Texas Tech University

Renewable Energy Integration for Power Outage Mitigation: A Data-Driven Approach in Advancing Grid Resilience Strategies

Abstract

This article presents a comprehensive study on enhancing grid resilience through advanced forecasting and optimization techniques in the context of power outages. Power outages pose significant challenges to modern societies, affecting various sectors such as industries, households, and critical infrastructures. The research combines statistical analysis, machine learning algorithms, and optimization methods to address this issue to develop a holistic approach for predicting and mitigating power outage events. The proposed methodology involves the use of Monte Carlo simulations in MATLAB for future outage prediction, Long Short-Term Memory (LSTM) networks for forecasting solar irradiance and load profiles, and a hybrid LSTM-Particle Swarm Optimization (PSO) model to improve accuracy. Furthermore, the role of Battery State of Charge (SoC) in enhancing system resilience is explored. The study also assesses the techno-economic advantages of a grid-tied microgrid integrated with solar panels and batteries over conventional grid systems. The results highlight the potential of the proposed approach in strengthening grid resilience, reducing downtime, and fostering sustainable energy utilization.

Authors

Mahtab Murshed, Manohar Chamana, Konrad Schmitt, Suhas Pol, Olatunji Adeyanju, Stephen Bayne

Keywords

Grid resilience; Power outage prediction; Monte Carlo simulation; LSTM forecasting; Hybrid LSTM-PSO model; Battery State of Charge; Microgrid integration; Techno-economic analysis; Renewable energy; Energy independence

Publication Type

Article

Digital Object Identifier

https://doi.org/10.20944/preprints202308.2119.v1

Full Citation

Murshed, M.; Chamana, M.; Schmitt, K.; Pol, S.; Adeyanju, O.; Bayne, S. Renewable Energy Integration for Power Outage Mitigation: A Data-Driven Approach in Advancing Grid Resilience Strategies. Preprints 2023, 2023082119. https://doi.org/10.20944/preprints202308.2119.v1

View Article

Renewable Energy