Publications

2003 - Present

  1. “Non-Uniform Laser Ignition in Energetic Materials,” J. Granier, T. Mullen and M. Pantoya, Combustion Science and Technology 175: pp. 1929-1951, (2003).
  2. “The Effect of Size Distribution on Burn Rate in Nanocomposite Thermites: A Probability Density Function Study,” J. J. Granier and M. L. Pantoya,Combustion Theory and Modelling Vol. 8, Issue 3, pp. 555-565 (2004).
  3. “The Role of the Al2O3 Passivation Shell Surrounding Nano-Aluminum Particles in the Combustion Synthesis of NiAl,” J. J. Granier, K. B., Plantier and M. L. Pantoya, Journal of Materials Science vol. 39 pp. 6421-6431 (2004).
  4. "Nickel Aluminum Superalloys Created by the Self-propagating High-temperature Synthesis (SHS) of Nano-particle Reactants,” E. M. Hunt, J. J. Granier, K. B. Plantier and M. L. Pantoya, Journal of Materials Research, Vol. 19, No. 10 pp.3028-3036 (2004).
  5. “Nano-scale Reactants in the Self-Propagating High-Temperature Synthesis of Nickel Aluminide,” E. Hunt, K. Plantier, M. Pantoya, Acta Materialia Vol. 52 No. 11 pp. 3183-3191 (2004).
  6. “Laser Ignition of Nanocomposite Thermites,” J. Granier and M. Pantoya, Combustion and Flame, vol. 138, pp. 373-383 (2004).
  7. “A Laser Induced Diagnostic Technique for Velocity Measurements Using Liquid Crystal Thermography,” E. M. Hunt and M. L. Pantoya, International Journal of Heat and Mass Transfer, Vol. 47, No. 19/20 pp. 4285-4292 (2004).
  8. “A Spreadsheet-based analysis for two-dimensional transient laser heating of a cylindrical solid,” Mullen, T. A. and Pantoya, M. L., Heat Transfer Engineering, Vol. 26, no. 2, pp. 63-74 (2005).
  9. “The Effect of Nanocomposite Synthesis on the Combustion Performance of a Ternary Thermite” Daniel Prentice, Michelle L. Pantoya, Brady Clapsaddle, Journal of Physical Chemistry B, v 109, n 43, p 20180-20185 (2005).
  10. “Ferrihydrite Gels Derived in the Fe(NO3)39H2O-C2H5OH-CH3CHCH2O Ternary System,” E. F. Talantsev, M. L., Pantoya, C. Camagong, B. Lahlouh, S. M. Nicolich, and S. Gangopadhyay, Journal of Non-Crystalline Solids, vol. 351, n16-17, pp 1426-1432 (2005).
  11. “Ignition Dynamics and Activation Energies of Metallic Thermites: From Nano- to Micron-scale Particulate Composites,” E. M. Hunt and M. L. Pantoya, Journal of Applied Physics, Vol. 98, pp. 034909 (2005).
  12. “Combustion Wave Speeds of Nanocomposite Al/Fe2O3: The Effects of Fe2O3 Particle Synthesis Technique,” K. B. Plantier, M. L. Pantoya and A. E. Gash, Combustion and Flame, vol. 140 pp. 299-309 (2005).
  13. “Combustion Velocities and Propagation Mechanisms of Meta-stable Intermolecular Composites,” B. S. Bockmon, M. L. Pantoya, S. F. Son, B. W. Asay, J. T. Mang, Journal of Applied Physics, v 98, n 6, p 064903 (2005).
  14. “Combustion Behaviors of Highly Energetic Thermites: Nano versus Micron Composites,” M. L. Pantoya and J. J. Granier, Propellants, Eplosives, Pyrotechnics, vol. 30, No. 1, pp. 53-62 (2005).
  15. “Oxidation of Aluminum Nanopowders with Oxygen and MoO3,” J. Sun, M. L. Pantoya, and S. L. Simon, Thermochemica Acta, 444, pp. 117-127 (2006).
  16. “Combustion Synthesis of Metallic Foams from Nanocomposite Reactants,” E. M. Hunt, M. L. Pantoya and R. J. Jouet, Intermetallics vol. 14 (6), pp. 620-629 (2006).
  17. “The Effect of Slow Heating Rates on the Reaction Mechanisms of Nano and Micron Composite Thermite Reactions,” J. J. Granier and M. L. Pantoya, Journal of Thermal Analysis and Calorimetry, v 85, n 1, July, 2006, p 37-43.
  18. “Combustion Effects of Environmentally Altered Molybdenum Trioxide Nanocomposites,” K. Moore and M. L. Pantoya, Propellants Explosives Pyrotechnics, v 31, n 3, June, 2006, p 182-187.
  19. “Combustion Behaviors Resulting from Bimodal Aluminum Size Distributions in Thermites,” K. Moore, M. L. Pantoya, and S. F. Son, Journal of Propulsion and Power, v 23, n 1 2006.
  20. “New Mechanism for Fast Reaction of Nanothermites Based on Dispersion of Liquid Metal,” Levitas, V. I., Asay, B. W., Son, S. F., and Pantoya, M. L., Applied Physics Letters, v89, 071909 (2006). (Reprod. in Virtual J. Nanoscale Sci. & Techn., 2006, Aug. 28)
  21. A new mechanism for formation of spatial oscillations in SHS of Ni/Al bilayer foils by E. B. K. Washington, D. Aurongzeb, J. M. Berg, D. Osborne, M. Holtz, M. Pantoya, H. Temkin will be published in No 2, 2006 of the International Journal of SHS.
  22. “Combustion Wave Speeds of Sol-gel Synthesized Tungsten Trioxide and Nano-Aluminum: The Effect of Impurities on Flame Propagation,” Prentice, D., Pantoya, M. L., and Gash, A. E., Energy & Fuels, v 20, n 6, November/December, 2006, p 2370-2376.
  23. “Effect of Aluminum Particle Size on the Thermal Degradation of Al/Teflon Mixtures,” Osborne, D. T. and Pantoya, M. L., Combustion Science and Technology, Accepted December 2006.
  24. Levitas V. I., Asay B. W., Son S. F. and Pantoya M., "Mechanochemical Mechanism for Fast Reaction of Metastable Intermolecular Composites Based on Dispersion of Liquid Metal"; Accepted to the Journal of Applied Physics, Vol. 101 No. 8, April 2007.
  25. "Thermal analysis of aluminum particle combustion in a simulated propellant flame", R. B. White, S. W. Dean, and M. L. Pantoya, D. A. Hirschfeld, W. Gill and W. W. Erikson, Accepted to the Journal of Propulsion and Power, April 2007.
  26. "Small Angle X-ray Scattering Analysis of the Effect of Cold Compaction of Al/MoO3 Thermite Composites", J. A. Hammons, W. Wang, J. Ilavsky, M. L. Pantoya, B. L. Weeks and M. W. Vaughn, Physical Chemistry Chemical Physics 10, 193-199 (2008). [DOI:10.1039/b711456g]
  27. "Characterization of a gas burner to simulate a propellant flame and evaluate aluminum particle combustion," M. Jackson, M. L. Pantoya and W. Gill, Combustion and Flame 153(1-2), 58-70 (2008). [DOI:10.1016/j.combstflame.2007.11.014]
  28. "Melt-Dispersion versus Diffusive Oxidation Mechanism for Aluminum Nanoparticles: Critical Experiments and Controlling Parameters," V. I. Levitas, Pantoya, M. L., B. Dikici, Applied Physics Letters 92(1), 0011921 (2008). [DOI:10.1063/1.2824392]
  29. "A Multi-Objective Modeling Approach for Energetic Material Evaluation Decisions," M. J. Schniederjans, M. L. Pantoya, J. J. Hoffmann, and D. L. Willauer, European Journal of Operational Research, V. 194, n 3, May 1, 2009, 629-636.
  30. "Melt-dispersion mechanism for fast reaction of aluminum particles: Extension for micron scale particles and fluorination,” Levitas, V. I., Pantoya, M. L.; Watson, K. W. Applied Physics Letters, v 92, n 20, 2008, p 201917
  31. V.I. Levitas and M.L. Pantoya, “Mechanochemical Mechanism for Fast Reaction of Metastable Intermolecular Composites Based on Dispersion of Liquid Metal, International Journal of Energetic Materials and Chemical Propulsion 7(1), 2008.
  32. "Fast reactions with nano and micron aluminum: a study on oxidation versus fluorination,” K.W. Watson, M. L. Pantoya, V. I. Levitas, Combustion and Flame 155(4); 619-634 (2008).
  33. "The effect of bulk density on the reaction dynamics in nano and micron particulate thermites,” M. L. Pantoya, V. I. Levitas, J. J. Granier, J. B. Henderson, Journal of Propulsion and Power 25(2); March-April (2009).
  34. "Impact Ignition of nano and micron composite energetic materials,” A. Hunt, A. Purl, E.M. Hunt and M.L. Pantoya, International Journal of Impact Engineering, v36 n 6, p842-846 (2009).
  35. "Correlation of reactant particle size on residual stresses of nanostructured NiAl generated by self propagating high temperature synthesis,” I.V. Rivero, K. Rajamani, M. L. Pantoya, S. M. Hsiang, E. P. Fitts, Journal of Materials Research, v 24 n 6 p 2079-2088 (2009).
  36. "The influence of alumina passivation on nano-Al/Teflon reactions,” S.W. Dean and M.L. Pantoya, Thermochimica Acta 493(1-2), p 109-110 (2009).
  37. "The Influence of Aluminum Passivation on the Reaction Mechanism: Flame Propagation Studies”, B. Dikici, M.L. Pantoya, Levitas, V., R.J. Jouet, Energy & Fuels 23, p4231-4235 (2009). DOI:10.1021/ef801116x.
  38. "Aluminum Fueled Nanocomposites for Underwater Reaction Propagation,” S.C. Stacy, M.L. Pantoya, D.J. Prentice, M.A. Daniels, E.D Steffler, Advanced Materials and Processes 167(10) p 33-35, Aug 2009 [DOI: 10.1361/amp16710p33].
  39. "Effect of the alumina shell on the melting temperature depression for nano-aluminum particles,” V.I. Levitas, M.L. Pantoya, G. Chauhan, and I. Rivero, Journal of Physical Chemistry C, 113(2), p 14088-14096, 2009.
  40. "A Diagnostic for Quantifying Heat Flux from a Thermite Spray", EP Nixon, ML Pantoya, DJ Prentice, ED Steffler, MA Daniels, and SP D’Arche, Measurement Science and Technology, 21: 025202; 2010.
  41. M. Pantoya and E. Hunt, Nanochargers: Energetic Materials for Energy Storage, Applied Physics Letters 95; 253101 (2009). (Reprod. in Virtual J. Nanoscale Sci. & Techn., 21(2) 2010, Jan. 11.
  42. "Enhanced Convective Heat Transfer from Non-gas Generating Nanoscale Thermite Reactions,” S.W. Dean, M.L. Pantoya, A.E. Gash, S.C. Stacy, L. Hope-Weeks, Journal of Heat Transfer, In Press March 2010 (Paper No. HT-09-1082).
  43. B. Dikici, M.L. Pantoya, V. Levitas, The Effect of Pre-heating on Flame Propagation Behavior in Nanocomposite Thermites, Combustion and Flame, In Press 2010.
  44. C. Farley and M.L. Pantoya, Reaction Kinetics of Nanometric Aluminum and Iodine Pentoxide, Accepted to the Journal of Thermal Analysis and Calorimetry, May 2010.
  45. E. M. Hunt and M. L. Pantoya, Impact Sensitivity of Intermetallic Nanocomposites: A Study on Compositional and Bulk Density, Accepted to Intermetallics, May 2010.
  46. C.A. Crane, M.L. Pantoya, J. Dunn, Infrared Measurements of Energy Transfer from Energetic Materials to Steel Substrates, International Journal of Thermal Sciences 49 (10) (2010) 1877-1885.