TEXAS TECH UNIVERSITY

Background and Motivation

- Many organisms rely on densely packed, tilted and curved fibers to attach to surfaces. [1]
- Curvature is a key feature for fibers to enhance/control compliance, surface adaptability and direction dependent adhesion
- Established methods (e.g. lithography) are slightly tilted straight synthetic fiber arrays.

tilted/curved fibers

- shape of an array by molding during deformation. [2]
- curved fibers with extreme effective tilt angles.
- forces on the tip and tip displacements.
- The elastic modulus of the backing layer controls the and effective tilt angle.

the stiffness of the backing they are attached to?

- base.
- compare with experimental results.

Objective

Develop a mathematical model to predict the final shape of the fibers attached to deformable backings due to bending deformation.

Predicting the shape of curved and tilted microfibers generated by bending deformation Elliot Geikowsky^{a,b}, Fanzhen Ding^a, and Burak Aksak^a

10606. [2] Geikowsky, E., S. Gorumlu, and B. Aksak. 2018, *Beilstein Journal of*

Nanotechnology, <u>9</u>, pp 2893–2905.

/	<i>P'</i> [mN]	<i>K</i> [mN⋅m]
62	1.72·10 ⁻¹	5.39.10-4
3	2.38.10-1	5.65.10-4
86	4.98 ·10 ⁻¹	9.59.10-4

	13.70	5.24·10 ⁻¹
68	19.71	3.83.10-1
26	32.98	4.08·10 ⁻¹

Academy of Sciences of the United States of America, <u>100</u>, pp 10603-

- of the model using different angles of rotation.
- the rotation of the base.

Conclusions

- materials for fibers and backing.
- soft base for high tilt angles.

Future Applications

- arrays.
- backings.
- bioinspired fibrillar adhesives.
- harvester can be fabricated.

Experimental fiber deflection images are compared with the prediction

Once the angle θ_r that produce the best fit between experimental and analytical results is obtained, the equivalent angle θ'_t is determined.

• The angle θ'_t is used to calculate α' and the equivalent force P'. The torsional spring constant K from the bending moment at the base and

The proposed model reasonably predicts the deformation of fibers for a wide range of deflection angles and two different combinations of

Change in torsional spring constant K for varying deformations can be attributed to measurement accuracy and non-linear deformation of the

• Model provides a simple tool to obtain tilted/curved fibers in the microscale for applications including biomimetic adhesives, anisotropic high friction surfaces, and biomimetic superhydrophobic surfaces.

Experimental validation of the model for fabrication of microscale fiber

A more accurate model for base rotation at high tilt angles and soft

• Understanding of the effect of curvature on adhesion and friction of

• More accurate synthetic biomimetic adhesives, anisotropic high friction surfaces, biomimetic superhydrophobic surfaces, micro pillar energy