Green Work Environments: Under What Level of Work Demands Will a Restorative Intervention Work?

Joseph A. Vance, Brittany Neilson, & Dr. Martina Klein, Ph.D.
Texas Tech University, Department of Psychological Sciences

Introduction

Problem:
• In 2017, the United States Bureau of Labor Statistics found that Americans spend 54.5% of their weekday time working or performing other work-related activities (United States Bureau of Labor Statistics, 2017).
• Work is consistently rated as one of the top sources of stress among Americans (Kaplan, DelShon, & Torrisi, 2017).

Attention Restoration Theory (ART):
• This theory claims that exposing oneself to nature after attention depletion can restore mental energy. This involves reducing stress, elevating mood, and improving performance on attention-heavy tasks (Hartig, Evans, Janser, Davis, & Garling, 2003; Kaplan, 1995; Ulrich et al., 1991).
• This restoration is called the “Restorative Effect.”

This Study:
• In this study, we are interested in seeing how well this “Restorative Effect” can be applied to both a low-intensity and high-intensity workload, as well as how its effectiveness differs between the two conditions.
• Basically, we are trying to determine if exposing someone to nature works better when the person has just completed an extremely difficult task or when they have just completed a moderately difficult task.
• We hypothesize that the Restorative Effect will occur. Its effect on the extremely difficult task in comparison to the moderately difficult task is exploratory.

Experimental Design

Independent Variables:
1. Task Difficulty: To determine whether different workload levels have different effects on performance increase
 • 15 events per minute: Easier condition
 • 30 events per minute: Difficult condition
2. Break Condition: To determine whether nature has a different effect on performance increase from that of an urban environment
 • Nature images: Experimental condition
 • Urban images: Control condition

Dependent Variables:
1. Task Performance Increase: How much their performance improves following the intervention
2. Heart Rate Variability: Used to measure stress and workload throughout the task from a physiological standpoint
3. Self-Report Surveys: Used to determine the stress and workload felt by participants from their point of view
 • Also used as a manipulation check to verify that the task was stressful in the eyes of the participants

Method

1. Random Assignment: First, participants will be randomly assigned to one of four experimental conditions:
 - 15EPM Nature: Easier Task: Target images flashing every 4 seconds for 40 minutes
 - 15EPM Urban: Control Intervention: Looks at basic pictures of city buildings for 4 minutes before continuing
 - 30EPM Nature: Difficult Task: Target images flashing every 2 seconds for 40 minutes
 - 30EPM Urban: Control Intervention: Looks at basic pictures of city buildings for 5 minutes before continuing

2. ECG Application: Next, we will attach an ECG to the participant and acquire a baseline reading of their heart rate variability (HRV).

3. Survey Administration: The participant will fill out a self-report survey on how stressed and focused they feel (Likert scale).

4. 40-Minute Task: A gauge image will be presented briefly on a screen. The participant must correctly respond when a target appears while ignoring the non-targets. For the next 40 minutes, this will occur either 15 or 30 times per minute, depending on the condition.

5. Intervention: The participant will take a 5-minute break, during which they will view either nature or urban pictures, depending on the condition. Examples of each are shown below.

6. Continuation: Participant will perform task for 10 more minutes.

7. Post-Survey: Finally, the participant will fill out surveys indicating their stress and attention during the task. ECG will be removed.

Possible Outcomes & Implications

When comparing performances changes (Δ) from before the intervention to afterwards, the following 4 outcomes could occur:
1. ANature > AUrban, A15EPM > A30EPM: Nature groups have a significantly greater performance increase than urban groups do, with 15EPM groups having greater increases than 30EPM groups.
 • This would support the existence of the restorative effect and imply that it has a greater effect when treating individuals experiencing lighter workloads.
2. ANature > AUrban, A30EPM > A15EPM: Nature groups have a significantly greater performance increase than urban groups do, with 30EPM groups having greater increases than 15EPM groups.
 • This would support the existence of the restorative effect and imply that it has a greater effect when treating individuals experiencing heavier workloads.
3. ANature > AUrban, A15EPM = A30EPM: Nature groups have a significantly greater increase than urban groups, but no significant difference in increases between 15EPM & 30EPM groups is found.
 • This would support the existence of the restorative effect but not that it has different effects on different workload levels.
4. AUrban ≤ ANature: Nature and urban groups have similar performance increases, OR urban groups have a significantly greater increase than nature groups do.
 • This would not support the existence of the restorative effect.

Impact on Health & Well-Being

Turning Those Frowns Upside-Down!
• As mentioned before, work is very stressful to all kinds of people.
• If we can use nature to make the crushing burden of work just a little bit easier, we will unquestionably leave a positive impact.
• If we can successfully support the efficacy of the restorative effect, the scientific community will be able to make more compelling recommendations regarding workplace environments.

The Time is Now!
• COVID-19 has caused a dramatic re-evaluation of workplace conditions the world over. People are thinking about this right now!
• Significant results in this study would be perfectly timed to create a positive health impact in a world that so desperately needs it.

Acknowledgements

We would like to thank the Honors College Undergraduate Research Scholars Program backed by the CH & Helen Jones Foundations.

Works Cited