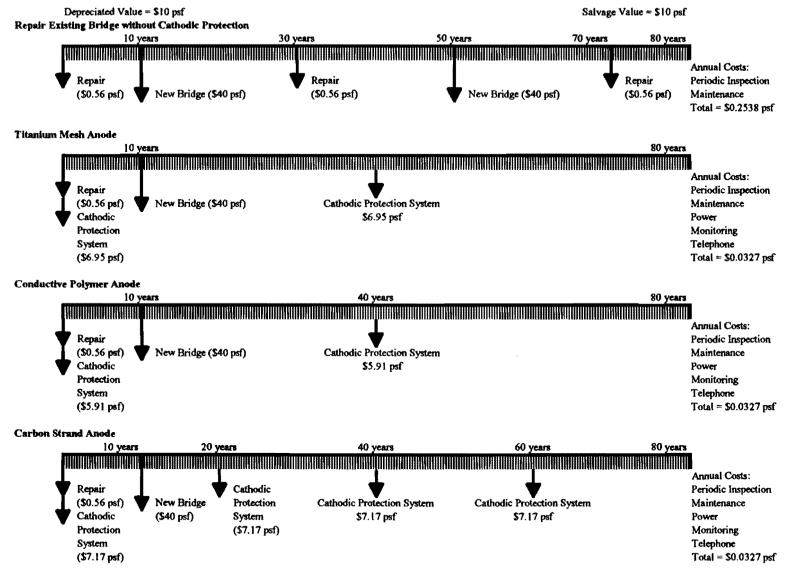
Big Spring bridge deck, but some cathodic protection systems have failed. However, further monitoring is required to establish actual long-term maintenance costs.

- f. Power The average monthly power bill for the total area being protected is \$55.75 (\$0.021 psf, \$0.23 psm, annually).
- g. Monitoring Collecting data at the bridge site by TxDOT personnel cost approximately \$28 per month (\$0.01 psf, \$0.107 psm, annually). The telephone bill for the remote monitoring system is \$28.36 monthly (\$0.01 psf, \$0.107 psm, annually). Additionally, the remote monitoring system cost \$6357 initially (\$0.20 psf, \$0.107 psm). Monitoring cost depend upon the location of the systems and number of systems active. For the purposes of this cost analysis, monitoring costs were \$0.01 psf, \$0.107 psm, annually.


| Cost Cost                   |              |                   |                   |  |
|-----------------------------|--------------|-------------------|-------------------|--|
| Item                        | Service Life | (S's Per sq. ft.) | (S's Per sq. mtr) |  |
|                             | Gervice Laie | (0 7 1 01 34. 14) | (varei sq. mer)   |  |
| Without Cathodic Protection |              |                   |                   |  |
| New Bridge Deck             | 40 years     | 40                | 430               |  |
| Repair Bridge Deck          | 20 years     | 0.56              | 6.02              |  |
| Periodic Inspection         | biannually   | 0.0017            | 0.018             |  |
| Maintenance                 | yearly       | 0.252             | 2.71              |  |
| With Cathodic Protection    |              |                   |                   |  |
| New Bridge Deck             | 80 years     | 40                | 430               |  |
| Anode System                |              |                   |                   |  |
| Titanium Mesh               | 40 years     | 6.95              | 74.77             |  |
| Conductive Polymer          | 40 years     | 5.91              | 63.58             |  |
| Carbon Strand               | 20 years     | 7.17              | 77.14             |  |
| Repair Bridge Deck          | not required |                   |                   |  |
| Periodic Inspection         | yearly       | 0.0017            | 0.018             |  |
| Maintenance                 | lack data    | 0.0011            | 0.010             |  |
| Power                       | yearly       | 0.021             | 0.23              |  |
| Monitoring                  | yearly       |                   |                   |  |
| At Site                     | ,,           | 0.01              | 0.107             |  |
| Remote System               |              | 0.2 each          | 2.15 each         |  |
| Telephone                   |              | 0.01              | 0.107             |  |

#### TABLE 10. COST ELEMENT ITEMS, COSTS AND SERVICE LIVES

Cost schedules for new bridge construction, and repair of bridge decks 10, 20, and 30 years old are shown in Figures 40 through 43, respectively. For a new bridge deck without cathodic protection (Figure 40) the original cost is \$40 psf. The deck requires repair every 20 years at \$0.56 psf. With the titanium mesh or conductive polymer anode the original construction costs are the same for the bridge deck with additional costs for the cathodic protection system (\$6.95 psf for the titanium mesh anode or \$5.91 psf for the conductive polymer anode). Because their service life is 40 years, the titanium mesh or


conductive polymer anode must be replaced once during the 80-year life cycle. No other bridge deck repairs are required. The carbon strand anode system must be replaced every 20 years. Annual costs for the bridge deck without cathodic protection total \$0.338 psf while annual costs for the bridge deck with cathodic protection total #0.127 psf. Similar cost schedules are presented for existing bridge decks in Figures 41 through 43. To provide a common basis for comparison, the 10-year old bridge is repaired at the beginning of the life cycle (Figure 41). The bridge without cathodic protection is repaired every 20 years, with replacement every 40 years from its original construction. Cathodic protection systems installed at the time of repair avoid later deck repair and replacement costs, but the cathodic protection systems must be replaced according to their individual service life. Annual costs are the same as previously described. Similar cost schedules are developed for 20 and 30 year old bridges (Figures 42 and 43 respectively). Salvage values are determined using straight line depreciation for cost elements with service life remaining at the end of the 80 year life cycle. Results from the cost analysis are summarized in Table 11. Cathodic protection of new construction appears to be marginally cost effective for the least expensive anode system (conductive polymer anode) at 6.0 percent interest. For higher interest rates, the new construction without cathodic protection is more cost effective in each case. For existing bridges, repair without cathodic protection is more cost effective for all cases. However, because of the uncertainties in choosing costs for this analysis, no clear choice can be made regarding the economics of cathodic protection of bridge decks in circumstances similar to the U.S. 87 overpass in Big Spring.

Although the results from the study indicate cathodic protection is not as cost effective as new construction or repair of existing bridge decks without cathodic protection, other factors should be considered. Costs for construction or replacement of the bridge deck in Big Spring are estimated at approximately \$35 to \$40 psf, (\$377 to \$430 psm) for a "turnkey" job. Similar construction at other locations could have much greater costs for traffic diverting or construction mobilization. Also, maintenance costs for the unprotected bridge deck were averaged from approximate 10-year costs for a bridge with moderate traffic. Higher maintenance costs are expected for bridges with heavy traffic loads. Furthermore, there is a paucity of information on maintenance costs of bridge decks with cathodic protection systems. Monitoring systems over longer periods of time is needed to establish long-term maintenance costs. Long-term monitoring is also required to determine if cathodic protection actually doubles the life of a bridge deck.









\$1 per square foot = \$10.76 per square meter

Figure 41. Cost Schedule for Repairing 30 Year Old Bridge with and Without Cathodic Protection

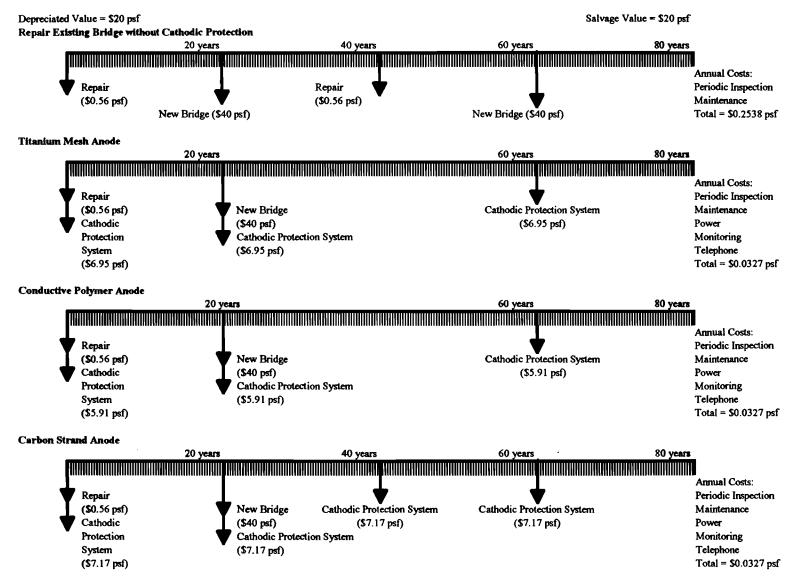
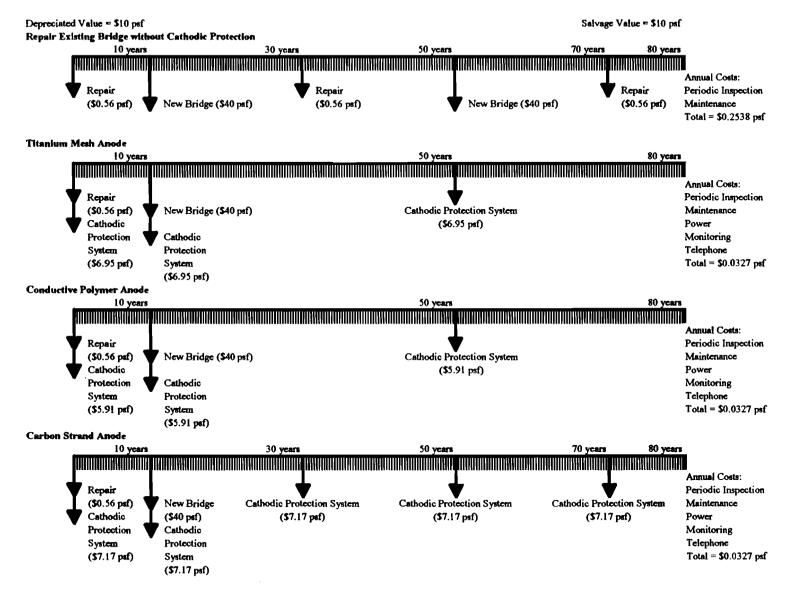






Figure 42. Cost Schedule for Repairing 20 Year Oid Bridge With and Without Cathodic Protection



\$1 per square foot = \$10.76 per square meter

Figure 43. Cost Schedule for Repairing 30 Year Old Bridge With and Without Cathodic Protection

| Alternative                 | ]     | Interest R    | ate    |
|-----------------------------|-------|---------------|--------|
| New Construction            | 6.00% | 7.50%         | 10.00% |
| Without Cathodic Protection | 48.27 | 45.73         | 43.51  |
| Titanium Mesh Anode         | 48.17 | 47.77         | 47,43  |
| Conductive Polymer Anode    | 47.02 | 46.67         | 46.37  |
| Carbon Strand Anode         | 50.86 | 49.78         | 48.74  |
| 10 Year Old Bridge          |       |               |        |
| Without Cathodic Protection | 42.31 | 38.81         | 35.51  |
| Titanium Mesh Anode         | 46.06 | 43.26         | 40.52  |
| Conductive Polymer Anode    | 44.82 | 42.09         | 39.42  |
| Carbon Strand Anode         | 48.95 | 45.39         | 41.88  |
| 20 Year Old Bridge          |       |               |        |
| Without Cathodic Protection | 38.30 | 33.84         | 29.18  |
| Titanium Mesh Anode         | 42.71 | 39.03         | 34.83  |
| Conductive Polymer Anode    | 41.31 | 37.73         | 33.63  |
| Carbon Strand Anode         | 43.70 | <b>39</b> .70 | 35.24  |
| 30 Year Old Bridge          |       |               |        |
| Without Cathodic Protection | 39.27 | 34.45         | 28.89  |
| Titanium Mesh Anode         | 44.55 | 40.88         | 35.99  |
| Conductive Polymer Anode    | 42.87 | 39.31         | 34.54  |
| Carbon Strand Anode         | 46.27 | 42.08         | 36.72  |

TABLE 11. Present Values for Bridge Deck Alternatives

#### 8. CONCLUSIONS

The performance of five cathodic protection systems installed on the U.S. 87 Missouri Pacific Railroad overpass structure was evaluated. Present values of bridge decks with and without cathodic protection were compared for new construction and repair of existing structures. The following conclusions resulted from the study:

- 1. Cathodic protection has successfully prevented corrosion in a variety of applications for many years. It was first used to protect reinforced concrete bridge decks more than 30 years ago and is now a mature technology.
- 2. Cathodic protection is recognized by FHWA as the only rehabilitation technique that has proven to stop corrosion in salt-contaminated bridge decks regardless of the chloride content of the concrete.
- 3. Several varieties of anode systems are available to distribute the protective current to the reinforced concrete. Three primary anode systems were tested on the Big Spring bridge deck, and two conductive coatings were

tested on other structural elements.

- 4. The performance of the rectifier system has been satisfactory, with one exception. The written procedure to measure instant off voltages involves pulling the control card for each rectifier circuit. This has resulted in apparent wear on the connectors to the card. This has resulted in intermittent operation of some rectifier circuits. Great care has to be exercised when reinserting the card to be sure a good connection is obtained.
- 5. The Elgard 150 titanium mesh anode provided stable operation and protection to the bridge deck. Its operation on the Big Spring bridge is consistent with the findings of other investigators. Titanium mesh anodes are reported to have service lives of 35 to 40 years.
- 6. The Raychem Ferex 100 conductive polymer anode performance began to deteriorate after one year of operation as noted by the decrease in conductance (Figure 18). It completely failed after two years of operation. Other researchers reported performance fluctuations in similar systems, but the duration of the study was less than 2 years.
- 7. The Rescon Rigid Conductive Polymer Concrete, Carbon Strand anode has exhibited recent fluctuations in performance. Once circuit (#9) of the Rescon Rigid Conductive Polymer Concrete, Carbon Strand anode has remained in stable operation. The other circuit (#10) essentially failed in late 1993, as noted by applying the maximum available voltage while current declined. Other researchers report similar findings but noted some discoloration of concrete near the anode which was attributed to acid formation and attack.
- 8. Hot sprayed zinc anode systems were applied to sidewalks and medians. The anode systems failed in less than 1 year. However, other researchers report success in using the sprayed zinc anode systems and it is possible the failures on the Big Spring bridge are due to the condition of the sidewalk and median before anode installation. In other research, a titanium mesh anode system was installed on a sidewalk and suffered the same sort of failure observed on the Big Spring bridge.
- 9. The Porter DAC-85 Conductive Paint anode system has failed and the conductive paint is peeling and flaking extensively.
- 10. Cathodic protection was not found to be universally cost effective for the new construction and repair of existing bridge alternatives considered for the Big Spring bridge scenario. The least expensive anode system (conductive polymer) was marginally cost effective for new construction,

but no systems were cost effective when considering the repair of existing bridges. However, the cost effectiveness study required a number of unsubstantiated assumptions and costs in the Big Spring area could vary considerably from costs at other locations. Costs of traffic control in major metropolitan areas could be much greater. Furthermore, the light salting required in Big Spring does not lead to the major bridge deck deteriorations experienced in other locations.

11. Remote monitoring of cathodic protection systems is a convenient method of data collection. However, the Big Spring bridge is close in proximity to the protected bridge and labor costs were no more than the monthly telephone bill for the remote monitoring system.

### 9. RECOMMENDATIONS

Several recommendations are proposed based upon the evaluation of the five cathodic protection systems installed on the U.S. 87 Missouri Railroad overpass.

- Based on data gathered for the U.S. 87 overpass in Big spring, only the titanium mesh anode can be recommended for future installations. Manufacturers of the other anode systems should be contacted concerning possible reasons for failures of their respective systems.
- 2. Based on an economic analysis of the U.S. 87 overpass circumstances, use of cathodic protection can not be strongly recommended for future similar applications.
- 3. It is recommended that monitoring of the U.S. 87 overpass bridge continue indefinitely. Continued monitoring will permit long-term data to be gathered on the reliability of the four titanium mesh circuits and the one remaining carbon anode circuit.

## **APPENDIX A:**

### List of References

### LIST OF REFERENCES

- 1. ACI Manual of Concrete Practice 1992, Part 1, Materials and General Properties of Concrete.
- 2. Ali, Mohammed Galam, and Rasheeduzzafar, "Cathodic Protection Current Accelerates Alkali-Silika Reaction", ACF Materials Journal, pp 247-252, May-June 1993.
- 3. Berndt, Christopher C. and Herman, Herbert, "Thermal Spraying, Major Advances Noted in Thermal Spray Technology", pp 23-25, Advanced Materials and Processes, January 1993.
- 4. <u>Cathodic Protection of Reinforced Concrete Bridge Elements: A State-of-the-Art</u> <u>Report</u>, Strategic Highway Research Program, SHRP-S-337, ELTECH Research Corporation, 1993.
- 5. Clear, K.C., "Time to Corrosion of Reinforcing Steel in Concrete Slabs", Transportation Research Record 500, Transportation Research Board, National Research Council, Washington, D.C., 1974.
- 6. Clemena, Gerardo G., and Jackson, Donald R., "Cathodic Protection of the Concrete Piers of Two Bridges in Virginia Using a Water-Based Conductive Coating", Transportation Research Board Record 1304, 1990.
- Flis, Janusz, Sehgal, Akshey, et.al., "Condition Evaluation of Concrete Bridges Relative to Reinforcement Corrosion, Volume 2: Method for Measuring the Corrosion Rate of Reinforcing Steel", Strategic Highway Research Program, National Research Council, Washington, D.C., 1992.
- 8. Grant, Eugene L., Ireson, W. Grant, et. al., "Principles of Engineering Economy", John Wiley and Sons, Inc., New York, 1982.
- 9. Highlands, Keith R., "Cathodic Protection for Reinforced Concrete Bridge Decks", Research Projects 75-15, 80-12, and 82-14, Final Report, Commonwealth of Pennsylvania Department of Transportation, November, 1991.
- Jackson, Donald R., "Cathodic Protection for Reinforced Concrete Bridge Decks", Interim Report, Demonstration Project No. 34, Report No. FHWA-DP-34-2, October, 1982.
- 11. Morgan, Joh H., "Cathodic Protection, Its Theory and Practice in Preventing Corrosion", Leonard Hill Books Limited, London, 1959.

- 12. Nagataki, Shigeyoshi, Otsuhi, Nobuaki, et.al., "Condensation of Chloride Ion in Hardened Cement Matrix Materials on Embedded Steel Bars", ACI Materials Journal, pp 323-332, July-August 1993.
- 13. <u>1991 Report to Congress</u>, Federal Highway Administration, June, 1991.
- Parker, Harry W., Feingold, Robert W., Nash, Phillip T., "Initial Analysis of Cathodic Protection Systems on US 87 Railroad Overpass Bridge, Big Spring, Texas", Research Report 500-2, sponsored by Texas Department of Transportation in cooperation with U.S. Department of Transportation, Federal Highway Administration, Lubbock, TX, May, 1992.
- 15. Perenchio, W.F., Landgren, J.R., and West, R.E., "Cathodic Protection of Concrete Bridge Substructures", National Cooperative Highway Research Program Report 278, October, 1985.
- 16. Schell, Hannah G. and Manning, David G., "Research Direction in Cathodic Protection for Highway Bridges", materials Processing, pp 11-15, October, 1989.
- Schiessel, Peter and Raupach, Michael, "Monitoring Systems for teh Corrosion Risk of Steel in Concrete Structures", Concrete International, Volume 14, Number 7, pp 52-55, July, 1992.
- 18. Silano, Louis C., (Editor), and Henderson, Arnold G., (Associate Editor), "Bridge Inspection and Rehabilitation", John Wiley and Sons, Inc., New York, 1993.
- 19. Smith, Linda, "Cathodic Bridge Deck Protection", Report No. TX/91-500/554-1, Texas Department of Transportation, Austin, Texas, August, 1990.
- 20. Smith, William F., "Foundations of Materials Science and Engineering", McGraw-Hill, Inc., New York, 1993.
- 21. Stratfull, R.F., "The Corrosion of Steel in a Reinforced Concrete Bridge", Corrosion, 13, pp 173-178, 1957.
- 22. Stratfull, R.F., "Corrosion Testing of Bridge Decks", Transportation Research Board, Transportation Research Record No. 539, pp 50-59, 1975.
- 23. Stratfull, R.F., "Criteria for the Cathodic Protection of Bridge Decks", Chapter 18 in Corrosion of Reinforcement in Concrete Construction, Society of Chemical Engineers, Chichester, West Sussex, England, 1983.
- 24. Swiat, Wayne J. and Bushman, James B., "Further Improvements in Cathodic Protection", Federal Highway Administration Report No. FHWA-RD-88-267, August, 1987.

#### 25. <u>Texas Bridge Design Guide</u>

- 26. Tilly, G.P., "Performance and Serviceability of Concrete Bridges", Bridge Evaluation Repair and Rehabilitation, the University of Michigan, 1987.
- 27. Tonini, D.E. and Dean, S.W., editors, "Chloride Corrosion of Steel in Concrete", a Symposium presented at the Seventy-ninth Annual Meeting, American Society for Testing and Materials, Chicago, IL, 27 June 2 July, 1976.
- 28. Uhlig, Herbert H., "Corrosion and Corrosion Control", John Wiley and Sons, New York, 1985.
- 29. Van Vlack, Lawrence H., "Elements of Material Science", Addison-Wesley Publishing Compnay, Reading, MA, April, 1967.
- Vrable, John B., "Cathodic Protection for reinforced Concrete Bridge Decks: Laboratory Phase", National Cooperative Highway Research Program Report 180, 1977.
- 31. Whiting, D. and Stark, D., "Galvanic Cathodic Protection for Reinforced Concrete Bridge Decks, Field Evaluation", National Cooperative Highway Research Program Report 234, June, 1981.

# **APPENDIX B:**

Data Listing

| Date:                              | 10/28/88 | 10/28/88 | 12/13/88 | 12/15/88 |
|------------------------------------|----------|----------|----------|----------|
| Days since last reading:           | 0        | 0        | 46       | 2        |
| Days since start-up (10/28/88):    | 0        | 0        | 46       | 48       |
| Tester:                            | Corrpro  | Corrpro  | Corrpro  | Corrpro  |
| # 1: TITANIUM MESH                 |          |          |          |          |
| Rebar Probe (volts)                | -0.01380 | -0.00200 | 0.006    | 0.010    |
| Reference Cell (volts)             | 0.360    | 0.449    | 0.541    | 0.501    |
| Anode Voltage                      | 0.57     | 4.98     | 5.6      | 5.2      |
| Anode Current (amps)               | 0.00     | 4.50     | 4.62     | 4.50     |
| Ref. Cell Instant-off (volts)      |          | 0.401    | 0.511    | 0.450    |
| Conductance (mhos)                 |          | 0.904    | 0.825    | 0.865    |
| Voltage drop in ref. circuit       |          | 0.048    | 0.030    | 0.051    |
| # 2: TITANIUM MESH                 |          |          |          |          |
| Rebar Probe (volts)                | -0.00670 | 0.00200  | 0.006    | 0.007    |
| Reference Cell (volts)             | 0.304    | 0,588    | 0.711    | 0.640    |
| Anode Voltage                      | 0.45     | 4.71     | 5.3      | 4.6      |
| Anode Current (amps)               | 0.00     | 4.00     | 4.11     | 3.48     |
| Ref. Cell Instant-off (volts)      |          | 0.416    | 0.566    | 0.489    |
| Conductance (mhos)                 |          | 0.849    | 0.775    | 0.757    |
| Voltage drop in ref. circuit       |          | 0.172    | 0.145    | 0.151    |
| # 3: TITANIUM MESH                 |          |          |          |          |
| Rebar Probe (volts)                | -0.00290 | 0.00200  | 0.006    | 0.004    |
| Reference Cell (volts)             | 0.266    | 0.427    | 0.668    | 0.596    |
| Anode Voltage                      | 0.46     | 4.68     | 5.9      | 5.1      |
| Anode Current (amps)               | 0.00     | 3.50     | 3.62     | 3.19     |
| Ref. Cell Instant-off (volts)      |          | 0.360    | 0.532    | 0.461    |
| Conductance (mhos)                 |          | 0.748    | 0.614    | 0.625    |
| Voltage drop in ref. circuit       |          | 0.067    | 0.136    | 0.135    |
| # 4: TITANIUM MESH                 |          |          |          |          |
| Rebar Probe (volts)                | -0.00200 | 0.00200  | 0.005    | 0.005    |
| Reference Cell (volts)             | 0.352    | 0.460    | 0.546    | 0.510    |
| Anode Voltage                      | 0.45     | 4.83     | 5.7      | 5.2      |
| Anode Current (amps)               | 0.00     | 4.50     | 4.62     | 4.50     |
| Ref. Cell Instant-off (volts)      |          | 0.410    | 0.514    | 0.456    |
| Conductance (mhos)                 |          | 0.932    | 0.811    | 0.865    |
| Voltage drop in ref. circuit       |          | 0.050    | 0.032    | 0.054    |
| 1-4: AVERAGE VALUES: TITANIUM MESH |          |          |          |          |
| Rebar Probe (volts)                | -0.006   | 0.001    | 0.006    | 0.007    |
| Reference Cell (volts)             | 0.321    | 0.481    | 0.617    | 0.562    |
| Anode Voltage                      | 0.5      | 4.8      | 5.6      | 5.0      |
| Anode Current (amps)               | 0.00     | 4.13     | 4.24     | 3.92     |
| Ref. Cell Instant-off (volts)      |          | 0.397    | 0.531    | 0.464    |
| Conductance (mbos)                 |          | 0.858    | 0.756    | 0.778    |
| Voltage drop in ref. circuit       |          | 0.084    | 0.086    | 0.098    |

| Date:                              | 1/31/89      | 2/1/89  | 2/2/89  | 3/13/89  |
|------------------------------------|--------------|---------|---------|----------|
| Days since last reading:           | 47           | 1       | 1       | 39       |
| Days since start-up (10/28/88):    | 95           | 96      | 97      | 136      |
| Tester:                            | Corrpro      | Corrpro | Corrpro | MC,DR,DE |
| # 1: TITANIUM MESH                 |              |         |         |          |
| Rebar Probe (volts)                | 0.005        | 0.002   | 0.004   | 0.006    |
| Reference Cell (volts)             | 0.508        | 0.404   | 0.479   | 0.461    |
| Anode Voltage                      | 5.4          | 5.4     | 5.5     | 5.6      |
| Anode Current (amps)               | 4.44         | 4.80    | 4.85    | 4.93     |
| Ref. Cell Instant-off (volts)      | 0.440        | 0.371   | 0.418   |          |
| Conductance (mbos)                 | 0.822        | 0.889   | 0.882   | 0.880    |
| Voltage drop in ref. circuit       | 0.068        | 0.033   | 0.061   |          |
| # 2: TITANIUM MESH                 |              |         |         |          |
| Rebar Probe (volts)                | 0.004        | 0.005   | 0.004   | 0.005    |
| Reference Cell (volts)             | 0.616        | 0,508   | 0.574   | 0.543    |
| Anode Voltage                      | 4.8          | 4.6     | 4.7     | 4.8      |
| Anode Current (amps)               | 3.44         | 3.55    | 3.56    | 3.64     |
| Ref. Cell Instant-off (volts)      | 0.465        | 0.395   | 0.449   |          |
| Conductance (mbos)                 | 0.717        | 0.772   | 0.757   | 0.758    |
| Voltage drop in ref. circuit       | 0.151        | 0.113   | 0.125   |          |
| # 3: TITANIUM MESH                 |              |         |         |          |
| Rebar Probe (volts)                | 0.002        | 0.005   | 0.005   | 0.005    |
| Reference Cell (volts)             | 0.557        | 0.441   | 0.501   | 0.466    |
| Anode Voltage                      | 5.4          | 4.8     | 5.1     | 5.2      |
| Anode Current (amps)               | 3.15         | 3.26    | 3.28    | 3.35     |
| Ref. Cell Instant-off (volts)      | 0.425        | 0.380   | 0.392   |          |
| Conductance (mbos)                 | 0.583        | 0.679   | 0.643   | 0.644    |
| Voltage drop in ref. circuit       | 0.132        | 0.061   | 0.109   |          |
| # 4: TITANIUM MESH                 |              |         |         |          |
| Rebar Probe (volts)                | 0.004        | 0.005   | 0.004   | 0.006    |
| Reference Cell (volts)             | 0.505        | 0.428   | 0.485   | 0.466    |
| Anode Voltage                      | 5.5          | 5.3     | 5.5     | 5.7      |
| Anode Current (amps)               | 4.44         | 4.81    | 4.86    | 4.97     |
| Ref. Cell Instant-off (volts)      | 0.443        | 0.389   | 0.433   |          |
| Conductance (mhos)                 | 0.807        | 0.908   | 0.884   | 0.872    |
| Voltage drop in ref. circuit       | 0.062        | 0.039   | 0.052   |          |
| 1-4: AVERAGE VALUES: TITANIUM MESH |              |         |         |          |
| Rebar Probe (volts)                | 0.004        | 0.004   | 0.004   | 0.006    |
| Reference Cell (volts)             | 0.547        | 0.445   | 0.510   | 0.484    |
| Anode Voltage                      | 5.3          | 5.0     | 5.2     | 5.3      |
| Anode Current (amps)               | <b>3.8</b> 7 | 4.11    | 4.14    | 4.22     |
| Ref. Cell Instant-off (volts)      | 0.443        | 0.384   | 0.423   |          |
| Conductance (mhos)                 | 0.732        | 0.812   | 0.792   | 0.789    |
| Voltage drop in ref. circuit       | 0.103        | 0.061   | 0.087   |          |

.

۶

٠

٠

.

÷

| Date:                              | 4/13/89  | 5/26/89 | 6/13/89 | 7/17/89       |
|------------------------------------|----------|---------|---------|---------------|
| Days since last reading:           | 31       | 43      | 18      | 34            |
| Days since start-up (10/28/88):    | 167      | 210     | 228     | 262           |
| Tester:                            | DR,DE,TD | DR      | JM,DR   | DR,KC         |
| # 1: TITANIUM MESH                 |          |         |         |               |
| Rebar Probe (volts)                | 0.006    | 0.006   | 0.006   | 0.009         |
| Reference Cell (volts)             | 0.532    | 0.371   | 0.442   | 0.416         |
| Anode Voltage                      | 5.8      | 5.3     | 5.6     | 5.6           |
| Anode Current (amps)               | 4.95     | 4.85    | 4.87    | 4.78          |
| Ref. Cell Instant-off (volts)      |          |         |         |               |
| Conductance (mhos)                 | 0.853    | 0.915   | 0.870   | 0.854         |
| Voltage drop in ref. circuit       |          |         |         |               |
| # 2: TITANIUM MESH                 |          |         |         |               |
| Rebar Probe (volts)                | 0.005    | 0.006   | 0.006   | 0.008         |
| Reference Cell (volts)             | 0.632    | 0.438   | 0.523   | 0.486         |
| Anode Voltage                      | 5.0      | 4.5     | 4.8     | 4.8           |
| Anode Current (amps)               | 3.65     | 3.57    | 3.59    | 3.49          |
| Ref. Cell Instant-off (volts)      |          |         |         |               |
| Conductance (mhos)                 | 0.730    | 0.793   | 0.748   | 0.727         |
| Voltage drop in ref. circuit       |          |         |         |               |
| # 3: TITANIUM MESH                 |          |         |         |               |
| Rebar Probe (volts)                | 0.004    | 0.006   | 0.005   | 0.009         |
| Reference Cell (volts)             | 0.525    | 0.364   | 0.411   | 0.388         |
| Anode Voltage                      | 5.6      | 4.6     | 5.3     | 5.1           |
| Anode Current (amps)               | 3.36     | 3.29    | 3.33    | 3.29          |
| Ref. Cell Instant-off (volts)      |          |         |         |               |
| Conductance (mhos)                 | 0.600    | 0.715   | 0.628   | 0.645         |
| Voltage drop in ref. circuit       |          |         |         |               |
| # 4: TITANIUM MESH                 |          |         |         |               |
| Rebar Probe (volts)                | 0.005    | 0.007   | 0.005   | 0.008         |
| Reference Cell (volts)             | 0.508    | 0.395   | 0.426   | 0.406         |
| Anode Voltage                      | 6.0      | 5.3     | 5.7     | 5.6           |
| Anode Current (amps)               | 4,99     | 4.90    | 4.92    | 4.81          |
| Ref. Cell Instant-off (volts)      |          |         |         |               |
| Conductance (mbos)                 | 0.832    | 0.925   | 0.863   | <b>0.85</b> 9 |
| Voltage drop in ref. circuit       |          |         |         |               |
| 1-4: AVERAGE VALUES: TITANIUM MESH |          |         |         |               |
| Rebar Probe (volts)                | 0.005    | 0.006   | 0.006   | 0.009         |
| Reference Cell (volts)             | 0.549    | 0.392   | 0.451   | 0.424         |
| Anode Voltage                      | 5.6      | 4.9     | 5.4     | 5.3           |
| Anode Current (amps)               | 4.24     | 4.15    | 4.18    | 4.09          |
| Ref. Cell Instant-off (volts)      |          |         |         |               |
| Conductance (mhos)                 | 0.754    | 0.837   | 0.777   | 0.771         |
| Voltage drop in ref. circuit       |          |         |         |               |

| Date:                              | 8/18/89 | 9/19/89 | 10/31/89 | 11/28/89 |
|------------------------------------|---------|---------|----------|----------|
| Days since last reading:           | 32      | 32      | 42       | 28       |
| Days since start-up (10/28/88):    | 294     | 326     | 368      | 396      |
| Tester:                            | DR      | DR      | DR       | DR       |
| # 1: TITANIUM MESH                 |         |         |          |          |
| Rebar Probe (volts)                | 0.009   | 0.006   | 0.005    | 0.005    |
| Reference Cell (volts)             | 0.403   | 0.505   | 0.525    | 0.744    |
| Anode Voltage                      | 5.6     | 5.9     | 5.9      | 6.3      |
| Anode Current (amps)               | 4.80    | 4.83    | 4.85     | 4.99     |
| Ref. Cell Instant-off (volts)      |         |         |          |          |
| Conductance (mhos)                 | 0.857   | 0.819   | 0.822    | 0.792    |
| Voltage drop in ref. circuit       |         |         |          |          |
| # 2: TITANIUM MESH                 |         |         |          |          |
| Rebar Probe (volts)                | 0.009   | 0.005   | 0.006    | 0.004    |
| Reference Cell (volts)             | 0.498   | 0.605   | 0.718    | 0.984    |
| Anode Voltage                      | 4.8     | 5.1     | 5.2      | 5.7      |
| Anode Current (amps)               | 3,50    | 3.54    | 3.56     | 3.68     |
| Ref. Cell Instant-off (volts)      |         |         |          |          |
| Conductance (mhos)                 | 0.729   | 0.694   | 0.685    | 0.646    |
| Voltage drop in ref. circuit       |         |         |          |          |
| # 3: TITANIUM MESH                 |         |         |          |          |
| Rebar Probe (volts)                | 0.008   | 0.005   | 0.005    | 0.004    |
| Reference Cell (volts)             | 0.375   | 0,423   | 0.456    | 0.599    |
| Anode Voltage                      | 4.9     | 5.8     | 5.8      | 7.1      |
| Anode Current (amps)               | 3.25    | 3.27    | 3,30     | 3.41     |
| Ref. Cell Instant-off (volts)      |         |         |          |          |
| Conductance (mhos)                 | 0.663   | 0.564   | 0.569    | 0.480    |
| Voltage drop in ref. circuit       |         |         |          |          |
| # 4: TITANIUM MESH                 |         |         |          |          |
| Rebar Probe (volts)                | 0.008   | 0.005   | 0.004    | 0.004    |
| Reference Cell (volts)             | 0.393   | 0,428   | 0.445    | 0.546    |
| Anode Voltage                      | 5.5     | 6.0     | 6.0      | 6,8      |
| Anode Current (amps)               | 4.81    | 4,85    | 4.89     | 5.04     |
| Ref. Cell Instant-off (volts)      |         |         |          |          |
| Conductance (mhos)                 | 0.875   | 0.808   | 0.815    | 0.741    |
| Voltage drop in ref. circuit       |         |         |          |          |
| 1-4: AVERAGE VALUES: TITANIUM MESH |         |         |          |          |
| Rebar Probe (volts)                | 0,009   | 0.005   | 0.005    | 0.004    |
| Reference Cell (volts)             | 0.417   | 0.490   | 0.536    | 0.718    |
| Anode Voltage                      | 5.2     | 5.7     | 5.7      | 6.5      |
| Anode Current (amps)               | 4.09    | 4.12    | 4.15     | 4.28     |
| Ref. Cell Instant-off (volts)      |         |         |          |          |
| Conductance (mhos)                 | 0.781   | 0.721   | 0.723    | 0.665    |
| Voltage drop in ref. circuit       |         |         |          |          |

.

.

3

\$

| Date:                              | 1/9/90 | 1/17/90 | 4/26/90 | 11/19/90 |
|------------------------------------|--------|---------|---------|----------|
| Days since last reading:           | 12     | 8       | 99      | 207      |
| Days since start-up (10/28/88):    | 408    | 416     | 515     | 722      |
| Tester:                            | DR,DE  | DR      | DE,TD   | JM,DE    |
| # 1: TITANIUM MESH                 |        |         |         |          |
| Rebar Probe (volts)                | 0.005  | 0.006   | 0.005   | 0.004    |
| Reference Cell (volts)             | 0.542  | 0.551   | 0.612   | 0.087    |
| Anode Voltage                      | 5.9    | 5.8     | 6.1     | 6.0      |
| Anode Current (amps)               | 4,90   | 4.87    | 4.86    | 4.83     |
| Ref. Cell Instant-off (volts)      | 0.354  |         | 0.377   | 0.159    |
| Conductance (mhos)                 | 0.831  | 0.840   | 0.797   | 0.805    |
| Voltage drop in ref. circuit       | 0.188  |         | 0.235   | -0.072   |
| # 2: TITANIUM MESH                 |        |         |         |          |
| Rebar Probe (volts)                | 0.005  | 0.006   | 0.005   | 0.004    |
| Reference Cell (volts)             | 0.722  | 0.725   | 0.777   | 0.822    |
| Anode Voltage                      | 5.2    | 5.1     | 5.3     | 5.3      |
| Anode Current (amps)               | 3.62   | 3.59    | 3.57    | 3.52     |
| Ref. Cell Instant-off (volts)      | 0.382  |         | 0.411   | 0.272    |
| Conductance (mhos)                 | 0.696  | 0.704   | 0.674   | 0.664    |
| Voltage drop in ref. circuit       | 0.340  |         | 0.366   | 0.550    |
| # 3: TITANIUM MESH                 |        |         |         |          |
| Rebar Probe (volts)                | 0.004  | 0.005   | 0.005   | 0.004    |
| Reference Cell (volts)             | 0.489  | 0.483   | 0.453   | 0.433    |
| Anode Voltage                      | 5.7    | 5.6     | 6.0     | 5.6      |
| Anode Current (amps)               | 3.35   | 3.32    | 3.32    | 3.28     |
| Ref. Cell Instant-off (volts)      | 0.351  |         | 0.327   | 0.277    |
| Conductance (mhos)                 | 0.588  | 0.593   | 0.553   | 0.586    |
| Voltage drop in ref. circuit       | 0.138  |         | 0.126   | 0.156    |
| # 4: TITANIUM MESH                 |        |         |         |          |
| Rebar Probe (volts)                | 0.004  | 0.005   | 0.004   | 0.004    |
| Reference Cell (volts)             | 0.491  | 0.480   | 0.446   | 0.495    |
| Anode Voltage                      | 6.0    | 5.9     | 6.2     | 6.1      |
| Anode Current (amps)               | 4,97   | 4.93    | 3.93    | 4.66     |
| Ref. Cell Instant-off (volts)      | 0.383  |         | 0.340   | 0.276    |
| Conductance (mhos)                 | 0.828  | 0.836   | 0.634   | 0.764    |
| Voltage drop in ref. circuit       | 0.108  |         | 0.106   | 0.219    |
| 1-4: AVERAGE VALUES: TITANIUM MESH |        |         |         |          |
| Rebar Probe (volts)                | 0.005  | 0.006   | 0.005   | 0.004    |
| Reference Cell (volts)             | 0.561  | 0.560   | 0.572   | 0.459    |
| Anode Voltage                      | 5.7    | 5.6     | 5.9     | 5.8      |
| Anode Current (amps)               | 4.21   | 4.18    | 3.92    | 4.07     |
| Ref. Cell Instant-off (volts)      | 0.368  |         | 0.364   | 0.246    |
| Conductance (mhos)                 | 0.736  | 0.743   | 0.664   | 0.705    |
| Voltage drop in ref. circuit       | 0.194  |         | 0.208   | 0.213    |

•

| Date:                              | 3/28/91 | 5/15/91 | 7/31/91 | 8/16/91      |
|------------------------------------|---------|---------|---------|--------------|
| Days since last reading:           | 129     | 48      | 77      | 16           |
| Days since start-up (10/28/88):    | 851     | 899     | 976     | 992          |
| Tester:                            | DE,KC   | DE      | DE      | JM,DE        |
| # 1: TITANIUM MESH                 |         |         |         |              |
| Rebar Probe (volts)                | 0.004   | 0.005   | 0.005   | 0.005        |
| Reference Cell (volts)             | 0.075   | 0.067   | 0.047   | 0.036        |
| Anode Voltage                      | 6.3     | 6.0     | 5.5     | 5.2          |
| Anode Current (amps)               | 4.86    | 4.80    | 4.84    | 4.82         |
| Ref. Cell Instant-off (volts)      | 0.128   | 0.118   | 0.078   | 0.076        |
| Conductance (mhos)                 | 0.771   | 0.800   | 0.880   | 0.927        |
| Voltage drop in ref. circuit       | -0.053  | -0.051  | -0.031  | -0.040       |
| # 2: TITANIUM MESH                 |         |         |         |              |
| Rebar Probe (volts)                | 0,006   | 0.005   | 0.005   | 0.006        |
| Reference Cell (volts)             | 0.986   | 0.893   | 0.768   | 0.595        |
| Anode Voltage                      | 5.6     | 5.2     | 4.8     | 4.3          |
| Anode Current (amps)               | 3.56    | 3.51    | 3.56    | 3.53         |
| Ref. Cell Instant-off (volts)      | 0.350   | 0.305   | 0.293   | 0.266        |
| Conductance (mhos)                 | 0.636   | 0.675   | 0.742   | 0.821        |
| Voltage drop in ref. circuit       | 0.636   | 0.588   | 0.475   | 0.329        |
| # 3: TITANIUM MESH                 |         |         |         |              |
| Rebar Probe (volts)                | 0.005   | 0.006   | 0.006   | 0.007        |
| Reference Cell (volts)             | 0.470   | 0.436   | 0.396   | 0.383        |
| Anode Voltage                      | 6.0     | 5,6     | 5.0     | 4.4          |
| Anode Current (amps)               | 3,33    | 3.26    | 3.30    | 3.27         |
| Ref. Cell Instant-off (volts)      | 0.344   | 0.319   | 0.302   | 0.286        |
| Conductance (mhos)                 | 0.555   | 0.582   | 0.660   | 0.743        |
| Voltage drop in ref. circuit       | 0.126   | 0.117   | 0.094   | 0.097        |
| # 4: TITANIUM MESH                 |         |         |         |              |
| Rebar Probe (volts)                | 0.004   | 0.005   | 0.005   | 0.006        |
| Reference Cell (volts)             | 0.497   | 0.445   | 0.394   | 0,367        |
| Anode Voltage                      | 6.4     | 6.0     | 5,5     | 5.0          |
| Anode Current (amps)               | 4.95    | 4.83    | 4.90    | <b>4.8</b> 7 |
| Ref. Cell Instant-off (volts)      | 0.338   | 0.297   | 0.290   | 0.287        |
| Conductance (mhos)                 | 0.773   | 0.805   | 0.891   | 0.974        |
| Voltage drop in ref. circuit       | 0.159   | 0.148   | 0.104   | 0.080        |
| 1-4: AVERAGE VALUES: TITANIUM MESH |         |         |         |              |
| Rebar Probe (volts)                | 0.005   | 0.005   | 0.005   | 0.006        |
| Reference Cell (volts)             | 0.507   | 0.460   | 0.401   | 0.345        |
| Anode Voltage                      | 6.1     | 5.7     | 5.2     | 4.7          |
| Anode Current (amps)               | 4.18    | 4.10    | 4.15    | 4.12         |
| Ref. Cell Instant-off (volts)      | 0.290   | 0.260   | 0.241   | 0.229        |
| Conductance (mhos)                 | 0.684   | 0.716   | 0.793   | 0.866        |
| Voltage drop in ref. circuit       | 0.217   | 0.201   | 0.161   | 0.117        |

\*

| Date:                              | 9/10/91 | 10/9/91 | 1/7/92 | 3/19/92 |
|------------------------------------|---------|---------|--------|---------|
| Days since last reading:           | 25      | 29      | 90     | 72      |
| Days since start-up (10/28/88):    | 1,017   | 1,046   | 1,136  | 1,208   |
| Tester:                            | DE      | DE      | DE     | DE      |
| # 1: TITANIUM MESH                 |         |         |        |         |
| Rebar Probe (volts)                | 0.005   | 0.005   | 0.002  | 0.002   |
| Reference Cell (volts)             | 0.027   | 0.025   | 0.018  | 0.019   |
| Anode Voltage                      | 5.3     | 5.4     | 5.9    | 6.2     |
| Anode Current (amps)               | 4.80    | 4.81    | 4.85   | 4.89    |
| Ref. Cell Instant-off (volts)      | 0.013   | 0.010   | 0.008  | 0.007   |
| Conductance (mhos)                 | 0.906   | 0.891   | 0.822  | 0.789   |
| Voltage drop in ref. circuit       | 0.014   | 0.015   | 0.010  | 0.012   |
| # 2: TITANIUM MESH                 |         |         |        |         |
| Rebar Probe (volts)                | 0.006   | 0.005   | 0.002  | 0.003   |
| Reference Cell (volts)             | 0.654   | 0.732   | 0.975  | 1.309   |
| Anode Voltage                      | 4.5     | 4.6     | 5.1    | 5.6     |
| Anode Current (amps)               | 3.53    | 3.51    | 3.56   | 3.60    |
| Ref. Cell Instant-off (volts)      | 0.263   | 0,268   | 0.295  | 0.390   |
| Conductance (mhos)                 | 0.784   | 0.763   | 0.698  | 0.643   |
| Voltage drop in ref. circuit       | 0.391   | 0.464   | 0.680  | 0.919   |
| # 3: TITANIUM MESH                 |         |         |        |         |
| Rebar Probe (volts)                | 0.006   | 0.006   | 0.003  | 0.003   |
| Reference Cell (volts)             | 0.394   | 0.433   | 0.489  | 0.559   |
| Anode Voltage                      | 4.6     | 4.8     | 5.5    | 6.0     |
| Anode Current (amps)               | 3.26    | 3.26    | 3.30   | 3.33    |
| Ref. Cell Instant-off (volts)      | 0.282   | 0.300   | 0.329  | 0.354   |
| Conductance (mhos)                 | 0.709   | 0.679   | 0.600  | 0.555   |
| Voltage drop in ref. circuit       | 0.112   | 0.133   | 0.160  | 0.205   |
| # 4: TITANIUM MESH                 |         |         |        |         |
| Rebar Probe (volts)                | 0.005   | 0.005   | 0.003  | 0.003   |
| Reference Cell (volts)             | 0.388   | 0.413   | 0.459  | 0.508   |
| Anode Voltage                      | 5.2     | 5.3     | 5.9    | 6.2     |
| Anode Current (amps)               | 4.86    | 4.85    | 4.91   | 4.96    |
| Ref. Cell Instant-off (volts)      | 0.285   | 0.309   | 0.342  | 0.346   |
| Conductance (mhos)                 | 0.935   | 0.915   | 0.832  | 0.800   |
| Voltage drop in ref. circuit       | 0.103   | 0.104   | 0.117  | 0.162   |
| 1-4: AVERAGE VALUES: TITANIUM MESH |         |         |        |         |
| Rebar Probe (volts)                | 0.006   | 0.005   | 0.003  | 0.003   |
| Reference Cell (volts)             | 0.366   | 0.401   | 0.485  | 0.599   |
| Anode Voltage                      | 4,9     | 5.0     | 5.6    | 6.0     |
| Anode Current (amps)               | 4.11    | 4.11    | 4.16   | 4.20    |
| Ref. Cell Instant-off (volts)      | 0.211   | 0.222   | 0.244  | 0.274   |
| Conductance (mhos)                 | 0.833   | 0.812   | 0.738  | 0.697   |
|                                    |         |         |        |         |

| Date:                              | 4/17/92 | 5/15/92 | 6/11/92 |
|------------------------------------|---------|---------|---------|
| Days since last reading:           | 29      | 28      | 27      |
| Days since start-up (10/28/88):    | 1,237   | 1,265   | 1,292   |
| Tester:                            | DE      | DE      | DE      |
| # 1: TITANIUM MESH                 |         |         |         |
| Rebar Probe (volts)                | 0.002   | 0.004   | 0.005   |
| Reference Celi (volts)             | 0.022   | 0.024   | 0.030   |
| Anode Voltage                      | 6.1     | 5.3     | 5.3     |
| Anode Current (amps)               | 4.84    | 4.82    | 4.82    |
| Ref. Cell Instant-off (volts)      | 0.190   | 0.010   | 0.012   |
| Conductance (mhos)                 | 0.793   | 0.909   | 0.909   |
| Voltage drop in ref. circuit       | -0.168  | 0.014   | 0.018   |
| # 2: TITANIUM MESH                 |         |         |         |
| Rebar Probe (volts)                | 0.003   | 0.005   | 0.005   |
| Reference Cell (volts)             | 1.149   | 0.586   | 0.622   |
| Anode Voltage                      | 5.4     | 4.5     | 4.5     |
| Anode Current (amps)               | 3,56    | 3.55    | 3.53    |
| Ref. Cell Instant-off (volts)      | 0.347   | 0.226   | 0.237   |
| Conductance (mhos)                 | 0.659   | 0.789   | 0.784   |
| Voltage drop in ref. circuit       | 0.802   | 0.360   | 0.385   |
| # 3: TITANIUM MESH                 |         |         |         |
| Rebar Probe (volts)                | 0.004   | 0.006   | 0.007   |
| Reference Cell (volts)             | 0.507   | 0.404   | 0.414   |
| Anode Voltage                      | 5.8     | 4.6     | 4.6     |
| Anode Current (amps)               | 3.30    | 3.29    | 3.29    |
| Ref. Cell Instant-off (volts)      | 0.321   | 0.276   | 0.274   |
| Conductance (mhos)                 | 0.569   | 0.715   | 0.715   |
| Voltage drop in ref. circuit       | 0.186   | 0.128   | 0.140   |
| # 4: TITANIUM MESH                 |         |         |         |
| Rebar Probe (volts)                | 0.003   | 0.005   | 0.006   |
| Reference Cell (volts)             | 0.472   | 0.367   | 0.382   |
| Anode Voltage                      | 6.0     | 5.1     | 5.1     |
| Anode Current (amps)               | 4.91    | 4.91    | 4.89    |
| Ref. Cell Instant-off (volts)      | 0.327   | 0.283   | 0.290   |
| Conductance (mhos)                 | 0.818   | 0.963   | 0.959   |
| Voltage drop in ref. circuit       | 0.145   | 0.084   | 0.092   |
| 1-4: AVERAGE VALUES: TITANIUM MESH |         |         |         |
| Rebar Probe (volts)                | 0.003   | 0.005   | 0.006   |
| Reference Cell (volts)             | 0.538   | 0.345   | 0.362   |
| Anode Voltage                      | 5.8     | 4.9     | 4.9     |
| Anode Current (amps)               | 4.15    | 4.14    | 4.13    |
| Ref. Cell Instant-off (volts)      | 0.296   | 0.199   | 0.203   |
| Conductance (mhos)                 | 0.710   | 0.844   | 0.842   |
| Voltage drop in ref. circuit       | 0.241   | 0.147   | 0.159   |

۰.

۶

.

.

.

.

#

۴.

\$

| Date:                              | 7/9/92 | 8/7/92      | 8/25/92 | 9/22/92 |
|------------------------------------|--------|-------------|---------|---------|
| Days since last reading:           | 28     | 29          | 18      | 28      |
| Days since start-up (10/28/88):    | 1,320  | 1,349       | 1,367   | 1,395   |
| Tester:                            | DE     | HP,RF       | DE      | DE      |
| # 1: TITANIUM MESH                 |        |             |         |         |
| Rebar Probe (volts)                | 0.003  | 0.005       | 0.004   | 0.002   |
| Reference Cell (volts)             | 0.033  | 0.033       | 0.026   | 0.025   |
| Anode Voltage                      | 6.0    | 6.0         | 5.4     | 5.7     |
| Anode Current (amps)               | 4.80   | 4.81        | 4.78    | 4.84    |
| Ref. Cell Instant-off (volts)      | 0.012  | 0.014       | 0.010   | 0.010   |
| Conductance (mbos)                 | 0.800  | 0.802       | 0.885   | 0.849   |
| Voltage drop in ref. circuit       | 0.021  | 0.019       | 0.016   | 0.015   |
| # 2: TITANIUM MESH                 |        |             |         |         |
| Rebar Probe (volts)                | 0.004  | 0.004       | 0.004   | 0.003   |
| Reference Cell (volts)             | 0.989  | 1.000       | 0.716   | 0.833   |
| Anode Voltage                      | 5.3    | 5.3         | 4.8     | 5.0     |
| Anode Current (amps)               | 3.52   | 3.53        | 3.56    | 3.56    |
| Ref. Cell Instant-off (volts)      | 0.287  | 0.250       | 0.225   | 0.246   |
| Conductance (mbos)                 | 0.664  | 0.666       | 0.742   | 0.712   |
| Voltage drop in ref. circuit       | 0.702  | 0.750       | 0.491   | 0.587   |
| # 3: TITANIUM MESH                 |        |             |         | 0.298   |
| Rebar Probe (volts)                | 0.004  | 0.004       | 0.005   | 0.004   |
| Reference Cell (volts)             | 0.463  | 0.471       | 0.424   | 0.482   |
| Anode Voltage                      | 5.6    | 5.5         | 4.9     | 5.2     |
| Anode Current (amps)               | 3.27   | 3.27        | 3.30    | 3.31    |
| Ref. Cell Instant-off (volts)      | 0.285  | 0.270       | 0.262   | 0.284   |
| Conductance (mbos)                 | 0.584  | 0.595       | 0.673   | 0.637   |
| Voltage drop in ref. circuit       | 0.178  | 0.201       | 0.162   | 0.198   |
| # 4: TITANIUM MESH                 |        |             |         |         |
| Rebar Probe (volts)                | 0.004  | 0.004       | 0.005   | 0.003   |
| Reference Cell (volts)             | 0.411  | 0.431       | 0.395   | 0.423   |
| Anode Voltage                      | 6.0    | 5.9         | 5.4     | 5.7     |
| Anode Current (amps)               | 4.86   | 4.86        | 4.85    | 4.91    |
| Ref. Cell Instant-off (volts)      | 0.291  | 0.287       | 0.283   |         |
| Conductance (mbos)                 | 0.810  | 0.824       | 0.898   | 0.861   |
| Voltage drop in ref. circuit       | 0.120  | 0.144       | 0.112   | 0.125   |
| 1-4: AVERAGE VALUES: TITANIUM MESH |        |             |         |         |
| Rebar Probe (volts)                | 0.004  | 0.004       | 0.005   | 0.003   |
| Reference Cell (volts)             | 0.474  | 0.484       | 0.390   | 0.441   |
| Anode Voltage                      | 5.7    | <b>5.</b> 7 | 5.1     | 5.4     |
| Anode Current (amps)               | 4.11   | 4.12        | 4.12    | 4.16    |
| Ref. Cell Instant-off (volts)      | 0.219  | 0.205       | 0.195   | 0.210   |
| Conductance (mhos)                 | 0.715  | 0.721       | 0.800   | 0.765   |
| Voltage drop in ref. circuit       | 0.255  | 0.279       | 0.195   | 0.231   |

| Date:                              | 1/8/93 | 2/12/93 | 2/26/93 | 2/26/93 |
|------------------------------------|--------|---------|---------|---------|
| Days since last reading:           | 108    | 35      | 14      | 0.50    |
| Days since start-up (10/28/88):    | 1,503  | 1,538   | 1,552   | 1,553   |
| Tester:                            | DE     | DE      | RF      | RF      |
| # 1: TITANIUM MESH                 |        |         |         |         |
| Rebar Probe (volts)                | 0.003  | 0.001   | 0.001   | 0.001   |
| Reference Cell (volts)             | 0.010  | 0.007   | 0.007   | 0.008   |
| Anode Voltage                      | 6.9    | 6.9     | 7.2     | 6.3     |
| Anode Current (amps)               | 4.90   | 4.88    | 4,96    | 4.92    |
| Ref. Cell Instant-off (volts)      | 0.004  | 0.003   | 0.003   | 0.003   |
| Conductance (mhos)                 | 0.710  | 0.707   | 0.689   | 0.781   |
| Voltage drop in ref. circuit       | 0.006  | 0.004   | 0.004   | 0.005   |
| # 2: TITANIUM MESH                 |        |         |         |         |
| Rebar Probe (volts)                | 0.003  | 0.001   | 0.001   | 0.001   |
| Reference Cell (volts)             | 1.642  | 1.607   | 1.931   | 1.117   |
| Anode Voltage                      | 6.4    | 6.4     | 6.8     | 4.9     |
| Anode Current (amps)               | 3.62   | 3,59    | 3.66    | 2.81    |
| Ref. Cell Instant-off (volts)      | 0.456  | 0.472   | 0.566   | 0.348   |
| Conductance (mhos)                 | 0.566  | 0.561   | 0.538   | 0.573   |
| Voltage drop in ref. circuit       | 1,186  | 1.135   | 1.365   | 0.769   |
| # 3: TITANIUM MESH                 |        |         |         |         |
| Rebar Probe (volts)                | 0.003  | 0.002   | 0.002   | 0.002   |
| Reference Cell (volts)             | 0.701  | 0.749   | 0.829   | 0.625   |
| Anode Voltage                      | 7.4    | 6.9     | 7.6     | 5.4     |
| Anode Current (amps)               | 3.37   | 3.33    | 3.40    | 2.78    |
| Ref. Cell Instant-off (volts)      | 0.330  | 0.331   | 0.339   | 0.319   |
| Conductance (mhos)                 | 0.455  | 0.483   | 0.447   | 0.515   |
| Voltage drop in ref. circuit       | 0.371  | 0.418   | 0.490   | 0.306   |
| # 4: TITANIUM MESH                 |        |         |         |         |
| Rebar Probe (volts)                | 0.003  | 0.002   | 0.002   | 0.002   |
| Reference Cell (volts)             | 0.557  | 0.571   | 0.584   | 0.602   |
| Anode Voltage                      | 7.1    | 7.0     | 7.5     | 7.6     |
| Anode Current (amps)               | 5.00   | 4.93    | 5.04    | 6.39    |
| Ref. Cell Instant-off (volts)      | 0.379  | 0.385   | 0.381   | 0.396   |
| Conductance (mhos)                 | 0.704  | 0.704   | 0.672   | 0.841   |
| Voltage drop in ref. circuit       | 0.178  | 0.186   | 0.203   | 0.206   |
| 1-4: AVERAGE VALUES: TITANIUM MESH |        |         |         |         |
| Rebar Probe (volts)                | 0.003  | 0.002   | 0.002   | 0.002   |
| Reference Cell (volts)             | 0.728  | 0.734   | 0.838   | 0.588   |
| Anode Voltage                      | 7.0    | 6.8     | 7.3     | 6.1     |
| Anode Current (amps)               | 4.22   | 4.18    | 4.27    | 4.23    |
| Ref. Cell Instant-off (volts)      | 0.292  | 0.298   | 0.322   | 0.267   |
| Conductance (mhos)                 | 0.609  | 0.614   | 0.587   | 0.678   |
| Voltage drop in ref. circuit       | 0.435  | 0.436   | 0.516   | 0.322   |

| Date:                              | 3/5/93 | 3/18/93 | 4/27/93 | 5/28/93       |
|------------------------------------|--------|---------|---------|---------------|
| Days since last reading:           | 7      | 13      | 40      | 31            |
| Days since start-up (10/28/88):    | 1,560  | 1,573   | 1,613   | 1,644         |
| Tester:                            | RF     | HP,RF   | DE,JS   | DE,TM         |
| # 1: TITANIUM MESH                 |        |         |         |               |
| Rebar Probe (volts)                | 0.001  | 0.001   | 0.002   | 0.004         |
| Reference Cell (volts)             | 0.007  | 0.002   | 0.013   | 0.015         |
| Anode Voltage                      | 6.7    | 1.2     | 6.0     | 5.5           |
| Anode Current (amps)               | 4.90   | 0.00    | 4.82    | 4.80          |
| Ref. Cell Instant-off (volts)      | 0.003  | 0.002   | 0.005   | 0,005         |
| Conductance (mhos)                 | 0.731  | 0.000   | 0.803   | 0.873         |
| Voltage drop in ref. circuit       | 0.004  | 0.000   | 0.008   | 0.010         |
| # 2: TITANIUM MESH                 |        |         |         |               |
| Rebar Probe (volts)                | 0.001  | 0.002   | 0.003   | 0.004         |
| Reference Cell (volts)             | 1.241  | 1.236   | 0.811   | 0.554         |
| Anode Voltage                      | 5.3    | 5.1     | 4.5     | 4.0           |
| Anode Current (amps)               | 2.81   | 2.80    | 2.71    | 2.70          |
| Ref. Cell Instant-off (volts)      | 0.340  | 0.350   | 0.258   | 0.197         |
| Conductance (mhos)                 | 0.530  | 0.549   | 0.602   | 0.675         |
| Voltage drop in ref. circuit       | 0.901  | 0.886   | 0.553   | 0.357         |
| # 3: TITANIUM MESH                 |        |         |         |               |
| Rebar Probe (volts)                | 0.002  | 0.002   | 0.004   | 0.005         |
| Reference Cell (volts)             | 0.635  | 0.583   | 0.486   | 0.415         |
| Anode Voltage                      | 5.9    | 5.9     | 4.8     | 4.3           |
| Anode Current (amps)               | 2.78   | 2.78    | 2.77    | 2.73          |
| Ref. Cell Instant-off (volts)      | 0.303  | 0.284   | 0.275   | 0.240         |
| Conductance (mhos)                 | 0.471  | 0.471   | 0.577   | 0.635         |
| Voltage drop in ref. circuit       | 0.332  | 0.299   | 0.211   | 0.175         |
| # 4: TITANIUM MESH                 |        |         |         |               |
| Rebar Probe (volts)                | 0.002  | 0,002   | 0.003   | 0,004         |
| Reference Cell (volts)             | 0.609  | 0.520   | 0.488   | 0.454         |
| Anode Voltage                      | 8.0    | 7.0     | 7.0     | 6.4           |
| Anode Current (amps)               | 6.39   | 5.20    | 6.32    | 6.29          |
| Ref. Cell Instant-off (volts)      | 0.396  | 0.359   | 0.352   | 0.333         |
| Conductance (mhos)                 | 0.799  | 0.743   | 0.903   | 0.983         |
| Voltage drop in ref. circuit       | 0.213  | 0.161   | 0.136   | 0.121         |
| 1-4: AVERAGE VALUES: TITANIUM MESH |        |         |         |               |
| Rebar Probe (volts)                | 0.002  | 0.002   | 0.003   | <b>0</b> ,004 |
| Reference Cell (volts)             | 0.623  | 0.585   | 0.450   | 0.360         |
| Anode Voltage                      | 6.5    | 4.8     | 5.6     | 5.1           |
| Anode Current (amps)               | 4.22   | 2.70    | 4.16    | 4.13          |
| Ref. Cell Instant-off (volts)      | 0.261  | 0.249   | 0.223   | 0.194         |
| Conductance (mhos)                 | 0.633  | 0.441   | 0.721   | 0.791         |
| Voltage drop in ref. circuit       | 0.363  | 0.337   | 0.227   | 0.166         |

| Date:                              | 6/30/93 | 8/31/93 | 10/7/93 | 11/2/93 |
|------------------------------------|---------|---------|---------|---------|
| Days since last reading:           | 33      | 62      | 37      | 26      |
| Days since start-up (10/28/88):    | 1,677   | 1,739   | 1,776   | 1,802   |
| Tester:                            | DE      | DE      | PN      | PN      |
| # 1: TITANIUM MESH                 |         |         |         |         |
| Rebar Probe (volts)                | 0.005   | 0.004   | 0.005   |         |
| Reference Cell (volts)             | 0.019   | 0.015   | 0.019   | 0.050   |
| Anode Voltage                      | 5.9     | 6.3     | 5.9     | 6.8     |
| Anode Current (amps)               | 4.80    | 4.80    | 4.80    | 7.38    |
| Ref. Cell Instant-off (volts)      | 0.007   | 0.005   | 0.007   |         |
| Conductance (mhos)                 | 0.814   | 0.762   | 0.814   | 1.082   |
| Voltage drop in ref. circuit       | 0.012   | 0.010   | 0.012   | 0.050   |
| # 2: TITANIUM MESH                 |         |         |         |         |
| Rebar Probe (volts)                | 0.005   | 0.004   | 0.005   |         |
| Reference Cell (volts)             | 0.696   | 0.919   | 0.696   | 1.232   |
| Anode Voltage                      | 4.4     | 4.8     | 4.4     | 5,3     |
| Anode Current (amps)               | 2.70    | 2.69    | 2.70    | 4.14    |
| Ref. Cell Instant-off (volts)      | 0.211   | 0.250   | 0.211   |         |
| Conductance (mhos)                 | 0.614   | 0.560   | 0.614   | 0.777   |
| Voltage drop in ref. circuit       | 0.485   | 0.669   | 0.485   | 1.232   |
| # 3: TITANIUM MESH                 |         |         |         |         |
| Rebar Probe (volts)                | 0.006   | 0.005   | 0,006   |         |
| Reference Cell (volts)             | 0.468   | 0.599   | 0.468   | 0.698   |
| Anode Voltage                      | 4.8     | 5.1     | 4.8     | 5.9     |
| Anode Current (amps)               | 2.73    | 2.71    | 2.73    | 4.11    |
| Ref. Cell Instant-off (volts)      | 0.245   | 0.284   | 0.245   |         |
| Conductance (mhos)                 | 0.569   | 0.531   | 0.569   | 0.692   |
| Voltage drop in ref. circuit       | 0.223   | 0.315   | 0.223   | 0,698   |
| # 4: TITANIUM MESH                 |         |         |         |         |
| Rebar Probe (volts)                | 0.007   | 0.004   | 0.007   |         |
| Reference Cell (volts)             | 0.506   | 0.571   | 0.506   | 0.671   |
| Anode Voltage                      | 7.0     | 7.4     | 7.0     | 8,3     |
| Anode Current (amps)               | 6.40    | 6.40    | 6.40    | 9.63    |
| Ref. Cell Instant-off (volts)      | 0.360   | 0.356   | 0,360   |         |
| Conductance (mhos)                 | 0.914   | 0.865   | 0.914   | 1.164   |
| Voltage drop in ref. circuit       | 0.146   | 0.215   | 0.146   | 0.671   |
| 1-4: AVERAGE VALUES: TITANIUM MESH |         |         |         |         |
| Rebar Probe (volts)                | 0.006   | 0.004   | 0.006   |         |
| Reference Cell (volts)             | 0.422   | 0,526   | 0.422   | 0.663   |
| Anode Voltage                      | 5.5     | 5.9     | 5.5     | 6.6     |
| Anode Current (amps)               | 4.16    | 4.15    | 4.16    | 6.32    |
| Ref. Cell Instant-off (volts)      | 0.206   | 0.224   | 0.206   |         |
| Conductance (mhos)                 | 0.728   | 0.680   | 0.728   | 0.929   |
| Voltage drop in ref. circuit       | 0.217   | 0.302   | 0.217   | 0.663   |
|                                    |         |         |         |         |

\*

.

r

| Date:                              | 11/24/93 | 12/22/93 | 12/23/93      |
|------------------------------------|----------|----------|---------------|
| Days since last reading:           | 22       | 28       | 1             |
| Days since start-up (10/28/88):    | 1,824    | 1,852    | 1,853         |
| Tester:                            | PN       | PN       | PN            |
| # 1: TITANIUM MESH                 |          |          |               |
| Rebar Probe (volts)                |          |          |               |
| Reference Cell (volts)             | 0.036    | 0.023    | 0.081         |
| Anode Voltage                      | 7.0      | 7.5      | 8.7           |
| Anode Current (amps)               | 7.44     | 7.41     | 6.33          |
| Ref. Cell Instant-off (volts)      |          |          |               |
| Conductance (mhos)                 | 1,064    | 0.988    | 0.732         |
| Voltage drop in ref. circuit       | 0.036    | 0.023    | 0.081         |
| # 2: TITANIUM MESH                 |          |          |               |
| Rebar Probe (volts)                |          |          |               |
| Reference Cell (volts)             | 1.366    | 1.782    | 2.107         |
| Anode Voltage                      | 5.5      | 6.2      | 7.4           |
| Anode Current (amps)               | 4.20     | 4.17     | 3.42          |
| Ref. Cell Instant-off (volts)      |          |          |               |
| Conductance (mhos)                 | 0.764    | 0.675    | 0,465         |
| Voltage drop in ref. circuit       | 1.366    | 1.782    | <b>2</b> .107 |
| # 3: TITANIUM MESH                 |          |          |               |
| Rebar Probe (volts)                |          |          |               |
| Reference Cell (volts)             | 0.759    | 0,965    | 0.997         |
| Anode Voltage                      | 6.3      | 6.7      | 8.7           |
| Anode Current (amps)               | 4.17     | 4.17     | 3.27          |
| Ref. Cell Instant-off (volts)      |          |          |               |
| Conductance (mhos)                 | 0.667    | 0.620    | 0.375         |
| Voltage drop in ref. circuit       | 0.759    | 0.965    | 0.997         |
| # 4: TITANIUM MESH                 |          |          |               |
| Rebar Probe (volts)                |          |          |               |
| Reference Cell (volts)             | 0.687    | 0.892    | 0.870         |
| Anode Voltage                      | 8.5      | 9.3      | 11.3          |
| Anode Current (amps)               | 9.60     | 9.63     | 8.37          |
| Ref. Cell Instant-off (volts)      |          |          |               |
| Conductance (mhos)                 | 1.133    | 1.041    | 0.740         |
| Voltage drop in ref. circuit       | 0.687    | 0.892    | 0.870         |
| 1-4: AVERAGE VALUES: TITANIUM MESH |          |          |               |
| Rebar Probe (volts)                |          |          |               |
| Reference Cell (volts)             | 0.712    | 0.916    | 1.014         |
| Anode Voltage                      | 6.8      | 7.4      | <b>9.</b> 0   |
| Anode Current (amps)               | 6.35     | 6.35     | 5.35          |
| Ref. Cell Instant-off (volts)      |          |          |               |
| Conductance (mhos)                 | 0.907    | 0.831    | 0.578         |
| Voltage drop in ref. circuit       | 0.712    | 0.916    | 1.014         |
|                                    |          |          |               |

| Date:                            | 10/28/88 | 10/28/88 | 12/13/88 | 12/15/88 |
|----------------------------------|----------|----------|----------|----------|
| Days since last reading:         | 0        | 0        | 46       | 2        |
| Days since start-up (10/28/88):  | 0        | 0        | 46       | 48       |
| Tester:                          | Corrpro  | Corrpro  | Corrpro  | Corrpro  |
| # 5: CONDUCTIVE POLYMER CABLE    |          |          |          |          |
| Rebar Probe (volts)              | -0.00625 | 0.00015  | 0.004    | 0,004    |
| Reference Cell (volts)           | 0.352    | 0.837    | 1.092    | 0.978    |
| Anode Voltage                    | 0.45     | 13.79    | 11.4     | 10.2     |
| Anode Current (amps)             | 0.00     | 5.80     | 5.98     | 5.01     |
| Ref. Cell Instant-off (volts)    |          | 0.470    | 0.679    | 0.612    |
| Conductance (mhos)               |          | 0.421    | 0.525    | 0.491    |
| Voltage drop in ref. circuit     |          | 0.367    | 0.413    | 0.366    |
| # 6: CONDUCTIVE POLYMER CABLE    |          |          |          |          |
| Rebar Probe (volts)              | -0.00104 | 0.00101  | 0.005    | 0.004    |
| Reference Cell (volts)           | 0.335    | 0.644    | 0.751    | 0.758    |
| Anode Voltage                    | 0.15     | 13.63    | 10.7     | 10.4     |
| Anode Current (amps)             | 0.00     | 5.80     | 5.92     | 5.50     |
| Ref. Cell Instant-off (volts)    |          | 0.479    | 0.597    | 0.558    |
| Conductance (mhos)               |          | 0.426    | 0.553    | 0.529    |
| Voltage drop in ref. circuit     |          | 0.165    | 0.154    | 0.200    |
| # 7: CONDUCTIVE POLYMER CABLE    |          |          |          |          |
| Rebar Probe (volts)              | -0.00197 | 0.00202  | 0.005    | 0.004    |
| Reference Cell (volts)           | 0.302    | 0.518    | 0.773    | 0.628    |
| Anode Voltage                    | 0.19     | 13.30    | 10.9     | 11.2     |
| Anode Current (amps)             | 0.00     | 5.00     | 5.09     | 4.71     |
| Ref. Cell Instant-off (volts)    |          | 0.399    | 0.573    | 0.479    |
| Conductance (mhos)               |          | 0.376    | 0.467    | 0.421    |
| Voltage drop in ref. circuit     |          | 0.119    | 0.200    | 0.149    |
| # 8: CONDUCTIVE POLYMER CABLE    |          |          |          |          |
| Rebar Probe (volts)              | -0.00175 | 0.00212  | 0.005    | 0.004    |
| Reference Cell (volts)           | 0.323    | 0.587    | 0.926    | 0.825    |
| Anode Voltage                    | 0.17     | 14.77    | 10.3     | 11.0     |
| Anode Current (amps)             | 0.00     | 4.80     | 5.93     | 5.51     |
| Ref. Cell Instant-off (volts)    |          | 0.410    | 0.618    | 0.545    |
| Conductance (mhos)               |          | 0.325    | 0.576    | 0.501    |
| Voltage drop in ref. circuit     |          | 0.177    | 0.308    | 0.280    |
| 5-8: AVERAGE VALUES: POLYMER CAR |          |          |          |          |
| Rebar Probe (volts)              | -0.003   | 0.001    | 0.005    | 0.004    |
| Reference Cell (volts)           | 0.328    | 0.647    | 0.886    | 0.797    |
| Anode Voltage                    | 0.2      | 13.9     | 10.8     | 10.7     |
| Anode Current (amps)             | 0.00     | 5.35     | 5.73     | 5.18     |
| Ref. Cell Instant-off (volts)    |          | 0.440    | 0.617    | 0.549    |
| Conductance (mhos)               |          | 0.387    | 0.530    | 0.485    |
| Voltage drop in ref. circuit     |          | 0.207    | 0.269    | 0.249    |

| Days since last reading:         47         1         1         39           Days since start-up (10/28/88):         95         96         97         136           Fester:         Corrpro         Corrpro         Corrpro         MC,DR,DE           # 5: CONDUCTIVE POLYMER CABLE         Easter         0.004         0.005         0.003         0.006           Anode Voitage         10.0         6.4         9.3         8.9           Anode Voitage         10.0         6.4         9.3         8.9           Anode Voitage         0.636         0.420         0.570         Conductance (mhos)         0.497         0.763         0.528         0.558           Voltage drop in ref. circuit         0.419         0.101         0.331            3.9         1.4         .47         .43         .497         .46         .570         Conductance (mhos)         0.437         0.763         0.528         0.558         Voltage         0.528         0.558         Voltage         .45         5.32         5.34         5.43         8.6         5.33         5.34         5.43         R.6         9.9         .457         Voltage         0.597         Voltage         0.597         Voltage                                                                                                                                 | Date:                         | 1/31/89 | 2/1/89  | 2/2/89  | 3/13/89  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------|---------|---------|----------|
| Days since start-up (10/28/88):         95         96         97         136           Tester:         Corrpro         Corrpro         Corrpro         MC,DR,DE           # 5: CONDUCTIVE POLYMER CABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Days since last reading:      | 47      | 1       | 1       | 39       |
| # 5: CONDUCTIVE POLYMER CABLE         Rebar Probe (volta)       0.004       0.005       0.003       0.006         Reference Cell (volta)       1.055       0.521       0.901       1.001         Anode Voltage       10.0       6.4       9.3       8.9         Anode Voltage       10.0       6.4       9.3       8.9         Anode Current (amps)       4.97       4.88       4.91       4.97         Ref. Cell Instant-off (volts)       0.636       0.420       0.570       Conductance (mbos)       0.497       0.763       0.528       0.558         Voltage drop in ref. circuit       0.419       0.101       0.01       8.9       0.533       0.433         # 6: CONDUCTIVE POLYMER CABLE       Rebar Probe (volts)       0.822       0.372       0.692       0.743         Anode Voltage       9.8       6.5       9.3       9.1       1.56       0.837       0.499       0.597         Conductance (mbos)       0.556       0.818       0.574       0.597       Voltage drop in ref. circuit       0.226       0.005       0.007         Rebar Probe (volts)       0.006       0.006       0.005       0.007       Reference Cell (volts)       0.520       0.388       0.482       0.                                                                                                                                                  | • -                           | 95      | 96      | 97      | 136      |
| Rebar Probe (volts)         0.004         0.005         0.003         0.006           Reference Cell (volts)         1.055         0.521         0.901         1.001           Ande Voltage         10.0         6.4         9.3         8.9           Ande Current (amps)         4.97         4.88         4.91         4.97           Ref. Cell Instant-off (volts)         0.636         0.420         0.570         0.528           Conductance (mbos)         0.497         0.763         0.528         0.558           Voltage drop in ref. circuit         0.419         0.101         0.331         #           # 6: CONDUCTIVE POLYMER CABLE         Rebar Probe (volts)         0.822         0.55         9.3         9.1           Anode Voltage         9.8         6.5         9.3         9.1         Anode Voltage         9.8         6.5         9.3         9.1           Anode Voltage         9.8         6.5         9.3         9.1         Anode Voltage         9.8         6.5         9.3         9.1           Anode Voltage         0.556         0.337         0.499         97         Voltage drop in ref. circuit         0.226         0.035         0.017           Rehar Probe (volts)         0.734 <td>Tester:</td> <td>Corrpro</td> <td>Corrpro</td> <td>Corrpro</td> <td>MC,DR,DE</td>                    | Tester:                       | Corrpro | Corrpro | Corrpro | MC,DR,DE |
| Rebar Probe (volts)         0.004         0.005         0.003         0.006           Reference Cell (volts)         1.055         0.521         0.901         1.001           Ande Voltage         10.0         6.4         9.3         8.9           Ande Current (amps)         4.97         4.88         4.91         4.97           Ref. Cell Instant-off (volts)         0.636         0.420         0.570         0.528           Conductance (mbos)         0.497         0.763         0.528         0.558           Voltage drop in ref. circuit         0.419         0.101         0.331         #           # 6: CONDUCTIVE POLYMER CABLE         Rebar Probe (volts)         0.822         0.55         9.3         9.1           Anode Voltage         9.8         6.5         9.3         9.1         Anode Voltage         9.8         6.5         9.3         9.1           Anode Voltage         9.8         6.5         9.3         9.1         Anode Voltage         9.8         6.5         9.3         9.1           Anode Voltage         0.556         0.337         0.499         97         Voltage drop in ref. circuit         0.226         0.035         0.017           Rehar Probe (volts)         0.734 <td># 5: CONDUCTIVE POLYMER CABLE</td> <td></td> <td></td> <td></td> <td></td>                           | # 5: CONDUCTIVE POLYMER CABLE |         |         |         |          |
| Reference Cell (volts)         1.055         0.521         0.901         1.001           Anode Voltage         10.0         6.4         9.3         8.9           Anode Current (amps)         4.97         4.88         4.91         4.97           Ref. Cell Instant-off (volts)         0.636         0.420         0.570           Conductance (mbos)         0.497         0.763         0.528         0.558           Voltage drop in ref. circuit         0.419         0.101         0.331           # 6: CONDUCTIVE POLYMER CABLE         Rehar Probe (volts)         0.002         0.007         0.003           Reference Cell (volts)         0.822         0.372         0.692         0.743           Anode Current (amps)         5.45         5.32         5.34         5.43           Ref. Cell Instant-off (volts)         0.556         0.818         0.574         0.597           Voltage drop in ref. circuit         0.226         0.035         0.193         #           * CONDUCTIVE POLYMER CABLE         Rebar Probe (volts)         0.006         0.006         0.005         0.007           Reference Cell (volts)         0.734         0.482         0.666         0.613           Anode Current (amps)         4.67                                                                                              |                               | 0.004   | 0.005   | 0.003   | 0.006    |
| Anode Voltage       10.0       6.4       9.3       8.9         Anode Current (amps)       4.97       4.88       4.91       4.97         Ref. Cell Instant-off (volts)       0.636       0.420       0.570       Conductance (mbos)       0.497       0.763       0.528       0.558         Voltage drop in ref. circuit       0.419       0.101       0.331       ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | 1.055   | 0.521   | 0.901   | 1.001    |
| Anode Current (amps)       4.97       4.88       4.91       4.97         Ref. Cell Instant-off (volts)       0.636       0.420       0.570         Conductance (mbos)       0.419       0.101       0.331         # 6: CONDUCTIVE POLYMER CABLE       Eabar Probe (volts)       0.003       0.002       0.007       0.003         Rebar Probe (volts)       0.822       0.372       0.692       0.743         Anode Voltage       9.8       6.5       9.3       9.1         Anode Voltage       0.596       0.337       0.499       Conductance (mbos)       0.596         Conductance (mbos)       0.556       0.818       0.574       0.597         Voltage drop in ref. circuit       0.226       0.035       0.193         # 7: CONDUCTIVE POLYMER CABLE       Rebar Probe (volts)       0.006       0.006       0.007         Rebar Probe (volts)       0.734       0.482       0.666       0.613         Anode Current (amps)       4.67       4.78       4.81                                                                                                                                                                                     |                               | 10.0    | 6.4     | 9.3     | 8.9      |
| Ref. Cell Instant-off (volts)         0.636         0.420         0.570           Conductance (mhos)         0.497         0.763         0.528         0.558           Voltage drop in ref. circuit         0.419         0.101         0.331           # 6: CONDUCTIVE POLYMER CABLE               Rebar Probe (volts)         0.003         0.002         0.007         0.003           Anode Voltage         9.8         6.5         9.3         9.1           Anode Current (amps)         5.45         5.32         5.34         5.43           Ref. Cell Instant-off (volts)         0.556         0.818         0.574         0.597           Conductance (mhos)         0.556         0.818         0.574         0.597           Voltage drop in ref. circuit         0.226         0.035         0.193           # 7: CONDUCTIVE POLYMER CABLE         Rebar Probe (volts)         0.006         0.006         0.005         0.007           Rebar Probe (volts)         0.734         0.482         0.666         0.613           Anode Voltage         10.4         6.8         9.6         9.7           Anode Voltage         0.520         0.388         0.482         Conductance (ambs)                                                                                                                                           | •                             | 4.97    | 4.88    | 4.91    | 4.97     |
| Conductance (mbos)         0.497         0.763         0.528         0.558           Voltage drop in ref. circuit         0.419         0.101         0.331         ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               | 0.636   | 0.420   | 0.570   |          |
| Voltage drop in ref. circuit         0.419         0.101         0.331           # 6: CONDUCTIVE POLYMER CABLE         Rebar Probe (volts)         0.003         0.002         0.007         0.003           Reference Cell (volts)         0.822         0.372         0.692         0.743           Anode Voltage         9.8         6.5         9.3         9.1           Anode Current (amps)         5.45         5.32         5.34         5.43           Ref. Cell Instant-off (volts)         0.596         0.337         0.499         Conductance (mhos)         0.556         0.818         0.574         0.597           Voltage drop in ref. circuit         0.226         0.035         0.193         **         7: CONDUCTIVE POLYMER CABLE         **           Rebar Probe (volts)         0.006         0.006         0.005         0.007           Reference Cell (volts)         0.734         0.482         0.666         0.613           Anode Current (amps)         4.67         4.78         4.81         4.89           Ref. Cell Instant-off (volts)         0.520         0.388         0.482         Conductance (mbos)         0.449         0.703         0.501         0.504           Voltage drop in ref. circuit         0.214         0.094<                                                                  |                               | 0.497   | 0.763   | 0.528   | 0.558    |
| Rebar Probe (volts)         0.003         0.002         0.007         0.003           Reference Cell (volts)         0.822         0.372         0.692         0.743           Anode Voltage         9.8         6.5         9.3         9.1           Anode Current (amps)         5.45         5.32         5.34         5.43           Ref. Cell Instant-off (volts)         0.596         0.337         0.499           Conductance (mhos)         0.556         0.818         0.574         0.597           Voltage drop in ref. circuit         0.226         0.035         0.193         0.607           # 7: CONDUCTIVE POLYMER CABLE         Kebar Probe (volts)         0.006         0.006         0.007         0.666         0.613           Anode Current (amps)         4.67         4.78         4.81         4.89           Ref. Cell Instant-off (volts)         0.520         0.388         0.482         Conductance (mhos)         0.449         0.703         0.501         0.504           Voltage drop in ref. circuit         0.214         0.094         0.184         4.89           # 8: CONDUCTIVE POLYMER CABLE         Kebar Probe (volts)         0.840         0.577         0.710         0.852           Anode Voltage <t< th=""><td></td><td>0.419</td><td>0.101</td><td>0.331</td><td></td></t<>              |                               | 0.419   | 0.101   | 0.331   |          |
| Rebar Probe (volts)         0.003         0.002         0.007         0.003           Reference Cell (volts)         0.822         0.372         0.692         0.743           Anode Voltage         9.8         6.5         9.3         9.1           Anode Current (amps)         5.45         5.32         5.34         5.43           Ref. Cell Instant-off (volts)         0.596         0.337         0.499           Conductance (mhos)         0.556         0.818         0.574         0.597           Voltage drop in ref. circuit         0.226         0.035         0.193         0.607           # 7: CONDUCTIVE POLYMER CABLE         Kebar Probe (volts)         0.006         0.006         0.007         0.666         0.613           Anode Current (amps)         4.67         4.78         4.81         4.89           Ref. Cell Instant-off (volts)         0.520         0.388         0.482         Conductance (mhos)         0.449         0.703         0.501         0.504           Voltage drop in ref. circuit         0.214         0.094         0.184         4.89           # 8: CONDUCTIVE POLYMER CABLE         Kebar Probe (volts)         0.840         0.577         0.710         0.852           Anode Voltage <t< th=""><td>#6: CONDUCTIVE POLYMER CABLE</td><td></td><td></td><td></td><td></td></t<> | #6: CONDUCTIVE POLYMER CABLE  |         |         |         |          |
| Reference Cell (volts)       0.822       0.372       0.692       0.743         Anode Voltage       9.8       6.5       9.3       9.1         Anode Current (amps)       5.45       5.32       5.34       5.43         Ref. Cell Instant-off (volts)       0.596       0.337       0.499       0.597         Conductance (mhos)       0.556       0.818       0.574       0.597         Voltage drop in ref. circuit       0.226       0.035       0.193         # 7: CONDUCTIVE POLYMER CABLE       Rebar Probe (volts)       0.734       0.482       0.666       0.613         Anode Voltage       10.4       6.8       9.6       9.7       Anode Current (amps)       4.67       4.78       4.81       4.89         Ref. Cell Instant-off (volts)       0.520       0.388       0.482       Conductance (mhos)       0.449       0.703       0.501       0.504         Voltage drop in ref. circuit       0.214       0.094       0.184       #8:       CONDUCTIVE POLYMER CABLE       Rebar Probe (volts)       0.840       0.577       0.710       0.852         Anode Voltage       9.7       6.7       9.0       9.2       Anode Voltage       9.7       6.7       9.0       9.2         An                                                                                                                                                  |                               | 0.003   | 0.002   | 0.007   | 0.003    |
| Anode Voltage       9.8       6.5       9.3       9.1         Anode Current (amps)       5.45       5.32       5.34       5.43         Rcf. Cell Instant-off (volts)       0.596       0.337       0.499         Conductance (mhos)       0.556       0.818       0.574       0.597         Voltage drop in ref. circuit       0.226       0.035       0.193         # 7: CONDUCTIVE POLYMER CABLE       Rebar Probe (volts)       0.734       0.482       0.666       0.613         Anode Voltage       10.4       6.8       9.6       9.7         Anode Current (amps)       4.67       4.78       4.81       4.89         Ref. Cell Instant-off (volts)       0.520       0.388       0.482       Conductance (mbos)       0.449       0.703       0.501       0.504         Voltage drop in ref. circuit       0.214       0.094       0.184       #       #       & CONDUCTIVE POLYMER CABLE       Rebar Probe (volts)       0.840       0.577       0.710       0.852         Anode Voltage       9.7       6.7       9.0       9.2       Anode Voltage       9.7       6.7       9.0       9.2         Anode Voltage       9.7       6.7       9.0       9.2       Anode Current (amps) <td></td> <td></td> <td></td> <td></td> <td>0.743</td>                                                                                              |                               |         |         |         | 0.743    |
| Anode Current (amps)       5.45       5.32       5.34       5.43         Ref. Cell Instant-off (volts)       0.596       0.337       0.499       0.597         Conductance (mhos)       0.556       0.818       0.574       0.597         Voltage drop in ref. circuit       0.226       0.035       0.193       0.597         # 7: CONDUCTIVE POLYMER CABLE       Rebar Probe (volts)       0.006       0.006       0.007         Reference Cell (volts)       0.734       0.482       0.666       0.613         Anode Voltage       10.4       6.8       9.6       9.7         Anode Current (amps)       4.67       4.78       4.81       4.89         Ref. Cell Instant-off (volts)       0.520       0.388       0.482       0.604         Conductance (mbos)       0.449       0.703       0.501       0.504         Voltage drop in ref. circuit       0.214       0.094       0.184         # 8: CONDUCTIVE POLYMER CABLE       Rebar Probe (volts)       0.840       0.577       0.710       0.852         Anode Voltage       9.7       6.7       9.0       9.2       Anode Current (amps)       5.46       5.56       5.61       5.68         Ref. Cell Instant-off (volts)       0.563<                                                                                                                                                |                               |         | 6.5     |         | 9.1      |
| Ref. Cell Instant-off (volts)       0.596       0.337       0.499         Conductance (mhos)       0.556       0.818       0.574       0.597         Voltage drop in ref. circuit       0.226       0.035       0.193       0.597         # 7: CONDUCTIVE POLYMER CABLE       Ebar Probe (volts)       0.006       0.006       0.005       0.007         Reference Cell (volts)       0.734       0.482       0.666       0.613         Anode Voltage       10.4       6.8       9.6       9.7         Anode Current (amps)       4.67       4.78       4.81       4.89         Ref. Cell Instant-off (volts)       0.520       0.388       0.482       Conductance (mbos)       0.520       0.388       0.482         Conductance (mbos)       0.449       0.703       0.501       0.504       Voltage drop in ref. circuit       0.214       0.094       0.184         # 8: CONDUCTIVE POLYMER CABLE       Ebar Probe (volts)       0.840       0.577       0.710       0.852         Anode Voltage       9.7       6.7       9.0       9.2       4         Anode Voltage       9.7       6.7       9.0       9.2         Anode Current (amps)       5.46       5.56       5.61       5.68                                                                                                                                                       |                               |         |         |         | 5,43     |
| Conductance (mhos)       0.556       0.818       0.574       0.597         Voltage drop in ref. circuit       0.226       0.035       0.193         # 7: CONDUCTIVE POLYMER CABLE       Rebar Probe (volts)       0.006       0.006       0.005       0.007         Reference Cell (volts)       0.734       0.482       0.666       0.613         Anode Voltage       10.4       6.8       9.6       9.7         Anode Current (amps)       4.67       4.78       4.81       4.89         Ref. Cell Instant-off (volts)       0.520       0.388       0.482       Conductance (mbos)       0.501       0.504         Voltage drop in ref. circuit       0.214       0.094       0.184       .504       .501       0.504         Voltage drop in ref. circuit       0.214       0.094       0.184       .502       .503       .501       .504         Voltage drop in ref. circuit       0.214       0.094       0.184       .502       .503       .501       .504         # 8: CONDUCTIVE POLYMER CABLE       Rebar Probe (volts)       0.840       0.577       0.710       0.852         Anode Current (amps)       5.46       5.56       5.61       5.68       .615       5.68       .617       .506 <td>· · · ·</td> <td></td> <td></td> <td>0.499</td> <td></td>                                                                              | · · · ·                       |         |         | 0.499   |          |
| Voltage drop in ref. circuit       0.226       0.035       0.193         # 7: CONDUCTIVE POLYMER CABLE       Rebar Probe (volts)       0.006       0.006       0.007         Reference Cell (volts)       0.734       0.482       0.666       0.613         Anode Voltage       10.4       6.8       9.6       9.7         Anode Current (amps)       4.67       4.78       4.81       4.89         Ref. Cell Instant-off (volts)       0.520       0.388       0.482       0.501       0.504         Voltage drop in ref. circuit       0.214       0.094       0.184       0.501       0.504         Voltage drop in ref. circuit       0.214       0.094       0.184       0.852       0.006         Rebar Probe (volts)       0.406       0.005       0.003       0.006         Reference Cell (volts)       0.840       0.577       0.710       0.852         Anode Voltage       9.7       6.7       9.0       9.2         Anode Current (amps)       5.46       5.56       5.61       5.68         Ref. Cell Instant-off (volts)       0.553       0.451       0.506       0.004         Conductance (mhos)       0.563       0.830       0.623       0.617 <t< th=""><td>• •</td><td></td><td></td><td></td><td>0.597</td></t<>                                                                                                            | • •                           |         |         |         | 0.597    |
| Rebar Probe (volts)         0.006         0.006         0.005         0.007           Reference Cell (volts)         0.734         0.482         0.666         0.613           Anode Voltage         10.4         6.8         9.6         9.7           Anode Current (amps)         4.67         4.78         4.81         4.89           Ref. Cell Instant-off (volts)         0.520         0.388         0.482         0.501         0.504           Voltage drop in ref. circuit         0.214         0.094         0.184         0.501         0.504           Voltage drop in ref. circuit         0.214         0.094         0.184         0.501         0.504           # 8: CONDUCTIVE POLYMER CABLE         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E                                                                                                                                                       |                               |         | 0.035   | 0.193   |          |
| Rebar Probe (volts)         0.006         0.006         0.005         0.007           Reference Cell (volts)         0.734         0.482         0.666         0.613           Anode Voltage         10.4         6.8         9.6         9.7           Anode Current (amps)         4.67         4.78         4.81         4.89           Ref. Cell Instant-off (volts)         0.520         0.388         0.482         0.501         0.504           Voltage drop in ref. circuit         0.214         0.094         0.184         0.501         0.504           Voltage drop in ref. circuit         0.214         0.094         0.184         0.501         0.504           # 8: CONDUCTIVE POLYMER CABLE         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E         E                                                                                                                                                       | # 7: CONDUCTIVE POLYMER CABLE |         |         |         |          |
| Reference Cell (volts)       0.734       0.482       0.666       0.613         Anode Voltage       10.4       6.8       9.6       9.7         Anode Current (amps)       4.67       4.78       4.81       4.89         Ref. Cell Instant-off (volts)       0.520       0.388       0.482       0.601       0.501       0.501         Conductance (mbos)       0.449       0.703       0.501       0.504       0.504       0.094       0.184         # 8: CONDUCTIVE POLYMER CABLE       Rebar Probe (volts)       0.006       0.005       0.003       0.006         Reference Cell (volts)       0.840       0.577       0.710       0.852         Anode Voltage       9.7       6.7       9.0       9.2         Anode Voltage       9.7       6.7       9.0       9.2         Anode Current (amps)       5.46       5.56       5.61       5.68         Ref. Cell Instant-off (volts)       0.563       0.451       0.506       0.607         Conductance (mhos)       0.563       0.830       0.623       0.617         Voltage drop in ref. circuit       0.277       0.126       0.204         S-8: AVERAGE VALUES: POLYMER CABLE       Ekebar Probe (volts)       0.863 <td< th=""><td></td><td>0.006</td><td>0.006</td><td>0.005</td><td>0.007</td></td<>                                                                                     |                               | 0.006   | 0.006   | 0.005   | 0.007    |
| Anode Voltage       10.4       6.8       9.6       9.7         Anode Current (amps)       4.67       4.78       4.81       4.89         Ref. Cell Instant-off (volts)       0.520       0.388       0.482       0.501       0.501         Conductance (mhos)       0.449       0.703       0.501       0.504       0.094       0.184         # 8: CONDUCTIVE POLYMER CABLE       Eebar Probe (volts)       0.006       0.005       0.003       0.006         Reference Cell (volts)       0.840       0.577       0.710       0.852         Anode Current (amps)       5.46       5.56       5.61       5.68         Ref. Cell Instant-off (volts)       0.563       0.451       0.506         Conductance (mhos)       0.563       0.451       0.506         Conductance (mhos)       0.563       0.830       0.623       0.617         Voltage drop in ref. circuit       0.277       0.126       0.204       0.58         S-8: AVERAGE VALUES: POLYMER CABLE       Eebar Probe (volts)       0.863       0.488       0.742       0.802         Anode Current (amps)       5.14       5.14       5.17       5.24       8.22       0.204         S-8: AVERAGE VALUES: POLYMER CABLE       Eebar Pr                                                                                                                                                |                               |         |         | •••     |          |
| Anode Current (amps)       4.67       4.78       4.81       4.89         Ref. Cell Instant-off (volts)       0.520       0.388       0.482         Conductance (mhos)       0.449       0.703       0.501       0.504         Voltage drop in ref. circuit       0.214       0.094       0.184         # 8: CONDUCTIVE POLYMER CABLE       Eebar Probe (volts)       0.006       0.005       0.003       0.006         Reference Cell (volts)       0.840       0.577       0.710       0.852         Anode Current (amps)       5.46       5.56       5.61       5.68         Ref. Cell Instant-off (volts)       0.563       0.451       0.506         Conductance (mhos)       0.563       0.451       0.506         Conductance (mhos)       0.563       0.830       0.623       0.617         Voltage drop in ref. circuit       0.277       0.126       0.204       0.563         S-8: AVERAGE VALUES: POLYMER CABLE       Eebar Probe (volts)       0.863       0.488       0.742       0.802         Anode Voltage       10.0       6.6       9.3       9.2       Anode Voltage       10.0       6.6       9.3       9.2         Anode Voltage       10.0       6.6       9.3 <t< th=""><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                 |                               |         |         |         |          |
| Ref. Cell Instant-off (volts)       0.520       0.388       0.482         Conductance (mhos)       0.449       0.703       0.501       0.504         Voltage drop in ref. circuit       0.214       0.094       0.184         # 8: CONDUCTIVE POLYMER CABLE             Rebar Probe (volts)       0.006       0.005       0.003       0.006         Reference Cell (volts)       0.840       0.577       0.710       0.852         Anode Voltage       9.7       6.7       9.0       9.2         Anode Current (amps)       5.46       5.56       5.61       5.68         Ref. Cell Instant-off (volts)       0.563       0.451       0.506       0.617         Voltage drop in ref. circuit       0.277       0.126       0.204       0.617         S-8: AVERAGE VALUES: POLYMER CABLE       E             Rebar Probe (volts)       0.005       0.005       0.006       Reference Cell (volts)       0.863       0.488       0.742       0.802         Anode Voltage       10.0       6.6       9.3       9.2       Anode Voltage       10.0       6.6       9.3       9.2         Anode Current (amps)       5.14 <td></td> <td>_</td> <td></td> <td></td> <td></td>                                                                                                                                                                            |                               | _       |         |         |          |
| Conductance (mhos)       0.449       0.703       0.501       0.504         Voltage drop in ref. circuit       0.214       0.094       0.184         # 8: CONDUCTIVE POLYMER CABLE            Rebar Probe (volts)       0.006       0.005       0.003       0.006         Reference Cell (volts)       0.840       0.577       0.710       0.852         Anode Voltage       9.7       6.7       9.0       9.2         Anode Current (amps)       5.46       5.56       5.61       5.68         Ref. Cell Instant-off (volts)       0.563       0.451       0.506         Conductance (mhos)       0.563       0.830       0.623       0.617         Voltage drop in ref. circuit       0.277       0.126       0.204       0.005         S-8: AVERAGE VALUES: POLYMER CABLE       E       E       800       0.605       0.005       0.006         Reference Cell (volts)       0.863       0.488       0.742       0.802       Anode Voltage       10.0       6.6       9.3       9.2         Anode Voltage       10.0       6.6       9.3       9.2       2.4       Anode Current (amps)       5.14       5.14       5.17       5.24 <td< th=""><td>• •</td><td></td><td></td><td></td><td></td></td<>                                                                                                                                            | • •                           |         |         |         |          |
| Voltage drop in ref. circuit       0.214       0.094       0.184         # 8: CONDUCTIVE POLYMER CABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |         |         |         | 0.504    |
| # 8: CONDUCTIVE POLYMER CABLE         Rebar Probe (volts)       0.006       0.005       0.003       0.006         Reference Cell (volts)       0.840       0.577       0.710       0.852         Anode Voltage       9.7       6.7       9.0       9.2         Anode Current (amps)       5.46       5.56       5.61       5.68         Ref. Cell Instant-off (volts)       0.563       0.451       0.506         Conductance (mhos)       0.563       0.830       0.623       0.617         Voltage drop in ref. circuit       0.277       0.126       0.204       0.802         S-8: AVERAGE VALUES: POLYMER CABLE       E       E       0.005       0.005       0.006         Reference Cell (volts)       0.863       0.488       0.742       0.802         Anode Voltage       10.0       6.6       9.3       9.2         Anode Current (amps)       5.14       5.14       5.17       5.24         Ref. Cell Instant-off (volts)       0.579       0.399       0.514         Conductance (mhos)       0.516       0.778       0.557       0.569                                                                                                                                                                                                                                                                                               |                               |         |         |         | 0.001    |
| Rebar Probe (volts)         0,006         0.005         0,003         0.006           Reference Cell (volts)         0.840         0.577         0.710         0.852           Anode Voltage         9.7         6.7         9.0         9.2           Anode Current (amps)         5.46         5.56         5.61         5.68           Ref. Cell Instant-off (volts)         0.563         0.451         0.506           Conductance (mhos)         0.563         0.830         0.623         0.617           Voltage drop in ref. circuit         0.277         0.126         0.204         0.617           S-8: AVERAGE VALUES: POLYMER CABLE         E         E         E         Rebar Probe (volts)         0.863         0.488         0.742         0.802           Anode Voltage         10.0         6.6         9.3         9.2         0.802           Anode Voltage         10.0         6.6         9.3         9.2           Anode Current (amps)         5.14         5.14         5.17         5.24           Ref. Cell Instant-off (volts)         0.579         0.399         0.514           Conductance (mhos)         0.516         0.778         0.557         0.569                                                                                                                                                     |                               |         |         |         |          |
| Reference Cell (volts)       0.840       0.577       0.710       0.852         Anode Voltage       9.7       6.7       9.0       9.2         Anode Current (amps)       5.46       5.56       5.61       5.68         Ref. Cell Instant-off (volts)       0.563       0.451       0.506         Conductance (mhos)       0.563       0.830       0.623       0.617         Voltage drop in ref. circuit       0.277       0.126       0.204       0.617         S-8: AVERAGE VALUES: POLYMER CABLE       E       E       Rebar Probe (volts)       0.005       0.005       0.006         Reference Cell (volts)       0.863       0.488       0.742       0.802         Anode Voltage       10.0       6.6       9.3       9.2         Anode Current (amps)       5.14       5.14       5.17       5.24         Ref. Cell Instant-off (volts)       0.579       0.399       0.514         Conductance (mhos)       0.516       0.778       0.557       0.569                                                                                                                                                                                                                                                                                                                                                                                       |                               |         |         |         |          |
| Anode Voltage       9.7       6.7       9.0       9.2         Anode Current (amps)       5.46       5.56       5.61       5.68         Ref. Cell Instant-off (volts)       0.563       0.451       0.506         Conductance (mhos)       0.563       0.830       0.623       0.617         Voltage drop in ref. circuit       0.277       0.126       0.204       0.617         S-8: AVERAGE VALUES: POLYMER CABLE       E       E       E       Rebar Probe (volts)       0.005       0.005       0.006         Reference Cell (volts)       0.863       0.488       0.742       0.802         Anode Voltage       10.0       6.6       9.3       9.2         Anode Current (amps)       5.14       5.14       5.17       5.24         Ref. Cell Instant-off (volts)       0.579       0.399       0.514         Conductance (mhos)       0.516       0.778       0.557       0.569                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · · ·                         |         |         |         |          |
| Anode Current (amps)       5.46       5.56       5.61       5.68         Ref. Cell Instant-off (volts)       0.563       0.451       0.506         Conductance (mhos)       0.563       0.830       0.623       0.617         Voltage drop in ref. circuit       0.277       0.126       0.204       0.617         S-8: AVERAGE VALUES: POLYMER CABLE              Rebar Probe (volts)       0.005       0.005       0.005       0.006          Reference Cell (volts)       0.863       0.488       0.742       0.802         Anode Voltage       10.0       6.6       9.3       9.2         Anode Current (amps)       5.14       5.14       5.17       5.24         Ref. Cell Instant-off (volts)       0.579       0.399       0.514         Conductance (mhos)       0.516       0.778       0.557       0.569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |         |         |         |          |
| Ref. Cell Instant-off (volts)       0.563       0.451       0.506         Conductance (mhos)       0.563       0.830       0.623       0.617         Voltage drop in ref. circuit       0.277       0.126       0.204         5-8: AVERAGE VALUES: POLYMER CABLE             Rebar Probe (volts)       0.005       0.005       0.006          Reference Cell (volts)       0.863       0.488       0.742       0.802         Anode Voltage       10.0       6.6       9.3       9.2         Anode Current (amps)       5.14       5.14       5.17       5.24         Ref. Cell Instant-off (volts)       0.579       0.399       0.514         Conductance (mhos)       0.516       0.778       0.557       0.569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                             |         |         |         |          |
| Conductance (mhos)       0.563       0.830       0.623       0.617         Voltage drop in ref. circuit       0.277       0.126       0.204       0.204         5-8: AVERAGE VALUES: POLYMER CABLE              Rebar Probe (volts)       0.005       0.005       0.005       0.006         Reference Cell (volts)       0.863       0.488       0.742       0.802         Anode Voltage       10.0       6.6       9.3       9.2         Anode Current (amps)       5.14       5.14       5.17       5.24         Ref. Cell Instant-off (volts)       0.579       0.399       0.514         Conductance (mhos)       0.516       0.778       0.557       0.569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |         |         |         | 5.68     |
| Voltage drop in ref. circuit       0.277       0.126       0.204         5-8: AVERAGE VALUES: POLYMER CABLE            Rebar Probe (volts)       0.005       0.005       0.005       0.006         Reference Cell (volts)       0.863       0.488       0.742       0.802         Anode Voltage       10.0       6.6       9.3       9.2         Anode Current (amps)       5.14       5.14       5.17       5.24         Ref. Cell Instant-off (volts)       0.579       0.399       0.514         Conductance (mhos)       0.516       0.778       0.557       0.569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |         |         |         |          |
| 5-8: AVERAGE VALUES: POLYMER CABLE         Rebar Probe (volts)       0.005       0.005       0.005         Reference Cell (volts)       0.863       0.488       0.742       0.802         Anode Voltage       10.0       6.6       9.3       9.2         Anode Current (amps)       5.14       5.14       5.17       5.24         Ref. Cell Instant-off (volts)       0.579       0.399       0.514         Conductance (mhos)       0.516       0.778       0.557       0.569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |         |         |         | 0.617    |
| Rebar Probe (volts)         0.005         0.005         0.005         0.005         0.006           Reference Cell (volts)         0.863         0.488         0.742         0.802           Anode Voltage         10.0         6.6         9.3         9.2           Anode Current (amps)         5.14         5.14         5.17         5.24           Ref. Cell Instant-off (volts)         0.579         0.399         0.514           Conductance (mhos)         0.516         0.778         0.557         0.569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Voltage drop in ref. circuit  | 0.277   | 0.126   | 0.204   |          |
| Reference Cell (volts)         0.863         0.488         0.742         0.802           Anode Voltage         10.0         6.6         9.3         9.2           Anode Current (amps)         5.14         5.14         5.17         5.24           Ref. Cell Instant-off (volts)         0.579         0.399         0.514           Conductance (mhos)         0.516         0.778         0.557         0.569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |         |         |         |          |
| Anode Voltage         10.0         6.6         9.3         9.2           Anode Current (amps)         5.14         5.14         5.17         5.24           Ref. Cell Instant-off (volts)         0.579         0.399         0.514           Conductance (mhos)         0.516         0.778         0.557         0.569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |         |         |         |          |
| Anode Current (amps)         5.14         5.14         5.17         5.24           Ref. Cell Instant-off (volts)         0.579         0.399         0.514           Conductance (mhos)         0.516         0.778         0.557         0.569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • •                           | -       |         |         | -        |
| Ref. Cell Instant-off (volts)         0.579         0.399         0.514           Conductance (mhos)         0.516         0.778         0.557         0.569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ÷                             |         |         |         |          |
| Conductance (mhos)         0.516         0.778         0.557         0.569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |         |         |         | 5.24     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |         |         |         |          |
| Voltage drop in ref. circuit 0.284 0.089 0.228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |         |         |         | 0.569    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Voltage drop in ref. circuit  | 0.284   | 0.089   | 0.228   |          |

| Date:                                                   | 4/13/89     | 5/26/89       | 6/13/89             | 7/17/89               |
|---------------------------------------------------------|-------------|---------------|---------------------|-----------------------|
| Days since last reading:                                | 31          | 43            | 18                  | 34                    |
| Days since start-up (10/28/88):                         | 167         | 210           | 228                 | 262                   |
| Tester:                                                 | DR,DE,TD    | DR            | JM,DR               | DR,KC                 |
| # 5: CONDUCTIVE POLYMER CABLE                           |             |               |                     |                       |
| Rebar Probe (volts)                                     | 0.007       | 0.008         | 0.005               | 0.008                 |
| Reference Cell (volts)                                  | 1.053       | 0.432         | 1.163               | 0.808                 |
| Anode Voltage                                           | 9.6         | 6.0           | 9.4                 | 8.1                   |
| Anode Current (amps)                                    | 4.99        | 4.89          | 4.92                | 4.84                  |
| Ref. Cell Instant-off (volts)                           |             |               |                     |                       |
| Conductance (mhos)                                      | 0.520       | 0.815         | 0.523               | 0.598                 |
| Voltage drop in ref. circuit                            |             |               |                     |                       |
| # 6: CONDUCTIVE POLYMER CABLE                           |             |               |                     |                       |
| Rebar Probe (volts)                                     | 0.001       | 0.005         | 0.002               | 0.006                 |
| Reference Cell (volts)                                  | 0.867       | 0.395         | 0.823               | 0.681                 |
| Anode Voltage                                           | 10.1        | 6.1           | 9.1                 | 8.0                   |
| Anode Current (amps)                                    | 5.45        | 5.36          | 5.40                | 5.29                  |
| Ref. Cell Instant-off (volts)                           |             |               |                     |                       |
| Conductance (mhos)                                      | 0.540       | 0.879         | 0.593               | 0.661                 |
| Voltage drop in ref. circuit                            |             |               |                     |                       |
| # 7: CONDUCTIVE POLYMER CABLE                           |             |               |                     |                       |
| Rebar Probe (volts)                                     | 0.006       | 0.008         | 0.006               | 0.007                 |
| Reference Cell (volts)                                  | 0.760       | 0.439         | 0.645               | 0.554                 |
| Anode Voltage                                           | 9.8         | 5.8           | 9.8                 | 8.4                   |
| Anode Current (amps)                                    | 4.91        | 4.80          | 4.85                | 4.75                  |
| Ref. Cell Instant-off (volts)                           |             |               |                     |                       |
| Conductance (mhos)                                      | 0.501       | 0.828         | 0.495               | 0.565                 |
| Voltage drop in ref. circuit                            |             |               |                     |                       |
| # 8: CONDUCTIVE POLYMER CABLE                           |             |               |                     |                       |
| Rebar Probe (volts)                                     | 0.005       | 0.008         | 0.006               | 0.009                 |
| Reference Cell (volts)                                  | 0.849       | 0.545         | 0.940               | 0.871                 |
| Anode Voltage                                           | 9.1         | 5.7           | 9.5                 | 8.5                   |
| Anode Current (amps)                                    | 5.70        | 5.60          | 5.65                | 5.57                  |
| Ref. Cell Instant-off (volts)                           |             |               |                     |                       |
| Conductance (mhos)<br>Voltage drop in ref. circuit      | 0.626       | 0.982         | 0.595               | 0.655                 |
|                                                         |             |               |                     |                       |
| 5-8: AVERAGE VALUES: POLYMER CAB<br>Rebar Probe (volts) | LE<br>0.005 | <b>0.</b> 007 | 0.005               | <b>0.</b> 00 <b>8</b> |
|                                                         | 0.882       | 0.007         | 0.893               | 0.729                 |
| Reference Cell (volts)<br>Anode Voltage                 | 9.7         | 0.453<br>5.9  | 0.893<br><b>9.5</b> | 0.729<br>8.3          |
| -                                                       | 5.26        | 5.9<br>5.16   | <b>5.2</b> 1        | 8.3<br>5.11           |
| Anode Current (amps)<br>Ref. Cell Instant-off (volts)   | 3.20        | J.10          | J.41                | 5.11                  |
| Conductance (mhos)                                      | 0.547       | 0.876         | 0.552               | <b>0.62</b> 0         |
| Voltage drop in ref. circuit                            | V.34 /      | V.8/U         | V.334               | V.02U                 |
| vorage urop in rel. circuit                             |             |               |                     |                       |

\*

| Date:                              | 8/18/89 | 9/19/89 | 10/31/89 | 11/28/89 |
|------------------------------------|---------|---------|----------|----------|
| Days since last reading:           | 32      | 32      | 42       | 28       |
| Days since start-up (10/28/88):    | 294     | 326     | 368      | 396      |
| Tester:                            | DR      | DR      | DR       | DR       |
| # 5: CONDUCTIVE POLYMER CABLE      |         |         |          |          |
| Rebar Probe (volts)                | 0.010   | 0.005   | 0.005    | 0.003    |
| Reference Cell (volts)             | 0.509   | 1.225   | 1.002    | 1.366    |
| Anode Voltage                      | 6.8     | 10.4    | 9.9      | 12.8     |
| Anode Current (amps)               | 4.84    | 4.87    | 4.89     | 5.03     |
| Ref. Cell Instant-off (volts)      |         |         |          |          |
| Conductance (mhos)                 | 0.712   | 0.468   | 0.494    | 0.393    |
| Voltage drop in ref. circuit       |         |         |          |          |
| # 6: CONDUCTIVE POLYMER CABLE      |         |         |          |          |
| Rebar Probe (volts)                | 0.008   | 0.002   | 0.003    | 0.002    |
| Reference Cell (volts)             | 0.467   | 0.967   | 0.888    | 1.393    |
| Anode Voltage                      | 6.9     | 10.1    | 9.6      | 12.7     |
| Anode Current (amps)               | 5.30    | 5.33    | 5.35     | 5.48     |
| Ref. Cell Instant-off (volts)      |         |         |          |          |
| Conductance (mhos)                 | 0.768   | 0.528   | 0.557    | 0.431    |
| Voltage drop in ref. circuit       |         |         |          |          |
| # 7: CONDUCTIVE POLYMER CABLE      |         |         |          |          |
| Rebar Probe (volts)                | 0.007   | 0.004   | 0.003    | 0.002    |
| Reference Cell (volts)             | 0.492   | 0.691   | 0.668    | 0.870    |
| Anode Voltage                      | 7.2     | 11.4    | 11.4     | 17.2     |
| Anode Current (amps)               | 4.76    | 4.79    | 4.81     | 4.93     |
| Ref. Cell Instant-off (volts)      |         |         |          |          |
| Conductance (mhos)                 | 0.661   | 0.420   | 0.422    | 0.287    |
| Voltage drop in ref. circuit       |         |         |          |          |
| # 8: CONDUCTIVE POLYMER CABLE      |         |         |          |          |
| Rebar Probe (volts)                | 0.008   | 0.004   | 0.004    | 0.003    |
| Reference Cell (volts)             | 0.695   | 1.014   | 1.009    | 1.551    |
| Anode Voltage                      | 7.1     | 10.7    | 10.1     | 14.8     |
| Anode Current (amps)               | 5.59    | 5.62    | 5.64     | 5.73     |
| Ref. Cell Instant-off (volts)      |         |         |          |          |
| Conductance (mhos)                 | 0.787   | 0.525   | 0.558    | 0.387    |
| Voltage drop in ref. circuit       |         |         |          |          |
| 5-8: AVERAGE VALUES: POLYMER CABLE | C       |         |          |          |
| Rebar Probe (volts)                | 0.008   | 0.004   | 0.004    | 0.003    |
| Reference Cell (volts)             | 0.541   | 0.974   | 0.892    | 1.295    |
| Anode Voltage                      | 7.0     | 10.7    | 10.3     | 14.4     |
| Anode Current (amps)               | 5.12    | 5.15    | 5.17     | 5.29     |
| Ref. Cell Instant-off (volts)      |         |         |          |          |
| Conductance (mhos)                 | 0.732   | 0.485   | 0.508    | 0.375    |
| Voltage drop in ref. circuit       |         |         |          |          |
|                                    |         |         |          |          |

| Date:                                | 1/9/90 | 1/17/90 | 4/26/90 | 11/19/90 |
|--------------------------------------|--------|---------|---------|----------|
| Days since last reading:             | 12     | 8       | 99      | 207      |
| Days since start-up (10/28/88):      | 408    | 416     | 515     | 722      |
| Tester:                              | DR,DE  | DR      | DE,TD   | JM,DE    |
| # 5: CONDUCTIVE POLYMER CABLE        |        |         |         |          |
| Rebar Probe (volts)                  | 0.005  | 0.007   | 0.006   | 0.004    |
| Reference Cell (volts)               | 0.781  | 0.819   | 1.131   | 0.994    |
| Anode Voltage                        | 8.7    | 8.8     | 12.1    | 14.4     |
| Anode Current (amps)                 | 4.95   | 4.91    | 4.90    | 4.96     |
| Ref. Cell Instant-off (volts)        | 0.434  |         | 0.528   | 0.269    |
| Conductance (mhos)                   | 0.569  | 0.558   | 0.405   | 0.344    |
| Voltage drop in ref. circuit         | 0.347  |         | 0.603   | 0.725    |
| # 6: CONDUCTIVE POLYMER CABLE        |        |         |         |          |
| Rebar Probe (volts)                  | 0.003  | 0.005   | 0.003   | 0.004    |
| Reference Cell (volts)               | 0.756  | 0.803   | 0.998   | 0.768    |
| Anode Voltage                        | 9.0    | 9.2     | 11.5    | 15.7     |
| Anode Current (amps)                 | 5.42   | 5.38    | 5.38    | 5.36     |
| Ref. Cell Instant-off (volts)        | 0.422  |         | 0.429   | 0.268    |
| Conductance (mhos)                   | 0.602  | 0.585   | 0.468   | 0.341    |
| Voltage drop in ref. circuit         | 0.334  |         | 0.569   | 0.500    |
| # 7: CONDUCTIVE POLYMER CABLE        |        |         |         |          |
| Rebar Probe (volts)                  | 0.002  | 0.004   | 0.003   | 0.002    |
| Reference Cell (volts)               | 0.552  | 0.433   | 0.647   | 0.110    |
| Anode Voltage                        | 10.5   | 10,6    | 13.0    | 23,6     |
| Anode Current (amps)                 | 4.89   | 4.85    | 4.85    | 3.58     |
| Ref. Cell Instant-off (volts)        | 0.389  |         | 0.419   | 0.275    |
| Conductance (mhos)                   | 0.466  | 0.458   | 0.373   | 0.152    |
| Voltage drop in ref. circuit         | 0.163  |         | 0.228   | -0.165   |
| <b># 8: CONDUCTIVE POLYMER CABLE</b> |        |         |         |          |
| Rebar Probe (volts)                  | 0.003  | 0.004   | 0.003   | 0.003    |
| Reference Cell (volts)               | 0.669  | 0.630   | 0.790   | 0.790    |
| Anode Voltage                        | 9.1    | 8.7     | 10.7    | 12.4     |
| Anode Current (amps)                 | 5.69   | 5.65    | 5.65    | 5.66     |
| Ref. Cell Instant-off (volts)        | 0.419  |         | 0.416   | 0.433    |
| Conductance (mbos)                   | 0.625  | 0.649   | 0.528   | 0.456    |
| Voltage drop in ref. circuit         | 0.250  |         | 0.374   | 0.357    |
| 5-8: AVERAGE VALUES: POLYMER CABLE   |        |         |         |          |
| Rebar Probe (volts)                  | 0.003  | 0.005   | 0.004   | 0.003    |
| Reference Cell (volts)               | 0.690  | 0.671   | 0.892   | 0.666    |
| Anode Voltage                        | 9.3    | 9.3     | 11.8    | 16.5     |
| Anode Current (amps)                 | 5.24   | 5.20    | 5.20    | 4.89     |
| Ref. Cell Instant-off (volts)        | 0.416  |         | 0.448   | 0.311    |
| Conductance (mhos)                   | 0.566  | 0.562   | 0.443   | 0.323    |
| Voltage drop in ref. circuit         | 0.274  |         | 0.444   | 0.354    |

j.

.

**b**-

| Date:                                | 3/28/91 | 5/15/91 | 7/31/91 | 8/16/91 |
|--------------------------------------|---------|---------|---------|---------|
| Days since last reading:             | 129     | 48      | 77      | 16      |
| Days since start-up (10/28/88):      | 851     | 899     | 976     | 992     |
| Tester:                              | DE,KC   | DE      | DE      | JM,DE   |
| <b># 5: CONDUCTIVE POLYMER CABLE</b> |         |         |         |         |
| Rebar Probe (volts)                  | 0.004   | 0.003   | 0.003   | 0.004   |
| Reference Cell (volts)               | 1.066   | 0.420   | 0.030   | 0.037   |
| Anode Voltage                        | 23.5    | 24.1    | 24.1    | 25.5    |
| Anode Current (amps)                 | 4.06    | 1.66    | 0.04    | 0.01    |
| Ref. Cell Instant-off (volts)        | 0.464   | 0.262   | 0.029   | 0.037   |
| Conductance (mhos)                   | 0.173   | 0.069   | 0.002   | 0.000   |
| Voltage drop in ref. circuit         | 0.602   | 0.158   | 0.001   | 0.000   |
| # 6: CONDUCTIVE POLYMER CABLE        |         |         |         |         |
| Rebar Probe (volts)                  | 0.004   | 0.003   | 0.003   | 0.003   |
| Reference Cell (volts)               | 0.752   | 0.125   | 0.044   | 0.043   |
| Anode Voltage                        | 23.4    | 24.2    | 25.1    | 25.0    |
| Anode Current (amps)                 | 4.82    | 1.55    | 0.07    | 0.08    |
| Ref. Cell Instant-off (volts)        | 0.354   | 0.120   | 0.044   | 0.042   |
| Conductance (mhos)                   | 0.206   | 0.064   | 0.003   | 0.003   |
| Voltage drop in ref. circuit         | 0.398   | 0.005   | 0.000   | 0.001   |
| # 7: CONDUCTIVE POLYMER CABLE        |         |         |         |         |
| Rebar Probe (volts)                  | 0.003   | 0.003   | 0.003   | 0.004   |
| Reference Cell (volts)               | 0.066   | 0.064   | 0.095   | 0.101   |
| Anode Voltage                        | 23.7    | 24.0    | 24.8    | 24.8    |
| Anode Current (amps)                 | 1.88    | 1.65    | 0.01    | 0.01    |
| Ref. Cell Instant-off (volts)        | 0.062   | 0.062   | 0.098   | 0.101   |
| Conductance (mhos)                   | 0.079   | 0.069   | 0.000   | 0.000   |
| Voltage drop in ref. circuit         | 0.004   | 0.002   | -0.003  | 0.000   |
| <b># 8: CONDUCTIVE POLYMER CABLE</b> |         |         |         |         |
| Rebar Probe (volts)                  | 0.004   | 0.005   | 0.004   | 0.004   |
| Reference Cell (volts)               | 1.252   | 0.780   | 0.208   | 0.138   |
| Anode Voltage                        | 21.1    | 23.9    | 24.7    | 24.9    |
| Anode Current (amps)                 | 5.66    | 3,53    | 0.43    | 0.24    |
| Ref. Cell Instant-off (volts)        | 0.547   | 0.404   | 0.186   | 0.134   |
| Conductance (mhos)                   | 0.268   | 0.148   | 0.017   | 0.010   |
| Voltage drop in ref. circuit         | 0.705   | 0.376   | 0.022   | 0.004   |
| 5-8: AVERAGE VALUES: POLYMER CABLE   | C       |         |         |         |
| Rebar Probe (volts)                  | 0.004   | 0.004   | 0.003   | 0.004   |
| Reference Cell (volts)               | 0.784   | 0.347   | 0.094   | 0.080   |
| Anode Voltage                        | 22.9    | 24.1    | 24.7    | 25.1    |
| Anode Current (amps)                 | 4.11    | 2.10    | 0.14    | 0.09    |
| Ref. Cell Instant-off (volts)        | 0.357   | 0.212   | 0.089   | 0.079   |
| Conductance (mhos)                   | 0.182   | 0.087   | 0.006   | 0.003   |
| Voltage drop in ref. circuit         | 0.427   | 0.135   | 0.005   | 0.001   |
| - ·                                  |         |         |         |         |

÷

| Date:                                | 9/10/91       | 10/9/91 | 1/7/92        | 3/19/92       |
|--------------------------------------|---------------|---------|---------------|---------------|
| Days since last reading:             | 25            | 29      | <b>9</b> 0    | 72            |
| Days since start-up (10/28/88):      | 1,017         | 1,046   | 1,136         | 1,208         |
| Tester:                              | DE            | DE      | DE            | DE            |
| <b># 5: CONDUCTIVE POLYMER CABLE</b> |               |         |               |               |
| Rebar Probe (volts)                  | 0.004         | 0.003   | 0.001         | 0.002         |
| Reference Cell (volts)               | 0.024         | 0.020   | 0.025         | 0.013         |
| Anode Voltage                        | 25.5          | 25.2    | 25.0          | 25.0          |
| Anode Current (amps)                 | 0.01          | 0.01    | 0.00          | 0.01          |
| Ref. Cell Instant-off (volts)        | 0.021         | 0.019   | 0.023         | 0.013         |
| Conductance (mhos)                   | 0.000         | 0.000   | 0,000         | 0.000         |
| Voltage drop in ref. circuit         | 0.003         | 0.001   | 0.002         | 0.000         |
| # 6: CONDUCTIVE POLYMER CABLE        |               |         |               |               |
| Rebar Probe (volts)                  | 0.003         | 0.002   | 0.000         | 0.001         |
| Reference Cell (volts)               | 0.033         | 0.030   | 0.028         | 0.042         |
| Anode Voltage                        | 25.3          | 25.2    | 25.5          | 25.8          |
| Anode Current (amps)                 | 0.02          | 0.01    | 0.01          | 0.01          |
| Ref. Cell Instant-off (volts)        | 0.031         | 0.029   | 0.028         | 0.042         |
| Conductance (mhos)                   | 0.001         | 0.000   | 0.000         | 0.000         |
| Voltage drop in ref. circuit         | 0.002         | 0.001   | 0.000         | 0.000         |
| # 7: CONDUCTIVE POLYMER CABLE        |               |         |               |               |
| Rebar Probe (volts)                  | 0.003         | 0.003   | 0.001         | 0.001         |
| Reference Cell (volts)               | 0.100         | 0.091   | 0.078         | 0.069         |
| Anode Voltage                        | 24.8          | 25.0    | 24.9          | 25.0          |
| Anode Current (amps)                 | 0.01          | 0.01    | 0.00          | 0.01          |
| Ref. Cell Instant-off (volts)        | 0.099         | 0.091   | 0.079         | 0.070         |
| Conductance (mhos)                   | 0.000         | 0.000   | 0.000         | 0.000         |
| Voltage drop in ref. circuit         | 0.001         | 0.000   | -0.001        | -0.001        |
| # 8: CONDUCTIVE POLYMER CABLE        |               |         |               |               |
| Rebar Probe (volts)                  | 0.004         | 0.004   | 0.001         | 0.002         |
| Reference Cell (volts)               | 0.181         | 0.178   | 0.172         | 0.114         |
| Anode Voltage                        | 25.0          | 24.8    | 24.5          | 24.8          |
| Anode Current (amps)                 | 0.14          | 0.07    | 0.06          | 0.05          |
| Ref. Cell Instant-off (volts)        | 0.168         | 0.168   | 0.161         | 0.107         |
| Conductance (mhos)                   | 0.006         | 0.003   | 0.002         | 0.002         |
| Voltage drop in ref. circuit         | 0.013         | 0.010   | 0.011         | 0.007         |
| 5-8: AVERAGE VALUES: POLYMER CABLE   | 2             |         |               |               |
| Rebar Probe (volts)                  | 0.004         | 0.003   | 0.001         | 0.002         |
| Reference Cell (volts)               | 0.085         | 0.080   | 0.076         | 0.060         |
| Anode Voltage                        | 25.2          | 25.1    | <b>25</b> .0  | 25.2          |
| Anode Current (amps)                 | 0.05          | 0.03    | 0.02          | 0.02          |
| Ref. Cell Instant-off (volts)        | <b>0.08</b> 0 | 0.077   | 0 <b>.073</b> | 0.058         |
| Conductance (mhos)                   | 0.002         | 0.001   | <b>0.0</b> 01 | <b>0</b> .001 |
| Voltage drop in ref. circuit         | 0.005         | 0.003   | 0.003         | 0.002         |
|                                      |               |         |               |               |

۴

.

s

| Date:                                | 4/17/92 | 5/15/92 | 6/11/92 |
|--------------------------------------|---------|---------|---------|
| Days since last reading:             | 29      | 28      | 27      |
| Days since start-up (10/28/88):      | 1,237   | 1,265   | 1,292   |
| Tester:                              | DE      | DE      | DE      |
| # 5: CONDUCTIVE POLYMER CABLE        |         |         |         |
| Rebar Probe (volts)                  | 0.002   | 0.003   | 0.004   |
| Reference Cell (volts)               | 0.013   | 0.025   | 0.027   |
| Anode Voltage                        | 25.2    | 25.1    | 25.5    |
| Anode Current (amps)                 | 0.01    | 0.01    | 0.01    |
| Ref. Cell Instant-off (volts)        | 0.011   | 0.022   | 0.023   |
| Conductance (mhos)                   | 0.000   | 0.000   | 0,000   |
| Voltage drop in ref. circuit         | 0.002   | 0.003   | 0.004   |
| # 6: CONDUCTIVE POLYMER CABLE        |         |         |         |
| Rebar Probe (volts)                  | 0.001   | 0.002   | 0.003   |
| Reference Cell (volts)               | 0.047   | 0.053   | 0.053   |
| Anode Voltage                        | 25.8    | 25.6    | 25.9    |
| Anode Current (amps)                 | 0.01    | 0.01    | 0.01    |
| Ref. Cell Instant-off (volts)        | 0.045   | 0.051   | 0.051   |
| Conductance (mbos)                   | 0.000   | 0.000   | 0.000   |
| Voltage drop in ref. circuit         | 0.002   | 0.002   | 0.002   |
| <b># 7: CONDUCTIVE POLYMER CABLE</b> |         |         |         |
| Rebar Probe (volts)                  | 0.001   | 0.003   | 0.004   |
| Reference Cell (volts)               | 0.081   | 0.101   | 0.109   |
| Anode Voltage                        | 25.2    | 24.9    | 25.3    |
| Anode Current (amps)                 | 0.01    | 0.01    | 0.01    |
| Ref. Cell Instant-off (volts)        | 0.080   | 0.100   | 0.108   |
| Conductance (mbos)                   | 0.000   | 0.000   | 0.000   |
| Voltage drop in ref. circuit         | 0.001   | 0.001   | 0.001   |
| # 8: CONDUCTIVE POLYMER CABLE        |         |         |         |
| Rebar Probe (volts)                  | 0.002   | 0.003   | 0.004   |
| Reference Cell (volts)               | 0.101   | 0.060   | 0.050   |
| Anode Voltage                        | 24.7    | 25.2    | 25.5    |
| Anode Current (amps)                 | 0.04    | 0.02    | 0.03    |
| Ref. Cell Instant-off (volts)        | 0.094   | 0.058   | 0.048   |
| Conductance (mbos)                   | 0.002   | 0.001   | 0.043   |
| Voltage drop in ref. circuit         | 0.002   | 0.002   | 0.001   |
| 5-8: AVERAGE VALUES: POLYMER CABLE   |         |         |         |
| Rebar Probe (volts)                  | 0.002   | 0.003   | 0.004   |
| Reference Cell (volts)               | 0.061   | 0.060   | 0.060   |
| Anode Voltage                        | 25.2    | 25.2    | 25.6    |
| Anode Current (amps)                 | 0.02    | 0.01    | 0.02    |
| Ref. Cell Instant-off (volts)        | 0.058   | 0.058   | 0.058   |
| • •                                  | 0.038   | 0.000   |         |
| Conductance (mhos)                   |         |         | 0.001   |
| Voltage drop in ref. circuit         | 0.003   | 0.002   | 0.002   |

| Date:                                | 7/9/92 | 8/7/92 | 8/25/92 | 9/22/92 |
|--------------------------------------|--------|--------|---------|---------|
| Days since last reading:             | 28     | 29     | 18      | 28      |
| Days since start-up (10/28/88):      | 1,320  | 1,349  | 1,367   | 1,395   |
| Tester:                              | DE     | HP,RF  | DE      | DE      |
| <b># 5: CONDUCTIVE POLYMER CABLE</b> |        |        |         |         |
| Rebar Probe (volts)                  | 0.003  | 0.004  | 0.003   | 0.002   |
| Reference Cell (volts)               | 0.012  | 0.018  | 0.021   | 0.015   |
| Anode Voltage                        | 24.6   | 24.7   | 24.7    | 25.0    |
| Anode Current (amps)                 | 0.01   | 0.01   | 0.01    | 0.02    |
| Ref. Cell Instant-off (volts)        | 0.008  | 0.014  | 0.019   | 0.015   |
| Conductance (mhos)                   | 0.000  | 0.000  | 0.000   | 0.001   |
| Voltage drop in ref. circuit         | 0.004  | 0.004  | 0.002   | 0.000   |
| # 6: CONDUCTIVE POLYMER CABLE        |        |        |         |         |
| Rebar Probe (volts)                  | 0.002  | 0.003  | 0.002   | 0.001   |
| Reference Cell (volts)               | 0.052  | 0.051  | 0.050   | 0.050   |
| Anode Voltage                        | 25.2   | 25.1   | 24.9    | 25.2    |
| Anode Current (amps)                 | 0.01   | 0.01   | 0.01    | 0.01    |
| Ref. Cell Instant-off (volts)        | 0.050  | 0.049  | 0.049   | 0.049   |
| Conductance (mhos)                   | 0.000  | 0.000  | 0.000   | 0.000   |
| Voltage drop in ref. circuit         | 0.002  | 0.002  | 0.001   | 0.001   |
| # 7: CONDUCTIVE POLYMER CABLE        |        |        |         |         |
| Rebar Probe (volts)                  | 0.003  | 0.003  | 0.003   | 0.001   |
| Reference Cell (volts)               | 0.100  | 0.109  | 0.121   | 0.120   |
| Anode Voltage                        | 24.6   | 24.7   | 24.6    | 24.9    |
| Anode Current (amps)                 | 0.01   | 0.01   | 0.01    | 0.01    |
| Ref. Cell Instant-off (volts)        | 0.100  | 0.110  | 0.121   | 0.123   |
| Conductance (mhos)                   | 0.000  | 0.000  | 0.000   | 0.000   |
| Voltage drop in ref. circuit         | 0.000  | -0.001 | 0.000   | -0.003  |
| # 8: CONDUCTIVE POLYMER CABLE        |        |        |         |         |
| Rebar Probe (volts)                  | 0.003  | 0.003  | 0.002   | 0.001   |
| Reference Cell (volts)               | 0.043  | 0.041  | 0.046   | 0.041   |
| Anode Voltage                        | 25.5   | 25.3   | 24.9    | 25.2    |
| Anode Current (amps)                 | 0.02   | 0.02   | 0.03    | 0.02    |
| Ref. Cell Instant-off (volts)        | 0.041  | 0.043  | 0.045   | 0.040   |
| Conductance (mhos)                   | 0.001  | 0.001  | 0.001   | 0.001   |
| Voltage drop in ref. circuit         | 0.002  | -0.002 | 0.001   | 0.001   |
| 5-8: AVERAGE VALUES: POLYMER CABLE   |        |        |         |         |
| Rebar Probe (volts)                  | 0.003  | 0.003  | 0.003   | 0.001   |
| Reference Cell (volts)               | 0.052  | 0.055  | 0.060   | 0.057   |
| Anode Voltage                        | 25.0   | 25.0   | 24.8    | 25.1    |
| Anode Current (amps)                 | 0.01   | 0.01   | 0.02    | 0.02    |
| Ref. Cell Instant-off (volts)        | 0.050  | 0.054  | 0.059   | 0.057   |
| Conductance (mhos)                   | 0.000  | 0.000  | 0.001   | 0.001   |
| Voltage drop in ref. circuit         | 0.002  | 0.001  | 0.001   | 0.000   |
|                                      |        |        |         |         |

| Date:                             | 1/8/93 | 2/12/93     | 2/26/93      | 2/26/93       |
|-----------------------------------|--------|-------------|--------------|---------------|
| Days since last reading:          | 108    | 35          | 14           | 0.50          |
| Days since start-up (10/28/88):   | 1,503  | 1,538       | 1,552        | 1,553         |
| Tester:                           | DE     | DE          | RF           | RF            |
| # 5: CONDUCTIVE POLYMER CABLE     |        |             |              |               |
| Rebar Probe (volts)               | 0.002  | 0.000       | 0.000        | 0.002         |
| Reference Cell (volts)            | 0.036  | 0.037       | 0.035        | 0.044         |
| Anode Voltage                     | 24.7   | 24.7        | <b>24.</b> 6 | 0.5           |
| Anode Current (amps)              | 0.01   | 0.01        | 0.02         | 0.00          |
| Ref. Cell Instant-off (volts)     | 0.033  | 0.036       | 0.035        | 0.044         |
| Conductance (mhos)                | 0.000  | 0.000       | 0.001        | 0.000         |
| Voltage drop in ref. circuit      | 0.003  | 0.001       | 0.000        | 0.000         |
| # 6: CONDUCTIVE POLYMER CABLE     |        |             |              |               |
| Rebar Probe (volts)               | 0.002  | 0.000       | 0.001        | 0.000         |
| Reference Cell (volts)            | 0.056  | 0.057       | 0.055        | 0.059         |
| Anode Voltage                     | 24.7   | 24.7        | 24.7         | 0.6           |
| Anode Current (amps)              | 0.00   | 0.00        | 0.01         | 0.00          |
| Ref. Cell Instant-off (volts)     | 0.055  | 0.056       | 0.055        | 0.059         |
| Conductance (mhos)                | 0.000  | 0.000       | 0.000        | 0.000         |
| Voltage drop in ref. circuit      | 0.001  | 0.001       | 0.000        | <b>0.00</b> 0 |
| # 7: CONDUCTIVE POLYMER CABLE     |        |             |              |               |
| Rebar Probe (volts)               | 0.002  | 0.000       | 0.000        | 0.000         |
| Reference Cell (volts)            | 0.099  | 0.095       | 0,093        | 0.104         |
| Anode Voltage                     | 24.8   | <b>24.7</b> | 24.6         | 0.9           |
| Anode Current (amps)              | 0.01   | 0.01        | 0.01         | 0.00          |
| Ref. Cell Instant-off (volts)     | 0.020  | 0.094       | 0.092        | 0.104         |
| Conductance (mhos)                | 0.000  | 0.000       | 0.000        | 0.000         |
| Voltage drop in ref. circuit      | 0.079  | 0.001       | 0.001        | 0.000         |
| # 8: CONDUCTIVE POLYMER CABLE     |        |             |              |               |
| Rebar Probe (volts)               | 0.001  | 0,000       | 0.000        | 0.000         |
| Reference Cell (volts)            | 0.021  | 0.020       | 0.019        | 0.025         |
| Anode Voltage                     | 25.0   | 24.9        | 24.8         | 0.7           |
| Anode Current (amps)              | 0.01   | 0.01        | 0.01         | <b>0.0</b> 0  |
| Ref. Cell Instant-off (volts)     | 0.020  | 0.020       | 0.019        | 0.025         |
| Conductance (mhos)                | 0.000  | 0,000       | 0.000        | 0.000         |
| Voltage drop in ref. circuit      | 0.001  | 0.000       | 0.000        | 0.000         |
| 5-8: AVERAGE VALUES: POLYMER CABL | E      |             |              |               |
| Rebar Probe (volts)               | 0.002  | 0.000       | 0.000        | 0.001         |
| Reference Cell (volts)            | 0.053  | 0.052       | 0.051        | 0.058         |
| Anode Voltage                     | 24.8   | 24.8        | 24.7         | 0.7           |
| Anode Current (amps)              | 0.01   | 0.01        | 0.01         | 0.00          |
| Ref. Cell Instant-off (volts)     | 0.032  | 0.052       | 0.050        | 0.058         |
| Conductance (mhos)                | 0.000  | 0.000       | 0.001        | 0.000         |
| Voltage drop in ref. circuit      | 0.021  | 0.001       | 0.000        | 0.000         |
|                                   |        |             |              |               |

| Date:                                | 3/5/93 | 3/18/93 | 4/27/93 | 5/28/93       |
|--------------------------------------|--------|---------|---------|---------------|
| Days since last reading:             | 7      | 13      | 40      | 31            |
| Days since start-up (10/28/88):      | 1,560  | 1,573   | 1,613   | 1,644         |
| Tester:                              | RF     | HP,RF   | DE,JS   | DE,TM         |
| <b># 5: CONDUCTIVE POLYMER CABLE</b> |        |         |         |               |
| Rebar Probe (volts)                  | 0.001  | 0.001   | 0.002   | 0.003         |
| Reference Cell (volts)               | 0.038  | 0.039   | 0.050   | 0.053         |
| Anode Voltage                        | 0.5    | 0.4     | 0,6     | 0.7           |
| Anode Current (amps)                 | 0.00   | 0.00    | 0.00    | 0.00          |
| Ref. Cell Instant-off (volts)        | 0.038  | 0.039   | 0.050   | 0.053         |
| Conductance (mhos)                   | 0.000  | 0.000   | 0.000   | 0.000         |
| Voltage drop in ref. circuit         | 0.000  | 0.000   | 0.000   | 0.000         |
| # 6: CONDUCTIVE POLYMER CABLE        |        |         |         |               |
| Rebar Probe (volts)                  | 0.000  | 0.001   | 0.002   | 0.003         |
| Reference Cell (volts)               | 0.057  | 0.058   | 0.057   | 0.050         |
| Anode Voltage                        | 0.4    | 0.2     | 0.5     | 0.7           |
| Anode Current (amps)                 | 0.00   | 0.00    | 0.00    | 0.01          |
| Ref. Cell Instant-off (volts)        | 0.057  | 0.058   | 0.057   | 0.050         |
| Conductance (mhos)                   | 0.000  | 0.000   | 0.000   | 0.014         |
| Voltage drop in ref. circuit         | 0.000  | 0.000   | 0.000   | <b>0.</b> 000 |
| # 7: CONDUCTIVE POLYMER CABLE        |        |         |         |               |
| Rebar Probe (volts)                  | 0.000  | 0.001   | 0.002   | 0.003         |
| Reference Cell (volts)               | 0.103  | 0.107   | 0.126   | 0.134         |
| Anode Voltage                        | 0.8    | 0.7     | 1.1     | 1.0           |
| Anode Current (amps)                 | 0.00   | 0.00    | 0.00    | 0.03          |
| Ref. Cell Instant-off (volts)        | 0.103  | 0.107   | 0.126   | 0.134         |
| Conductance (mhos)                   | 0.000  | 0.000   | 0.000   | 0.030         |
| Voltage drop in ref. circuit         | 0.000  | 0.000   | 0.000   | 0.000         |
| # 8: CONDUCTIVE POLYMER CABLE        |        |         |         |               |
| Rebar Probe (volts)                  | 0.000  | 0.001   | 0.002   | 0.003         |
| Reference Cell (volts)               | 0.024  | 0.026   | 0.033   | 0.040         |
| Anode Voltage                        | 0.6    | 0.5     | 0.8     | 0.9           |
| Anode Current (amps)                 | 0.00   | 0.00    | 0.00    | 0.00          |
| Ref. Cell Instant-off (volts)        | 0.024  | 0.026   | 0.033   | <b>0.04</b> 0 |
| Conductance (mhos)                   | 0.000  | 0.000   | 0.000   | 0.000         |
| Voltage drop in ref. circuit         | 0.000  | 0.000   | 0.000   | 0.000         |
| 5-8: AVERAGE VALUES: POLYMER CABL    | E      |         |         |               |
| Rebar Probe (volts)                  | 0.000  | 0.001   | 0.602   | 0.003         |
| Reference Cell (volts)               | 0.056  | 0.058   | 0.067   | 0.069         |
| Anode Voltage                        | 0.6    | 0.5     | 0.8     | 0.8           |
| Anode Current (amps)                 | 0.00   | 0.00    | 0.00    | 0.01          |
| Ref. Cell Instant-off (volts)        | 0.056  | 0.058   | 0,067   | 0.069         |
| Conductance (mhos)                   | 0.000  | 0.000   | 0.000   | 0.011         |
| Voltage drop in ref. circuit         | 0.000  | 0.000   | 0.000   | 0.000         |
|                                      |        |         |         |               |

| Days since last reading:         33         62         37         26           Days since start-up (10/28/88):         1,677         1,739         1,776         1,802           Tester:         DE         DE         DN         PN           * 5: CONDUCTIVE POLYMER CABLE         0.004         0.004         0.004           Rebar Probe (volts)         0.038         0.028         0.032           Anode Voltage         0.6         0.3         0.6         0.9           Anode Current (amps)         0.000         0.000         0.000         0.000           Voltage drop in ref. circuit         0.000         0.000         0.000         0.001           Voltage drop in ref. circuit         0.004         0.003         0.004         0.003           # 6: CONDUCTIVE POLYMER CABLE         Rebar Probe (volts)         0.044         0.030         0.004           Reference Cell (volts)         0.044         0.030         0.004         0.037           Anode Current (amps)         0.000         0.000         0.000         0.000           Reference Cell (volts)         0.044         0.303         0.044         0.337           # 6: CONDUCTIVE POLYMER CABLE         Rebar Probe (volts)         0.129         0.135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date:                                | 6/30/93 | 8/31/93 | 10/7/93 | 11/2/93      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------|---------|---------|--------------|
| Tester:         DE         DE         DE         PN         PN           # 5: CONDUCTIVE POLYMER CABLE         0.004         0.004         0.004         0.004         0.004           Rebar Probe (volts)         0.038         0.028         0.038         0.023           Anode Voltage         0.6         0.3         0.6         0.9           Anode Current (amps)         0.00         0.00         0.00         0.00           Reference Cell (volts)         0.038         0.028         0.038         0.023           Conductance (mbos)         0.000         0.000         0.000         0.000         0.000           Voltage drop in ref. circuit         0.004         0.003         0.004         0.003         0.004           Rebar Probe (volts)         0.044         0.030         0.044         0.037         Anode Current (amps)         0.00         0.00         0.00         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000 <td>Days since last reading:</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Days since last reading:             |         |         |         |              |
| # St. CONDUCTIVE POLYMER CABLE         Rebar Probe (volts)       0.004       0.004       0.004         Reference Cell (volts)       0.038       0.028       0.038       0.023         Anode Voltage       0.6       0.3       0.6       0.9         Anode Current (amps)       0.00       0.00       0.00       0.00         Ref. Cell Instant-off (volts)       0.038       0.028       0.038       0.023         Conductance (mhos)       0.000       0.000       0.000       0.000       0.000         Voltage drop in ref. circuit       0.004       0.003       0.004       0.001       0.000         Rebar Probe (volts)       0.004       0.003       0.004       0.001       0.000       0.000         Reference Cell (volts)       0.004       0.030       0.044       0.037       0.004       0.000       0.000         Anode Current (amps)       0.00       0.000       0.000       0.000       0.000       0.001       0.001       0.001         Kef creace Cell (volts)       0.004       0.003       0.004       0.000       0.000       0.001       0.001         Voltage drop in ref. circuit       0.000       0.000       0.000       0.001       0.003 <td< td=""><td>Days since start-up (10/28/88):</td><td>1,677</td><td>1,739</td><td>1,776</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Days since start-up (10/28/88):      | 1,677   | 1,739   | 1,776   |              |
| Rebar Probe (volts)         0.004         0.004         0.004           Reference Cell (volts)         0.038         0.028         0.038         0.023           Anode Voltage         0.6         0.3         0.6         0.9           Anode Current (amps)         0.000         0.00         0.00         0.00           Ref. Cell Instant-off (volts)         0.038         0.023         0.000         0.000         0.000           Voltage drop in ref. circuit         0.000         0.000         0.000         0.000         0.000           # 6: CONDUCTIVE POLYMER CABLE         Ebar Probe (volts)         0.044         0.033         0.044         0.037           Anode Current (amps)         0.004         0.003         0.004         0.007         0.000           Reference Cell (volts)         0.044         0.030         0.044         0.37           Anode Current (amps)         0.00         0.000         0.000         0.000           Reference (amps)         0.000         0.000         0.000         0.000           Voltage drop in ref. circuit         0.000         0.000         0.001         0.037           # 7: CONDUCTIVE POLYMER CABLE         Ebar Probe (volts)         0.129         0.128         0.129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tester:                              | DE      | DE      | PN      | PN           |
| Reference Cell (volts)         0.038         0.028         0.038         0.028           Anode Voltage         0.6         0.3         0.6         0.9           Anode Current (amps)         0.00         0.00         0.00         0.00           Ref. Cell Instant-off (volts)         0.038         0.028         0.038         0.028           Conductance (mbos)         0.000         0.000         0.000         0.000         0.000           Voltage drop in ref. circuit         0.004         0.003         0.004         0.023           # 6: CONDUCTIVE POLYMER CABLE           Reference Cell (volts)         0.004         0.003         0.004           Reference Cell (volts)         0.004         0.030         0.044         0.037         Anode Current (amps)         0.00         0.00         0.00         0.00           Ref. Cell Instant-off (volts)         0.044         0.030         0.044         Conductance (mbos)         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.001         0.014 <td><b># 5: CONDUCTIVE POLYMER CABLE</b></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b># 5: CONDUCTIVE POLYMER CABLE</b> |         |         |         |              |
| Anode Voltage       0.6       0.3       0.6       0.9         Anode Current (amps)       0.038       0.028       0.038       0.000         Ref. Cell Instant-off (volts)       0.038       0.028       0.038       0.000         Conductance (mbos)       0.000       0.000       0.000       0.000       0.000         Voltage drop in ref. circuit       0.004       0.003       0.004       0.003       0.004         Rebar Probe (volts)       0.044       0.030       0.044       0.037         Anode Current (amps)       0.00       0.00       0.00       0.00         Anode Voltage       0.4       0.2       0.4       0.33         Anode Current (amps)       0.004       0.030       0.044         Conductance (mbos)       0.004       0.030       0.044         Conductance (mbos)       0.000       0.000       0.000         Voltage drop in ref. circuit       0.000       0.000       0.004         Voltage drop in ref. circuit       0.004       0.003       0.004         Rebar Probe (volts)       0.129       0.128       0.129       0.135         Anode Current (amps)       0.03       0.03       0.000       0.000       0.000       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rebar Probe (volts)                  | 0.004   | 0.004   | 0.004   |              |
| Anode Current (amps)         0.00         0.00         0.00         0.00           Ref. Cell Instant-off (volts)         0.038         0.028         0.038         0.000           Voltage drop in ref. circuit         0.000         0.000         0.000         0.000           W 6; CONDUCTIVE POLYMER CABLE               Rebar Probe (volts)         0.004         0.003         0.004            Anode Current (amps)         0.044         0.030         0.044         0.037           Anode Current (amps)         0.004         0.000         0.000         0.000           Reference Cell (volts)         0.044         0.030         0.044         0.037           Anode Current (amps)         0.000         0.000         0.000         0.000           Ref. Cell Instant-off (volts)         0.044         0.030         0.044           Conductance (mbos)         0.000         0.000         0.000         0.000           Voltage drop in ref. circuit         0.004         0.003         0.004         Reference Cell (volts)         0.129         0.128         0.129           Conductance (mbos)         0.129         0.128         0.129         Conductance (mbos)         0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reference Cell (volts)               | 0.038   | 0.028   | 0.038   | 0.023        |
| Ref. Cell Instant-off (volts)         0.038         0.028         0.038           Conductance (mbos)         0.000         0.000         0.000         0.000           Voltage drop in ref. circuit         0.000         0.000         0.000         0.023           # 6: CONDUCTIVE POLYMER CABLE         Exbar Probe (volts)         0.044         0.033         0.004           Reference Cell (volts)         0.044         0.030         0.044         0.037           Anode Voltage         0.4         0.2         0.4         0.8           Anode Current (amps)         0.000         0.000         0.000         0.000           Voltage drop in ref. circuit         0.000         0.000         0.000         0.000           Voltage drop in ref. circuit         0.000         0.000         0.000         0.001           Voltage drop in ref. circuit         0.000         0.000         0.000         0.001           Valtage drop in ref. circuit         0.000         0.000         0.004         0.033         0.03           # 7: CONDUCTIVE POLYMER CABLE         Reference Cell (volts)         0.129         0.128         0.129         0.135           Anode Voltage         0.8         0.6         0.8         1.1         Anode Voltase </td <td>Anode Voltage</td> <td>0.6</td> <td>0.3</td> <td>0.6</td> <td>0.9</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Anode Voltage                        | 0.6     | 0.3     | 0.6     | 0.9          |
| Conductance (mbos)         0.000         0.000         0.000         0.000         0.000         0.000           Voltage drop in ref. circuit         0.000         0.000         0.000         0.000         0.023           # 6: CONDUCTIVE POLYMER CABLE         Reference Cell (volts)         0.044         0.033         0.044         0.037           Anode Voltage         0.4         0.2         0.4         0.8           Anode Current (amps)         0.00         0.000         0.000         0.00           Ref. Cell Instant-off (volts)         0.044         0.030         0.044         0.030           Ref. Cell Instant-off (volts)         0.044         0.030         0.044         0.000         0.000           Voltage drop in ref. circuit         0.000         0.000         0.000         0.000         0.001           Voltage drop in ref. circuit         0.004         0.003         0.044         0.33         0.037           # 7: CONDUCTIVE POLYMER CABLE         Reference Cell (volts)         0.129         0.128         0.129         0.135           Anode Current (amps)         0.03         0.03         0.00         0.000         0.000           Voltage drop in ref. circuit         0.000         0.000         0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Anode Current (amps)                 | 0.00    | 0.00    | 0.00    | 0.00         |
| Voltage drop in ref. circuit         0.000         0.000         0.000         0.000           # 6: CONDUCTIVE POLYMER CABLE         0.004         0.003         0.004         0.003           Rebar Probe (volts)         0.044         0.030         0.044         0.037           Anode Voltage         0.4         0.2         0.4         0.8           Anode Current (amps)         0.000         0.000         0.000         0.000           Ref. Cell Instant-off (volts)         0.044         0.030         0.044         0.030           Conductance (mbos)         0.000         0.000         0.000         0.000         0.000           Voltage drop in ref. circuit         0.000         0.000         0.001         0.001         0.001           K*7: CONDUCTIVE POLYMER CABLE         Rebar Probe (volts)         0.129         0.128         0.129         0.135           Anode Voltage         0.8         0.6         0.8         1.1           Anode Voltage         0.8         0.6         0.8         1.1           Anode Current (amps)         0.038         0.050         0.038         0.000           Voltage drop in ref. circuit         0.000         0.000         0.035         0.042         0.024 <td>Ref. Cell Instant-off (volts)</td> <td>0.038</td> <td>0.028</td> <td>0.038</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ref. Cell Instant-off (volts)        | 0.038   | 0.028   | 0.038   |              |
| # 6: CONDUCTIVE POLYMER CABLE         Rebar Probe (volts)       0.004       0.003       0.004         Reference Cell (volts)       0.044       0.030       0.044       0.037         Anode Voltage       0.4       0.2       0.4       0.8         Anode Voltage       0.4       0.22       0.4       0.8         Anode Current (amps)       0.000       0.000       0.000       0.000         Ref. Cell Instant-off (volts)       0.044       0.030       0.044       0.037         Conductance (mbos)       0.000       0.000       0.000       0.000       0.000         Voltage drop in ref. circuit       0.000       0.000       0.000       0.037         # 7: CONDUCTIVE POLYMER CABLE              Reference Cell (volts)       0.129       0.128       0.129       0.135         Anode Current (amps)       0.03       0.03       0.00       0.000       0.000         Conductance (mhos)       0.129       0.128       0.129       Conductance (mhos)       0.038       0.050       0.038       0.000         Voltage drop in ref. circuit       0.000       0.000       0.001       0.135       # 3:       Conductance (mhos)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Conductance (mhos)                   | 0.000   | 0.000   | 0.000   | 0.000        |
| Rebar Probe (volts)         0.004         0.003         0.004           Reference Cell (volts)         0.044         0.030         0.044         0.037           Anode Voltage         0.4         0.2         0.4         0.8           Anode Current (amps)         0.00         0.00         0.00         0.00           Ref. Cell Instant-off (volts)         0.044         0.030         0.044           Conductance (mhos)         0.000         0.000         0.000         0.000           Voltage drop in ref. circuit         0.000         0.000         0.000         0.037           # 7: CONDUCTIVE POLYMER CABLE         Reference Cell (volts)         0.129         0.128         0.129         0.135           Anode Voltage         0.8         0.6         0.8         1.1           Anode Voltage         0.8         0.6         0.8         1.1           Anode Voltage         0.129         0.128         0.129         Conductance (mhos)         0.038         0.050         0.038         0.000           Voltage drop in ref. circuit         0.000         0.000         0.000         0.129         Conductance (mhos)         0.0129         0.128         0.129         0.128         0.129         0.024         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Voltage drop in ref. circuit         | 0.000   | 0.000   | 0.000   | 0.023        |
| Reference Cell (volts)         0.044         0.030         0.044         0.037           Anode Voltage         0.4         0.2         0.4         0.8           Anode Current (amps)         0.00         0.00         0.00         0.00           Ref. Cell Instant-off (volts)         0.044         0.030         0.044         0.030         0.044           Conductance (mbos)         0.000         0.000         0.000         0.000         0.000           Voltage drop in ref. circuit         0.000         0.000         0.000         0.037           # 7: CONDUCTIVE POLYMER CABLE         Rebar Probe (volts)         0.129         0.128         0.129         0.135           Anode Current (amps)         0.03         0.03         0.03         0.00         0.000           Reference Cell (volts)         0.129         0.128         0.129         0.135           Anode Current (amps)         0.03         0.03         0.00         0.000         0.000           Voltage drop in ref. circuit         0.000         0.000         0.000         0.129         0.128         0.129           Conductance (mbos)         0.129         0.128         0.129         0.135         0.142         0.033         0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | # 6: CONDUCTIVE POLYMER CABLE        |         |         |         |              |
| Anode Voltage       0.4       0.2       0.4       0.8         Anode Current (amps)       0.00       0.00       0.00       0.00         Ref. Cell Instant-off (volts)       0.044       0.030       0.044       0.000         Voltage drop in ref. circuit       0.000       0.000       0.000       0.000         Voltage drop in ref. circuit       0.004       0.003       0.004         Reference Cell (volts)       0.129       0.128       0.129       0.135         Anode Current (amps)       0.03       0.03       0.03       0.00         Reference Cell (volts)       0.129       0.128       0.129       0.135         Anode Current (amps)       0.03       0.03       0.03       0.00         Ref. Cell Instant-off (volts)       0.129       0.128       0.129       0.135         Conductance (mbos)       0.038       0.050       0.038       0.000         Voltage drop in ref. circuit       0.000       0.000       0.010       0.135         # 8: CONDUCTIVE POLYMER CABLE       Reference Cell (volts)       0.042       0.035       0.042       0.024         Anode Voltage       0.6       0.4       0.6       1.0       0.004       0.001       0.000 <td>Rebar Probe (volts)</td> <td>0.004</td> <td>0.003</td> <td>0.004</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rebar Probe (volts)                  | 0.004   | 0.003   | 0.004   |              |
| Anode Current (amps)         0.0         0.0         0.00         0.00           Ref. Cell Instant-off (volts)         0.044         0.030         0.044           Conductance (mhos)         0.000         0.000         0.000         0.000           Voltage drop in ref. circuit         0.000         0.000         0.000         0.000           # 7: CONDUCTIVE POLYMER CABLE         Rebar Probe (volts)         0.129         0.128         0.129         0.135           Anode Current (amps)         0.03         0.03         0.004         0.003         0.004           Reference Cell (volts)         0.129         0.128         0.129         0.135           Anode Current (amps)         0.03         0.03         0.00         0.00           Ref. Cell Instant-off (volts)         0.129         0.128         0.129         Conductance (mhos)         0.038         0.000           Voltage drop in ref. circuit         0.000         0.000         0.000         0.135           # 8: CONDUCTIVE POLYMER CABLE         Reference Cell (volts)         0.042         0.035         0.042           Reference Cell (volts)         0.004         0.003         0.004         0.004         0.004           Reference Cell (volts)         0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      | 0.044   | 0.030   | 0.044   | 0.037        |
| Ref. Cell Instant-off (volts)       0.003       0.000       0.000       0.000         Voltage drop in ref. circuit       0.000       0.000       0.000       0.000         Voltage drop in ref. circuit       0.004       0.003       0.004         Ref. Cell Instant-off (volts)       0.004       0.003       0.004         Reference Cell (volts)       0.129       0.128       0.129       0.135         Anode Voltage       0.8       0.6       0.8       1.1         Anode Current (amps)       0.03       0.03       0.00       0.000         Voltage drop in ref. circuit       0.000       0.000       0.000       0.129         Conductance (mhos)       0.129       0.128       0.129       0.135         Conductance (mhos)       0.038       0.050       0.038       0.000         Voltage drop in ref. circuit       0.000       0.000       0.0135       0.044         Reference Cell (volts)       0.042       0.035       0.044       0.024         Anode Voltage       0.6       0.4       0.6       1.0         Anode Voltage       0.6       0.4       0.6       1.0         Anode Voltage       0.6       0.44       0.6       1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Anode Voltage                        | 0.4     | 0.2     | 0.4     | 0.8          |
| Ref. Cell Instant-off (volts)       0.044       0.030       0.044         Conductance (mhos)       0.000       0.000       0.000       0.000         Voltage drop in ref. circuit       0.000       0.000       0.000       0.037         # 7: CONDUCTIVE POLYMER CABLE       Reference Cell (volts)       0.129       0.128       0.129       0.135         Anode Voltage       0.8       0.6       0.8       1.1         Anode Voltage       0.8       0.6       0.8       1.1         Anode Current (amps)       0.038       0.033       0.03       0.00         Ref. Cell Instant-off (volts)       0.129       0.128       0.129       0.135         Conductance (mhos)       0.038       0.050       0.038       0.000         Voltage drop in ref. circuit       0.000       0.000       0.0135       0.001         Voltage drop in ref. circuit       0.004       0.003       0.004       0.024         Reference Cell (volts)       0.042       0.035       0.042       0.024         Anode Voltage       0.6       0.4       0.6       1.0         Anode Voltage       0.6       0.4       0.6       1.0         Anode Voltage       0.6       0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Anode Current (amps)                 | 0.00    | 0.00    | 0.00    | 0.00         |
| Conductance (mhos)         0.000         0.000         0.000         0.000           Voltage drop in ref. circuit         0.000         0.000         0.000         0.000           # 7: CONDUCTIVE POLYMER CABLE           Rebar Probe (volts)         0.004         0.003         0.004           Reference Cell (volts)         0.129         0.128         0.129         0.135           Anode Voltage         0.8         0.6         0.8         1.1           Anode Current (amps)         0.03         0.03         0.03         0.00           Conductance (mhos)         0.129         0.128         0.129         0.135           Conductance (mhos)         0.129         0.128         0.129         0.138         0.000           Voltage drop in ref. circuit         0.000         0.000         0.000         0.135           # 8: CONDUCTIVE POLYMER CABLE         Ebar Probe (volts)         0.004         0.003         0.004           Reference Cell (volts)         0.004         0.003         0.004         0.024           Anode Voltage         0.6         0.4         0.6         1.0           Anode Current (amps)         0.01         0.01         0.00         0.000           Reference Cell (volts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      | 0.044   | 0.030   | 0.044   |              |
| Voltage drop in ref. circuit         0.000         0.000         0.000         0.037           # 7: CONDUCTIVE POLYMER CABLE         Rebar Probe (volts)         0.004         0.003         0.004           Reference Cell (volts)         0.129         0.128         0.129         0.135           Anode Voltage         0.8         0.6         0.8         1.1           Anode Current (amps)         0.03         0.03         0.03         0.00           Ref. Cell Instant-off (volts)         0.129         0.128         0.129         Conductance (mhos)         0.038         0.050         0.038         0.000           Voltage drop in ref. circuit         0.000         0.000         0.000         0.135         0.129         Conductance (mhos)         0.038         0.000         0.000         0.135           # 8: CONDUCTIVE POLYMER CABLE         E         E         E         E         E         0.001         0.001         0.004         0.002         0.024           Anode Voltage         0.6         0.4         0.6         1.0         0.001         0.001         0.001           Reference Cell (volts)         0.042         0.035         0.042         0.024         0.024         Co.024         Conductance (mhos) <td< td=""><td>-</td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.000</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                    | 0.000   | 0.000   | 0.000   | 0.000        |
| Rebar Probe (volts)         0.004         0.003         0.004           Reference Cell (volts)         0.129         0.128         0.129         0.135           Anode Voltage         0.8         0.6         0.8         1.1           Anode Current (amps)         0.03         0.03         0.03         0.00           Ref. Cell Instant-off (volts)         0.129         0.128         0.129           Conductance (mhos)         0.038         0.050         0.038         0.000           Voltage drop in ref. circuit         0.000         0.000         0.000         0.135           # 8: CONDUCTIVE POLYMER CABLE         E         E         Reference Cell (volts)         0.042         0.035         0.042         0.024           Anode Voltage         0.6         0.4         0.6         1.0         Anode Voltage         0.024         0.024           Anode Current (amps)         0.01         0.01         0.00         0.000         0.000           Ref. Cell Instant-off (volts)         0.042         0.035         0.042         0.024           Conductance (mhos)         0.017         0.025         0.017         0.000           Voltage drop in ref. circuit         0.000         0.000         0.0024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      | 0.000   | 0.000   | 0.000   | 0.037        |
| Rebar Probe (volts)         0.004         0.003         0.004           Reference Cell (volts)         0.129         0.128         0.129         0.135           Anode Voltage         0.8         0.6         0.8         1.1           Anode Current (amps)         0.03         0.03         0.03         0.00           Ref. Cell Instant-off (volts)         0.129         0.128         0.129           Conductance (mhos)         0.038         0.050         0.038         0.000           Voltage drop in ref. circuit         0.000         0.000         0.000         0.135           # 8: CONDUCTIVE POLYMER CABLE         E         E         Reference Cell (volts)         0.042         0.035         0.042         0.024           Anode Voltage         0.6         0.4         0.6         1.0         Anode Voltage         0.024         0.024           Anode Current (amps)         0.01         0.01         0.00         0.000         0.000           Ref. Cell Instant-off (volts)         0.042         0.035         0.042         0.024           Conductance (mhos)         0.017         0.025         0.017         0.000           Voltage drop in ref. circuit         0.000         0.000         0.0024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | # 7: CONDUCTIVE POLYMER CABLE        |         |         |         |              |
| Reference Cell (volts)       0.129       0.128       0.129       0.135         Anode Voltage       0.8       0.6       0.8       1.1         Anode Current (amps)       0.03       0.03       0.03       0.00         Ref. Cell Instant-off (volts)       0.129       0.128       0.129         Conductance (mhos)       0.038       0.050       0.038       0.000         Voltage drop in ref. circuit       0.000       0.000       0.000       0.135         # 8: CONDUCTIVE POLYMER CABLE       E       E       Reference Cell (volts)       0.042       0.035       0.042       0.024         Anode Voltage       0.6       0.4       0.6       1.0       Anode Voltage       0.01       0.01       0.000         Reference Cell (volts)       0.042       0.035       0.042       0.024         Anode Voltage       0.6       0.4       0.6       1.0         Anode Current (amps)       0.01       0.01       0.00       0.000         Ref. Cell Instant-off (volts)       0.042       0.035       0.042       0.024         Conductance (mhos)       0.017       0.025       0.017       0.000         Voltage drop in ref. circuit       0.000       0.000 <t< td=""><td>Rebar Probe (volts)</td><td>0.004</td><td>0.003</td><td>0.004</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rebar Probe (volts)                  | 0.004   | 0.003   | 0.004   |              |
| Anode Voltage       0.8       0.6       0.8       1.1         Anode Current (amps)       0.03       0.03       0.03       0.00         Ref. Cell Instant-off (volts)       0.129       0.128       0.129         Conductance (mhos)       0.038       0.050       0.038       0.000         Voltage drop in ref. circuit       0.000       0.000       0.000       0.135         # 8: CONDUCTIVE POLYMER CABLE       E       E       E       E         Rebar Probe (volts)       0.004       0.003       0.004       0.024         Anode Voltage       0.6       0.4       0.6       1.0         Anode Current (amps)       0.01       0.01       0.000       0.000         Ref. Cell Instant-off (volts)       0.042       0.035       0.042       0.024         Anode Current (amps)       0.01       0.01       0.00       0.00         Ref. Cell Instant-off (volts)       0.042       0.035       0.042       0.025         Conductance (mbos)       0.017       0.025       0.017       0.000         Voltage drop in ref. circuit       0.000       0.000       0.024       0.024         5-8: AVERAGE VALUES: POLYMER CABLE       E       E       E <t< td=""><td>. ,</td><td></td><td>0.128</td><td>0.129</td><td>0.135</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . ,                                  |         | 0.128   | 0.129   | 0.135        |
| Anode Current (amps)       0.03       0.03       0.03       0.03       0.03         Ref. Cell Instant-off (volts)       0.129       0.128       0.129         Conductance (mbos)       0.038       0.050       0.038       0.000         Voltage drop in ref. circuit       0.000       0.000       0.000       0.135         # 8: CONDUCTIVE POLYMER CABLE       0.004       0.003       0.004         Rebar Probe (volts)       0.042       0.035       0.042       0.024         Anode Voltage       0.6       0.4       0.6       1.0         Anode Current (amps)       0.01       0.01       0.00       0.00         Ref. Cell Instant-off (volts)       0.042       0.035       0.042       0.024         Anode Current (amps)       0.01       0.01       0.00       0.00         Ref. Cell Instant-off (volts)       0.042       0.035       0.042       0.000         Ref. Cell Instant-off (volts)       0.017       0.025       0.017       0.000         Voltage drop in ref. circuit       0.000       0.000       0.024       0.024         5-8: AVERAGE VALUES: POLYMER CABLE       E       E       E       E         Rebar Probe (volts)       0.004       0.003<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      | 0.8     | 0.6     | 0.8     | 1.1          |
| Ref. Cell Instant-off (volts)       0.129       0.128       0.129         Conductance (mbos)       0.038       0.050       0.038       0.000         Voltage drop in ref. circuit       0.000       0.000       0.000       0.135         # 8: CONDUCTIVE POLYMER CABLE              Rebar Probe (volts)       0.004       0.003       0.004 </td <td></td> <td>0.03</td> <td>0.03</td> <td>0.03</td> <td>0.00</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      | 0.03    | 0.03    | 0.03    | 0.00         |
| Conductance (mbos)         0.038         0.050         0.038         0.000           Voltage drop in ref. circuit         0.000         0.000         0.000         0.135           # 8: CONDUCTIVE POLYMER CABLE         0.004         0.003         0.004         0.003           Reference Cell (volts)         0.042         0.035         0.042         0.024           Anode Voltage         0.6         0.4         0.6         1.0           Anode Current (amps)         0.01         0.01         0.00           Ref. Cell Instant-off (volts)         0.042         0.035         0.042           Conductance (mhos)         0.017         0.025         0.017         0.000           Voltage drop in ref. circuit         0.000         0.000         0.024           S-8: AVERAGE VALUES: POLYMER CABLE         E         E         E           Rebar Probe (volts)         0.004         0.003         0.004           Reference Cell (volts)         0.004         0.003         0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      | 0.129   | 0.128   | 0.129   |              |
| Voltage drop in ref. circuit       0.000       0.000       0.000       0.135         # 8: CONDUCTIVE POLYMER CABLE       0.004       0.003       0.004       0.004       0.003       0.004         Reference Cell (volts)       0.042       0.035       0.042       0.024         Anode Voltage       0.6       0.4       0.6       1.0         Anode Current (amps)       0.01       0.01       0.00         Ref. Cell Instant-off (volts)       0.042       0.035       0.042         Conductance (mhos)       0.017       0.025       0.017       0.000         Voltage drop in ref. circuit       0.000       0.000       0.024         5-8: AVERAGE VALUES: POLYMER CABLE       E       E       E         Rebar Probe (volts)       0.004       0.003       0.004         Reference Cell (volts)       0.003       0.004       0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      | 0.038   | 0.050   | 0.038   | 0.000        |
| Rebar Probe (volts)       0.004       0.003       0.004         Reference Cell (volts)       0.042       0.035       0.042       0.024         Anode Voltage       0.6       0.4       0.6       1.0         Anode Current (amps)       0.01       0.01       0.01       0.00         Ref. Cell Instant-off (volts)       0.042       0.035       0.042       0.00         Ref. Cell Instant-off (volts)       0.042       0.035       0.042       0.001       0.000         Voltage drop in ref. circuit       0.000       0.000       0.000       0.024         S-8: AVERAGE VALUES: POLYMER CABLE       Voltage drop in ref. circuit       0.004       0.003       0.004         Reference Cell (volts)       0.063       0.055       0.063       0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - ,                                  | 0.000   | 0.000   | 0.000   | 0.135        |
| Rebar Probe (volts)       0.004       0.003       0.004         Reference Cell (volts)       0.042       0.035       0.042       0.024         Anode Voltage       0.6       0.4       0.6       1.0         Anode Current (amps)       0.01       0.01       0.01       0.00         Ref. Cell Instant-off (volts)       0.042       0.035       0.042       0.00         Ref. Cell Instant-off (volts)       0.042       0.035       0.042       0.001       0.000         Voltage drop in ref. circuit       0.000       0.000       0.000       0.024         S-8: AVERAGE VALUES: POLYMER CABLE       Voltage drop in ref. circuit       0.004       0.003       0.004         Reference Cell (volts)       0.063       0.055       0.063       0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | # 8: CONDUCTIVE POLYMER CABLE        |         |         |         |              |
| Reference Cell (volts)       0.042       0.035       0.042       0.024         Anode Voltage       0.6       0.4       0.6       1.0         Anode Current (amps)       0.01       0.01       0.01       0.00         Ref. Cell Instant-off (volts)       0.042       0.035       0.042       0.001         Conductance (mhos)       0.017       0.025       0.017       0.000         Voltage drop in ref. circuit       0.000       0.000       0.024         5-8: AVERAGE VALUES: POLYMER CABLE       5-8: AVERAGE VALUES: POLYMER CABLE       Voltage drop in ref. circuit       0.004       0.003       0.004         Reference Cell (volts)       0.063       0.055       0.063       0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rebar Probe (volts)                  | 0.004   | 0.003   | 0.004   |              |
| Anode Current (amps)       0.01       0.01       0.01       0.00         Ref. Cell Instant-off (volts)       0.042       0.035       0.042         Conductance (mhos)       0.017       0.025       0.017       0.000         Voltage drop in ref. circuit       0.000       0.000       0.024         5-8: AVERAGE VALUES: POLYMER CABLE       Expanding the second secon |                                      | 0.042   | 0.035   | 0.042   | 0.024        |
| Ref. Cell Instant-off (volts)       0.042       0.035       0.042         Conductance (mhos)       0.017       0.025       0.017       0.000         Voltage drop in ref. circuit       0.000       0.000       0.024         5-8: AVERAGE VALUES: POLYMER CABLE       Embar Probe (volts)       0.004       0.003       0.004         Reference Cell (volts)       0.063       0.055       0.063       0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Anode Voltage                        | 0.6     | 0.4     | 0.6     | 1.0          |
| Ref. Cell Instant-off (volts)       0.042       0.035       0.042         Conductance (mhos)       0.017       0.025       0.017       0.000         Voltage drop in ref. circuit       0.000       0.000       0.024         5-8: AVERAGE VALUES: POLYMER CABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Anode Current (amps)                 | 0.01    | 0.01    | 0.01    | 0.00         |
| Voltage drop in ref. circuit         0.000         0.000         0.000         0.024           5-8: AVERAGE VALUES: POLYMER CABLE<br>Rebar Probe (volts)         0.004         0.003         0.004           Reference Cell (volts)         0.063         0.055         0.063         0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | 0.042   | 0.035   | 0.042   |              |
| S-8: AVERAGE VALUES: POLYMER CABLE           Rebar Probe (volts)         0.004         0.003         0.004           Reference Cell (volts)         0.063         0.055         0.063         0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Conductance (mhos)                   | 0.017   | 0.025   | 0.017   | 0.000        |
| Rebar Probe (volts)         0.004         0.003         0.004           Reference Cell (volts)         0.063         0.055         0.063         0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Voltage drop in ref. circuit         | 0.000   | 0.000   | 0.000   | 0.024        |
| Reference Cell (volts)         0.063         0.055         0.063         0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5-8: AVERAGE VALUES: POLYMER CABL    | E       |         |         |              |
| Reference Cell (volts)         0.063         0.055         0.063         0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |         | 0.003   | 0.004   |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      | 0.063   | 0.055   | 0.063   | 0.055        |
| Anode Voltage 0.6 0.4 0.6 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      | 0.6     | 0.4     | 0.6     | 0.9          |
| Anode Current (amps) 0.01 0.01 0.01 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Anode Current (amps)                 | 0.01    | 0.01    | 0.01    | <b>0.</b> 00 |
| Ref. Cell Instant-off (volts) 0.063 0.055 0.063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · • •                                | 0.063   | 0.055   | 0.063   |              |
| Conductance (mhos)         0.014         0.019         0.014         0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      | 0.014   | 0.019   | 0.014   | 0.000        |
| Voltage drop in ref. circuit         0.000         0.000         0.000         0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Voltage drop in ref. circuit         | 0.000   | 0.000   | 0.000   | 0.055        |

-

| Date:                              | 11/24/93 | 12/22/93 | 12/23/93 |
|------------------------------------|----------|----------|----------|
| Days since last reading:           | 22       | 28       | 1        |
| Days since start-up (10/28/88):    | 1,824    | 1,852    | 1,853    |
| Tester:                            | PN       | PN       | PN       |
| # 5: CONDUCTIVE POLYMER CABLE      |          |          |          |
| Rebar Probe (volts)                |          |          |          |
| Reference Cell (volts)             | 0.020    | 0.033    | 0.039    |
| Anode Voltage                      | 0.9      | 0.9      | 0.7      |
| Anode Current (amps)               | 0.03     | 0.00     | 0.09     |
| Ref. Cell Instant-off (volts)      |          |          |          |
| Conductance (mhos)                 | 0.034    | 0.000    | 0.124    |
| Voltage drop in ref. circuit       | 0.020    | 0.033    | 0.039    |
| # 6: CONDUCTIVE POLYMER CABLE      |          |          |          |
| Rebar Probe (volts)                |          |          |          |
| Reference Cell (volts)             | 0.038    | 0.038    | 0.051    |
| Anode Voltage                      | 0.8      | 0.8      | 0.6      |
| Anode Current (amps)               | 0.00     | 0.00     | 0.03     |
| Ref. Cell Instant-off (volts)      |          |          |          |
| Conductance (mhos)                 | 0.000    | 0.000    | 0.048    |
| Voltage drop in ref. circuit       | 0.038    | 0.038    | 0.051    |
| # 7: CONDUCTIVE POLYMER CABLE      |          |          |          |
| Rebar Probe (volts)                |          |          |          |
| Reference Cell (volts)             | 0.125    | 0.123    | 0.114    |
| Anode Voltage                      | 1.0      | 1.1      | 0.9      |
| Anode Current (amps)               | 0.00     | 0.00     | 0.03     |
| Ref. Cell Instant-off (volts)      |          |          |          |
| Conductance (mhos)                 | 0.000    | 0.000    | 0.035    |
| Voltage drop in ref. circuit       | 0.125    | 0.123    | 0.114    |
| # 8: CONDUCTIVE POLYMER CABLE      |          |          |          |
| Rebar Probe (volts)                |          |          |          |
| Reference Cell (volts)             | 0.019    | 0.019    | 0.032    |
| Anode Voltage                      | 1.0      | 1.0      | 0.8      |
| Anode Current (amps)               | 0.00     | 0.00     | 0.03     |
| Ref. Cell Instant-off (volts)      |          |          |          |
| Conductance (mhos)                 | 0.000    | 0.000    | 0.038    |
| Voltage drop in ref. circuit       | 0.019    | 0.019    | 0.032    |
| 5-8: AVERAGE VALUES: POLYMER CABLE |          |          |          |
| Rebar Probe (volts)                |          |          |          |
| Reference Cell (volts)             | 0.051    | 0.053    | 0.059    |
| Anode Voltage                      | 0.9      | 1.0      | 0.8      |
| Anode Current (amps)               | 0.01     | 0.00     | 0.05     |
| Ref. Cell Instant-off (volts)      |          |          |          |
| Conductance (mbos)                 | 0.009    | 0.000    | 0.061    |
| Voltage drop in ref. circuit       | 0.051    | 0.053    | 0.059    |

÷

N.

.

3

.

e

.

\*

| Date:                                  | 10/28/88 | 10/28/88 | 12/13/88 | 12/15/88 |
|----------------------------------------|----------|----------|----------|----------|
| Days since last reading:               | 0        | 0        | 46       | 2        |
| Days since start-up (10/28/88):        | 0        | 0        | 46       | 48       |
| Tester:                                | Corrpro  | Corrpro  | Corrpro  | Corrpro  |
| # 9: CARBON FIBER / CONDUCTIVE ASPHALT | •        |          |          |          |
| Rebar Probe (volts)                    | -0.00961 | 0.00105  | 0,005    | 0.004    |
| Reference Cell (volts)                 | 0.299    | 0,490    | 0.551    | 0.536    |
| Anode Voltage                          | 0.24     | 2.99     | 4.1      | 3,5      |
| Anode Current (amps)                   | 0.00     | 4.50     | 4.46     | 4.20     |
| Ref. Cell Instant-off (volts)          |          | 0.397    | 0.430    | 0.426    |
| Conductance (mhos)                     |          | 1.505    | 1.088    | 1.200    |
| Voltage drop in ref. circuit           |          | 0.093    | 0.121    | 0.110    |
| # 10: CARBON FIBER                     |          |          |          |          |
| Rebar Probe (volts)                    | -0.00296 | 0.00215  | 0.004    | 0.004    |
| Reference Cell (volts)                 | 0.280    | 0.429    | 0.515    | 0.487    |
| Anode Voltage                          | 0.24     | 3.51     | 5.4      | 4.9      |
| Anode Current (amps)                   | 0.00     | 6.00     | 6.17     | 6.03     |
| Ref. Cell Instant-off (volts)          |          | 0.355    | 0.423    | 0.404    |
| Conductance (mhos)                     |          | 1.709    | 1.143    | 1.231    |
| Voltage drop in ref. circuit           |          | 0.074    | 0.092    | 0.083    |
| 9-10: AVERAGE VALUES: CARBON FIBER     |          |          |          |          |
| Rebar Probe (volts)                    | -0.003   | 0.002    | 0.005    | 0.004    |
| Reference Cell (volts)                 | 0.145    | 0.460    | 0,533    | 0.512    |
| Anode Voltage                          | 0.1      | 3.3      | 4.8      | 4.2      |
| Anode Current (amps)                   | 0.00     | 5.25     | 5.32     | 5.12     |
| Ref. Cell Instant-off (volts)          |          | 0.376    | 0.427    | 0.415    |
| Conductance (mhos)                     |          | 1.607    | 1.115    | 1.215    |
| Voltage drop in ref. circuit           |          | 0.084    | 0.107    | 0.097    |

| Date:                                  | 1/31/89 | 2/1/89  | 2/2/89  | 3/13/89  |
|----------------------------------------|---------|---------|---------|----------|
| Days since last reading:               | 47      | 1       | 1       | 39       |
| Days since start-up (10/28/88):        | 95      | 96      | 97      | 136      |
| Tester:                                | Corrpro | Corrpro | Corrpro | MC,DR,DE |
| # 9: CARBON FIBER / CONDUCTIVE ASPHALT |         |         |         |          |
| Rebar Probe (volts)                    | 0.004   | 0.003   | 0.005   | 0.004    |
| Reference Cell (volts)                 | 0.522   | 0.406   | 0.475   | 0.459    |
| Anode Voltage                          | 3,6     | 2.7     | 3.4     | 3.3      |
| Anode Current (amps)                   | 4.13    | 4.26    | 4.29    | 4.37     |
| Ref. Cell Instant-off (volts)          | 0.411   | 0.351   | 0.387   |          |
| Conductance (mbos)                     | 1.147   | 1.578   | 1.262   | 1.324    |
| Voltage drop in ref. circuit           | 0.111   | 0.055   | 0.088   |          |
| # 10: CARBON FIBER                     |         |         |         |          |
| Rebar Probe (volts)                    | 0.005   | 0.005   | 0.005   | 0.006    |
| Reference Cell (volts)                 | 0.511   | 0.379   | 0.463   | 0.447    |
| Anode Voltage                          | 5.0     | 3.6     | 4.5     | 4.4      |
| Anode Current (amps)                   | 5,96    | 6.07    | 6,13    | 6.24     |
| Ref. Cell Instant-off (volts)          | 0.434   | 0.325   | 0.395   |          |
| Conductance (mhos)                     | 1,192   | 1.686   | 1.362   | 1.418    |
| Voltage drop in ref. circuit           | 0.077   | 0.054   | 0.068   |          |
| 9-10: AVERAGE VALUES: CARBON FIBER     |         |         |         |          |
| Rebar Probe (volts)                    | 0.005   | 0.004   | 0.005   | 0.005    |
| Reference Cell (volts)                 | 0.517   | 0.393   | 0.469   | 0.453    |
| Anode Voltage                          | 4.3     | 3.2     | 4.0     | 3.9      |
| Anode Current (amps)                   | 5.05    | 5.17    | 5.21    | 5.31     |
| Ref. Cell Instant-off (volts)          | 0.423   | 0,338   | 0.391   |          |
| Conductance (mhos)                     | 1.170   | 1.632   | 1.312   | 1.371    |
| Voltage drop in ref. circuit           | 0.094   | 0.055   | 0.078   |          |

\*

-

| Date:                            | 4/13/89  | 5/26/89 | 6/13/89 | 7/17/89 |
|----------------------------------|----------|---------|---------|---------|
| Days since last reading:         | 31       | 43      | 18      | 34      |
| Days since start-up (10/28/88):  | 167      | 210     | 228     | 262     |
| Tester:                          | DR,DE,TD | DR      | JM,DR   | DR,KC   |
| # 9: CARBON FIBER / CONDUCTIVE A | SPHALT   |         |         |         |
| Rebar Probe (volts)              | 0.004    | 0.003   | 0.005   | 0.007   |
| Reference Cell (volts)           | 0.544    | 0.358   | 0.453   | 0.410   |
| Anode Voltage                    | 3.8      | 2.7     | 3.3     | 3.1     |
| Anode Current (amps)             | 4.38     | 4.28    | 4.32    | 4.21    |
| Ref. Cell Instant-off (volts)    |          |         |         |         |
| Conductance (mhos)               | 1.153    | 1,585   | 1.309   | 1,358   |
| Voltage drop in ref. circuit     |          |         |         |         |
| # 10: CARBON FIBER               |          |         |         |         |
| Rebar Probe (volts)              | 0.005    | 0.006   | 0.006   | 0.008   |
| Reference Cell (volts)           | 0.485    | 0.350   | 0.416   | 0.374   |
| Anode Voltage                    | 5.4      | 3.5     | 4.4     | 4.0     |
| Anode Current (amps)             | 6.26     | 6.13    | 6.19    | 6.04    |
| Ref. Cell Instant-off (volts)    |          |         |         |         |
| Conductance (mhos)               | 1,159    | 1.751   | 1.407   | 1.510   |
| Voltage drop in ref. circuit     |          |         |         |         |
| 9-10: AVERAGE VALUES: CARBON FIE | IER      |         |         |         |
| Rebar Probe (volts)              | 0.005    | 0.005   | 0.006   | 0.008   |
| Reference Cell (volts)           | 0.515    | 0.354   | 0.435   | 0.392   |
| Anode Voltage                    | 4.6      | 3.1     | 3.9     | 3.6     |
| Anode Current (amps)             | 5.32     | 5.21    | 5.26    | 5.13    |
| Ref. Cell Instant-off (volts)    |          |         |         |         |
| Conductance (mhos)               | 1.156    | 1.668   | 1.358   | 1.434   |
| Voltage drop in ref. circuit     |          |         |         |         |
| - •                              |          |         |         |         |

| Date:                                 | 8/18/89 | 9/19/89 | 10/31/89 | 11/28/89 |
|---------------------------------------|---------|---------|----------|----------|
| Days since last reading:              | 32      | 32      | 42       | 28       |
| Days since start-up (10/28/88):       | 294     | 326     | 368      | 396      |
| Tester:                               | DR      | DR      | DR       | DR       |
| # 9: CARBON FIBER / CONDUCTIVE ASPHAL | .T      |         |          |          |
| Rebar Probe (volts)                   | 0.007   | 0.006   | 0.005    | 0.004    |
| Reference Cell (volts)                | 0.391   | 0.523   | 0.585    | 0.915    |
| Anode Voltage                         | 2.9     | 3.5     | 3.7      | 4.6      |
| Anode Current (amps)                  | 4.22    | 4.25    | 4.26     | 4.40     |
| Ref. Cell Instant-off (volts)         |         |         |          |          |
| Conductance (mhos)                    | 1.455   | 1.214   | 1.151    | 0.957    |
| Voltage drop in ref. circuit          |         |         |          |          |
| #10: CARBON FIBER                     |         |         |          |          |
| Rebar Probe (volts)                   | 0.008   | 0.005   | 0.005    | 0.004    |
| Reference Cell (volts)                | 0,373   | 0.423   | 0.474    | 0.598    |
| Anode Voltage                         | 3.8     | 5.1     | 5.4      | 7.9      |
| Anode Current (amps)                  | 6.06    | 6.10    | 6.13     | 6.26     |
| Ref. Cell Instant-off (volts)         |         |         |          |          |
| Conductance (mhos)                    | 1.595   | 1.196   | 1.135    | 0,792    |
| Voltage drop in ref. circuit          |         |         |          |          |
| 9-10: AVERAGE VALUES: CARBON FIBER    |         |         |          |          |
| Rebar Probe (volts)                   | 0.008   | 0.006   | 0.005    | 0.004    |
| Reference Cell (volts)                | 0.382   | 0.473   | 0.530    | 0.757    |
| Anode Voltage                         | 3.4     | 4.3     | 4.6      | 6.3      |
| Anode Current (amps)                  | 5.14    | 5.18    | 5.20     | 5.33     |
| Ref. Cell Instant-off (volts)         |         |         |          |          |
| Conductance (mhos)                    | 1.525   | 1.205   | 1.143    | 0.874    |
| Voltage drop in ref. circuit          |         |         |          |          |
|                                       |         |         |          |          |

| Date:                                | 1/9/90 | 1/17/90 | <b>4/26/9</b> 0 | 11/19/90     |
|--------------------------------------|--------|---------|-----------------|--------------|
| Days since last reading:             | 12     | 8       | 99              | 207          |
| Days since start-up (10/28/88):      | 408    | 416     | 515             | 722          |
| Tester:                              | DR,DE  | DR      | DE,TD           | JM,DE        |
| # 9: CARBON FIBER / CONDUCTIVE ASPHA | LT     |         |                 |              |
| Rebar Probe (volts)                  | 0.004  | 0.005   | 0.005           | 0.004        |
| Reference Cell (volts)               | 0.604  | 0.608   | 0.624           | 0.700        |
| Anode Voltage                        | 3.6    | 3.6     | 3.7             | 3.8          |
| Anode Current (amps)                 | 4.34   | 4.29    | 4.29            | 4.13         |
| Ref. Cell Instant-off (volts)        | 0.362  |         | 0.349           | 0.332        |
| Conductance (mhos)                   | 1,206  | 1.192   | 1.159           | 1.087        |
| Voltage drop in ref. circuit         | 0.242  |         | 0.275           | 0.368        |
| # 10: CARBON FIBER                   |        |         |                 |              |
| Rebar Probe (volts)                  | 0.004  | 0.005   | 0.005           | 0.003        |
| Reference Cell (volts)               | 0.507  | 0,498   | 0.453           | 0.496        |
| Anode Voltage                        | 5.1    | 5.1     | 5,6             | 5.5          |
| Anode Current (amps)                 | 6.21   | 6.17    | 6.13            | <b>6.0</b> 0 |
| Ref. Cell Instant-off (volts)        | 0.348  |         | 0.305           | 0.294        |
| Conductance (mhos)                   | 1.218  | 1.210   | 1.095           | 1.091        |
| Voltage drop in ref. circuit         | 0.159  |         | 0.148           | 0.202        |
| 9-10: AVERAGE VALUES: CARBON FIBER   |        |         |                 |              |
| Rebar Probe (volts)                  | 0.004  | 0.005   | 0.005           | 0.004        |
| Reference Cell (volts)               | 0.556  | 0.553   | 0.539           | 0.598        |
| Anode Voltage                        | 4.4    | 4.4     | 4.7             | 4.7          |
| Anode Current (amps)                 | 5.28   | 5.23    | 5.21            | 5.07         |
| Ref. Cell Instant-off (volts)        | 0.355  |         | 0.327           | 0.313        |
| Conductance (mhos)                   | 1.212  | 1.201   | 1.127           | 1.089        |
| Voltage drop in ref. circuit         | 0.201  |         | 0.212           | 0.285        |

| Date:                            | 3/28/91 | 5/15/91 | 7/31/91 | <b>8/16/9</b> 1 |
|----------------------------------|---------|---------|---------|-----------------|
| Days since last reading:         | 129     | 48      | 77      | 16              |
| Days since start-up (10/28/88):  | 851     | 899     | 976     | <b>992</b>      |
| Tester:                          | DE,KC   | DE      | DE      | JM,DE           |
| # 9: CARBON FIBER / CONDUCTIVE A | SPHALT  |         |         |                 |
| Rebar Probe (volts)              | 0.004   | 0.005   | 0.005   | 0.005           |
| Reference Cell (volts)           | 0.808   | 0.723   | 0.691   | 0.508           |
| Anode Voltage                    | 4.1     | 3.8     | 3.7     | 3.1             |
| Anode Current (amps)             | 4.11    | 4.02    | 4.28    | 4.25            |
| Ref. Cell Instant-off (volts)    | 0.336   | 0.305   | 0.304   | 0.245           |
| Conductance (mhos)               | 1.002   | 1.058   | 1.157   | 1.371           |
| Voltage drop in ref. circuit     | 0.472   | 0.418   | 0.387   | 0.263           |
| # 10: CARBON FIBER               |         |         |         |                 |
| Rebar Probe (volts)              | 0.003   | 0.005   | 0.005   | 0.005           |
| Reference Cell (volts)           | 0.404   | 0.384   | 0.363   | <b>0.33</b> 0   |
| Anode Voltage                    | 6.5     | 6.3     | 5.7     | 4.4             |
| Anode Current (amps)             | 6.15    | 6.06    | 6.13    | 6.09            |
| Ref. Cell Instant-off (volts)    | 0.290   | 0.265   | 0.253   | 0.235           |
| Conductance (mhos)               | 0.946   | 0.962   | 1.075   | 1.384           |
| Voltage drop in ref. circuit     | 0.114   | 0.119   | 0.110   | 0.095           |
| 9-10: AVERAGE VALUES: CARBON FIB | ER      |         |         |                 |
| Rebar Probe (volts)              | 0.004   | 0.005   | 0.005   | 0.005           |
| Reference Cell (volts)           | 0.606   | 0.554   | 0.527   | 0.419           |
| Anode Voltage                    | 5.3     | 5.1     | 4.7     | 3.8             |
| Anode Current (amps)             | 5.13    | 5.04    | 5.21    | 5.17            |
| Ref. Cell Instant-off (volts)    | 0.313   | 0.285   | 0.279   | 0.240           |
| Conductance (mhos)               | 0.974   | 1.010   | 1.116   | 1.378           |
| Voltage drop in ref. circuit     | 0.293   | 0.269   | 0.249   | 0.179           |
|                                  |         |         |         |                 |

\*

.

ŝ-

| Date:                              | 9/10/91 | 10/9/91 | 1/7/92 | 3/19/92       |
|------------------------------------|---------|---------|--------|---------------|
| Days since last reading:           | 25      | 29      | 90     | 72            |
| Days since start-up (10/28/88):    | 1,017   | 1,046   | 1,136  | 1,208         |
| Tester:                            | DE      | DE      | DE     | DE            |
| #9: CARBON FIBER / CONDUCTIVE ASPH | ALT     |         |        |               |
| Rebar Probe (volts)                | 0.004   | 0.004   | 0.001  | 0.002         |
| Reference Cell (volts)             | 0.602   | 0.696   | 0.992  | 1.284         |
| Anode Voltage                      | 3.3     | 3,5     | 4.2    | 4.7           |
| Anode Current (amps)               | 4.24    | 4.23    | 4.29   | 4.32          |
| Ref. Cell Instant-off (volts)      | 0.253   | 0.272   | 0.326  | 0.349         |
| Conductance (mhos)                 | 1.285   | 1,209   | 1.021  | 0.919         |
| Voltage drop in ref. circuit       | 0.349   | 0.424   | 0.666  | 0.935         |
| # 10: CARBON FIBER                 |         |         |        |               |
| Rebar Probe (volts)                | 0.004   | 0.004   | 0.002  | 0.002         |
| Reference Cell (volts)             | 0.357   | 0.328   | 0.160  | 0.155         |
| Anode Voltage                      | 5.0     | 5.4     | 7.3    | 9.1           |
| Anode Current (amps)               | 6.06    | 6.06    | 6.13   | 6.19          |
| Ref. Cell Instant-off (volts)      | 0.186   | 0.163   | 0.068  | 0.061         |
| Conductance (mhos)                 | 1.212   | 1.122   | 0.840  | 0.680         |
| Voltage drop in ref. circuit       | 0.171   | 0.165   | 0.092  | 0.094         |
| 9-10: AVERAGE VALUES: CARBON FIBER |         |         |        |               |
| Rebar Probe (volts)                | 0.004   | 0.004   | 0.002  | 0.002         |
| Reference Cell (volts)             | 0.480   | 0.512   | 0.576  | 0.720         |
| Anode Voltage                      | 4.2     | 4.5     | 5.8    | 6.9           |
| Anode Current (amps)               | 5.15    | 5.15    | 5.21   | 5.26          |
| Ref. Cell Instant-off (volts)      | 0.220   | 0.218   | 0.197  | 0.205         |
| Conductance (mhos)                 | 1.248   | 1.165   | 0.931  | <b>0.8</b> 00 |
| Voltage drop in ref. circuit       | 0.260   | 0.295   | 0.379  | 0.515         |

| Date:                                  | 4/17/92 | 5/15/92 | 6/11/92 |
|----------------------------------------|---------|---------|---------|
| Days since last reading:               | 29      | 28      | 27      |
| Days since start-up (10/28/88):        | 1,237   | 1,265   | 1,292   |
| Tester:                                | DE      | DE      | DE      |
| # 9: CARBON FIBER / CONDUCTIVE ASPHALT |         |         |         |
| Rebar Probe (volts)                    | 0.002   | 0.004   | 0.005   |
| Reference Cell (volts)                 | 1.109   | 0.554   | 0.563   |
| Anode Voltage                          | 4.4     | 3.2     | 3.1     |
| Anode Current (amps)                   | 4.28    | 4.27    | 4.26    |
| Ref. Cell Instant-off (volts)          | 0.337   | 0.237   | 0.231   |
| Conductance (mhos)                     | 0.973   | 1.334   | 1.374   |
| Voltage drop in ref. circuit           | 0.772   | 0.317   | 0.332   |
| # 10: CARBON FIBER                     |         |         |         |
| Rebar Probe (volts)                    | 0.003   | 0.005   | 0.005   |
| Reference Cell (volts)                 | 0.191   | 0.225   | 0.233   |
| Anode Voltage                          | 8.1     | 5.0     | 4.9     |
| Anode Current (amps)                   | 6.13    | 6.12    | 6.11    |
| Ref. Cell Instant-off (volts)          | 0.086   | 0.109   | 0.113   |
| Conductance (mhos)                     | 0.757   | 1.224   | 1.247   |
| Voltage drop in ref. circuit           | 0.105   | 0.116   | 0.120   |
| 9-10: AVERAGE VALUES: CARBON FIBER     |         |         |         |
| Rebar Probe (volts)                    | 0.003   | 0.005   | 0.005   |
| Reference Cell (volts)                 | 0.650   | 0.390   | 0.398   |
| Anode Voltage                          | 6.3     | 4.1     | 4.0     |
| Anode Current (amps)                   | 5.21    | 5.20    | 5.19    |
| Ref. Cell Instant-off (volts)          | 0.212   | 0.173   | 0.172   |
| Conductance (mhos)                     | 0.865   | 1.279   | 1.311   |
| Voltage drop in ref. circuit           | 0.439   | 0.217   | 0.226   |
|                                        |         |         |         |

٠

4.

| Date:                                  | 7/9/92      | 8/7/92 | 8/25/92 | 9/22/92 |
|----------------------------------------|-------------|--------|---------|---------|
| Days since last reading:               | 28          | 29     | 18      | 28      |
| Days since start-up (10/28/88):        | 1,320       | 1,349  | 1,367   | 1,395   |
| Tester:                                | DE          | HP,RF  | DE      | DE      |
| # 9: CARBON FIBER / CONDUCTIVE ASPHALT |             |        |         |         |
| Rebar Probe (volts)                    | 0.004       | 0.004  | 0.003   | 0.002   |
| Reference Cell (volts)                 | 0.941       | 0.913  | 0.713   | 0.830   |
| Anode Voltage                          | 4.1         | 4.0    | 3.6     | 3.8     |
| Anode Current (amps)                   | 4.24        | 4.24   | 4.24    | 4.27    |
| Ref. Cell Instant-off (volts)          | 0.295       | 0.275  | 0.257   | 0.263   |
| Conductance (mhos)                     | 1.034       | 1.060  | 1,178   | 1.124   |
| Voltage drop in ref. circuit           | 0.646       | 0.638  | 0.456   | 0.567   |
| # 10: CARBON FIBER                     |             |        |         |         |
| Rebar Probe (volts)                    | 0.004       | 0.004  | 0.003   | 0.003   |
| Reference Celi (volts)                 | 0.450       | 0.435  | 0,394   | 0.400   |
| Anode Voltage                          | 7.8         | 7.4    | 6.3     | 7.2     |
| Anode Current (amps)                   | 6.09        | 6.08   | 6.10    | 6.14    |
| Ref. Cell Instant-off (volts)          | 0.198       | 0.178  | 0.179   | 0.171   |
| Conductance (mhos)                     | 0.781       | 0.822  | 0.968   | 0.853   |
| Voltage drop in ref. circuit           | 0.252       | 0.257  | 0.215   | 0.229   |
| 9-10: AVERAGE VALUES: CARBON FIBER     |             |        |         |         |
| Rebar Probe (volts)                    | 0.004       | 0.004  | 0.003   | 0.003   |
| Reference Cell (volts)                 | 0.696       | 0.674  | 0.554   | 0.615   |
| Anode Voltage                          | <b>6</b> .0 | 5.7    | 5.0     | 5.5     |
| Anode Current (amps)                   | 5.17        | 5.16   | 5.17    | 5.21    |
| Ref. Cell Instant-off (volts)          | 0.247       | 0.227  | 0.218   | 0.217   |
| Conductance (mhos)                     | 0.907       | 0.941  | 1.073   | 0.988   |
| Voltage drop in ref. circuit           | 0.449       | 0.448  | 0.336   | 0.398   |

| Date:                             | 1/8/93 | 2/12/93 | 2/26/93 | 2/26/93 |
|-----------------------------------|--------|---------|---------|---------|
| Days since last reading:          | 108    | 35      | 14      | 0.50    |
| Days since start-up (10/28/88):   | 1,503  | 1,538   | 1,552   | 1,553   |
| Tester:                           | DE     | DE      | RF      | RF      |
| # 9: CARBON FIBER / CONDUCTIVE AS | PHALT  |         |         |         |
| Rebar Probe (volts)               | 0.001  | 0.001   | 0.001   | 0.001   |
| Reference Cell (volts)            | 1.728  | 1.852   | 2,077   | 1.081   |
| Anode Voltage                     | 6.3    | 6.5     | 7.4     | 4.2     |
| Anode Current (amps)              | 4.36   | 4.30    | 4.40    | 3.09    |
| Ref. Cell Instant-off (volts)     | 0.384  | 0.378   | 0.384   | 0.314   |
| Conductance (mhos)                | 0,692  | 0.662   | 0.595   | 0.736   |
| Voltage drop in ref. circuit      | 1.344  | 1.474   | 1.693   | 0.767   |
| # 10: CARBON FIBER                |        |         |         |         |
| Rebar Probe (volts)               | 0.002  | 0.001   | 0.001   | 0.002   |
| Reference Cell (volts)            | 0.082  | 0.071   | 0.066   | 0.097   |
| Anode Voltage                     | 15.6   | 16.2    | 19.8    | 14.9    |
| Anode Current (amps)              | 6.22   | 6.17    | 6.28    | 7.91    |
| Ref. Cell Instant-off (volts)     | 0.026  | 0.025   | 0.017   | 0.028   |
| Conductance (mhos)                | 0.399  | 0.381   | 0.317   | 0.531   |
| Voltage drop in ref. circuit      | 0.056  | 0.046   | 0.049   | 0.069   |
| 9-10: AVERAGE VALUES: CARBON FIB  | R      |         |         |         |
| Rebar Probe (volts)               | 0.002  | 0.001   | 0.001   | 0.002   |
| Reference Cell (volts)            | 0.905  | 0.962   | 1.072   | 0.589   |
| Anode Voltage                     | 11.0   | 11.4    | 13.6    | 9.6     |
| Anode Current (amps)              | 5.29   | 5.24    | 5.34    | 5.50    |
| Ref. Cell Instant-off (volts)     | 0.205  | 0.202   | 0.201   | 0.171   |
| Conductance (mhos)                | 0.545  | 0.521   | 0.456   | 0.633   |
| Voltage drop in ref. circuit      | 0.700  | 0.760   | 0.871   | 0.418   |
|                                   |        |         |         |         |

| Date:                                  | 3/5/93 | 3/18/93 | 4/27/93      | 5/28/93 |
|----------------------------------------|--------|---------|--------------|---------|
| Days since last reading:               | 7      | 13      | 40           | 31      |
| Days since start-up (10/28/88):        | 1,560  | 1,573   | 1,613        | 1,644   |
| Tester:                                | RF     | HP,RF   | DE,JS        | DE,TM   |
| # 9: CARBON FIBER / CONDUCTIVE ASPHALT |        |         |              |         |
| Rebar Probe (volts)                    | 0.001  | 0.001   | 0.002        | 0.003   |
| Reference Cell (volts)                 | 1.169  | 1.168   | 0.695        | 0.516   |
| Anode Voltage                          | 4.7    | 4.7     | 3.4          | 2.8     |
| Anode Current (amps)                   | 3.11   | 3.07    | <b>2.</b> 99 | 2.96    |
| Ref. Cell Instant-off (volts)          | 0.311  | 0.323   | 0.237        | 0.205   |
| Conductance (mhos)                     | 0.662  | 0.653   | 0.879        | 1.057   |
| Voltage drop in ref. circuit           | 0.858  | 0.845   | 0.458        | 0.311   |
| # 10: CARBON FIBER                     |        |         |              |         |
| Rebar Probe (volts)                    | 0.001  | 0,002   | 0.003        | 0,004   |
| Reference Cell (volts)                 | 0.078  | 0.088   | 0.233        | 0.284   |
| Anode Voltage                          | 17.9   | 19.1    | 10.7         | 7.7     |
| Anode Current (amps)                   | 7.93   | 7.90    | 7.80         | 7.69    |
| Ref. Cell Instant-off (volts)          | 0.024  | 0.061   | 0.078        | 0.110   |
| Conductance (mhos)                     | 0.443  | 0.414   | 0.729        | 0.999   |
| Voltage drop in ref. circuit           | 0.054  | 0.027   | 0.155        | 0.174   |
| 9-10: AVERAGE VALUES: CARBON FIBER     |        |         |              |         |
| Rebar Probe (volts)                    | 0.001  | 0.002   | 0.003        | 0.004   |
| Reference Cell (volts)                 | 0.624  | 0.628   | 0.464        | 0.400   |
| Anode Voltage                          | 11.3   | 11.9    | 7.1          | 5.3     |
| Anode Current (amps)                   | 5.52   | 5.49    | 5.40         | 5.33    |
| Ref. Cell Instant-off (volts)          | 0.168  | 0,192   | 0,158        | 0.158   |
| Conductance (mhos)                     | 0.552  | 0.533   | 0.804        | 1.028   |
| Voltage drop in ref. circuit           | 0.456  | 0.436   | 0.307        | 0.243   |

•

| Date:                                  | 6/30/93 | 8/31/93 | 10/7/93 | 11/2/93 |
|----------------------------------------|---------|---------|---------|---------|
| Days since last reading:               | 33      | 62      | 37      | 26      |
| Days since start-up (10/28/88):        | 1,677   | 1,739   | 1,776   | 1,802   |
| Tester:                                | DE      | DE      | PN      | PN      |
| # 9: CARBON FIBER / CONDUCTIVE ASPHALT |         |         |         |         |
| Rebar Probe (volts)                    | 0.004   | 0.003   | 0.004   |         |
| Reference Cell (volts)                 | 0.650   | 1.000   | 0.650   | 1.510   |
| Anode Voltage                          | 3.2     | 3.9     | 3.2     | 4.9     |
| Anode Current (amps)                   | 2.96    | 2,96    | 2.96    | 4.56    |
| Ref. Cell Instant-off (volts)          | 0.226   | 0.281   | 0.226   |         |
| Conductance (mhos)                     | 0.925   | 0.759   | 0.925   | 0.938   |
| Voltage drop in ref. circuit           | 0.424   | 0.719   | 0.424   | 1.510   |
| # 10: CARBON FIBER                     |         |         |         |         |
| Rebar Probe (volts)                    | 0.005   | 0.004   | 0.005   |         |
| Reference Cell (volts)                 | 0.336   | 0.263   | 0.336   | 0.404   |
| Anode Voltage                          | 10.2    | 14.1    | 10.2    | 23.1    |
| Anode Current (amps)                   | 7.71    | 7.75    | 7.71    | 11.70   |
| Ref. Cell Instant-off (volts)          | 0.123   | 0.089   | 0.123   |         |
| Conductance (mhos)                     | 0.756   | 0.550   | 0.756   | 0,506   |
| Voltage drop in ref. circuit           | 0.213   | 0.174   | 0.213   | 0.404   |
| 9-10: AVERAGE VALUES: CARBON FIBER     |         |         |         |         |
| Rebar Probe (volts)                    | 0.005   | 0.004   | 0.005   |         |
| Reference Cell (volts)                 | 0.493   | 0.632   | 0.493   | 0.957   |
| Anode Voltage                          | 6.7     | 9.0     | 6.7     | 14.0    |
| Anode Current (amps)                   | 5.34    | 5.36    | 5.34    | 8.13    |
| Ref. Cell Instant-off (volts)          | 0.175   | 0.185   | 0.175   |         |
| Conductance (mhos)                     | 0.840   | 0.654   | 0.840   | 0.722   |
| Voltage drop in ref. circuit           | 0.319   | 0.447   | 0.319   | 0.957   |

£.

.

.

•

,

| Date:                                 | 11/24/93 | 12/22/93 | 12/23/93 |
|---------------------------------------|----------|----------|----------|
| Days since last reading:              | 22       | 28       | 1        |
| Days since start-up (10/28/88):       | 1,824    | 1,852    | 1,853    |
| Tester:                               | PN       | PN       | PN       |
| #9: CARBON FIBER / CONDUCTIVE ASPHALT |          |          |          |
| Rebar Probe (volts)                   |          |          |          |
| Reference Cell (volts)                | 1.622    | 2.174    | 2.681    |
| Anode Voltage                         | 5.1      | 6.1      | 8.1      |
| Anode Current (amps)                  | 4.68     | 4.68     | 3.78     |
| Ref. Cell Instant-off (volts)         |          |          |          |
| Conductance (mhos)                    | 0.919    | 0.774    | 0.465    |
| Voltage drop in ref. circuit          | 1.622    | 2.174    | 2.681    |
| # 10: CARBON FIBER                    |          |          |          |
| Rebar Probe (volts)                   |          |          |          |
| Reference Cell (volts)                | 0.316    | 0.178    | 0.115    |
| Anode Voltage                         | 22.6     | 23.3     | 22.8     |
| Anode Current (amps)                  | 9.99     | 9.93     | 2.25     |
| Ref. Cell Instant-off (volts)         |          |          |          |
| Conductance (mhos)                    | 0.441    | 0.426    | 0.099    |
| Voltage drop in ref. circuit          | 0.316    | 0.178    | 0.115    |
| 9-10: AVERAGE VALUES: CARBON FIBER    |          |          |          |
| Rebar Probe (volts)                   |          |          |          |
| Reference Cell (volts)                | 0.969    | 1.176    | 1.398    |
| Anode Voltage                         | 13.9     | 14.7     | 15.4     |
| Anode Current (amps)                  | 7,34     | 7.31     | 3.02     |
| Ref. Cell Instant-off (volts)         |          |          |          |
| Conductance (mhos)                    | 0.680    | 0.600    | 0.282    |
| Voltage drop in ref. circuit          | 0.969    | 1.176    | 1.398    |

| Date:                                                 | 10/28/88       | 10/28/88       | 12/13/88        | 12/15/88       |
|-------------------------------------------------------|----------------|----------------|-----------------|----------------|
| Date.<br>Days since last reading:                     | 10/20/88       | 10/20/00       | 12/13/88<br>46  | 12/15/88       |
| Days since start-up (10/28/88):                       | Ō              | Ő              | 46              | 48             |
| Tester:                                               | Corrpro        | Corrpro        | Corrpro         | Corrpro        |
| # 11: HOT-SPRAYED ZINC                                |                |                |                 |                |
| Rebar Probe (volts)                                   | -0.01225       | -0.00290       | -0.003          | 0.010          |
| Reference Cell (volts)                                | 0.271          | 1.420          | 0.364           | 0.700          |
| Anode Voltage                                         | -0.23          | 5.62           | 1.9             | 2.4            |
| Anode Current (amps)                                  | 0.00           | 0.35           | 0.44            | 0.38           |
| Ref. Cell Instant-off (volts)                         |                | 0.572          | 0.485           | 0.490          |
| Conductance (mhos)<br>Voltage drop in ref. circuit    |                | 0.062<br>0.848 | 0.232<br>-0.121 | 0.158<br>0.210 |
| votage drop in rei. circuit                           |                | 0.040          | -0.141          | 0.210          |
| # 12: HOT-SPRAYED ZINC                                |                |                |                 |                |
| Rebar Probe (volts)                                   | -0.00845       | 0.04550        | 0.0085          | 0.041          |
| Reference Cell (volts)<br>Anode Voltage               | 0.255<br>-0.15 | 1.220<br>10.95 | *OOS*<br>17.7   | *OOS*<br>7.2   |
| Anode Current (amps)                                  | 0.00           | 0.90           | 0.98            | 0.33           |
| Ref. Cell Instant-off (volts)                         |                | 0.570          | 1.194           | 0.971          |
| Conductance (mhos)                                    |                | 0.082          | 0.055           | 0.046          |
| Voltage drop in ref. circuit                          |                | 0.650          |                 |                |
| <b># 13: HOT-SPRAYED ZINC</b>                         |                |                |                 |                |
| Rebar Probe (volts)                                   | -0.00693       | 0.00425        | 0.010           | 0.011          |
| Reference Cell (volts)                                | 0.361          | 2.140          | 0.815           | 0.758          |
| Anode Voltage                                         | -0.24          | 13,46          | 2.5             | 2.1            |
| Anode Current (amps)                                  | 0.00           | 0.85           | 0.86            | 0.49           |
| Ref. Cell Instant-off (volts)                         |                | 0.830          | 0.680           | 0.624          |
| Conductance (mhos)<br>Voltage drop in ref. circuit    |                | 0.063<br>1.310 | 0.344<br>0.135  | 0.233<br>0.134 |
| voltage drop in tel. circult                          |                | 1.510          | 0.133           | 0.134          |
| # 14: HOT-SPRAYED ZINC                                |                |                |                 |                |
| Rebar Probe (volts)                                   | -0.00848       | 0.03010        | 0.034           | 0.016          |
| Reference Cell (volts)                                | 0.297          | 2.730          | 1.464           | 0.926          |
| Anode Voltage                                         | -0.36          | 6.39           | 7.8             | 2.4<br>0.08    |
| Anode Current (amps)<br>Ref. Cell Instant-off (volts) | 0.00           | 0.15<br>0.610  | 0.25<br>0.797   | 0.08           |
| Conductance (mhos)                                    |                | 0.023          | 0.032           | 0.033          |
| Voltage drop in ref. circuit                          |                | 2.120          | 0.667           | 0.427          |
|                                                       |                |                |                 |                |
| # 15: HOT-SPRAYED ZINC<br>Rebar Probe (volts)         | -0.01489       | 0.00620        | 0.011           | 0.011          |
| Reference Cell (volts)                                | 0.295          | 1.290          | 1.030           | 0.712          |
| Anode Voltage                                         | -0.23          | 3.81           | 2.4             | 1.5            |
| Anode Current (amps)                                  | 0.00           | 0.25           | 0.33            | 0.24           |
| Ref. Cell Instant-off (volts)                         |                | 0.540          | 0.559           | 0.491          |
| Conductance (mhos)<br>Voltage drop in ref. circuit    |                | 0.066<br>0.750 | 0.138<br>0.471  | 0.160          |
| voltage drop in rei, circuit                          |                | 0.750          | V.4 / 1         | 0.221          |
| # 16: HOT-SPRAYED ZINC                                |                |                |                 |                |
| Rebar Probe (volts)                                   | -0.00123       | 0.00967        | 0.012           | 0.012          |
| Reference Cell (volts)                                | 0.380          | 1.050          | 0.825           | 0.605          |
| Anode Voltage<br>Anode Current (amps)                 | -0.35<br>0.00  | 6.85<br>0.30   | 6.0<br>0.40     | 2.7<br>0.20    |
| Ref. Cell Instant-off (volts)                         | 0.00           | 0.450          | 0.627           | 0.479          |
| Conductance (mhos)                                    |                | 0.044          | 0.067           | 0.074          |
| Voltage drop in ref. circuit                          |                | 0.600          | 0.198           | 0.126          |
| 11-16: AVERAGE VALUES: ZIN                            | r              |                |                 |                |
| Rebar Probe (volts)                                   | -0.009         | 0.015          | 0.012           | 0.017          |
| Reference Cell (volts)                                | 0.333          | 1.642          | 0.900           | 0.740          |
| Anode Voltage                                         | -0.3           | 7,8            | 6.4             | 3.1            |
| Anode Current (amps)                                  | 0.00           | 0.47           | 0.54            | 0.29           |
| Ref. Cell Instant-off (volts)                         |                | 0.595          | 0.724           | 0.592          |
| Conductance (mhos)                                    |                | 0.057          | 0.145           | 0.117          |
| Voltage drop in ref. circuit                          |                | 1.046          | 0.270           | 0.224          |

| Date:                                              | 1/31/89        | 2/1/89         | 2/2/89         | 3/13/89       |
|----------------------------------------------------|----------------|----------------|----------------|---------------|
| Days since last reading:                           | 47             | 1              | 1              | 39            |
| Days since start-up (10/28/88):                    | 95             | 96             | 97             | 136           |
| Tester:                                            | Corrpro        | Corrpro        | Corrpro M      | C,DR,DE       |
| # 11: HOT-SPRAYED ZINC                             |                |                |                |               |
| Rebar Probe (volts)                                | -0.002         | -0.012         | -0.010         | -0.012        |
| Reference Cell (volts)                             | 0.451          | 0.311          | 0.318          | 0.276         |
| Anode Voltage                                      | 9.2            | 9.7            | 19.5           | 25.1          |
| Anode Current (amps)                               | 0.36           | 0.36           | 0.42           | 0.40          |
| Ref. Cell Instant-off (volts)                      | 0.359          | 0.312          | 0.311          |               |
| Conductance (mhos)                                 | 0.039          | 0.037          | 0.022          | 0.016         |
| Voltage drop in ref. circuit                       | 0.092          | -0.001         | 0.007          |               |
| <b># 12: HOT-SPRAYED ZINC</b>                      |                |                |                |               |
| Rebar Probe (volts)                                | 0.010          | 0.006          | 0.008          | 0.004         |
| Reference Cell (volts)                             | 0.661          | 0.353          | 0.337          | 0.327         |
| Anode Voltage                                      | 24.8           | 15.8           | 24.9           | 25.1          |
| Anode Current (amps)                               | 0.22           | 0.32           | 0.25           | 0.20          |
| Ref. Cell Instant-off (volts)                      | 0.530          | 0.328          | 0.317          | 0.000         |
| Conductance (mhos)                                 | 0.009<br>0.131 | 0.020<br>0.025 | 0.010<br>0.020 | 0.008         |
| Voltage drop in ref. circuit                       | 0.131          | 0.025          | 0.020          |               |
| # 13: HOT-SPRAYED ZINC                             |                |                |                |               |
| Rebar Probe (volts)                                | 0.011          | 0.011          | 0.015          | 0.012         |
| Reference Cell (volts)                             | 0.774          | 0.653          | 0.675          | 0.652         |
| Anode Voltage                                      | 4.7            | 2.5            | 4.1            | 6.1           |
| Anode Current (amps)                               | 0.47           | 0.45           | 0.46           | 0.53          |
| Ref. Cell Instant-off (volts)                      | 0.673<br>0.100 | 0.569<br>0.180 | 0.596<br>0.112 | 0.087         |
| Conductance (mhos)<br>Voltage drop in ref. circuit | 0.100          | 0.180          | 0.079          | <b>V.VO</b> / |
| vonage drop in reit en cuit                        | 0.101          | 0.004          | 0.072          |               |
| # 14: HOT-SPRAYED ZINC                             |                |                |                |               |
| Rebar Probe (volts)                                | 0.011          | 0.028          | 0.015          | 0.018         |
| Reference Cell (volts)                             | 0.676          | 0.864          | 0.752          | 0.814         |
| Anode Voltage                                      | 5.1            | 3.0            | 5.6            | 7.5           |
| Anode Current (amps)                               | 0.11           | 0.13           | 0.15           | 0.22          |
| Ref. Cell Instant-off (volts)                      | 0.500<br>0.022 | 0.554          | 0.536<br>0.027 | 0.029         |
| Conductance (mhos)<br>Voltage drop in ref. circuit | 0.022          | 0.043<br>0.310 | 0.027          | 0.029         |
| vonage drop in feit cheun                          | 0.170          | 0.510          | 0.210          |               |
| # 15: HOT-SPRAYED ZINC                             |                |                |                |               |
| Rebar Probe (volts)                                | 0.006          | 0.002          | 0.000          | 0.010         |
| Reference Cell (volts)                             | 0.523          | 0.349          | 0.315          | 0.468         |
| Anode Voltage<br>Anode Current (amps)              | 2.1<br>0.25    | 0.8<br>0.41    | 0.9<br>0.45    | 4.2<br>0.51   |
| Ref. Cell Instant-off (volts)                      | 0.405          | 0.41           | 0.45           | 0.51          |
| Conductance (mbos)                                 | 0.119          | 0.513          | 0.500          | 0.121         |
| Voltage drop in ref. circuit                       | 0,118          | 0.060          | 0.030          | 0.121         |
|                                                    |                |                |                |               |
| # 16: HOT-SPRAYED ZINC                             | 0.000          | 0.014          | 0 000          | 0.008         |
| Rebar Probe (volts)<br>Reference Cell (volts)      | 0.008<br>0.508 | 0.014<br>0.434 | 0.008<br>0.518 | 0.489         |
| Anode Voltage                                      | <b>3.0</b>     | 1.9            | 3.3            | 5.0           |
| Anode Current (amps)                               | 0.19           | 0.25           | 0.28           | 0.36          |
| Ref. Cell Instant-off (volts)                      | 0.440          | 0.365          | 0.444          |               |
| Conductance (mhos)                                 | 0.063          | 0.132          | 0.085          | 0.072         |
| Voltage drop in ref. circuit                       | 0.068          | 0.069          | 0.074          |               |
| 11-16: AVERAGE VALUES: ZINC                        |                |                |                |               |
| Rebar Probe (volts)                                | 0.007          | 0.008          | 0.006          | <b>0.007</b>  |
| Reference Cell (volts)                             | 0.599          | 0.494          | 0.486          | 0.504         |
| Anode Voltage                                      | 8.2            | 5.6            | 9.7            | 12.2          |
| Anode Current (amps)                               | 0.27           | 0.32           | 0.34           | 0.37          |
| Ref. Cell Instant-off (volts)                      | 0.485          | 0.403          | 0.415          |               |
| Conductance (mhos)                                 | 0.059          | 0.154          | 0.126          | 0.056         |
| Voltage drop in ref. circuit                       | 0.114          | 0.091          | 0.071          |               |
|                                                    |                |                |                |               |

| Date:                                   | 4/13/89        | 5/26/89                | 6/13/89        | 7/17/89        |
|-----------------------------------------|----------------|------------------------|----------------|----------------|
| Days since last reading:                | 31             | 43                     | 18             | 34             |
| Days since start-up (10/28/88):         | 167            | 210                    | 228            | 262            |
| Tester:                                 | DR,DE,TD       | DR                     | JM,DR          | DR,KC          |
|                                         |                |                        |                | ,              |
| # 11: HOT-SPRAYED ZINC                  |                |                        |                |                |
| Rebar Probe (volts)                     | 0.002          | -0.009                 | -0.004         | -0.001         |
| Reference Cell (volts)                  | 0.530          | 0.257                  | 0.311          | 0.297          |
| Anode Voltage                           | 6.9            | 25.8                   | 25.3           | 25.3           |
| Anode Current (amps)                    | 0.48           | 0.08                   | 0.15           | 0.12           |
| Ref. Cell Instant-off (volts)           |                |                        |                |                |
| Conductance (mbos)                      | 0.070          | 0.003                  | 0.006          | 0.005          |
| Voltage drop in ref. circuit            |                |                        |                |                |
| # 12: HOT-SPRAYED ZINC                  |                |                        |                |                |
| Rebar Probe (volts)                     | 0.006          | 0.005                  | 0.003          | 0.005          |
| Reference Cell (volts)                  | 0.708          | 0.003                  | 0.003          | 0.003          |
| Anode Voltage                           | 24.4           | 25.0                   | 24.3           | 24.2           |
| Anode Current (amps)                    | 0.36           | 0.08                   | 0.11           | 0.06           |
| Ref. Cell Instant-off (volts)           | 0.50           | 0.00                   | 0.11           | 0.00           |
| Conductance (mhos)                      | 0.015          | 0.003                  | 0.005          | 0.002          |
| Voltage drop in ref. circuit            |                |                        |                |                |
| · · · · · · · · · · · · · · · · · · ·   |                |                        |                |                |
| # 13: HOT-SPRAYED ZINC                  |                |                        |                |                |
| Rebar Probe (volts)                     | 0.008          | 0.000                  | 0.001          | 0.004          |
| Reference Cell (volts)                  | 0.767          | 0.478                  | 0.468          | 0.504          |
| Anode Voltage                           | 2.6            | 25.6                   | 23.1           | 25.3           |
| Anode Current (amps)                    | 0.54           | 0.40                   | 0.57           | 0.15           |
| Ref. Cell Instant-off (volts)           |                |                        |                |                |
| Conductance (mhos)                      | 0.208          | 0.016                  | 0.025          | 0.006          |
| Voltage drop in ref. circuit            |                |                        |                |                |
|                                         |                |                        |                |                |
| # 14: HOT-SPRAYED ZINC                  | 0.021          | 0.019                  | 0.012          | 0.017          |
| Rebar Probe (volts)                     | 0.021<br>1.456 | 0.01 <b>2</b><br>0.759 | 0.013<br>1.378 | 0.013<br>1.148 |
| Reference Cell (volts)<br>Anode Voltage | 1.450          | <b>23.4</b>            | 20.2           | 1.146          |
| Anode Current (amps)                    | 0.24           | 0.18                   | 0.22           | 0.10           |
| Ref. Cell Instant-off (volts)           | 0.24           | 0.10                   | 0.22           | 0.10           |
| Conductance (mhos)                      | 0.020          | 0.008                  | 0.011          | 0.007          |
| Voltage drop in ref. circuit            | 0.020          | 0.000                  |                | 0.007          |
|                                         |                |                        |                |                |
| # 15: HOT-SPRAYED ZINC                  |                |                        |                |                |
| Rebar Probe (volts)                     | 0.008          | -0.004                 | -0.002         | 0.002          |
| Reference Cell (volts)                  | 0.547          | 0.276                  | 0.284          | 0.282          |
| Anode Voltage                           | 4.0            | 51.1                   | 45.7           | 49.3           |
| Anode Current (amps)                    | 0.52           | 0.45                   | 0.50           | 0.17           |
| Ref. Cell Instant-off (volts)           | 0.130          | 0.000                  | 0.011          | 0.002          |
| Conductance (mhos)                      | 0.130          | 0.009                  | 0.011          | 0.003          |
| Voltage drop in ref. circuit            |                |                        |                |                |
| # 16: HOT-SPRAYED ZINC                  |                |                        |                |                |
| Rebar Probe (volts)                     | 0.014          | 0.002                  | 0.000          | 0.003          |
| Reference Cell (volts)                  | 0.717          | 0.276                  | 0.262          | 0.289          |
| Anode Voltage                           | 6.1            | 19.8                   | 21.2           | 49.0           |
| Anode Current (amps)                    | 0.41           | 0.38                   | 0.43           | 0.22           |
| Ref. Cell Instant-off (volts)           |                |                        |                |                |
| Conductance (mhos)                      | 0.067          | 0.019                  | 0.020          | 0.004          |
| Voltage drop in ref. circuit            |                |                        |                |                |
|                                         | -              |                        |                |                |
| 11-16: AVERAGE VALUES: ZIN              |                |                        |                | · · · ·        |
| Rebar Probe (volts)                     | 0.010          | 0.001                  | 0.002          | 0.004          |
| Reference Cell (volts)                  | 0.788          | 0.382                  | 0.493          | 0.457          |
| Anode Voltage                           | 9.4            | 28.5                   | 26.6           | 31.1           |
| Anode Current (amps)                    | 0.43           | 0.26                   | 0.33           | 0.14           |
| Ref. Cell Instant-off (volts)           | A A0E          | A 010                  | 0.017          | A 005          |
| Conductance (mhos)                      | 0.085          | <b>0</b> .010          | 0.013          | 0.005          |
| Voltage drop in ref. circuit            |                |                        |                |                |

| Date:                                                 | 8/18/89      | 9/19/89 | 10/31/89      | 11/28/89      |
|-------------------------------------------------------|--------------|---------|---------------|---------------|
| Date:<br>Days since last reading:                     | 32           | 3/19/89 | 42            | 28            |
| Days since start-up (10/28/88):                       | 294          | 326     | 368           | 396           |
| Tester:                                               | DR           | DR      | DR            | DR            |
|                                                       |              |         |               |               |
| # 11: HOT-SPRAYED ZINC                                |              |         |               |               |
| Rebar Probe (volts)                                   | -0.001       | 0.000   | -0.001        | -0.001        |
| Reference Cell (volts)                                | 0.302        | 0.299   | 0.307         | 0.307         |
| Anode Voltage                                         | 25.4<br>0.12 | 25.5    | 26.0<br>0.10  | 27.1<br>0.04  |
| Anode Current (amps)<br>Ref. Cell Instant-off (volts) | 0.12         | 0.05    | 0.10          | 0.04          |
| Conductance (mhos)                                    | 0.005        | 0.002   | 0.004         | 0.001         |
| Voltage drop in ref. circuit                          | 0.005        | 0.002   | 0.004         | 0.001         |
|                                                       |              |         |               |               |
| # 12: HOT-SPRAYED ZINC                                |              |         |               |               |
| Rebar Probe (volts)                                   | 0.005        | 0.003   | 0.002         | 0.001         |
| Reference Cell (volts)                                | 0.274        | 0.301   | 0.199         | 0.237         |
| Anode Voltage                                         | 24.1         | 24.6    | 24.8          | 25.2          |
| Anode Current (amps)                                  | 0.04         | 0.02    | 0.09          | 0.02          |
| Ref. Cell Instant-off (volts)<br>Conductance (mhos)   | 0.002        | 0.001   | 0.004         | 0.001         |
| Voltage drop in ref. circuit                          | 0.002        | 0.001   | 0.004         | 0.001         |
|                                                       |              |         |               |               |
| # 13: HOT-SPRAYED ZINC                                |              |         |               |               |
| Rebar Probe (volts)                                   | 0.003        | 0.001   | <b>0.</b> 001 | 0.001         |
| Reference Cell (volts)                                | 0.556        | 0.595   | 0.509         | 0.499         |
| Anode Voltage                                         | 25.4         | 25.6    | 25.5          | 27.4          |
| Anode Current (amps)                                  | 0.08         | 0.03    | 0.09          | 0.36          |
| Ref. Cell Instant-off (volts)<br>Conductance (mhos)   | 0.003        | 0.001   | 0.004         | 0.013         |
| Voltage drop in ref. circuit                          | 0.005        | 0.001   | 0.004         | 0.013         |
| voltage drop in rei. circuit                          |              |         |               |               |
| # 14: HOT-SPRAYED ZINC                                |              |         |               |               |
| Rebar Probe (volts)                                   | 0.005        | 0.004   | 0.003         | 0.001         |
| Reference Cell (volts)                                | 0.812        | 0.872   | 0.412         | 0.205         |
| Anode Voltage                                         | 22.2         | 50.1    | 52.1          | 56.3          |
| Anode Current (amps)                                  | 0.15         | 0.23    | 0.21          | 0.19          |
| Ref. Cell Instant-off (volts)                         | 0.005        | 0.007   | 0.004         | 0.000         |
| Conductance (mhos)<br>Voltage drop in ref. circuit    | 0.007        | 0.005   | 0.004         | 0.003         |
| voltage drop in rei. circuit                          |              |         |               |               |
| # 15: HOT-SPRAYED ZINC                                |              |         |               |               |
| Rebar Probe (volts)                                   | 0.001        | -0.001  | -0.001        | -0.001        |
| Reference Cell (volts)                                | 0.285        | 0.273   | 0.270         | 0.220         |
| Anode Voltage                                         | 49.2         | 49.5    | 50.3          | 53.9          |
| Anode Current (amps)                                  | 0.10         | 0.20    | 0.29          | 0.63          |
| Ref. Cell Instant-off (volts)                         | 0.000        | 0.004   | 0.007         | 0.010         |
| Conductance (mhos)<br>Voltage drop in ref. circuit    | 0.002        | 0.004   | 0.006         | 0.012         |
| voltage utop in tel. en cut                           |              |         |               |               |
| # 16: HOT-SPRAYED ZINC                                |              |         |               |               |
| Rebar Probe (volts)                                   | 0.002        | 0.001   | -0.001        | -0.001        |
| Reference Cell (volts)                                | 0.333        | 0.373   | 0.385         | 0.395         |
| Anode Voltage                                         | 49.1         | 49.5    | 49.9          | 53.5          |
| Anode Current (amps)                                  | 0.18         | 0.08    | 0.17          | 0.86          |
| Ref. Cell Instant-off (volts)                         | 0.004        | 0.001   | 0.002         | 0.016         |
| Conductance (mhos)<br>Voltage drop in ref. circuit    | 0.004        | 0.002   | 0.003         | 0.016         |
| · vinge with in its theult                            |              |         |               |               |
| 11-16: AVERAGE VALUES: ZIN                            | IC           |         |               |               |
| Rebar Probe (volts)                                   | 0.003        | 0.001   | 0.001         | 0.000         |
| Reference Cell (volts)                                | 0.427        | 0.452   | 0.347         | 0.311         |
| Anode Voltage                                         | 32.6         | 37.5    | 38.1          | 40.6          |
| Anode Current (amps)                                  | 0.11         | 0.10    | 0.16          | 0.35          |
| Ref. Cell Instant-off (volts)                         |              | 0 000   | 0.004         | <b>0</b> 0.00 |
| Conductance (mhos)<br>Voltage drop in ref. circuit    | 0.004        | 0.002   | v.vu4         | 0.008         |
| · was any math and the                                | D D. 45      |         |               |               |

| Data                                                  | 1/0/00          | 1/17/90        | A /36 /00           | 11/10/00        |
|-------------------------------------------------------|-----------------|----------------|---------------------|-----------------|
| Date:<br>Days since last reading:                     | 1/9/90<br>12    | 1/1//90        | 4/26/90<br>99       | 11/19/90<br>207 |
| Days since start-up (10/28/88):                       | 408             | 416            | 515                 | 722             |
| Tester:                                               | DR,DE           | DR             | DE,TD               | JM,DE           |
| # 11: HOT-SPRAYED ZINC                                |                 |                |                     |                 |
| Rebar Probe (volts)                                   | 0.000           | 0.001          | 0.000               | 0.001           |
| Reference Cell (volts)                                | 0.306           | 0.314          | 0.300               | 0.282           |
| Anode Voltage                                         | 26.4            | 26.2           | 25.7                | 25.2            |
| Anode Current (amps)<br>Ref. Cell Instant-off (volts) | 0.03<br>0.296   | 0.06           | 0.14<br>0.299       | 0.35<br>0.276   |
| Conductance (mhos)                                    | 0.290           | 0.002          | 0.299               | 0.276           |
| Voltage drop in ref. circuit                          | 0.010           | 0.002          | 0.001               | 0.006           |
| # 12: HOT-SPRAYED ZINC                                |                 |                |                     |                 |
| Rebar Probe (volts)                                   | 0.002           | 0.003          | 0.002               | 0.002           |
| Reference Cell (volts)                                | 0.277           | 0.188          | 0.179               | 0.229           |
| Anode Voltage                                         | 25.3            | 25.0           | 24.8                | <b>25.</b> 1    |
| Anode Current (amps)                                  | 0.03            | 0.04           | 0.05                | 2.28            |
| Ref. Cell Instant-off (volts)                         | 0.303           | 0.000          | 0.172               | 0.172           |
| Conductance (mhos)<br>Voltage drop in ref. circuit    | 0.001<br>-0.026 | 0.002          | 0.002<br>0.007      | 0.091<br>0.057  |
| votage drop in rei. encun                             | -0.020          |                | 0.007               | 0.057           |
| # 13: HOT-SPRAYED ZINC                                | 0.001           | 0.001          |                     | 0.000           |
| Rebar Probe (volts)<br>Reference Cell (volts)         | -0.001<br>0.572 | 0.001<br>0.507 | -0.002<br>0.482     | -0.002<br>0.585 |
| Anode Voltage                                         | 26.0            | 25.5           | 25.3                | 25.9            |
| Anode Current (amps)                                  | 0.21            | 0.07           | 0.14                | 1.22            |
| Ref. Cell Instant-off (volts)                         | 0.634           |                | 0.493               | 0.564           |
| Conductance (mhos)                                    | 0.008           | 0.003          | 0.006               | 0.047           |
| Voltage drop in ref. circuit                          | -0.062          |                | -0.011              | 0.021           |
| # 14: HOT-SPRAYED ZINC                                |                 |                |                     |                 |
| Rebar Probe (volts)                                   | 0.002           | 0.005          | 0.004               | 0.002           |
| Reference Cell (volts)                                | 0.372           | 0.900          | 0.350               | 0.217           |
| Anode Voltage                                         | 52.6<br>0.14    | 52.0<br>0.17   | <b>50.8</b><br>0.27 | 50.5<br>1.47    |
| Anode Current (amps)<br>Ref. Cell Instant-off (volts) | 0.14            | <b>U.1</b> /   | 0.27                | 0.212           |
| Conductance (mhos)                                    | 0.003           | 0.003          | 0.005               | 0.029           |
| Voltage drop in ref. circuit                          | 0.052           |                | 0.010               | 0.005           |
| # 15: HOT-SPRAYED ZINC                                |                 |                |                     |                 |
| Rebar Probe (volts)                                   | -0.002          | -0.001         | -0.001              | 0.000           |
| Reference Cell (volts)                                | 0.258           | 0.265          | 0.301               | 0.296           |
| Anode Voltage                                         | 51.7            | 51.0           | 49.6                | 49.8            |
| Anode Current (amps)                                  | 0.16<br>0.259   | 0.09           | 0.17                | 1.00            |
| Ref. Cell Instant-off (volts)<br>Conductance (mhos)   | 0.239           | 0.002          | 0.299<br>0.003      | 0.279<br>0.020  |
| Voltage drop in ref. circuit                          | -0.001          | 0.002          | 0.002               | 0.017           |
| # 16: HOT-SPRAYED ZINC                                |                 |                |                     |                 |
| Rebar Probe (volts)                                   | -0.001          | -0.001         | -0.001              | -0.001          |
| Reference Cell (volts)                                | 0.414           | 0.405          | 0.407               | 0.400           |
| Anode Voltage                                         | 50.8            | 49.5           | 48.5                | 49.8            |
| Anode Current (amps)                                  | 0.15            | 0.15           | 0.10                | 1.96            |
| Ref. Cell Instant-off (volts)                         | 0.405           | 0.002          | 0.411               | 0.398           |
| Conductance (mhos)<br>Voltage drop in ref. circuit    | 0.003<br>0.009  | 0.003          | 0.002<br>-0.004     | 0.039<br>0.002  |
| voltage grop in rei. circuit                          | 0.009           |                | -0.004              | 0.002           |
| 11-16: AVERAGE VALUES: Z                              |                 | 0 001          | 0 000               | 0 000           |
| Rebar Probe (volts)<br>Reference Cell (volts)         | 0.000<br>0.367  | 0.001<br>0.430 | 0.000<br>0.337      | 0.000<br>0.335  |
| Anode Voltage                                         | 38.8            | 38.2           | 37.5                | 37.7            |
| Anode Current (amps)                                  | 0.12            | 0.10           | 0.15                | 1.38            |
| Ref. Cell Instant-off (volts)                         | 0.370           |                | 0.336               | 0.317           |
| Conductance (mhos)                                    | 0.003           | 0.002          | 0.004               | 0.040           |
| Voltage drop in ref. circuit                          | -0.003          |                | 0.001               | 0.018           |
|                                                       |                 |                |                     |                 |

۶

| _                                                  |                     |                |                | 044.4404       |
|----------------------------------------------------|---------------------|----------------|----------------|----------------|
| Date:                                              | 3/28/91             | 5/15/91        | 7/31/91        | 8/16/91        |
| Days since last reading:                           | 129                 | 48             | 77             | 16             |
| Days since start-up (10/28/88):                    | 851                 | 899            | 976<br>DE      | 992            |
| Tester:                                            | DE,KC               | DE             | DE             | JM,DE          |
| # 11: HOT-SPRAYED ZINC                             |                     |                |                |                |
| Rebar Probe (volts)                                | 0.002               | 0.003          | 0.003          | 0.003          |
| Reference Cell (volts)                             | 0.289               | 0.268          | 0.253          | 0.263          |
| Anode Voltage                                      | 25.7                | 25.4           | 25.0           | 24.8           |
| Anode Current (amps)                               | 0.05                | 0.03           | 0.02           | 0.03           |
| Ref. Cell Instant-off (volts)                      | 0.287               | 0.270          | 0.259          | 0.267          |
| Conductance (mhos)                                 | 0.002               | 0.001          | 0.001          | 0.001          |
| Voltage drop in ref. circuit                       | 0.002               | -0.002         | -0.006         | -0.004         |
|                                                    |                     |                |                |                |
| # 12: HOT-SPRAYED ZINC                             | 0.003               | 0.004          | 0.003          | 0.004          |
| Rebar Probe (volts)                                | 0.002<br>0.232      | 0.004          | 0.003          | 0.004          |
| Reference Cell (volts)<br>Anode Voltage            | 0.232               | 25.2           | 25.2           | 25.1           |
| Anode Current (amps)                               | 0.00                | 0.03           | 0.01           | 0.01           |
| Ref. Cell Instant-off (volts)                      | 0.227               | 0.175          | 0.226          | 0.140          |
| Conductance (mhos)                                 | 0.000               | 0.001          | 0.000          | 0.000          |
| Voltage drop in ref. circuit                       | 0.005               | 0.009          | -0.002         | 0.004          |
|                                                    |                     |                |                |                |
| #13: HOT-SPRAYED ZINC                              |                     |                |                |                |
| Rebar Probe (volts)                                | 0.000               | 0.001          | 0.002          | 0.001          |
| Reference Cell (volts)                             | 0.549               | 0.460          | 0.544          | 0.471          |
| Anode Voltage                                      | 26.5                | 26.5           | 26.2           | 25.3           |
| Anode Current (amps)                               | 0.04                | 0.03           | 0.01<br>0.546  | 0.02<br>0.478  |
| Ref. Cell Instant-off (volts)                      | 0.547<br>0.002      | 0.478<br>0.001 | 0.546          | 0.478          |
| Conductance (mhos)<br>Voltage drop in ref. circuit | 0.002               | -0.018         | -0.002         | -0.007         |
| vonage urop in ten encan                           | 0.002               | -0.010         | 0.002          | 0.007          |
| # 14: HOT-SPRAYED ZINC                             |                     |                |                |                |
| Rebar Probe (volts)                                | 0.002               | 0.003          | 0.003          | 0.004          |
| Reference Cell (volts)                             | 0.289               | 0.277          | 0.237          | 0.245          |
| Anode Voltage                                      | 51.2                | 50.2           | 49.6           | 49.4           |
| Anode Current (amps)                               | 0.70                | 0.20           | 0.06           | 0.09           |
| Ref. Cell Instant-off (volts)                      | 0.290               | 0.276          | 0.241          | 0.245          |
| Conductance (mhos)                                 | 0.014               | 0.004          | 0.001          | 0.002          |
| Voltage drop in ref. circuit                       | -0.001              | 0.001          | -0.004         | 0.000          |
| # 15: HOT-SPRAYED ZINC                             |                     |                |                |                |
| Rebar Probe (volts)                                | 0.001               | 0.002          | 0.002          | 0.003          |
| Reference Cell (volts)                             | 0.307               | 0.295          | 0.280          | 0.285          |
| Anode Voltage                                      | 49.7                | 49.9           | 49.7           | 49.1           |
| Anode Current (amps)                               | 0.20                | 0.07           | 0.01           | 0.02           |
| Ref. Cell Instant-off (volts)                      | 0.306               | 0 <b>.30</b> 0 | 0.285          | 0.288          |
| Conductance (mhos)                                 | 0.004               | 0.001          | 0.000          | 0.000          |
| Voltage drop in ref. circuit                       | 0.001               | -0.005         | -0.005         | -0.003         |
| # 16: HOT-SPRAYED ZINC                             |                     |                |                |                |
| Rebar Probe (volts)                                | 0.000               | 0.002          | 0.000          | 0.002          |
| Reference Cell (volts)                             | 0.400               | 0.367          | 0.381          | 0.403          |
| Anode Voltage                                      | 50.9                | 50.5           | 49.3           | 49.2           |
| Anode Current (amps)                               | 0.55                | 0.05           | 0.02           | 0.03           |
| Ref. Cell Instant-off (volts)                      | 0.398               | 0.267          | <b>0.3</b> 90  | <b>0.4</b> 09  |
| Conductance (mhos)                                 | 0.011               | 0.001          | 0.000          | <b>0.0</b> 01  |
| Voltage drop in ref. circuit                       | 0.002               | 0.100          | -0.009         | -0.006         |
| 44 47. ATTEN A ON THAT THAT A THAT                 |                     |                |                |                |
| 11-16: AVERAGE VALUES: ZINC                        | 0 004               | 0 007          | 0 003          | 0.003          |
| Rebar Probe (volts)                                | 0.001<br>0.344      | 0.003<br>0.309 | 0.002<br>0.320 | 0.003<br>0.302 |
| Reference Cell (volts)<br>Anode Voltage            | 0.344<br>34.1       | <b>38</b> .0   | 0.320<br>37.5  | 0.302<br>37.2  |
| Anode Voltage<br>Anode Current (amps)              | <b>34.1</b><br>0.26 | <b>0.</b> 07   | <b>0.02</b>    | 0.03           |
| Ref. Cell Instant-off (volts)                      | 0.343               | 0.294          | 0.325          | 0.305          |
| Conductance (mhos)                                 | 0.005               | 0.002          | 0.001          | 0.001          |
| Voltage drop in ref. circuit                       | 0.002               | 0.014          | -0.005         | -0.003         |
|                                                    |                     |                |                |                |

| Date:                                              | 9/10/91            | 10/9/91        | 1/7/92                 | 3/19/92        |
|----------------------------------------------------|--------------------|----------------|------------------------|----------------|
| Days since last reading:                           | 25                 | 29<br>1,046    | 90<br>1,136            | 72<br>1,208    |
| Days since start-up (10/28/88):<br>Tester:         | 1,017<br>DE        | 1,040<br>DE    | 1,130<br>DE            | 1,208<br>DE    |
| 163(61.                                            | DL                 | DE             | DE                     | DE             |
| # 11: HOT-SPRAYED ZINC                             |                    |                |                        |                |
| Rebar Probe (volts)                                | 0.003              | 0.003          | 0.001                  | 0.001          |
| Reference Cell (volts)<br>Anode Voltage            | 0.247<br>25.4      | 0.245<br>25.6  | 0.263<br>25.5          | 0.273<br>26.2  |
| Anode Current (amps)                               | 0.00               | 0.01           | 0.02                   | 0.01           |
| Ref. Cell Instant-off (volts)                      | 0.246              | 0.243          | 0.263                  | 0.273          |
| Conductance (mhos)                                 | 0.000              | 0.000          | 0.001                  | 0.000          |
| Voltage drop in ref. circuit                       | 0.001              | 0.002          | 0.000                  | 0.000          |
| # 12: HOT-SPRAYED ZINC                             |                    |                |                        |                |
| Rebar Probe (volts)                                | 0.003              | 0.003          | 0.001                  | 0.001          |
| Reference Cell (volts)                             | 0.215              | 0.162          | 0.233                  | 0.150          |
| Anode Voltage                                      | 25.5               | 25.2           | 25.2                   | 25.1           |
| Anode Current (amps)                               | 0.01               | 0.01           | 0.01                   | 0.01           |
| Ref. Cell Instant-off (volts)                      | 0.215              | 0.123          | 0.189                  | 0.145          |
| Conductance (mhos)                                 | 0.000              | 0.000          | 0.000                  | 0.000          |
| Voltage drop in ref. circuit                       | 0.000              | 0.039          | 0.044                  | 0.005          |
| # 13: HOT-SPRAYED ZINC                             |                    |                |                        |                |
| Rebar Probe (volts)                                | -0.001             | 0.000          | 0.001                  | 0.000          |
| Reference Cell (volts)                             | 0.545<br>26.2      | 0.513<br>26.4  | 0.600                  | 0.413<br>26.9  |
| Anode Voltage<br>Anode Current (amps)              | 0.01               | 20.4<br>0.01   | 26.1<br>0.01           | 0.01           |
| Ref. Cell Instant-off (volts)                      | 0.545              | 0.489          | 0.547                  | 0.434          |
| Conductance (mhos)                                 | 0.000              | 0.000          | 0.000                  | 0.000          |
| Voltage drop in ref. circuit                       | 0.000              | 0.024          | 0.053                  | -0.021         |
| # 14: HOT-SPRAYED ZINC                             |                    |                |                        |                |
| Rebar Probe (volts)                                | 0.003              | 0.003          | 0.000                  | 0.001          |
| Reference Cell (volts)                             | 0.248              | 0,248          | 0.293                  | 0.258          |
| Anode Voltage                                      | 50.2               | 50.6           | 49.8                   | 51.3           |
| Anode Current (amps)                               | 0.05               | 0.03           | 0.05                   | 0.04           |
| Ref. Cell Instant-off (volts)                      | 0.235              | 0.247          | 0.311                  | 0.252          |
| Conductance (mhos)<br>Voltage drop in ref. circuit | 0.001<br>0.013     | 0.001<br>0.001 | 0.001<br>-0.018        | 0.001<br>0.006 |
| •••                                                | 0.015              | 0.001          | -0.010                 | 0.000          |
| # 15: HOT-SPRAYED ZINC                             | 0.007              | 0.003          | 0.000                  | 0.001          |
| Rebar Probe (volts)                                | 0.003<br>0.274     | 0.003<br>0.264 | 0.000<br>0.290         | 0.001          |
| Reference Cell (volts)<br>Anode Voltage            | 0.2/4<br>50.1      | 0.264 50.2     | 0.290<br>49.6          | 0.247<br>50.0  |
| Anode Current (amps)                               | 50.1<br>0.01       | 50.2<br>0.01   | 49.0<br>0.01           | 50.0<br>0.01   |
| Ref. Cell Instant-off (volts)                      | 0.275              | 0.266          | 0.296                  | 0.244          |
| Conductance (mhos)                                 | 0.000              | 0.000          | 0.000                  | 0.000          |
| Voltage drop in ref. circuit                       | -0.001             | -0.002         | -0.006                 | 0.003          |
| # 16: HOT-SPRAYED ZINC                             |                    |                |                        |                |
| Rebar Probe (volts)                                | <b>0.001</b>       | 0.001          | -0.001                 | -0.001         |
| Reference Cell (volts)                             | 0.381              | 0.406          | 0.425                  | 0.400          |
| Anode Voltage                                      | 50.3               | <b>50.</b> 7   | 49,9                   | 51.1           |
| Anode Current (amps)                               | 0.02               | 0.02           | 0.02                   | 0.02           |
| Ref. Cell Instant-off (volts)                      | 0.383              | 0.407          | 0.418                  | 0.405          |
| Conductance (mhos)                                 | 0.000              | 0.000          | 0.000                  | 0.000          |
| Voltage drop in ref. circuit                       | -0.002             | -0.001         | 0,007                  | -0.005         |
| 11-16: AVERAGE VALUES: ZIN                         |                    | _              |                        |                |
| Rebar Probe (volts)                                | 0.002              | 0.002          | 0.000                  | 0.000          |
| Reference Cell (volts)                             | 0.318              | 0.306          | 0.351                  | 0.290          |
| Anode Voltage                                      | 38.0               | 38.1           | 37.7                   | 38.4           |
| Anode Current (amps)                               | 0.02               | 0.02           | 0.02                   | 0.02           |
| Ref. Cell Instant-off (volts)                      | 0.317<br>0.000     | 0.296<br>0.000 | <b>0.33</b> 7<br>0.001 | 0.292<br>0.000 |
| Conductance (mbos)<br>Voltage drop in ref. circuit | 0.000              | 0.000          | 0.001                  | -0.002         |
| A ottake at ob m ter cutan                         | 0.002<br>Daga B.46 | 0.011          | 0,013                  | -0,002         |
|                                                    | NAGA K.A.          |                |                        |                |

Page B-46

.

÷

| Date:                             | 4/17/92 | 5/15/92   | 6/11/92 | Date.                           |
|-----------------------------------|---------|-----------|---------|---------------------------------|
| Date.<br>Days since last reading: | 29      | 28        |         | Days since last reading:        |
| Days since start-up (10/28/88):   | 1,237   | 1,265     | 1,292   | Days since start-up (10/28/88): |
| Tester:                           | DE      | DE        | DE      | Tester:                         |
| # 11: HOT-SPRAYED ZINC            |         |           |         | # 11: HOT-SPRAYED ZINC          |
| Rebar Probe (volts)               | 0.002   | 0.002     | 0.003   | Rebar Probe (volts)             |
| Reference Cell (volts)            | 0.270   | 0.253     | 0.254   |                                 |
| Anode Voltage                     | 25.7    | 25.4      | 25.6    |                                 |
| Anode Current (amps)              | 0.01    | 0.01      | 0.02    |                                 |
| Ref. Cell Instant-off (volts)     | 0.264   | 0.253     | 0.253   |                                 |
| Conductance (mhos)                | 0.000   | 0.000     | 0.001   |                                 |
| Voltage drop in ref. circuit      | 0,006   | 0.000     | 0.001   | Voltage drop in ref. circuit    |
| # 12: HOT-SPRAYED ZINC            |         |           |         | # 12: HOT-SPRAYED ZINC          |
| Rebar Probe (volts)               | 0.001   | 0.002     | 0.003   | Rebar Probe (volts)             |
| Reference Cell (volts)            | 0.155   | 0.127     | 0.142   |                                 |
| Anode Voltage                     | 25.5    | 25.2      | 25,6    |                                 |
| Anode Current (amps)              | 0.01    | 0.01      | 0.01    |                                 |
| Ref. Cell Instant-off (volts)     | 0.147   | 0.117     | 0.139   |                                 |
| Conductance (mhos)                | 0.000   | 0.000     | 0.000   | Conductance (mhos)              |
| Voltage drop in ref. circuit      | 0.008   | 0.010     | 0.003   | Voltage drop in ref. circuit    |
| # 13: HOT-SPRAYED ZINC            |         |           |         | # 13: HOT-SPRAYED ZINC          |
| Rebar Probe (volts)               | -0.001  | 0.000     | 0.001   | Rebar Probe (volts)             |
| Reference Cell (volts)            | 0.428   | 0.437     | 0.439   | Reference Cell (volts)          |
| Anode Voltage                     | 26.8    | 26.2      | 26.0    |                                 |
| Anode Current (amps)              | 0,01    | 0.01      | 0.03    | · · ·                           |
| Ref. Cell Instant-off (volts)     | 0.442   | 0.473     | 0.444   |                                 |
| Conductance (mhos)                | 0.000   | 0.000     | 0.001   | Conductance (mhos)              |
| Voltage drop in ref. circuit      | -0.014  | -0.036    | -0.005  | Voltage drop in ref. circuit    |
| # 14: HOT-SPRAYED ZINC            |         |           |         | # 14: HOT-SPRAYED ZINC          |
| Rebar Probe (volts)               | 0.002   | 0.003     | 0.003   | Rebar Probe (volts)             |
| Reference Cell (volts)            | 0.286   | 0.275     | 0.279   | Reference Cell (volts)          |
| Anode Voltage                     | 50.0    | 49.5      | 49.4    | Anode Voltage                   |
| Anode Current (amps)              | 0.04    | 0.05      | 0.09    | Anode Current (amps)            |
| Ref. Cell Instant-off (volts)     | 0.281   | 0.267     | 0.277   | · · ·                           |
| Conductance (mhos)                | 0.001   | 0.001     | 0.002   | Conductance (mhos)              |
| Voltage drop in ref. circuit      | 0.005   | 0.008     | 0.002   | Voltage drop in ref. circuit    |
| # 15: HOT-SPRAYED ZINC            |         |           |         | # 15: HOT-SPRAYED ZINC          |
| Rebar Probe (volts)               | 0.001   | 0.002     | 0.003   | Rebar Probe (volts)             |
| Reference Cell (volts)            | 0.266   | 0.266     | 0.275   | · · ·                           |
| Anode Voltage                     | 50.1    | 49.9      | 50.1    | Anode Voltage                   |
| Anode Current (amps)              | 0.02    | 0.02      | 0.02    | Anode Current (amps)            |
| Ref. Cell Instant-off (volts)     | 0.262   | 0.267     | 0.276   | Ref. Cell Instant-off (volts)   |
| Conductance (mhos)                | 0.000   | 0.000     | 0.000   | Conductance (mhos)              |
| Voltage drop in ref. circuit      | 0.004   | -0.001    | -0.001  | Voltage drop in ref. circuit    |
| # 16: HOT-SPRAYED ZINC            |         |           |         | # 16: HOT-SPRAYED ZINC          |
| Rebar Probe (volts)               | 0.000   | 0.001     | 0,002   | Rebar Probe (volts)             |
| Reference Cell (volts)            | 0.409   | 0.414     | 0.414   | Reference Cell (volts)          |
| Anode Voltage                     | 50.4    | 50.5      | 50,5    | Anode Voltage                   |
| Anode Current (amps)              | 0.02    | 0,03      | 0.03    | Anode Current (amps)            |
| Ref. Cell Instant-off (volts)     | 0.402   | 0.410     | 0.418   | Ref. Cell Instant-off (volts)   |
| Conductance (mhos)                | 0.000   | 0.001     | 0.001   | Conductance (mhos)              |
| Voltage drop in ref. circuit      | 0.007   | 0.004     | -0,004  | Voltage drop in ref. circuit    |
| 11-16: AVERAGE VALUES: ZINC       |         |           |         | 11-16: AVERAGE VALUES: ZIN(     |
| Rebar Probe (volts)               | 0,001   | 0.002     | 0.003   | Rebar Probe (volts)             |
| Reference Cell (volts)            | 0.302   | 0.295     | 0.301   | Reference Cell (volts)          |
| Anode Voltage                     | 38.1    | 37.8      | 37,9    | Anode Voltage                   |
| Anode Current (amps)              | 0.02    | 0,02      | 0.03    | Anode Current (amps)            |
| Ref. Cell Instant-off (volts)     | 0.300   | 0.298     | 0.301   | Ref. Cell Instant-off (volts)   |
| Conductance (mhos)                | 0.000   | 0.001     | 0.001   | Conductance (mhos)              |
| Voltage drop in ref. circuit      | 0.003   | -0.003    | -0.001  | Voltage drop in ref. circuit    |
|                                   |         | Dec. D 47 |         |                                 |

| -               |                      |                |               | _                                                     |               |                      |
|-----------------|----------------------|----------------|---------------|-------------------------------------------------------|---------------|----------------------|
| 7/9/92          | 8/7/92               | 8/25/92        | 9/22/92       |                                                       | 1/8/93        | 2/12/93              |
| 28<br>1,320     | 29<br>1,349          | 18<br>1,367    |               | Days since last reading:                              | 108<br>1,503  | 35<br>1,538          |
| 1,520<br>DE     | HP.RF                | DE             |               | Days since start-up (10/28/88):<br>Tester:            | 1,503<br>DE   | 1,538<br>DE          |
| DE              | <b>111 , NI</b>      | DL             | DE            | rester.                                               | DE            | DE                   |
|                 |                      |                |               | # 11: HOT-SPRAYED ZINC                                |               |                      |
| 0.003           | 0.003                | 0.003          | 0.002         | Rebar Probe (volts)                                   | 0.002         | 0.001                |
| 0.250           | 0.248                | 0.236          | 0.227         |                                                       | 0.282         | 0.292                |
| 25.6            | 25.3                 | 24.8           | 25.7          | Anode Voltage                                         | 25.2          | 25.2                 |
| 0.02            | 0.02                 | 0.04           | 0.03          | Anode Current (amps)                                  | 0.01          | 0.02                 |
| 0.251           | 0.226                | 0.235          | 0.227         |                                                       | 0.280         | 0.288                |
| 0.001<br>-0.001 | 0.001                | 0.002          | 0.001         | Conductance (mhos)                                    | 0.000         | 0.001<br>0.004       |
| -0.001          | 0.022                | 0.001          | 0.000         | Voltage drop in ref. circuit                          | 0.002         | 0.004                |
|                 |                      |                |               | # 12: HOT-SPRAYED ZINC                                |               |                      |
| 0.002           | 0.003                | 0.002          | 0.001         | Rebar Probe (volts)                                   | 0.001         | 0.001                |
| 0.140           | 0.138                | 0.124          | 0.119         | Reference Cell (volts)                                | 0.199         | 0.183                |
| 24.9            | 24.9                 | 24.6           | 25.1          | Anode Voltage                                         | 25.0          | 24.8                 |
| 0.02            | 0.00                 | 0.13           | 0.02          | Anode Current (amps)                                  | 0.01          | 0.01                 |
| 0.138           | 0.126                |                |               | Ref. Cell Instant-off (volts)                         | 0.197         | 0.177                |
| 0.001           | 0.000                | 0.005          | 0.001         | Conductance (mhos)                                    | 0.000         | 0.000                |
| 0.002           | 0.012                | 0.124          | <b>0</b> .001 | Voltage drop in ref. circuit                          | 0.002         | 0.006                |
|                 |                      |                |               | # 13: HOT-SPRAYED ZINC                                |               |                      |
| 0.001           | 0.002                | 0.001          | -0.001        |                                                       | 0.001         | <b>-0.</b> 001       |
| 0.400           | 0.409                | 0.403          | 0.38          |                                                       | 0.375         | 0.383                |
| 26.0            | 26.0                 | 24.4           | 26.0          | Anode Voltage                                         | 25.6          | 26.0                 |
| 0.03            | 0.18                 | 0.10           | 0.18          | Anode Current (amps)                                  | 0.02          | 0.02                 |
| 0.404           | 0.360                | 0.408          |               | Ref. Cell Instant-off (volts)                         | 0.375         | 0.380                |
| 0.001           | 0.007                | 0.004          | 0.007         | Conductance (mhos)                                    | 0.001         | 0.001                |
| -0.004          | 0.049                | -0.005         | -0.005        | Voltage drop in ref. circuit                          | 0.000         | 0.003                |
|                 |                      |                |               |                                                       |               |                      |
| 0.007           | 0.000                | 0.005          | 0.001         | # 14: HOT-SPRAYED ZINC                                | 0.001         | 0.001                |
| 0.002           | 0.002                | 0.002          | 0.001         | · · · · · · · · · · · · · · · · · · ·                 | 0.001         | 0.001<br>0.315       |
| 0.266<br>51.0   | 0.256<br>48.5        | 0.260<br>47.9  | 0.244<br>51.3 | Reference Cell (volts)<br>Anode Voltage               | 0.276<br>49.7 | 49.8                 |
| 0.04            | <b>40</b> .3<br>0.05 | <b>0.07</b>    | 0.16          | Anode Current (amps)                                  | 0.04          | <b>4</b> 5.8<br>0.06 |
| 0.268           | 0.201                | 0.261          | 0.244         |                                                       | 0.276         | 0.311                |
| 0.001           | 0.001                | 0.001          | 0.003         | Conductance (mhos)                                    | 0.001         | 0.001                |
| -0.002          | 0.055                | -0.001         | 0.000         | Voltage drop in ref. circuit                          | 0.000         | 0.004                |
|                 |                      |                |               |                                                       |               |                      |
|                 |                      |                |               | # 15: HOT-SPRAYED ZINC                                |               |                      |
| 0.002           | 0.002                | 0.002          | 0.002         |                                                       | 0.001         | 0.001                |
| 0.254           | 0.278                | 0.278          | 0.257         |                                                       | 0.274         | 0.283                |
| 49.2            | 49.2                 | 48.1           | 49.9          | Anode Voltage                                         | 49.0          | 49.2                 |
| 0.03<br>0.256   | 0.03<br>0.279        | 0.04<br>0.280  | 0.17          | Anode Current (amps)<br>Ref. Cell Instant-off (volts) | 0.04<br>0.273 | 0.05<br>0.279        |
| 0.230           | 0.279                | 0.280          | 0.003         | Conductance (mhos)                                    | 0.275         | 0.279                |
| -0.002          | -0.001               | -0.002         | -0.003        | Voltage drop in ref. circuit                          | 0.001         | 0.001                |
| 0.002           |                      |                |               |                                                       | 0.001         |                      |
|                 |                      |                |               | # 16: HOT-SPRAYED ZINC                                |               |                      |
| 0.002           | 0.002                | 0.001          |               | Rebar Probe (volts)                                   | 0.001         | 0.000                |
| 0.419           | 0.404                | 0.401          | 0.412         | Reference Cell (volts)                                | 0.367         | 0.395                |
| 49.6            | 49.4                 | 47.6           | 49.6          | Anode Voltage                                         | 48.6          | 49.0                 |
| 0.03            | 0.03                 | 0.05           | 0.14          | Anode Current (amps)                                  | 0.03          | 0.05                 |
| 0.423           | 0.399                | 0.402          |               | Ref. Cell Instant-off (volts)                         | 0.367         | 0.393                |
| 0.001           | 0.001                | 0.001          | 0.003         | Conductance (mhos)                                    | 0.001         | 0.001                |
| -0.004          | 0.005                | -0.001         | -0.001        | Voltage drop in ref. circuit                          | 0.000         | 0.002                |
|                 |                      |                |               | 11-16: AVERAGE VALUES: ZINC                           | ļ<br>,        |                      |
| 0.002           | 0.002                | 0.002          | 0.001         | Rebar Probe (volts)                                   | 0.001         | 0.001                |
| 0.288           | 0.289                | 0.284          | 0.273         | Reference Cell (volts)                                | 0.296         | 0.309                |
| <b>37.</b> 7    | 37.2                 | 36.2           | 37.9          | Anode Voltage                                         | 37.2          | 37.3                 |
| 0.03            | 0.05                 | 0.07           | 0.12          | Anode Current (amps)                                  | 0.03          | 0.04                 |
| 0.290           | 0.265                | 0.264          | 0.275         | Ref. Cell Instant-off (volts)                         | 0.295         | 0.305                |
| 0.001           | 0.002                | 0.002          | 0.003         | Conductance (mhos)                                    | 0.001         | 0.001                |
| -0.002          | 0.024                | 0 <b>.0</b> 19 | -0.001        | Voltage drop in ref. circuit                          | 0.001         | 0.004                |
|                 |                      |                |               |                                                       |               |                      |

٠

Þ

٠

| 2/26/93        | 2/26/93        |                                                             | 3/5/93<br>7    | 3/18/93<br>13  | 4/27/93<br>40  | 5/28/93<br>31  |
|----------------|----------------|-------------------------------------------------------------|----------------|----------------|----------------|----------------|
| 14<br>1,552    |                | Days since last reading:<br>Days since start-up (10/28/88): | 1,560          | 1,573          | 1,613          | 1,644          |
| 1,552<br>RF    |                | Tester:                                                     | I,500<br>RF    | HP.RF          | DE JS          | DE,TM          |
| N              | E.L.           | 1.00.01.                                                    | <b>I</b> U     | ALL SAME       | 20,20          | 2029,2112      |
|                |                | # 11: HOT-SPRAYED ZINC                                      |                |                |                |                |
| 0.001          | 0.002          | Rebar Probe (volts)                                         | 0.001          | 0.000          | 0.002          | 0.003          |
| 0.296          | 0.289          | Reference Cell (volts)                                      | 0.273          | 0.164          | 0.258          | 0.252          |
| 25.1           | 0.1            | Anode Voltage                                               | 0.3            | 0.2            | 0.4            | 0.5            |
| 0.02           | 0.00           | Anode Current (amps)                                        | 0.00           | 0.00           | 0.00<br>0.258  | 0.01<br>0.252  |
| 0.295<br>0.001 | 0.289<br>0.000 | Ref. Cell Instant-off (volts)<br>Conductance (mhos)         | 0.273<br>0.000 | 0.164<br>0.000 | 0.258          | 0.232<br>0.020 |
| 0.001          | 0.000          | Voltage drop in ref. circuit                                | 0.000          | 0.000          | 0.000          | 0.020          |
| V.UU1          | 0.000          | voltage urop in rei, encan                                  | 0.000          | 0.000          | 01000          |                |
|                |                | # 12: HOT-SPRAYED ZINC                                      |                |                |                |                |
| 0.000          | 0.001          | Rebar Probe (volts)                                         | 0.000          | 0.001          | 0.002          | 0.002          |
| 0.183          | 0.154          | Reference Cell (volts)                                      | 0.131          | 0.150          | 0.123          | 0.129          |
| 24.7           | 0.2            | Anode Voltage                                               | 0.1            | 0.0            | 0.1            | 0.1            |
| 0.02           | 0.00           | Anode Current (amps)                                        | 0.00           | 0.00           | 0.00           | 0.00           |
| 0.183          | 0.154          | Ref. Cell Instant-off (volts)                               | 0.131          | 0.150          | 0.123          | 0.129<br>0.000 |
| 0.001          | 0.000          | Conductance (mhos)                                          | 0.000<br>0.000 | 0.000<br>0.000 | 0.000<br>0.000 | 0.000          |
| 0.000          | 0.000          | Voltage drop in ref. circuit                                | 0.000          | 0.000          | 0.000          | 0.000          |
|                |                | # 13: HOT-SPRAYED ZINC                                      |                |                |                |                |
| -0.001         | 0.000          | Rebar Probe (volts)                                         | -0.001         | 0.000          | 0.000          | 0.001          |
| 0.394          | 0.406          | Reference Cell (volts)                                      | 0.366          | 0.384          | 0.367          | 0.384          |
| 25.8           | 0.7            | Anode Voltage                                               | 0.5            | 0.3            | 0.5            | 0.6            |
| 0.02           | 0.00           | Anode Current (amps)                                        | 0,00           | 0.00           | 0.01           | 0.02           |
| 0.394          | 0.406          | Ref. Cell Instant-off (volts)                               | 0.366          | 0.384          | 0.367          | 0.384          |
| 0.001          | 0.000          | Conductance (mhos)                                          | 0.000          | 0.000          | 0.020          | 0.033          |
| 0.000          | 0.000          | Voltage drop in ref. circuit                                | 0.000          | 0.000          | 0.000          | 0.000          |
|                |                | # 14: HOT-SPRAYED ZINC                                      |                |                |                |                |
| 0.000          | -0.001         | Rebar Probe (volts)                                         | 0.000          | 0.001          | 0.002          | 0.002          |
| 0.316          | 0.308          | Reference Cell (volts)                                      | 0.228          | 0.272          | 0.271          | 0.255          |
| 49.8           | 0.3            | Anode Voltage                                               | 0.2            | 0.1            | 0.1            | 0.1            |
| 0.04           | 0.00           | Anode Current (amps)                                        | 0.00           | 0.00           | 0.00           | 0.00           |
| 0.316          | 0.308          | Ref. Cell Instant-off (volts)                               | 0.228          | 0.272          | 0.271          | 0.255          |
| 0.001          | 0.000          | Conductance (mhos)                                          | 0.000          | 0.000          | 0.000          | 0.000          |
| 0.000          | 0.000          | Voltage drop in ref. circuit                                | 0.000          | 0.000          | 0.000          | 0.000          |
|                |                | # 15: HOT-SPRAYED ZINC                                      |                |                |                |                |
| 0.000          | 0.001          | Rebar Probe (volts)                                         | 0.001          | 0.001          | 0.002          | 0.003          |
| 0.000          | 0.272          | Reference Cell (volts)                                      | 0.290          | 0.267          | 0.264          | 0.291          |
| 49.0           | 0.3            | Anode Voltage                                               | 0.2            | 0.3            | 0.2            | 0.1            |
| 0.14           | 0.00           | Anode Current (amps)                                        | 0.00           | 0.00           | 0.00           | 0.00           |
| 0.276          | 0.272          | Ref. Cell Instant-off (volts)                               | 0.290          | 0.267          | 0.264          | 0.291          |
| 0.003          | 0.000          | Conductance (mhos)                                          | 0.000          | 0.000          | 0.000          | 0.000          |
| 0.000          | 0.000          | Voltage drop in ref. circuit                                | 0.000          | 0.000          | 0.000          | <b>0.00</b> 0  |
|                |                | # 16: HOT-SPRAYED ZINC                                      |                |                |                |                |
| -0.001         | 0.002          | Rebar Probe (volts)                                         | -0.001         | 0.000          | 0.001          | 0.001          |
| 0.407          | 0.423          | Reference Cell (volts)                                      | 0.391          | 0.418          | 0.423          | 0.398          |
| 49.0           | 0.2            | Anode Voltage                                               | -0.3           | -0.2           | 0.0            | 0.0            |
| 0.04           | 0.00           | Anode Current (amps)                                        | 0.00           | 0.00           | 0.00           | 0.00           |
| 0.407          | 0.423          | Ref. Cell Instant-off (volts)                               | 0.391          | 0.418          | 0.423          | 0.398          |
| 0.001          | 0.000          | Conductance (mhos)                                          | 0.000          | 0.000          | 0.000          | 0.000          |
| 0.000          | 0.000          | Voltage drop in ref. circuit                                | 0.000          | 0.000          | 0.000          | 0.000          |
|                |                |                                                             | ~              |                |                |                |
| 8 000          | A 004          | 11-16: AVERAGE VALUES: ZIN(                                 | C 0.000        | 0.001          | 0.002          | 0.002          |
| 0.000<br>0.312 | 0.001<br>0.309 | Rebar Probe (volts)<br>Reference Cell (volts)               | 0.000          | 0.001          | 0.002          | 0.002          |
| 0.312<br>37.2  | 0.309          | Anode Voltage                                               | 0.280          | 0.278          | 0.204          | 0.285          |
| 0.05           | 0.00           | Anode Current (amps)                                        | 0.00           | 0.00           | 0.00           | 0.01           |
| 0.312          | 0.309          | Ref. Cell Instant-off (volts)                               | 0.280          | 0.276          | 0.284          | 0.285          |
| 0.001          | 0.000          | Conductance (mhos)                                          | 0.000          | 0.000          | 0.003          | 0.009          |
| 0.000          | 0.000          | Voltage drop in ref. circuit                                | 0.000          | 0.000          | 0.000          | 0.000          |
|                |                | Page R-49                                                   |                |                |                |                |

| Deter                                                     | (120/02               | 0/21/02        | 10/7/02         | 11/2/02        |
|-----------------------------------------------------------|-----------------------|----------------|-----------------|----------------|
| Date:<br>Days since last reading:                         | 6/30/93<br>33         | 8/31/93<br>62  | 10/7/93<br>37   | 11/2/93<br>26  |
| Days since start-up (10/28/88):                           |                       | 1,739          | 1,776           | 1,802          |
| Tester:                                                   | . 1,077<br>DE         | DE             | <b>P</b> N      | 1,002<br>PN    |
|                                                           |                       |                |                 |                |
| # 11: HOT-SPRAYED ZINC                                    |                       |                |                 |                |
| Rebar Probe (volts)                                       | 0.005                 | 0.004          | 0.005           |                |
| Reference Cell (volts)                                    | 0.240                 | 0.263          | 0.240           | 0.277          |
| Anode Voltage                                             | 0.5                   | 0.4            | 0.5             | 0.3            |
| Anode Current (amps)                                      | 0.01                  | 0.00           | 0.01            | 0.00           |
| Ref. Cell Instant-off (volts)<br>Conductance (mhos)       | 0.240<br>0.020        | 0.263<br>0.000 | 0.240<br>0.020  | 0.000          |
| Voltage drop in ref. circuit                              | 0.020                 | 0.000          | 0.020           | 0.000          |
|                                                           |                       | 0.000          | 0.000           |                |
| # 12: HOT-SPRAYED ZINC                                    |                       |                |                 |                |
| Rebar Probe (volts)                                       | 0.004                 | 0.003          | 0.004           |                |
| Reference Cell (volts)                                    | 0.120                 | 0.165          | 0.120           | 0.164          |
| Anode Voltage                                             | 0.2                   | 0.3            | 0.2             | 0.5            |
| Anode Current (amps)                                      | 0.00                  | 0.00           | 0.00            | 0.00           |
| Ref. Cell Instant-off (volts)                             | 0.120                 | 0.165          | 0.120           | 0.000          |
| <b>Conductance (mhos)</b><br>Voltage drop in ref. circuit | <b>0.000</b><br>0.000 | 0.000<br>0.000 | 0.000<br>0.000  | 0.000<br>0.164 |
| voltage urop in rei. circuit                              | 0.000                 | 0.000          | 0.000           | 0.104          |
| # 13: HOT-SPRAYED ZINC                                    |                       |                |                 |                |
| Rebar Probe (volts)                                       | 0.004                 | 0.003          | 0.004           |                |
| Reference Cell (volts)                                    | 0.351                 | 0.348          | 0.351           | 0.325          |
| Anode Voltage                                             | 0.5                   | 0.1            | 0.5             | 0.4            |
| Anode Current (amps)                                      | 0.01                  | 0.01           | 0.01            | 0.00           |
| Ref. Cell Instant-off (volts)                             | 0.351                 | 0.348          | 0.351           | 0.325          |
| Conductance (mhos)                                        | 0.020                 | 0.100          | 0.020           | 0.000          |
| Voltage drop in ref. circuit                              | 0.000                 | 0.000          | 0.000           | 0.000          |
| # 14: HOT-SPRAYED ZINC                                    |                       |                |                 |                |
| Rebar Probe (volts)                                       | 0.004                 | 0.003          | 0.004           |                |
| Reference Cell (volts)                                    | 0.247                 | 0.262          | 0.247           | 0.325          |
| Anode Voltage                                             | 0.1                   | 0.1            | 0.1             | 0.4            |
| Anode Current (amps)                                      | 0.00                  | 0.00           | 0.00            | 0.00           |
| Ref. Cell Instant-off (volts)                             | 0.247                 | 0.262          | 0.247           |                |
| Conductance (mhos)                                        | 0.000                 | 0.000          | 0.000           | 0.000          |
| Voltage drop in ref. circuit                              | 0.000                 | 0.000          | 0.000           | 0.325          |
| # 15: HOT-SPRAYED ZINC                                    |                       |                |                 |                |
| Rebar Probe (volts)                                       | 0.005                 | 0.004          | 0.005           |                |
| Reference Cell (volts)                                    | 0.279                 | 0.283          | 0.279           | 0.318          |
| Anode Voltage                                             | 0.1                   | 0.1            | 0.1             | <b>0.</b> 0    |
| Anode Current (amps)                                      | 0.00                  | 0.00           | 0.00            | 0.00           |
| Ref. Cell Instant-off (volts)                             | 0.279                 | 0.283          | 0.279           | 0.318          |
| Conductance (mhos)                                        | 0.000                 | 0.000          | 0.000           | 0.000          |
| Voltage drop in ref. circuit                              | 0.000                 | 0.000          | 0.000           | 0.000          |
| # 16: HOT-SPRAYED ZINC                                    |                       |                |                 |                |
| Rebar Probe (volts)                                       | 0.003                 | 0.003          | 0.003           |                |
| Reference Cell (volts)                                    | 0.371                 | 0.358          | 0.371           | 0.409          |
| Anode Voltage                                             | 0.0                   | -0.3           | 0.0             | -0.2           |
| Anode Current (amps)                                      | 0.00                  | 0.00           | 0.00            | -0.03          |
| Ref. Cell Instant-off (volts)                             | 0.371                 | 0.358          | 0.371           |                |
| Conductance (mhos)                                        | #DIV/0!               | 0.000          | #DIV/0!         | 0.150          |
| Voltage drop in ref. circuit                              | 0.000                 | 0.000          | 0.000           | 0.409          |
| 11-16: AVERAGE VALUES:                                    | ZINC                  |                |                 |                |
| Rebar Probe (volts)                                       | 0.004                 | 0.003          | 0.004           |                |
| Reference Cell (volts)                                    | 0.268                 | 0.280          | 0.268           | 0.303          |
| Anode Voltage                                             | 0.2                   | 0.1            | 0.2             | 0.2            |
| Anode Current (amps)                                      | 0.00                  | 0.00           | 0.00            | -0.01          |
| Ref. Cell Instant-off (volts)                             | 0.268                 | 0.280          | 0.268           |                |
| Conductance (mhos)                                        | #DIV/0!               | 0.017          | <b>#DIV</b> /0! | 0.025          |
| Voltage drop in ref. circuit                              | 0.000                 | 0.000          | 0.000           | 0.196          |
|                                                           | Dece D CO             |                |                 |                |

\*

| Date:                                                 | 11/24/93       | 12/22/93       | 12/23/93       |
|-------------------------------------------------------|----------------|----------------|----------------|
| Days since last reading:                              | 22             | 28<br>1,852    | 1<br>1,853     |
| Days since start-up (10/28/88):<br>Tester:            | 1,824<br>PN    | 1,052<br>PN    | 1,855<br>PN    |
| Lester:                                               | 114            |                | 1 14           |
| # 11: HOT-SPRAYED ZINC                                |                |                |                |
| Rebar Probe (volts)                                   |                |                |                |
| Reference Celi (volts)                                | 0.270          | 0.291          | 0.249          |
| Anode Voltage                                         | 0.3            | 0.3            | 0.2            |
| Anode Current (amps)                                  | 0.00           | 0.00           | 0.24           |
| Ref. Cell Instant-off (volts)                         | 0.000          | 0.000          | 1.039          |
| Conductance (mhos)<br>Voltage drop in ref. circuit    | 0.000          | 0.000          | 0.249          |
| vonage urop m rei. en cut                             | 0.270          | 0.271          | 0.24)          |
| <b># 12: HOT-SPRAYED ZINC</b>                         |                |                |                |
| Rebar Probe (volts)                                   |                |                |                |
| Reference Cell (volts)                                | 0.140          | 0.207          | 0.165          |
| Anode Voltage                                         | 0.4            | 0.3            | 0.3            |
| Anode Current (amps)                                  | 0.03           | 0.00           | 0.09           |
| Ref. Cell Instant-off (volts)                         | 0.067          | 0.000          | 0.261          |
| Conductance (mhos)<br>Voltage drop in ref. circuit    | 0.140          | 0.000          | 0.261          |
| Voltage drop in rei. circuit                          | 0.140          | 0.207          | 0.105          |
| # 13: HOT-SPRAYED ZINC                                |                |                |                |
| Rebar Probe (volts)                                   |                |                |                |
| Reference Cell (volts)                                | 0.320          | 0.313          | 0.266          |
| Anode Voltage                                         | 0.4            | 0.2            | 0.2            |
| Anode Current (amps)                                  | 0.00           | 0.00           | 0.15           |
| Ref. Cell Instant-off (volts)                         | 0.320          | 0.313<br>0.000 | 0.266<br>0.647 |
| Conductance (mhos)<br>Voltage drop in ref. circuit    | 0.000<br>0.000 | 0.000          | 0.047          |
| vonage drop in ter. circuit                           | 0.000          | 0.000          | 0.000          |
| # 14: HOT-SPRAYED ZINC                                |                |                |                |
| Rebar Probe (volts)                                   |                |                |                |
| Reference Cell (volts)                                | 0.295          | 0.355          | 0.275          |
| Anode Voltage                                         | 0.0            | 0.0            | -0.1           |
| Anode Current (amps)                                  | 0.00           | 0.00           | 0.18           |
| Ref. Cell Instant-off (volts)<br>Conductance (mhos)   | 0.000          | 0.000          | -2.308         |
| Voltage drop in ref. circuit                          | 0.295          | 0.355          | 0.275          |
|                                                       | 0.270          |                | •••=           |
| # 15: HOT-SPRAYED ZINC                                |                |                |                |
| Rebar Probe (volts)                                   |                |                |                |
| Reference Cell (volts)                                | 0.265          | 0.300          | 0.245          |
| Anode Voltage                                         | 0.1            | 0.9<br>0.00    | 0.5            |
| Anode Current (amps)<br>Ref. Cell Instant-off (volts) | 0.00<br>0.265  | 0.00           | 0.12<br>0.245  |
| Conductance (mhos)                                    | 0.203          | 0.000          | 0.243          |
| Voltage drop in ref. circuit                          | 0.000          | 0.000          | 0.000          |
|                                                       |                |                |                |
| # 16: HOT-SPRAYED ZINC                                |                |                |                |
| Rebar Probe (volts)                                   |                |                |                |
| Reference Cell (volts)                                | 0.398<br>-0.2  | 0.359<br>-0.3  | 0.321<br>-0.2  |
| Anode Voltage<br>Anode Current (amps)                 | -0.2           | 0.03           | -0.2<br>0.15   |
| Ref. Cell Instant-off (volts)                         | 0.00           | 0.05           | V.15           |
| Conductance (mhos)                                    | 0.000          | -0.093         | -0.882         |
| Voltage drop in ref. circuit                          | 0.398          | 0.359          | 0.321          |
|                                                       |                |                |                |
| 11-16: AVERAGE VALUES: ZINC                           |                |                |                |
| Rebar Probe (volts)<br>Reference Cell (volts)         | 0.281          | 0.304          | 0.254          |
| Anode Voltage                                         | 0.281          | 0.304          | 0.254          |
| Anode Current (amps)                                  | 0.01           | 0.01           | 0.16           |
| Ref. Cell Instant-off (volts)                         |                |                |                |
| Conductance (mhos)                                    | 0.011          | -0,016         | -0.171         |
| Voltage drop in ref. circuit                          | 0.184          | 0.202          | 0.168          |
|                                                       |                |                |                |

| Date:<br>Days since last reading: | 10/28/88<br>0 | 10/28/88<br>0 | 12/13/88<br>46 | 12/15/88<br>2 |
|-----------------------------------|---------------|---------------|----------------|---------------|
| Days since start-up (10/28/88):   | 0             | 0             | 46             | 48            |
| Tester:                           | Corrpro       | Corrpro       | Corrpro        | Corrpro       |
| # 17: CONDUCTIVE PAINT            |               |               |                |               |
| Rebar Probe (volts)               | -0.00509      | 0.00851       | 0.013          | 0.011         |
| Reference Cell (volts)            | 0.253         | 1.160         | *00S*          | 1.945         |
| Anode Voltage                     | 0.026         | 7.06          | 9.9            | 7.3           |
| Anode Current (amps)              | 0.00          | 2.25          | 2.39           | 1.52          |
| Ref. Cell Instant-off (volts)     |               | 0.400         | 0.956          | 0.691         |
| Conductance (mhos)                |               | 0.319         | 0.241          | 0.208         |
| Voltage drop in ref. circuit      |               | 0.760         |                | 1.254         |

•

٠

۶

۴

| Date:                           | 1/31/89 | 2/1/89  | 2/2/89    | 3/13/89       |
|---------------------------------|---------|---------|-----------|---------------|
| Days since last reading:        | 47      | 1       | 1         | 39            |
| Days since start-up (10/28/88): | 95      | 96      | 97        | 136           |
| Tester:                         | Corrpro | Corrpro | Corrpro M | C,DR,DE       |
| # 17: CONDUCTIVE PAINT          |         |         |           |               |
| Rebar Probe (volts)             | 0.011   | 0.013   | 0.009     | <b>0.</b> 007 |
| Reference Cell (volts)          | 1.929   | 1.335   | 1.209     | 1.040         |
| Anode Voltage                   | 7.9     | 5.5     | 7.0       | 9.5           |
| Anode Current (amps)            | 1.49    | 1.29    | 1.31      | 1.36          |
| Ref. Cell Instant-off (volts)   | 0.795   | 0.690   | 0.740     |               |
| Conductance (mhos)              | 0.189   | 0.235   | 0.187     | 0.143         |
| Voltage drop in ref. circuit    | 1.134   | 0.645   | 0.469     |               |

| Date:                                    | 4/13/89  | 5/26/89 | 6/13/89 | 7/17/89 |
|------------------------------------------|----------|---------|---------|---------|
| Days since last reading:                 | 31       | 43      | 18      | 34      |
| Days since start-up (10/28/88):          | 167      | 210     | 228     | 262     |
| Tester:                                  | DR,DE,TD | DR      | JM,DR   | DR,KC   |
| # 17: CONDUCTIVE PAINT                   |          |         |         |         |
| Rebar Probe (volts)                      | 0.009    | 0.010   | 0.004   | 0.008   |
| Reference Cell (volts)                   | 1.735    | 1.008   | 0,789   | 0.806   |
| Anode Voltage                            | 7.8      | 46.5    | 9.8     | 33.5    |
| <ul> <li>Anode Current (amps)</li> </ul> | 1.38     | 1.28    | 1.35    | 1.24    |
| Ref. Cell Instant-off (volts)            |          |         |         |         |
| Conductance (mhos)                       | 0.177    | 0.028   | 0.138   | 0.037   |
| Voltage drop in ref. circuit             |          |         |         |         |

.

.

ł

•

| Date:                           | 8/18/89 | 9/19/89 | 10/31/89 | 11/28/89 |
|---------------------------------|---------|---------|----------|----------|
| Days since last reading:        | 32      | 32      | 42       | 28       |
| Days since start-up (10/28/88): | 294     | 326     | 368      | 396      |
| Tester:                         | DR      | DR      | DR       | DR       |
| # 17: CONDUCTIVE PAINT          |         |         |          |          |
| Rebar Probe (volts)             | 0.008   | 0.005   | 0.003    | 0.001    |
| Reference Cell (volts)          | 1.064   | 1.054   | 0.758    | 0.302    |
| Anode Voltage                   | 27.2    | 26,8    | 49.6     | 60.6     |
| Anode Current (amps)            | 1.27    | 1.28    | 1.28     | 0.20     |
| Ref. Cell Instant-off (volts)   |         |         |          |          |
| Conductance (mhos)              | 0.047   | 0.048   | 0.026    | 0.003    |
| Voltage drop in ref. circuit    |         |         |          |          |

•

| Date:                           | 1/9/90 | 1/17/90 | 4/26/90    | 11/19/90 |
|---------------------------------|--------|---------|------------|----------|
| Days since last reading:        | 12     | 8       | <b>9</b> 9 | 207      |
| Days since start-up (10/28/88): | 408    | 416     | 515        | 722      |
| Tester:                         | DR,DE  | DR      | DE,TD      | JM,DE    |
| # 17: CONDUCTIVE PAINT          |        |         |            |          |
| Rebar Probe (volts)             | 0.003  | 0.005   | 0.002      | 0.004    |
| Reference Cell (volts)          | 0.701  | 1,492   | 0.647      | 1.192    |
| Anode Voltage                   | 51.5   | 22.1    | 7.8        | 27.6     |
| Anode Current (amps)            | 1.00   | 1.25    | 1.35       | 2.66     |
| Ref. Cell Instant-off (volts)   | 0.408  |         | 0.437      | 0.509    |
| Conductance (mhos)              | 0.019  | 0.057   | 0.173      | 0.096    |
| Voltage drop in ref. circuit    | 0.293  |         | 0.210      | 0.683    |

| Date:                           | <b>3/28/</b> 91 | 5/15/91 | 7/ <b>3</b> 1/91 | 8/16/91 |
|---------------------------------|-----------------|---------|------------------|---------|
| Days since last reading:        | 129             | 48      | 77               | 16      |
| Days since start-up (10/28/88): | 851             | 899     | 976              | 992     |
| Tester:                         | DE,KC           | DE      | DE               | JM,DE   |
| # 17: CONDUCTIVE PAINT          |                 |         |                  |         |
| Rebar Probe (volts)             | 0.002           | 0.004   | 0.003            | 0.006   |
| Reference Cell (volts)          | 0.394           | 0.581   | 0.684            | 0.775   |
| Anode Voltage                   | 53.2            | 23.3    | 20.0             | 17.3    |
| Anode Current (amps)            | 1.50            | 1.28    | 1.29             | 1.28    |
| Ref. Cell Instant-off (volts)   | 0.308           | 0.367   | 0.407            | 0.427   |
| Conductance (mhos)              | 0.028           | 0.055   | 0.065            | 0.074   |
| Voltage drop in ref. circuit    | 0.086           | 0.214   | 0.277            | 0.348   |

| Date:                           | <b>9/10/91</b> | 10/9/91 | 1/7/92     | 3/19/92 |
|---------------------------------|----------------|---------|------------|---------|
| Days since last reading:        | 25             | 29      | <b>9</b> 0 | 72      |
| Days since start-up (10/28/88): | 1,017          | 1,046   | 1,136      | 1,208   |
| Tester:                         | DE             | DE      | DE         | DE      |
| # 17: CONDUCTIVE PAINT          |                |         |            |         |
| Rebar Probe (volts)             | 0.005          | 0.003   | 0.001      | 0.001   |
| Reference Cell (volts)          | 0.770          | 0.668   | 0.578      | 0.424   |
| Anode Voltage                   | 40.3           | 50.0    | 15.2       | 50.2    |
| Anode Current (amps)            | 1.27           | 0.85    | 1.32       | 0.74    |
| Ref. Cell Instant-off (volts)   | 0.423          | 0.381   | 0.398      | 0.344   |
| Conductance (mhos)              | 0.032          | 0.017   | 0.087      | 0.015   |
| Voltage drop in ref. circuit    | 0.347          | 0.287   | 0.180      | 0.080   |

.

٠

.

.

| Date:                           | 4/17/92 | 5/15/92 | 6/11/92 |
|---------------------------------|---------|---------|---------|
| Days since last reading:        | 29      | 28      | 27      |
| Days since start-up (10/28/88): | 1,237   | 1,265   | 1,292   |
| Tester:                         | DE      | DE      | DE      |
| <b># 17: CONDUCTIVE PAINT</b>   |         |         |         |
| Rebar Probe (volts)             | 0,003   | 0.004   | 0.005   |
| Reference Cell (volts)          | 0.472   | 0.304   | 0.301   |
| Anode Voltage                   | 29.4    | 42.3    | 17.0    |
| Anode Current (amps)            | 1.31    | 1.33    | 1.31    |
| Ref. Cell Instant-off (volts)   | 0.366   | 0.231   | 0.138   |
| Conductance (mhos)              | 0.045   | 0.031   | 0.077   |
| Voltage drop in ref. circuit    | 0.106   | 0.073   | 0.163   |
| _ <b>-</b>                      |         |         |         |

| Date:                           | 7/9/92 | 8/7/92 | 8/25/92 | 9/22/92 |
|---------------------------------|--------|--------|---------|---------|
| Days since last reading:        | 28     | 29     | 18      | 28      |
| Days since start-up (10/28/88): | 1,320  | 1,349  | 1,367   | 1,395   |
| Tester:                         | DE     | HP,RF  | DE      | DE      |
| # 17: CONDUCTIVE PAINT          |        |        |         |         |
| Rebar Probe (volts)             | 0.003  | 0.003  | 0.011   | 0.002   |
| Reference Cell (volts)          | 0.230  | 0.321  | 0.942   | 0.174   |
| Anode Voltage                   | 51.5   | 49.6   | 30.5    | 53.0    |
| Anode Current (amps)            | 0.36   | 0.69   | 1.37    | 0.35    |
| Ref. Cell Instant-off (volts)   | 0.187  | 0.238  | 0.331   | 0.153   |
| Conductance (mhos)              | 0.007  | 0.014  | 0.045   | 0.007   |
| Voltage drop in ref. circuit    | 0.043  | 0.083  | 0.611   | 0.021   |

\$

÷-

,

| Date:                           | 1/8/93 | 2/12/93 | 2/26/93 | 2/26/93 |
|---------------------------------|--------|---------|---------|---------|
| Days since last reading:        | 108    | 35      | 14      | 0.50    |
| Days since start-up (10/28/88): | 1,503  | 1,538   | 1,552   | 1,553   |
| Tester:                         | DE     | DE      | RF      | RF      |
| <b># 17: CONDUCTIVE PAINT</b>   |        |         |         |         |
| Rebar Probe (volts)             | 0.005  | 0.001   | 0.001   | 0.001   |
| Reference Cell (volts)          | 0.621  | 0.190   | 0.108   | 0.126   |
| Anode Voltage                   | 33.1   | 49.2    | 50.2    | 50.3    |
| Anode Current (amps)            | 1.38   | 0,88    | 0.46    | 0.56    |
| Ref. Cell Instant-off (volts)   | 0.134  | 0.091   | 0.040   | 0.049   |
| Conductance (mhos)              | 0.042  | 0.018   | 0.009   | 0.011   |
| Voltage drop in ref. circuit    | 0.487  | 0.099   | 0.068   | 0.077   |

•

| Date:                           | 3/5/93 | 3/18/93 | 4/27/93 | 5/28/93 |
|---------------------------------|--------|---------|---------|---------|
| Days since last reading:        | 7      | 13      | 40      | 31      |
| Days since start-up (10/28/88): | 1,560  | 1,573   | 1,613   | 1,644   |
| Tester:                         | RF     | HP,RF   | DE,JS   | DE,TM   |
| # 17: CONDUCTIVE PAINT          |        |         |         |         |
| Rebar Probe (volts)             | 0.001  | 0.002   | 0.002   | 0.003   |
| Reference Cell (volts)          | 0.329  | 0.305   | 0.081   | 0.207   |
| Anode Voltage                   | 48.9   | 50.3    | 53.3    | 49.3    |
| Anode Current (amps)            | 1.36   | 0.44    | 0.34    | 0.96    |
| Ref. Cell Instant-off (volts)   | 0.204  | 0.112   | 0.047   | 0.162   |
| Conductance (mhos)              | 0.028  | 0.009   | 0.006   | 0.019   |
| Voltage drop in ref. circuit    | 0.125  | 0.193   | 0.034   | 0.045   |

ie:

| Date:                           | 6/30/93 | 8/31/93 | 10/7/93 | 11/2/93 |
|---------------------------------|---------|---------|---------|---------|
| Days since last reading:        | 33      | 62      | 37      | 26      |
| Days since start-up (10/28/88): | 1,677   | 1,739   | 1,776   | 1,802   |
| Tester:                         | DE      | DE      | PN      | PN      |
| # 17: CONDUCTIVE PAINT          |         |         |         |         |
| Rebar Probe (volts)             | 0.003   | 0.005   | 0.003   |         |
| Reference Cell (volts)          | 0.354   | 0.457   | 0.354   | 0.354   |
| Anode Voltage                   | 51.8    | 48.0    | 51.8    | 51.8    |
| Anode Current (amps)            | 0.66    | 1.79    | 0.66    | 0.66    |
| Ref. Cell Instant-off (volts)   | 0.354   | 0.220   | 0.354   |         |
| Conductance (mhos)              | 0.013   | 0.037   | 0.013   | 0.013   |
| Voltage drop in ref. circuit    | 0.000   | 0.237   | 0.000   | 0.354   |

| Date:<br>Days since last reading:<br>Days since start-up (10/28/88):<br>Tester: | 11/24/93<br>22<br>1,824<br>PN | 12/22/93<br>28<br>1,852<br>PN | 12/23/93<br>1<br>1,853<br>PN |
|---------------------------------------------------------------------------------|-------------------------------|-------------------------------|------------------------------|
| # 17: CONDUCTIVE PAINT<br>Rebar Probe (volts)<br>Reference Cell (volts)         | 0.000                         | 0.001                         | 0.001                        |
| Anode Voltage                                                                   | 51.5                          | 47.2                          | 48.1                         |
| Anode Current (amps)<br>Ref. Cell Instant-off (volts)                           | 0.15                          | 2.10                          | -5.01                        |
| Conductance (mhos)                                                              | 0.003                         | 0.044                         | -0.104                       |
| Voltage drop in ref. circuit                                                    | 0.000                         | 0.001                         | 0.001                        |

ŕ