

TEXAS TECH UNIVERSITY Department of Chemistry & Biochemistry

Introduction

- \circ The sequestration of carbon in soils is among the most important processes in the carbon cycle with respect to the influence of global climate change.
- \circ Manganese oxides (e.g., MnO₂) is one of the most effective naturally occurring oxidizing agents of carbon compounds found in terrestrial and aquatic systems.
- The kinetics of carbon oxidation via manganese oxides is a relevant reaction for soil and marine sediments.
- Analyzing reactions such as carbon reduction by manganese species will allow for informed decision making on how to counteract the harmful impacts of a changing climate on carbon.
- \circ Measuring the redox reaction rate between MnO₂ and dissolved organic matter (DOM) will improve our ability to model global carbon cycling.

Objectives

- \circ Measure the reduction rate of MnO2 via oxalic acid as a benchmark to DOM.
- Determine if the reduction capacity of DOM is greater than that of oxalic acid.
- Modify experimental conditions with respect to carbon and manganese concentration and pH to measure changes in the rate constant

Materials and Methods

- Ultraviolet-visible spectrophotometer measured absorbance versus time to allow for a derived concentration and a building of kinetics data to determine best fit and rate constants. Instrument: Olis computerized HP8452 UV-VIS
- Scanning electronic microscope (SEM) visualized the lattice topography and environment of the stock MnO₂ solution. Instrument: Hitachi S-4300SE/N (FESEM) (CASM)
- Transmission electron microscope (TEM) visualized the lattice morphology of the stock MnO₂. Instrument: Hitachi 1200EX
- Carbon/Nitrogen Analyzer used for extraction and quantification of leaf litter DOC. Instrument: Shimadzu Total Carbon/Nitrogen Analyzer

Figure 9: Leaf litter collected at Lubbock Mae Simmons park for DOC extraction

Figure 10: DOC collected from leaf litter materials; post 48 hour shaking of raw greenery

AN INVESTIGATION INTO THE REDUCTION KINETICS OF NANOPARTICULATE MANGANESE OXIDES VIA DISSOLVED ORGANIC CARBON SOURCES Kindall E. Brijalba^{I,II}, Dr. Matthew G. Siebecker^I

^IDepartment of Plant and Soil Sciences, ^{II}Department of Chemistry

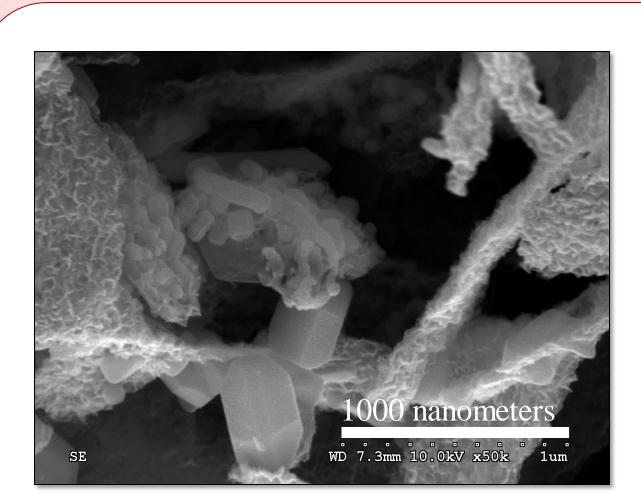


Figure 1: SEM detailing crystal structure in $10mM MnO_2$

Results

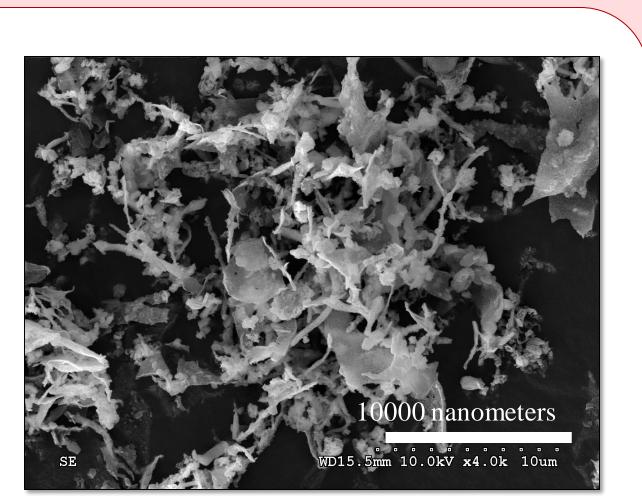
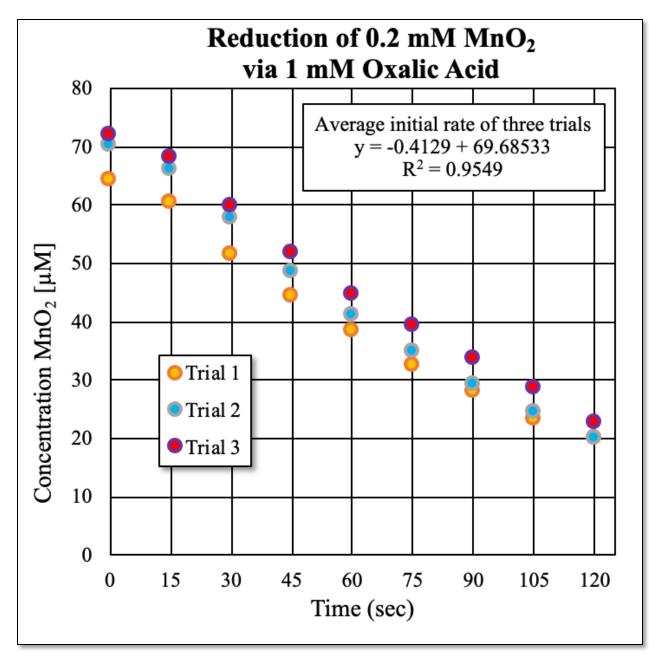
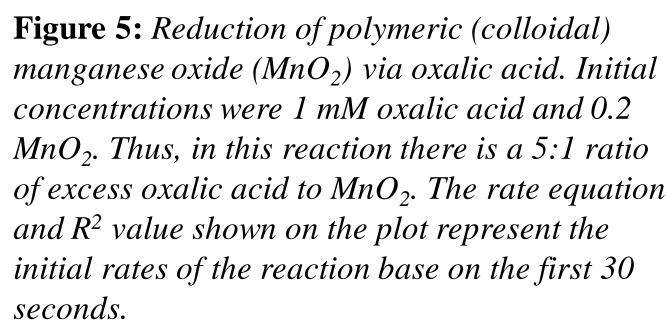
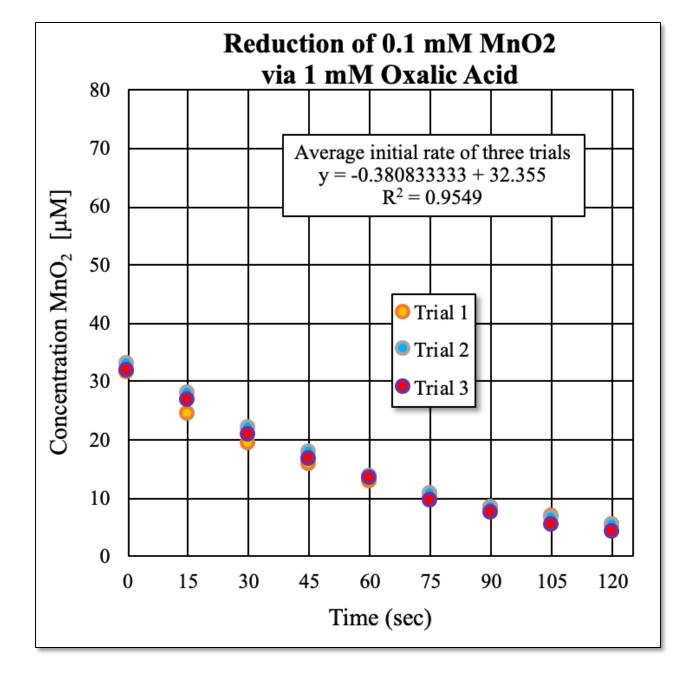





Figure 2: SEM of flake-like constitution in $10mM MnO_2$

Figure 7: *Reduction of polymeric (colloidal)* manganese oxide (MnO_2) via oxalic acid. Initial concentrations were 1 mM oxalic acid and 0.1 MnO_2 . Thus, in this reaction there is a 10:1 ratio of excess oxalic acid to MnO_2 . The rate equation and R^2 value shown on the plot represent the initial rates of the reaction base on the first 30 seconds.

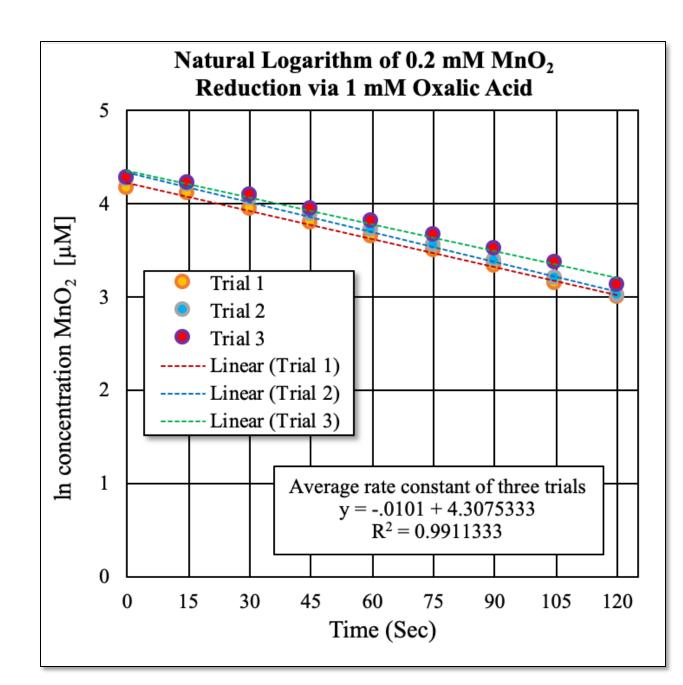
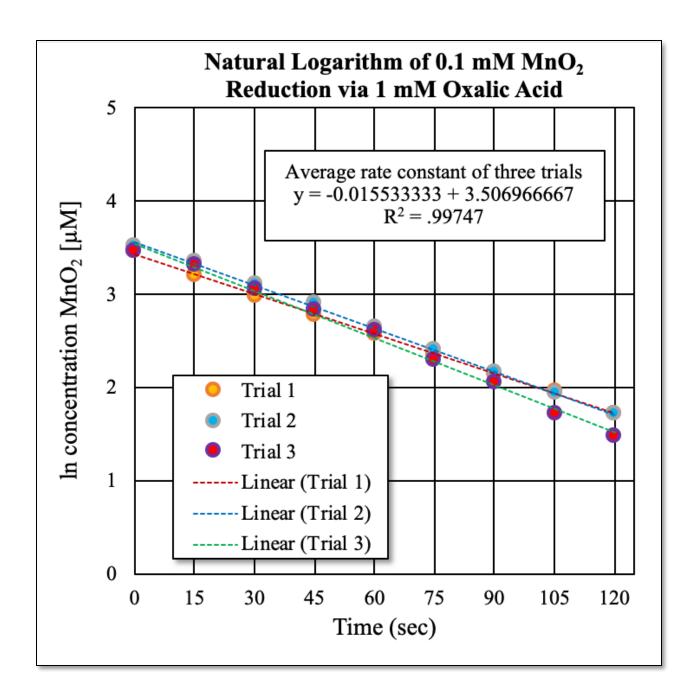



Figure 6: Natural logarithm of the reduction of polymeric (colloidal) manganese oxide (MnO_2) via oxalic acid. Initial concentrations were 1 mM oxalic acid and 0.2 MnO_2 . Thus, in this reaction there is a 5:1 ratio of excess oxalic acid to MnO_2 . The rate equation and R^2 value shown on the plot represent the average reaction rate over the entire 120 second interval.

Figure 8: Natural logarithm of the reduction of polymeric (colloidal) manganese oxide (MnO₂) via oxalic acid. Initial concentrations were 1 mM oxalic acid and 0.1 MnO_2 . Thus, in this reaction there is a 10:1 ratio of excess oxalic acid to MnO_2 . The rate equation and R^2 value shown on the plot represent the average reaction rate over the entire 120 second interval.

Results

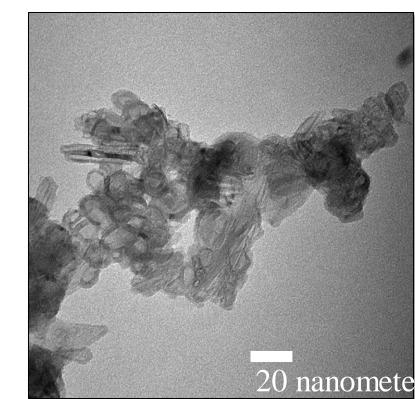
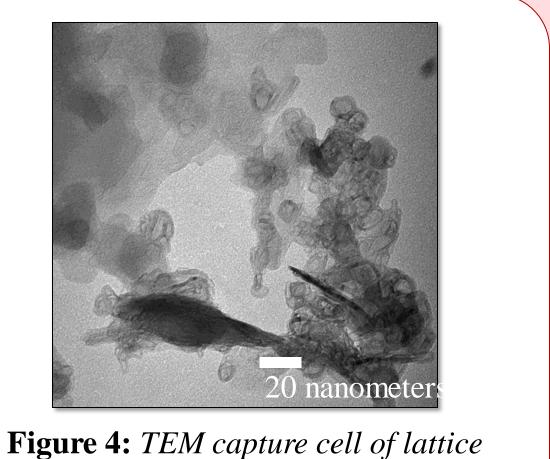



Figure 3: TEM capture cell of lattice constitutions, depths in 10mM MnO₂

Discussion

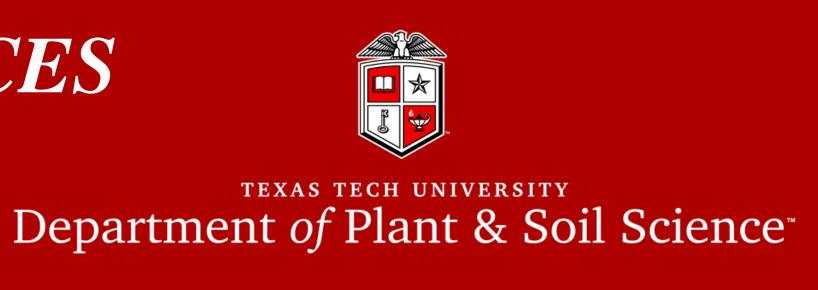
• The UV-Vis absorbance runs yielded the rate constant values of

- 0.0101 s⁻¹ (0.2 mM MnO₂, 1.0mM oxalic acid),
- 0.0155 s^{-1} (0.1mM MnO₂, 1.0mM oxalic acid), and
- 0.0248 (0.2mM MnO₂, 2.0mM oxalic acid).
- The initial rates of reaction were found to be
 - $0.4129 \,\mu M \,MnO_2 \, s^{-1} \, (0.2 \,m M \,MnO_2, \, 1.0 \,m M \, oxalic \, acid),$
 - $0.3808 \,\mu\text{M}\,\text{MnO}_2\,\text{s}^{-1}$ (0.1mM MnO₂, 1.0mM oxalic acid), and
 - $0.8434 \,\mu\text{M}\,\text{MnO}_2\,\text{s}^{-1}$ (0.2mM MnO₂, 2.0mM oxalic acid).
- The rate of the reaction doubled with the concentration of oxalic acid was doubled
- The high R² values indicate that the reaction kinetics are first order with respect to the loss of MnO_2
- The values of these rate constants and initial rates indicate that their relative ratios influence the reaction rate of MnO_2 as an oxidizing agent of oxalic acid.
- It is important to note the possibility of a surface passivation incident with the manganese(IV) oxide. Contact of the lattice with other substances or gaseous compounds in ambient air may leave the metal complex inactive to chemical processes.

Future Work

- \circ A decreased amount of MnO₂ in terms of the adequate ration of reaction will impair the reaction in terms of rate and length; thus, lower ratios will be tested.
- Future work will observe the kinetic differences between the rates of a dissolved organic carbon (DOC) source to compare to pure-phase oxalic acid.
- Pursuits will also continue to observe the oxalic acid and DOC reactions' response to environmental stresses such as pH and ratio adjustments.

Acknowledgments


I would like to thank the Undergraduate Research Conference, TTU Vice President of Research, The Department of Plant and Soil Science, Texas A&M AgriLife Lubbock Research Center, Dr. Bo Zhao (CASM), Dr. Daniel Unruh

References

Perez-Benito, Joaquin F., Conchita Arias, and Elisenda Amat (1996). A kinetic study of the reduction of colloidal manganese dioxide by oxalic acid. Journal of Colloid and Interface Science 177, no. 2: 288-297. Siebecker Matthew, Madison Andrew S., and Luther George W. III (2015). Reduction Kinetics of Polymeric (Soluble) Manganese (IV) Oxide (MnO₂) by Ferrous Iron (Fe²⁺). Aquatic Geochemistry **21**, no. 2: 143-58. Julián Herszage and, María dos Santos Afonso*, and George W. Luther, III(2003) Oxidation of Cysteine and Glutathione by Soluble Polymeric MnO2. Environmental Science & Technology 37 (15), 3332-3338.

10.1021/es0340634

Stuckey, J. W., Goodwin, C., Wang, J., Kaplan, L. A., Vidal-Esquivel, P., Beebe, T. P., and Sparks, D. L. (2018). Impacts of hydrous manganese oxide on the retention and lability of dissolved organic matter. *Geochemical* Transactions 19, 6.10.1186/s12932-018-0051-x

conglomerate in 10mM MnO₂