Texas Tech University

Julia L Shamshina, Ph.D.

Assistant Professor

Email: jshamshi@ttu.edu

Phone: 806-834-8055

Assistant Professor
Dept. Plant and Soil Science, Fiber and Biopolymer Research Institute
Dept. Chemistry and Biochemistry (joint)
Texas Tech University
1001 East Loop 289
Mail Stop 45019
Lubbock, TX 79409-5019

Julia Shamshina

Personal Information

Dr. Shamshina holds both a Bachelor's and Master's degree in Chemical Engineering from D. Mendeleev University of Chemical Technology of Russia in Moscow. She earned her Ph.D. in Organic Chemistry from the University of Alabama, Tuscaloosa. Among her notable honors are the 2018 Green Chemistry Challenge Award for developing a practical method to mass-produce chitin, and the 2011 NASA Tech Brief Award for her work on "Ionic Liquids: Unlocking the Gate to Replacing Hydrazine." She is an active member of both the American Chemical Society and the Canadian Society for Chemistry.

Research

Dr. Shamshina's research primarily focuses on leveraging biopolymers to create innovative, high-value products, chemicals, and fuels, and promoting their environmental and economic benefits. Achieving success in this area requires advancements in material performance, scalability, and disruptive technologies to overcome economics, life-cycle, and supply chain challenges. Major thrusts include Biotechnology–Materials for medical applications; Functional Materials–Advanced composites from bio-renewables and bio-wastes; and Separations–Novel strategies for refining value-added products from biomass.

Recent Publications

Shkuratov, A. S.; Panackal Shibu, R.; Therasme, O.; Berton, P.; Shamshina, J. L. Sustainable Production of Chitin Nanowhiskers from Crustacean Biomass Using Cost-Effective Ionic Liquids: Strategies to Avoid Byproduct Formation.  Sustainable Chem. 2024, 5(2), 130-148. https://doi.org/10.3390/suschem5020010.  

Basak. T.; Shamshina, J. L. Design of Chitin Cell Culture Matrices for 3D Tissue Engineering: Importance of Chitin Types, Solvents, Cross-linkers, and Fabrication Techniques. Pharmaceutics  2024, 16(6), 777. https://doi.org/10.3390/pharmaceutics16060777

Wysocki, M.; Stachowiak, W.; Smolibowski, M.; Olejniczak, A.; Niemczak, M.; Shamshina, J. L.  Rethinking the Esterquats: Synthesis, Stability, Ecotoxicity and Applications of Esterquats Incorporating Analogs of Betaine or Choline as the Cation in Their Structure.   Int. J. Mol. Sci2024, 25(11), 5761. https://doi.org/10.3390/ijms25115761.

Liao, J.; Shamshina, J. L.; Wang, Y.; Sun, D.; Shen, X.; Zhao, D.; Sun, Q. Emerging Cellulosic Materials for Sustainable Mechanosensing and Energy Harvesting Devices: Advances and Prospect.   Nano Today   2024, 56, 102232. https://doi.org/10.1016/j.nantod.2024.102232

Shamshina, J. L.; Berton, P. Ionic Liquids as Designed, Multi-Functional Plasticizers for Biodegradable Polymeric Materials: A Mini-Review.   Int. J. Mol. Sci.   2024, 25, 1720. https://doi.org/10.3390/ijms25031720

Meng, Q.; Ye, Z.; Wang, Y.; Liu, C.; Sun, Q.; Shamshina, J. L.; Shen, X. Self-micropatterned wood hydrophone for underwater detection. Adv. Funct. Mater.   2023,  2304104. https://doi.org/10.1002/adfm.202304104.

Wang, Y.; Liao, J.; Liu, C.; Sun, Q.; Shamshina, J. L.; Shen, X. A cilia-inspired micropatterned sensor with a high-permittivity dielectric hydrogel for ultrasensitive mechanoreception both in air and underwater.   J. Mater. Chem. A   202311, 26562 – 26572. https://doi.org/10.1039/D3TA05884K.

Shamshina, J. L.; Rogers, R. D. Ionic Liquids: New Forms of Active Pharmaceutical Ingredients with Unique, Tunable Properties. Chem. Rev.2023, 123(20), 11894 – 11953. https://doi.org/10.1021/acs.chemrev.3c00384.

Hoque, E.; Tran, P.; Jacobo, U.; Bergfeld, N.; Acharya, S.; Shamshina, J. L.; Reid, T. W.; Abidi, N. Antimicrobial Coatings for Medical Textiles via Reactive Organo-selenium Compounds.   Molecules   2023, 28(17), 6381. https://doi.org/10.3390/molecules28176381.

Shamshina, J.L.; Berton, P. Renewable Biopolymers Combined with Ionic Liquids for the Next Generation of Supercapacitor Materials.   Int. J. Mol. Sci.   2023, 24, 7866. https://doi.org/10.3390/ijms24097866.

Berton, P.; Shamshina, J. L. Ionic Liquids as Tools to Incorporate Pharmaceutical Ingredients into Biopolymer-Based Drug Delivery Systems.  Pharmaceuticals  2023, 16(2), 272. https://doi.org/10.3390/ph16020272.

Shen, X.; Zhao, D.; Xie, Y.; Wang, Q.; Shamshina, J. L.; Rogers, R. D.; Sun, Q. Cellulose Gel Mechanoreceptors – Principles, Applications and Prospects. Adv. Funct. Mater.2023, 2214317. https://doi.org/10.1002/adfm.202214317.

(Invited Personal Perspective to the Special Issue: Modern Aspects of Ionic Liquids.) Shamshina, J. L.; Rogers, R. D. Commercialization of Ionic Liquids in Pursuit of Green Chemistry: Must We Each Become an Entrepreneur?  The Chemical Record 2023, 23(8), e202200256. https://doi.org/10.1002/tcr.202200256.

Hoque, E.; Acharya, S.; Shamshina, J. L.; Abidi, N. Review of Foam Application to Cotton Textiles.  Textile Res. J.  2023, 93(1-2), 486 – 501. https://doi.org/10.1177/00405175221107400.

Abidi, N.; Shamshina, J. L. Preparation of Chitin Nanocrystals and Nanowhiskers from Crustacean Biomass Using Ionic Liquid. PCT/US2022/045177, filed September 29, 2022.

(This article belongs to the Special Issue: Special Issue: Spectroscopic Analysis and Molecular Modification of Nanomaterials): Rumi, S. S.; Liyanage, S.; Shamshina, J. L.; Abidi, N. Effect of Microwave Plasma Pre-treatment on Cotton Cellulose Dissolution.  Molecules   2022, 27(20), 7007. https://doi.org/10.3390/molecules27207007. 

(This article belongs to the Special Issue: A Themed Issue in Honor of Professor Robin D. Rogers - "A Scientific Journey within Green Chemistry") Rachiero, G. P.; Berton, P.; Shamshina, J. L. Deep Eutectic Solvents: Alternative Solvents for Biomass-Based Waste Valorization.  Molecules   2022, 27(19), 6606.  https://doi.org/10.3390/molecules27196606.  Also announced as an entry on "Deep Eutectic Solvents for Biomass-Based Waste Valorization" in MDPI Encyclopedia: https://encyclopedia.pub/entry/29071.

Shamshina, J. L.; Abidi, N. Isolation of Chitin Nano-whiskers Directly from Crustacean Biomass Waste in a Single Step with Acidic Ionic Liquid.  ACS Sustainable Chem. Eng.   2022, 10(36), 11846–11855.  https://doi.org/10.1021/acssuschemeng.2c02461.

(This article belongs to the Special Issue: A Themed Issue in Honor of Professor Robin D. Rogers - "A Scientific Journey within Green Chemistry") Lyon, D. R.; Smith, B. R.; Abidi, N.; Shamshina, J. L. Deproteinization of Chitin Extracted with the Help of Ionic Liquids.  Molecules   2022, 27, 3983. https://doi.org/10.3390/molecules27133983.

Hoque, E.; Acharya, S.; Shamshina, J. L.; Abidi, N. Review of Foam Application to Cotton Textiles.  Textile Research Journal   2022,936(1-2), 486 - 501.  https://doi.org/10.1177/00405175221107400  

Berton, P.; Abidi, N.; Shamshina, J. L. Ionic liquids: Implementing Objectives of Sustainability for the Next Generation Chemical Processes and Industrial Applications.  Curr. Opin. Green Sustain. Chem2022, 100625. https://doi.org/10.1016/j.cogsc.2022.100625.  

Shamshina, J. L.; Acharya, S.; Rumi, S. S.; Liyanage, S.; Parajuli, P.; Abidi, N. Cryogenic Grinding of Cotton Fiber Cellulose: the Effect on Physicochemical Properties.  Carbohydrate Polym. 2022,  119408. https://doi.org/10.1016/j.carbpol.2022.119408

Acharya, S.; Liyanage, S.; Parajuli, P.; Rumi, S. S. Shamshina, J. L.; Abidi, N. Utilization of Cellulose to its Full Potential: A Review on Cellulose Dissolution, Regeneration, and Applications.  Polymers (Basel)  2021, 13(24), 4344. https://doi.org/10.3390/polym13244344.

(Invited for a Special Issue on bio-product extraction.) Achinivu, A. C.; Shamshina, J. L.; Rogers, R. D. Chitin Extracted from Various Biomass Sources: It’s Not the Same.  Fluid Phase Equilibria 2022, 552, 113286.https://doi.org/10.1016/j.fluid.2021.113286.

Shamshina, J. L.; Abidi, N. Choosing the Right Strategy: Cryogrinding vs Ball Milling – Comparing Apples to Apples, for the Marine based green chemistry themed collection of Green Chem. 2021, 9646 - 9657, https://doi.org/10.1039/d1gc03128g

Liyanage, S.; Acharya, S.; Parajuli, P.; Shamshina, J. L. Production and Surface Modification of Cellulose Bioproducts.  Polymers (Basel)  2021, 13(19), 3433. https://doi.org/10.3390/polym13193433

Shamshina, L.; Abidi, N. Cellulose Nanocrystals from Ionic Liquids: A Critical Review.  Green. Chem.  2021, 23, 6205 - 6222, https://doi.org/10.1039/D1GC02507D.

(Invited for a Special Issue “Frontiers of Ionic Liquids”) Shamshina, J. L.; Qin, Y.; Belmore, K.; Daly, D. T.; Rogers, R. D. Switchable Carbamate Coagulants to Improve Recycling Ionic Liquid from Biomass Solutions.  GreenChE   2021, DOI: https://doi.org/10.1016/j.gce.2021.07.001.

Parajuli, P.; Acharya, S.; Shamshina, J. L.; Abidi, N.  Tuning the Morphological Properties of Cellulose Aerogels: An Investigation of Salt-Mediated Preparation.  Cellulose   2021, https://doi.org/10.1007/s10570-021-04028-w.

Berton, P.; Shamshina, J. L. Chapter 3: Ionic Liquids for Topical and Transdermal Drug Delivery, In: Application of Ionic Liquids in Drug Delivery. Goto, M.; Moniruzzaman, M. (Eds.); Springer Nature Singapore Pte Ltd, 2021, pp 35-50.

Shamshina, J. L.; Rogers, R. D. Chapter 5: 3D printing of Cellulose and Chitin from Ionic Liquids for Drug Delivery: a Mini-Review, In: Application of Ionic Liquids in Drug Delivery. Goto, M.; Moniruzzaman, M. (Eds.); Springer Nature Singapore Pte Ltd, 2021, pp 71-90.

Related Links

  • Career Vita