Effects of Photoinitiators on Cell Viability, Physical Properties, and Microstructure in 3D Bioprinting

Jazzmin Casillas, Heqi Xu, Dr. Changxue Xu Texas Tech University, Lubbock, TX

February 27th, 2020

Contents

Introduction and Background

February 23-27, 2020

San Diego, California, USA

#TMSAnnualMeeting

- Materials and Methods
- Results
- Conclusions

2

Typical Bioprinting Techniques

February 23-27, 2020

San Diego, California, USA

[[]Foyt2018]

Typical Bioprinting Techniques

Stereolithography-based Bioprinting

- Mechanism:
- 1. Divide 3D model into several 2D patterns
- 2D pattern controlled by Digital micro-mirror device (DMD), projected onto the bioink (GeIMA, photoinitiator, and living cells), and crosslinked upon UV irradiation
- 3. Z-stage moved down one layer thickness until completion of the full structure

Advantages:

- High resolution
- High deposition accuracy
- High fabrication rate
- High cell viability

CO-LOCATED INTERNATIONAL CONFERENCE

February 23-27, 2020

San Diego, California, USA

Literature review

Gate ABC a Ø đ agt 0 U IC B cells). ë rat ¢æt and e 8 _S S)

Objectives

• To systematically study the effects of photoinitiator and printing time on cell viability during printing and the effect of photoinitiator and incubation time on cell viability after printing.

• To investigate the photoinitiator effect on the physical properties: swelling ratio and degradation rate.

• To characterize the photoinitiator effect on the microstructure (pore size) of the hydrogel.

Contents

Introduction and Background

February 23-27, 2020

San Diego, California, USA

#TMSAnnualMeeting

- Materials and Methods
- Results
- Conclusions

7

Experimental Setup

February 23-27, 2020

San Diego, California, USA

#TMSAnnualMeeting

Key elements:
1. UV source
2. Digital micromirror
device (DMD)
3. Lenses group
4. Bioink container
5. Motorized z-stage and
platform

Bioink:

• 5% (w/v) GeIMA

February 23-27, 2020

San Diego, California, USA

- Photoinitiator (Irgacure 2959 or LAP) concentration:
 - 0.3 0.9% (w/v) with an interval of 0.2% (w/v)
- Cell concentration: 1 × 10⁶ cells/mL

Printing time (minute)	Photoinitiator concentration (%)	Incubation time (hour)
0	0.3	0
15	0.5	12
30	0.7	24
45	0.9	
60		

Contents

Introduction and Background

February 23-27, 2020

San Diego, California, USA

#TMSAnnualMeeting

- Materials and Methods
- Results
- Conclusions

10

Representative cell viability images during 3D bioprinting

0.5% Irgacure 2959 at 30-minute

0.5% LAP at 0-minute

0.7% Irgacure 2959 at 30-minute

0.5% LAP at 30-minute

0.9% Irgacure 2959 at 30-minute

0.5% LAP at 60-minute

February 23-27, 2020 San Diego, California, USA #TMSAnnualMeeting

Effect of photoinitiator on cell viability during printing

- For lower concentrations, both photoinitiators are suitable for 3D bioprinting
- For higher concentrations, only LAP are suitable for short-time 3D bioprinting

Photoinitiator effect on cell viability during printing

- The cell viability decreases with printing time and photoinitiator concentration
- At the same concentration, the cell viability using LAP is higher

February 23-27, 2020

#TMSAnnualMeeting

CO-LOCATED

CONFERENCE

INTERNATIONAL

PbZn

Effect of photoinitator on cell viability after printing

• Both types of photoinitiators have negligible effects on post-printing cell viability

February 23-27, 2020

San Diego, California, USA

Effect of photoinitiator on the physical properties

Samples with Irgacure 2959: greater swelling ratio and faster degradation rate

CO-LOCATED

CONFERENCE

INTERNATIONAL

Effect of photoinitiator on microstructure of hydrogel

Incubation time 0 hour

• Samples cured with Irgacure 2959: slightly larger average pore size

Fabrication of a 3D vascular-like construct

- Most cells survive with a post-printing cell viability of 80%
- The actual measured dimensions show good shape fidelity

Contents

Introduction and Background

February 23-27, 2020

San Diego, California, USA

- Materials and Methods
- Results
- Conclusions

Conclusions

- The cell viability during 3D bioprinting generally decreases with the increase of the photoinitiator concentration and printing time for both Irgacure 2959 and LAP;
- the photoinitiators Irgacure 2959 and LAP have negligible effects on the cell viability after 3D bioprinting; and
- GelMA samples cured with Irgacure 2959 have slightly larger pore size, faster degradation rate, and greater swelling ratio after 3D bioprinting compared to those cured with LAP.

Acknowledgment

 This work was partially supported by the National Science Foundation (CMM-1762282).

Bibliography

[Foyt2018] Foyt, D. A., Norman, M. D., Yu, T. T., and Gentleman, E., 2018, "Exploiting advanced hydrogel technologies to address key challenges in regenerative medicine," Advanced Healthcare Materials, 7(8), p. 1700939.

[Krishnamoorthy2020] Krishnamoorthy, S., Wadnap, S., Noorani, B., Xu, H., and Xu, C., 2020, "Investigation of gelatin methacrylate working curves in dynamic optical projection stereolithography of vascular-like constructs," European Polymer Journal, p. 109487.

[Wadnap2019] Wadnap, S., Krishnamoorthy, S., Zhang, Z., and Xu, C., 2019, "Biofabrication of 3D cell-encapsulated tubular constructs using dynamic optical projection stereolithography," Journal of Materials Science: Materials in Medicine, 30(3), p. 36.

[Zhu2018] Zhu, W., Qu, X., Zhu, J., Ma, X., Patel, S., Liu, J., Wang, P., Lai, C. S. E., Gou, M., and Xu, Y., 2017, "Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture," Biomaterials, 124, pp. 106-115.

21

Thank You!

PbZn San Diego. California. USA #TMSAnnualMeeting

