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Abstract 

A novel approach is presented in which signalized intersections are treated as normal highway 

bottlenecks for improved computational efficiency. It is unique in two ways. First, it treats the 

signalized intersections as common freeway bottlenecks by a reversed cause and effect modeling 

approach. Both traffic arrivals and departures are modeled by smooth continuous functions of time 

as if there were no interruptions to traffic flows from signals. The use of smooth continuous 

functions for departure curves instead of commonly used step functions makes it easy to apply 

differential calculus in optimization and future extension to a system of intersections. Second, a 

dynamic linear programming (LP) model is then developed to maximize the total vehicular output 

from the intersection during the entire period of congestion subject to prevailing capacity and other 

operational constraints. The continuous optimal departure flow rate (the effect) is then converted to 

signal timing parameters (the cause) that can be readily implemented. Two numerical examples are 

presented to demonstrate the properties of the proposed algorithm and examine its performance. 
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1. Background 

 

Signalized intersections frequently become oversaturated due to the temporal and spatial variation 

in traffic flow.  Under oversaturated traffic conditions, steady-state models may break down when 

the vehicle arrival rate exceeds the intersection capacity, leading to the carryover of queues from 

one cycle to another. The design of an effective traffic signal timing plan for oversaturated traffic is 

more intricate than that for undersaturated traffic. 

Mathematical models on control variables in the signal time plan for oversaturated intersections 

have been proposed by many researchers. Some of the remarkable contributions in early days 

include: the semi-graphical approach by Gazis (1964), Gazis and Potts (1965); the work on 

verification of Dunne-Potts’s phase switching policy for oversaturated flow conditions conducted 

by Green (1967); the so-called bang-bang two-stage timing method proposed by Michalopoulos 

and Stephanopoulos (1977); and Newell’s (1989) monograph on traffic signal control theory.  

   Recently Park et al. (1999), Abu-Lebdeh and Benekohal (2000) proposed their genetic 

algorithms for optimal signal timing and queue management of oversaturated intersections. 

Lieberman et al. (2000) developed a mixed-integer linear programming approach for queue length 

control. Chang and Lin (2000), Chang and Sun (2004) developed a discrete dynamic model and 

performance index approach to optimize signal parameters during the entire period of oversaturated 

conditions. Lo and Chow (2004) developed a dynamic intersection signal control optimization 

method for oversaturated condition based on cell-transmission model. Li and Prevedouros (2004) 

presented a hybrid optimization and rule-based oversaturated control algorithm for isolated signals. 

Despite the substantial difference in details, the existing models can be roughly categorized into 

two groups. The first group calculates stochastic delay by assuming the overflow queue in a cycle 

follows a certain distribution (e.g., normal distribution). The second group considers time varying 
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demands and aims at minimizing the total intersection delay subject to queue length constraints and 

looking for best phase switching strategies. The development of theoretical models has led to many 

on-line (e.g. SCOOT, OPAC, ROHDES, SCATS) and off-line signal timing tools (e.g. 

TRANSYT-7F, PASSER, and SYNCHRO). Shepherd (1992) and Wood (1993) have summarized 

some of these models from both theoretical and practical point of view and concluded that most of 

them serve well for undersaturated or slightly congested flow conditions and break down when 

demand exceeds capacity. Manufacturers have improved these models since then to make them 

adaptive to time-varying traffic conditions. Few studies, however, have been conducted assessing 

the enhanced models with respect to their performance under oversaturated conditions since the 

work of Shepherd and Wood.  

Unlike undersaturated intersections, for which many well-established theories and signal timing 

policies have been developed, consensus has not been reached with regard to the control 

philosophy and timing strategy of an oversaturated system. For an isolated intersection, a common 

belief is that timely and efficient allocation of green time among the intersection approaches is 

essential to optimize traffic flows. Since queues could not discharge and may exist for successive 

cycles under oversaturated conditions, describing the dynamics of traffic flow as well as the queue 

formation and dissipation process is believed to be essential. Hence, a formulation that is 

computationally effective is considered necessary. 

Intersection delay, which can be calculated by cumulative curves of vehicular arrivals and 

departures, has been arguably the sole performance measure of signal timing plans. Since traffic 

flow exhibits unique regulated feature at signalized intersections due to frequent interruptions by 

traffic signals, modeling and optimization of interrupted flow becomes critical for delay 

optimization. This paper presents a unique modeling and optimization approach for dynamic 

computation of signal timing parameters of an oversaturated intersection. A reversed cause and 

effect modeling approach is designed to model interrupted flows at signalized intersections for 
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enhanced computational efficiency. Both arrival and departure flows at the intersection are 

modeled as smooth time-dependent functions as if there were no interruptions from signals. One 

main advantage of working with smooth functions is that we can use differential calculus in the 

optimization process. It also provides us with the flexibility to scale the optimization process so that 

the methodology can be extended to cover a network of many intersections in the future study. With 

the proposed approach, the intersection is treated as a common highway bottleneck. A dynamic 

linear programming (LP) model is formulated to maximize the total vehicular output or the 

throughput from the intersection subject to prevailing capacity and other operational constraints. 

The continuous optimized departure flow rates (the effect) are then utilized to derive signal timing 

parameters (the cause). Two numerical examples are presented to demonstrate the properties of the 

proposed control algorithm.  

 

2. Description of the proposed reverse causal-effect modeling approach 

 

At signalized intersections, the departure flow ( )tµ follows a step function which can be expressed 

as:  

( ) or ( )   if  is in a green phase
( )

0                   if  is in a red phase
s t t t

t
t

λ
µ


= 


  

where ( )s t  is the saturation flow and ( )tλ  is the arrival rate, both being time dependent. The shape 

of the departure curve is a sole function of the signal timing plan if the traffic demand and the 

saturation flow rate are assumed to be known. A most common objective for both fixed-time and 

real-time signal timing design is to develop traffic signal plans that minimize total vehicle delay, 

which can be achieved through the use of cumulative curves for arrivals and departures.  

Fig. 1 illustrates the queue formation and dissipation process during a congested time period. A(t) 

represents the cumulative number of vehicles on the approach over time, while D(t) (the solid 
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curve) represents the cumulative number of vehicles departing the intersection over time. The 

vertical distance between the two curves at time tj represents the number of vehicles stored (or 

queue length) at the time when the jth vehicle arrives in the system. The horizontal distance 

between A(t) and D(t) represents the waiting time (or delay) for the jth vehicle before it discharges 

from the intersection. The area between A(t) and D(t) during the queuing time interval (t1, tn) 

represents the total vehicle delay during the period of congestion. In oversaturated conditions, the 

objective is to minimize the area between A(t) and D(t) in Fig. 1 for all intersection approaches. 

This is equivalent to optimizing the total vehicular output from the intersection during the 

congested period.  

If we treat a signalized intersection as a normal highway bottleneck, both arrival and departure 

flows can be represented by smooth time-dependent functions as if there were no traffic signals. 

Consequently, the vehicular departure curve represented by the solid line can be represented by the 

dotted line as shown in Fig. 1, which approximates the real departure curve and the objective 

becomes to minimize the area between the arrival and the hypothesized departure curves. As the 

departure curve of each signalized approach is in fact governed by a specific signal timing plan, the 

optimal departure curve must be the result of the optimal signal setting. Therefore, attention can be 

directed to optimize the hypothesized departure curve and then convert the optimized departure 

flow rate (the effect) to corresponding signal control parameters (the cause). The proposed 

methodology expressed in a conceptual form is illustrated in Fig. 2 for a single approach of an 

oversaturated intersection. 

Place Fig.1 about here 

Since the departure flow is smoothed over time, the slope of cumulative departure curve is an 

approximation of the real value over time and no longer restricted to the three values, i.e., 0, 

Place Fig. 2 about here 

λ , and 

s. Instead, it is a smooth function of time t. The value of the slope can be in a broader range, 



 

 6 

determined by traffic demand, saturation flow, and allocation or split of the green time at the 

intersection. If traffic demand and the saturation flow rate are given, the departure flow depends 

solely on the strategy of green time allocation or the phase switching policy. In order to identify the 

best phase switching strategy, a dynamic linear program is formulated on the basis of smooth traffic 

flows. Within each discrete time interval ∆t (one cycle in this study), the objective of the LP is to 

optimize the total vehicular output from the intersection. The optimized departure flow rates are 

then converted to signal control parameters according to their interrelationship. In depth description 

of the formulation and approximation process is provided along with the first example for ease of 

illustration. In the following section, we will address the details for the dynamic LP, including the 

formulation of the objective function, constraints, and the decision variables. 

 

3. A dynamic linear program 

3.1. Objective function 

If the arrival flow rate at link (i,j) at time t, which travels through node i, j to k is ( )ijk tλ , then the 

cumulative number of arrivals by time t can be given by ( )ijkA t , where ( ) ( )ijk ijktA t t dtλ= ∫ . 

Similarly, the departure flow rate and number of departures which travels through node i, j to k at 

time t are ( )ijk tµ  and ( )ijkD t  respectively and ( ) ( )ijk ijktD t t dtµ= ∫ .  

Since the departure curve is hypothesized as a smooth time-dependent function, the objective of 

minimizing the total delay during the congested period can be expressed as: 

 

minimize: ∑∫ ∫∫∑∫ −=−=
ijk

t u ijku ijk
ijk

t ijkijk dtduuduudttDtAF .})()({))()(( µλ                (1) 

 

For both on-line and off-line signal control models, traffic demands need to be given. The 

difference is that off-line models use historical data while real-time control requires time-dependent 



 

 7 

traffic demand measured from the field. Assuming that the real-time traffic demands are known, the 

objective then becomes to maximize the total vehicular departure: 

               

        maximize: ( ) ( )ijk ijkt t u
ijk ijk

F D t dt u dudtµ= =∑ ∑∫ ∫ ∫ .                                                        (2)  

A significant difference between the objective of this approach and some traditional methods is 

that the former aims to optimize total output from the entire intersection rather than from some 

predetermined “critical” approaches. Under the situation in which traffic demand is approaching 

the capacity level, any approach of the intersection may become saturated during some specific 

time periods due to the random fluctuation in traffic demand. In this model, the “critical” 

approaches that influence the objective function are identified by the model automatically.  

At this point, the control factors in the objective function, expressed as a set of time-dependent 

decision variables, are continuous departure flows rather than a set of signal timing parameters. The 

optimal flow rates, at which the hypothesized vehicular departures are discharged from the 

intersection, are subject to traffic demand, saturation flow, and the splits of green. The relationship 

among these parameters will be investigated in the next section and integrated into the optimization 

process. 

 

3.2. Turning movements and grouped movements/streams 

Signal timing parameters are calculated on the basis of grouped movements or lane groups. In order 

to establish a relationship between the smoothed departure flow curve and the associated signal 

timing parameters, it is necessary to correlate the turning movements with grouped movements or 

traffic streams. 

If we define the arrival and departure flow rate of stream m of phase p at time t as ( )p
m tλ and 

( )p
m tµ , respectively, the number of cumulative arrivals and departures by time t are denoted by 
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( )p
mA t  and ( )p

mD t  accordingly. Fig. 3 illustrates an example with respect to the relationship 

between the turning movements and the streams/grouped movements.  

The relationship between turning movements and grouped flows can be constructed by defining a 

set M for associated link flows according to the given phase pattern: 

Place Fig. 3 about here 

                                                      ∑∑
∈∈

=
Mkji

ijk
Mm

p
m tt

),,(
)()( λλ ,                                                  (3)   

                                                      ∑∑
∈∈

=
Mkji

ijk
Mm

p
m tt

),,(
)()( µµ .                                                 

  For example, for the turning movements and grouped flows illustrated in Fig. 3, the set M can be 

defined as: 

)(tp
mλ , )(' tp

mλ , )(tp
mµ , )(' tp

mµ , )(' tijkλ , )(' tijkµ , )(tijkλ , )(tijkµ ∈ M.   

The purposes of establishing such a relationship are two folds: 1) to eliminate signal timing 

parameters from the linear program; and 2) to find the upper bound of the flow rates of the 

hypothesized departure curves (the lower bound is zero).  This is described in the following section. 

 

3.3. Constraint of the capacity of lane groups/streams 

During the period of oversaturation, traffic from different approaches to the intersection competes 

for green lights. Timely and efficient allocation of green time becomes essential to relieve 

congestion. The green split (the percentage of the effective green time allocated to each of the 

various phases in a signal cycle) is the factor reflecting the allocation of green time. The green ratio 

η is the ratio of total effective green to the signal cycle which is determined by the cycle length C 

and total lost time L:  

                                    
C
L

−= 1η  .                                                                   (4) 

The summation of the green splits of all signal phases equals to the green ratio:              



 

 9 

       

                                                              η=∑
p

pg ,                                                                      (5) 

where gp is the green split of phase p. 

The grouped movements are served by individual lanes or lane groups with certain maximum 

discharge rates, i.e., saturation flow rates. For each stream of various signal phases, the 

hypothesized departure flow rate ( )p
m tµ  is subject to:  

                                         )(tp
mµ ≤ )(tgs p

p
m  for every (p,m),                                          (6) 

where p
ms  is the saturation flow rate of the lane or lane group accommodating stream m of phase p. 

This relationship is constructed based on the understanding that the continuous departure flow 

averaged over time must be a percentage of the saturation flow at any specific time and their value 

is governed by the percentage of green time allocated to the specific signal phase.  

If we define / sµ  as the “departure flow ratio” to differentiate from the “flow ratio”, which is the 

actual or design flow rate for the critical movement divided by the saturation flow rate for that 

movement, the sum of the departure flow ratios from the critical approaches of the entire 

intersection yields: 

                   η
µ

≤
















∑ ∑
∑

∈

∈

p
Mm

p
m

Mm

p
m

m s

t
Max

)(
.                                                        (7) 

Since the relationship between the turning movements and the streams were established, the 

maximum departure flow ratio can be represented in the form of directional flows to keep it 

consistent with the objective function:  

 

                                 η
µµ

≤















=

















∑ ∑
∑

∑ ∑
∑

∈

∈

∈

∈

p
Mm

p
m

Mkji
ijk

m
p

Mm

p
m

Mm

p
m

m s

t
Max

s

t
Max ),,(

)()(
.                            (8) 
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As can be seen from the above expression, signal timing parameters are totally eliminated from 

the formula. Not only does it constitute an important constraint of the dynamic LP, but the 

departure flow ratio constraint also functions as an automatic “search engine” to identify the critical 

approaches in real-time in conjunction with the objective function during the formulation. The 

property of the constraint will be discussed in detail through the description of a numerical example 

given later.  

 

3.4. Constraint of the maximum directional departure flow 

Since in the oversaturated condition queues may exist for successive cycles, the dynamics of queue 

formation and dissipation is essential in our approach. By assuming that the intersection approach 

has enough space to store queued vehicles, we can use the point queue (or vertical queue) model to 

capture the dynamics of queues. Following the assumption, if we denote Xijk(t) the number of 

queued vehicles accumulated on the direction (i,j,k) of link (i,j) by time t, the state equation for 

Xijk(t), in the form of the normal arrival and the hypothesized departure, can be expressed as: 

                                    0)()()()( ≥−+=+ dttdtttXdttX ijkijkijkijk µλ  ,                            (9) 

where, 

                                                )()()( tDtAtX ijkijkijk −= .                                                             (10) 

Thus, the maximum directional departure flow rate is subject to: 

                                                     )(/)()( tdttXt ijkijkijk λµ +≤ .                                                 (11) 

Since the departure flow cannot be negative, the constraint of non-negativity applies: 

                              0)( ≥tijkµ .                                                                  (12) 

3.5. Summary of the dynamic linear program 

In summary, the dynamic linear program reads 

maximize: ∑∫∫∑∫ ==
ijk

t u ijk
ijk

t ijk dtduudttDF )()( µ     
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                              s.t. η
µµ

≤















=

















∑ ∑
∑

∑ ∑
∑

∈

∈

∈

∈

p
Mm

p
m

Mkji
ijk

m
p

Mm

p
m

Mm

p
m

m s

t
Max

s

t
Max ),,(

)()(
, 

                                    ∑∑
∈∈

=
Mkji

ijk
Mm

p
m tt

),,(
)()( λλ ,               

                                    ∑∑
∈∈

=
Mkji

ijk
Mm

p
m tt

),,(
)()( µµ ,    

                                     )(/)()( tdttXt ijkijkijk λµ +≤ , 

                                    0)( ≥tijkµ . 

   The control factors of the LP are the directional departure flows from the entire intersection, 

which are combined to grouped movements or streams by a predefined set M. By investigating the 

relationship between the smoothed departure flow rates and some common signal timing 

parameters especially the split of green and the green ratio, a regulation to the maximum “departure 

flow ratio” is established. Since the allocation of green time is determined by the critical approaches, 

the constraint on the “departure flow ratio” also serves as a real-time “search engine” to look for the 

crucial approaches that influence the number of total vehicular outputs from the intersection. 

Another important constraint is established through the queue state equation to define the 

maximum possible departure rates.  

Signal timing parameters are totally eliminated from the LP and the objective of the formulation 

becomes to maximize total vehicular output from the intersection subject to prevailing capacity and 

control constraints. The optimized flow rates can then be converted to signal timing parameters 

according to the relationship between the split of green and departure flow as defined in Eq. (6). 

3.6. Solution algorithm 

Given a discrete time interval, the dynamic linear optimization program can be decomposed with 

respect to discrete time so that the optimization procedure can be carried out from the beginning of 

saturation or any given initial conditions. As illustrated in Fig. 4, the arrival rate ( )ijk tλ  and the 
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departure rate ( )ijk tµ  are assumed to stay constant during the time interval [t, t+ t∆ ) for ( , , )i j k∀ . 

Within each time interval, the linear program searches for the critical approaches of each signal 

phase and optimizes the departure rates of all directional flows from the intersection. Since traffic 

demands are assumed to be given, once the departure flow rate was calculated, the departure curve 

can be obtained by time t and thus ( )ijkX t .  

   The calculation algorithm is summarized step-by-step as follows: 

Place Fig. 4 about here 

Step 1: Initialize variables, including present time, flow rates, queue, and cumulative numbers: 

      t         := 0, 

     ( )ijk tλ := time dependent turning movement data ( , , )i j k∀  

     ( )ijk tµ  := 0      ( , , )i j k∀ , 

     ( )ijkA t := 0       ( , , )i j k∀ , 

     ( )ijkD t := 0   ( , , )i j k∀ , 

     ( )ijkX t := 0      ( , , )i j k∀ ; 

Step 2: Calculate optimal )(tijkµ  by solving the linear program F; 

Step 3: Group directional flows into grouped movements or streams; 

Step 4: Convert the critical ( )p
m tµ to ( )pg t  by the relationship between µ  and split of green: 

max ( )
( )

p
m p m

p p
m

t
g t

s

µ∈= ; 

Step 5: Check with minpg (minimum green of p). If min( )p pg t g< , then 

adjust ( )p
m tµ accordingly;   

Step 6: Check the time horizon, go to step 2 or exit if the end of the time horizon is reached. 
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4.  Numerical examples 

 

4.1. The formulation process and properties of the algorithm  

A hypothetical signalized intersection with a typical lag-lag protected left-turn phase is shown in 

Fig. 5. The saturation flow of two major through movements and left-turns are assumed to be 1800 

veh/h/lane, the cross street has one lane on each direction with a lower saturation flow of 1200 

veh/h/lane in consideration of the conflicts incurred by the opposing movements.    

Table 1 shows the turning movement data used in the first numerical example, while Fig. 6 shows 

graphically the turning movements of each approach of the hypothetical intersection.  

Place Fig. 5 about here 

Place Table 1 about here 

 
Place Fig. 6 about here 

The objective of this example is to demonstrate the formulation process as well as the major 

properties of the proposed model. Calculation of a certain time interval, for example, one cycle is 

sufficient for this purpose because the calculation is recursive. A multi-cycle example is introduced 

in next section to demonstrate the model’s performance over an entire congested period.  

The ratio of traffic flow rate to capacity, i.e., v/c ratio, is used by traffic engineers to represent the 

degree of traffic saturation. The critical v/c ratio is the v/c ratio for the intersection as a whole, 

which is determined by  

                                            ∑ −
= )()(

LC
C

s
vX cic ,                                             (13) 

where ∑ cis
v )( is summation of flow ratios for all critical lane groups. The critical v/c ratio of the 

sample intersection is 1.41,  which indicates a typical oversaturated condition. In addition, we 

assume the following variables are known at time t and are kept constant during calculation: 
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• Cycle length:  110 s 

• Loss time:     10 s 

• 1 /L Cη = − :    0.9  

• minimum green: g1min = 35 s,  g2min = 12 s,  g3min = 8 s 

Saturation flows:  1 1800js = (vehicles/h), [ ]1,4j ∈ , 

                             2 1800js = (vehicles/h), [ ]1,2j ∈ ,  

                             3 1200js = (vehicles/h),  [ ]1,2j ∈ .  

Based on the given phase pattern, the relationship between turning movements and grouped flows 

are defined as follows: 

 

1 1
1 2 153 154
1 1
1 2 153 154

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ),

t t t t

t t t t

λ λ λ λ

µ µ µ µ

+ = +

+ = +
 

1 1
3 4 351 352
1 1
3 4 351 352

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ),

t t t t

t t t t

λ λ λ λ

µ µ µ µ

+ = +

+ = +
 

2
1 152
2
1 152

( ) ( ),

( ) ( ),

t t

t t

λ λ

µ µ

=

=
 

2
2 354
2
2 354

( ) ( ),

( ) ( ),

t t

t t

λ λ

µ µ

=

=
 

3
1 451 452 453
3
1 451 452 453

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ),

t t t t

t t t t

λ λ λ λ

µ µ µ µ

= + +

= + +
   

3
2 251 254 253
3
2 251 254 253

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ).

t t t t

t t t t

λ λ λ λ

µ µ µ µ

= + +

= + +
 

Thus, the constraint of the maximum departure flow ratio is represented by: 
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11 1 1
31 2 4

1 1 1 1
1 2 3 4

( )( ) ( ) ( )
max , , ,

tt t t
s s s s

µµ µ µ 
 
  

2 2 3 3
1 2 1 2

2 2 3 3
1 2 1 2

( ) ( ) ( ) ( )
max , max ,

t t t t
s s s s

µ µ µ µ
η

   
+ + ≤   

      
. 

In terms of turning movements, the above expression can be rewritten as: 

154 153 352 351
1 1 1 1
1 2 3 4

( ) ( ) ( ) ( )
max ,

t t t t
s s s s

µ µ µ µ + +
 

+ +  

45 25
152 354

2 2 3 3
1 2 1 2

( ) ( )
( ) ( )

max , max ,
m k

m k
t t

t t
s s s s

µ µ
µ µ

η

 
   

+ + ≤   
    

 

∑ ∑
. 

        

The maximum departure ratio is governed by the “critical” movements of each phase. This 

constraint not only confines the maximum departure ratio but also serves as a “search engine” for 

the best combination of traffic streams that influences the rates of the departure curve. The left side 

of the formula is in fact an abbreviation of every possible combination of grouped 

movements/streams under the prevailing phase pattern. It contains eight pieces as shown in the 

generalized linear program below: 

 

          maximize:  ( )ijk
ijk

F tµ= ∑                    [ ], , 1,5i j k ∈  

subject to: 

          
45

154 153 152
1 1 2 3
1 2 1 1

( )
( ) ( ) ( ) m

m
t

t t t
s s s s

µ
µ µ µ

η

 
     +

+ + ≤     
+        

 

∑
, 

          
25

154 153 152
1 1 2 3
1 2 1 2

( )
( ) ( ) ( ) k

k
t

t t t
s s s s

µ
µ µ µ

η

 
     +

+ + ≤     
+        

 

∑
, 

          
45

154 153 354
1 1 2 3
1 2 2 1

( )
( ) ( ) ( ) m

m
t

t t t
s s s s

µ
µ µ µ

η

 
     +

+ + ≤     
+        

 

∑
, 

          
25

154 153 354
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       ( ) ( ) / ( )ijk ijk ijkt X t dt tµ λ≤ +                [ ], , 1,5i j k ∈ , 

       ( ) 0ijk tµ ≥                                           [ ], , 1,5i j k ∈ . 

If we express the dynamic LP in its standard form (i.e., maximize:  Z = CX.  s.t. AX B≤  and 

0X ≥ ), vector B is in the following form in the computation: 

 

.9  .9  .9  .9  .9  .9  .9  .9  ( ) ( ) /
T

ijk ijkB t X t tλ = + ∆  . 

 

The direct result from the LP is the optimized directional departure flows maximizing the total 

vehicular output from the intersection. The calculated departure rates along with the arrival 

demands are depicted in Fig. 7, from which we can see that all of the approaches were cleared 

except for the northbound of the minor street indicating that the priority was given to the major 

street under the given traffic condition. The result coincides with the well known policy that giving 

priority to the oversaturated approaches with higher saturation flow rates will give lower 

intersection delay. However, it is worthy of note that in the condition where the saturation flow 
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rates of every approach are exactly the same, which is a very unlikely situation, different 

optimization methods (other than LP) may come up with different results under the same objective.  

Clearly, the optimized departure flow rate should be the result of the optimal signal timing 

strategy, which can be obtained as follows:   

Place Fig. 7 about here 

1 2000 /3600 0.56g = = ; 

2 400 /1800 0.22g = = ; 

3 (24 98 24) /1200 0.12g = + + = ; 

and, 0.9pg η= =∑ . 

The effective green splits for each phase are computed by converting the departure flows using the 

following relationship: 

 

  
max p

m p m
p p

m
g

s

µ∈= . 

Consequently, the optimal green time of each phase for the given traffic demand and saturation 

flow are calculated by: 

  i iG g C= × , 

where, 

               Gi = the green time for phase i; and 

               C = the cycle length (in seconds). 

1 1

2 2

3 3

0.56 110sec 61.6sec
0.22 110sec 24.2sec
0.12 110sec 13.2sec

G g C
G g C
G g C

= × = × =
= × = × =
= × = × =

 

99.0sec
10.0sec
109.0sec

iG
L
C

=

=
=

∑
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The cycle length and the total green time are 1.0 second off because the value of η was 

approximated to 0.9 (from 0.91) in the calculation. 

The numerical example presented a heavily congested case with a critical v/c ratio of 1.41. Traffic 

demands were extremely high on both of the westbound major street and the northbound minor 

street. The result shows the priority was given to phase one and phase two of the major street. As a 

result, queues accumulated on the northbound of the minor street. A simple verification is 

performed below to demonstrate the effectiveness of the result in terms of maximizing total 

departure from the intersection. 

Many prevalent signal timing tools (e.g., SYNCHRO) use the Highway Capacity Manual method 

to calculate green split for undersaturated conditions. The first example compares the proposed 

algorithm with the HCM method. Highway Capacity Manual 2000 suggests green time be allocated 

according to the flow ratios of the critical approaches. In this numerical example, the critical flow 

ratios of phases one, two, and three are: 1( / ) 0.56c csλ = , 2( / ) 0.22c csλ = , and 3( / ) 0.5c csλ = , 

respectively (the subscript c denotes “critical”). As a result, the green time of each phase can be 

calculated as: G1 = 43.7 seconds, G2 = 17.2 seconds, and G3 = 39.1 seconds. As the HCM method 

tries to equalize the v/c ratio along various phases (1.41 for all three critical approaches in this case), 

queue will exist at every critical approach of the intersection.  

Assuming that the traffic condition remains unchanged in one hour, the approximate hourly 

departure from the westbound through and right-turn approach is 1430 out of 2000 arrivals (or 

queued vehicles = 570 vehicles), the departures from the westbound left-turn and the northbound 

approaches are 282 (queued vehicles = 118 vehicles) and 427 vehicles (queued vehicles = 173 

vehicles) respectively. The total number of hourly departures from the critical approaches is 2139 

vehicles, which is about 400 less than the optimized value of 2546 vehicles.  

In such a case, the situation cannot be improved solely by the design of the signal-timing plan. 

Geometric modification of the intersection needs to be considered (e.g., add an additional left-turn 
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bay to increase the saturation flow rate of the northbound) in order to avoid the queue on the 

northbound spilling back to the upstream intersection.   

 

4.2. Examination of the model over an entire congested period  

The purpose of the second example is to examine the performance of the proposed algorithm by 

comparing with the TRANSYT-7F model. TRANSYT-7F was the model of choice for three 

reasons: 1) it provides a reliable reference of the global optimum with regard to the queue clearance 

time; 2) SCOOT has been described as an “online” TRANSYT-7F because it uses a similar 

optimization method; and 3) the control algorithm of TRANSYT-7F is open to public. Through the 

test, our interest is to examine whether the proposed model can clear queue in a time comparable to 

that of TRANYSTY-7F, while at the same time reduce intersection delay because of its real-time 

nature. A time-varying traffic demand was designed to replicate an entire period of congestion 

including the whole queue formation and dissipation process.  As described earlier, the departure 

flow is a significant approximation of the real departure, this example also examines the 

convergence of the model over a long period of time. As shown in Table 2, nine traffic demands are 

given to each of the turning movements at a time step of 120 seconds.   

   We used the “Genetic Algorithm optimization” with the “Queuing Ratio” option provided with 

TRANSYT-7F V.10.0 for the best solution. As can be seen from Table 3, the green time plan given 

by TRANSYT-7F remains constant during the calculation period, which is 25 s, 65 s, and 21 s, for 

phases 1, 2, and 3, respectively, while the dynamic linear program generates time-varying plans 

according to the real-time traffic demand.  

Place Table 2 about here 

Place Table 3 about here 
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   Also as shown by Fig. 8, despite the different green time allocation patterns, the queue was 

cleared almost at the same time by the two models, which verified the LP model’s performance in 

terms of the queue clearance time. 

   Although the two model’s queue clearance time is comparable, the total intersection delay from 

the proposed LP model and the TRANSYT-7F model is different.   The total intersection delay 

resulted from the proposed approach is much less than that of the TRANSYT-7F model. This can 

be further verified by Fig. 9, which is the cumulative curve diagram obtained from the calculation. 

In a cumulative curve diagram, the area between the curve of the total arrival and the curve of the 

total departure represents the total intersection delay. The departure curve from the LP approach is 

time dependent and adaptive to the real-time traffic demand, while the result from TRANSYT-7F 

shows a linear departure curve which is not sensitive to the time-varying traffic demand. As is 

evident, the proposed LP model is much efficient in delay reduction.  

Place Fig. 8 about here 

   It is worthy of note that the model’s advantage in intersection delay may  be solely due to its 

real-time nature and does not necessarily mean it outperforms the on-line version of 

TRANSYT-7F, i.e., SCOOT. Field test is needed for this purpose which is beyond the scope of this 

study.  The notable advantage of the model lies in its computational efficiency due to the 

application of differential calculus and LP in formulation. 

Place Fig. 9 about here 

 

5. Concluding Remarks 

For signalized intersections, it is well known that traffic signal timing plans developed with 

steady-state optimization approaches may fail when intersections become oversaturated. This paper 

presented a reversed cause and effect modeling approach specifically for optimizing traffic signal 

timing parameters under oversaturated traffic conditions.  This approach treats an oversaturated 
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signalized intersection as a common roadway bottleneck for improved computational efficiency. 

By approximating the cumulative arrival and departure curves with continuous functions of time, 

the optimal solution in terms of system throughput or the optimal departure flow rate for the entire 

time period can be easily calculated with a dynamic linear programming model proposed in the 

paper. The optimal green split ratios, resulting from the optimized departure flow (the effect), were 

then utilized to identify the optimal signal control parameters (the cause). Two numerical examples 

were presented in the paper. The result showed that the proposed method is promising in that it can 

automatically identify the “critical” movements of a phase and generate results with maximum 

vehicular throughput during congested time period. As a result, it clears the queue as fast as the 

TRANSYT-7F model and advantages in the total intersection delay and computation time. 

Moreover, in the proposed method, traffic flows were treated as turning movements and grouped 

movements or streams, making it easier for future extension of the proposed methodology to handle 

a network with multiple intersections. 

Future research may include the relaxation of the fixed cycle length constraint so that the cycle 

length can be updated dynamically in accordance with the change in arrivals during the entire 

period of oversaturation, especially during the transient periods between the peak and off-peak 

hours; taking into account the effect of queue blocking; and eventually extending the methodology 

to system wide optimization for large scale networks. 
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Fig. 1.  Cumulative curves at an oversaturated approach. 

 

 

 

 

 

 

 

 

                               Fig. 2. A conceptual illustration of the proposed approach. 
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Fig. 3.  Turning movements and grouped movements/streams. 

 

 

 

 

 

 

 

 

Fig. 4.  Decomposition with discrete time. 
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Fig. 5.  A hypothetical intersection. 

 

 

 

 

 

 

 

 

 

 

 

 

                

                         

                         Fig. 6.  Turning movements and signal phases. 
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     Fig. 7.  Optimized departure flows. 
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                                Fig. 8. Total queue length of the Intersection.    
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                                            Fig. 9. The total intersection delay. 
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                           Table 1  

                           Turning movements of the sample intersection (in veh/h) 

Turning 
movements 

L TH R Total 

N. Bound 100 400 100 600 

S. Bound 20 50 30 100 

E. Bound 400 1800 200 2400 

W. Bound 100 400 100 600 

 

 
Table 2  

The dynamic traffic demand 

Time Steps   1 2 3 4 5 6 7 8 9 
 L 100 110 120 90 70 50 30 20 20 

North Bound TH 400 440 480 360 280 200 120 80 80 
 R 100 110 120 90 70 50 30 20 20 
 L 20 22 24 18 14 10 10 10 10 

South Bound TH 50 55 60 45 35 25 25 25 25 
 R 30 33 36 27 21 15 15 15 15 
 L 400 440 480 360 280 200 180 180 180 

East Bound TH 1800 1980 2160 1620 1260 900 540 360 360 
 R 200 220 240 180 140 100 60 40 40 
 L 100 110 120 90 70 50 30 20 20 

West Bound TH 400 440 480 360 280 200 120 80 80 
  R 100 110 120 90 70 50 30 20 20 
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Table 3  

Comparison with TRANSYT-7F  

    The proposed approach     Transyt-7F   
P1 P2 P3  Departure Queue  P1 P2 P3 Departure Queue 
0 0 0 0 0 0 0 0 0 0 

27 67 18 109 14 25 65 21 85 39 
27 73 11 225 34 25 65 21 169 90 
19 80 12 347 60 25 65 21 254 154 
40 60 11 451 67 25 65 21 338 180 
19 47 46 539 65 25 65 21 423 182 
13 33 64 612 54 25 65 21 507 159 
12 20 79 672 34 25 65 21 592 114 
12 13 86 726 9 25 65 21 676 59 
36 40 36 764 0 25 65 21 761 3 

 

 
 
 
 

 


	If we express the dynamic LP in its standard form (i.e., maximize:  Z = CX.  s.t.   and  ), vector B is in the following form in the computation:

