Texas Tech University

Dr. W. David Nes


Title: Paul W. Horn Distinguished Professor
Director, Center for Chemical Biology

Education: Ph.D., University of Maryland, 1979
Postdoctoral Study, NIH Postdoctoral Fellow, University of California, Berkeley; ARS-USDA, Albany, CA

Research Area: Biochemistry and Natural Products

Phone: 806-834-2444

Email: wdavid.Nes@ttu.edu

Webpages: Research Group
Featured Articles

Principal Research Interests

  • Natural Product Chemistry and Metabolomics
  • Functional Analysis and Inhibition of Enzymes in Sterol Biosynthesis Pathways
  • Mechanistic Enzymology of Sterol Catalysts

The main focus of Professor Nes' research has been to establish the origin, biosynthesis and function of sterols in a range of organisms by unearthing the molecular libraries (genome-metabolome congruence) associated with the phyla-specific reaction sequences that regulate sterol patterning in nature. Particular emphasis is directed at the structure and mechanism of sterol catalysts and the characterization of intracellular metabolite and enzyme specificities involved in sterol production and processing. We have determined the structure of a panoply of naturally occurring isoprenoids and other lipids in stereochemical detail using 1H/13C-NMR/X-ray crystallography and tracked 2H and 13C-labeled intermediates to final products using sensitive labeling techniques. In parallel studies, we have cloned and demonstrated the mechanism and physiological abundance of crucial sterol catalysts in parasites as well as genetically modified sterol biosynthesis in crops.Our research program also involves fruitful collaborations involving several laboratories, including the Waterman/Lepesheva (Nashville, TN), Nguyen (Columbia, MO), Snell (Dallas, TX) and Kelly (Swansea, Wales) laboratories to rationally design and prepare substrate-based inhibitors targeted at 24-alkyl sterol biosynthesis and to examine the factors regulating carbon flux and sterol homeostasis. These studies have led to chemotherapeutic leads to prevent disease by opportunistic parasites dependent on an intact ergosterol pathway and afforded success in engineering transgenic plants with modified sterol seed compositions to benefit human health.

Steroal Biosynthesis Dream

A new graduate student can embark on studies involving natural product isolation and characterization (NMR, GC/MS, HPLC-UV), tracer studies designed to track biosynthesis pathways, prepare and test substrate mimics in vivo against parasites, and learn molecular cloning techniques that involve biochemical applications and molecular biological approaches related to enzyme kinetics, enzyme purification and characterization.

Representative Publications

  • Zu, P., Koch, H., Schwery, O., Pironon, S., Phillips, C., Ondo, I., Farrell, W., Nes, W. D., Moore, E., Wright, G. A., Farman, D. I., and Stevenson, P. C. (2021) Pollen Sterols are associated with phylogeny and environment but not with pollinator guilds. New Phytologist, 230 1169-1184.
  • Madan, B, Virshup, D. M., Nes, W. D. and Leaver, D. J. (2021) Unearthing the Janus-face cholesterogenesis pathways in cancer. Biochem. Pharmacol. 16: 114611 (doi: 10.1061/j/bcp.2021.114611).
  • Lamb, D. C., Hargrove, T.Y., Zhao, B., Wawzrzak, Z., Goldstone, J. V., Nes, W. D., Kelly, S. L., Watermnan, M. R., Stegeman, J. J. and Lepesheva, G. I. (2021) Concerning P450 Evolution: Structural analyses support bacterial origin of sterol 14a-demethylase. Mol. Biol. Evol. 1-16 (doi: 10.1093/molbev/msaa260).
  • Hargrove, T. Y., Wawrzak, Z., Rachakonda, G., Nes, W. D., Villalta, F. P., Guengerich, F. P. and Lepesheva, G. I. (2021) Relaxed substrate requirements of sterol 14a-demethylase from Naelgeleria fowlerii are accompanied by resistance to inhibition. J. Med. Chem. 64, 17511-17522.
  • Zhou, W., Fisher, P. M., Vanderloop, B. H., Shen, Y., Shi, H., Maldonado, A. J., Leaver, D. J. and Nes, W. D. (2020) A nematode sterol C4a-methyltransferase catalyzes a new methylation reaction responsible for sterol diversity. J. Lipid Res. 61, 192-204.
  • Zhou, W., Ramos, E., Zhu, X, Fisher, P. M., Kidane, M. E., Vanderloop, B. H., Thomas, C.D., Yan, Y., Singha, U., Chaudhuri, M., Nagel, M. T. and Nes, W. D. Steroidal Antibiotics are Antimetabolites of Acanthamoeba Steroidogenesis with Phylogenetic Implications. J. Lipid Res. in press (2019).
  • Friggeri, L., Hargrove, T.Y., Rachakonda, G., Blobaum, A. L., Fisher, P., de Oliveira, G.M., da Silva, C. F., Soeiro, M. De Nazare, C. Nes, W. D., Lindsley, C. W., Villalta, F., Guengerich, F. P. and Lepesheva, G.I. Sterol 14a-Demethylase Structure-based Optimization of Drug Candidates for Human Infections with the Protozoan Trypanosomatidae. J. Med. Chem. 61, 10910-10921 (2018). (doi: 10.1021/acs.jmedchem.8b01671).
  • Friggeri, L., Hargrove, T.Y., Wawrzak, Z., Blobaum, A.L., Rachakonda, G., Lindsley, C. W., Villalta, F., Nes, W. D., Botta, M., Guengerich, F. P. and Lepesheva, G.I. Sterol 14a-Demethylase Structure-based design of VNI ((R)-N-(1-2,4-dichlorophenyl)-2-(1H-imadazol-1yl)ethyl-4-(5-phenyl-1,3,4-oxadiazol-2-yl)benzamide)) Derivatives to Target Fungal Infections: Synthesis, Biological Evaluation, and Crystallographic Analysis. J. Med. Chem. 61, 5679-5691 (2018) (doi: 10.1021/acs.jmedchem.8b00641).
  • Hargrove, T.Y., Wawrzak, Z., Fisher, P. M., Child, S. A., Nes, W. D., Guengerich, F. P., Waterman, M. R. and Lepesheva, G. I. Binding of a Physiological Substrate causes Large-scale Conformational Reorganization in Cytochrome P450 51. J. Biol. Chem. 293, 19344-19353 (2018). (doi: 10.1074/jbc.RA118.005850).
  • Zhou, W., Warrilow, A.G.S, Thomas, C. D., Ramos, E., Parker, J. E., Price, C.L., Vanderloop, B.H., Fisher, P.M., Loftis, M.D., Kelly, D.E., Kelly, S.L. \and Nes, W. D. Functional Importance for Developmental Regulation of Sterol Biosynthesis in Acanthamoeba castellannii. Biochim. Biophys. Acta- Mole. Cell. Biol. Lipids. 1863, 1164-1178 (2018) (doi.org/10.1016/j.bbalip.2018.07.004).
  • Zhou, W., Debnath, A., Jennings, G., Hahn, H. J., Vanderloop, B. H., Chaudhuri, M., Nes, W. D. and Podust, L.M. Enzymatic Chokepoints and Synergistic Drug Targets in the Sterol Biosynthesis Pathway of Naegleria fowlerii Plos Pathogens, 14, e10007245 (2018) (doi.org/10.1371/journal.ppat.1007245).
  • Kildane, M.E., Vanderloop, B. H., Zhou, W., Thomas, C. D., Ramos, E., Singha, U., Chaudhuri, M. and Nes, W. D. Sterol Methyltransferase a Target for Anti-amoeba Therapy: Towards Transition State Analog and Suicide Substrate Design. J. Lipid Res. 58, 2310-2323 (2017). (doi.org/10.1194/jlr/MO79418; Featured in 2018 February issue of ASBMB Today magazine).
  • Debnath, A., Calvet, C.M., Jennings, G., Zhou, W., Aksenov, A., Luth, M.R., Abagyan, R., Nes, W.D., Mckerrow, J. H., and Podust, L. M. CYP51 is an Essential Drug Target for the Treatment of Primary Amebic Meningoencephalitis (PAM). Plos. Negl. Trop. Disease11, e0006104 (2017) (doi.org/10.1317/journal.pntd.000104).
  • Warrilow, A. G.S., Parker, J. E., Price, C.L., Garvey, E. P., Hoekstra, W. J., Schotzinger, R. J., Wiederhold, N. P., Nes, W. D., Kelly, D. E. and Kelly, S. L. The Tetrazole VT-1161 is a Potent Inhibitor of Trichophyton rubrum through its inhibition of T. rubrum CYP51. Antimicrob. Agents Chemother. 61: e00333-17 (2017) doi.org: 10.1128/ACC.00333-17.
  • Miller, M. B., Patkar, P., Singha, U.K., Chaudhuri, M. and Nes, W. D. 24-Methylenepropane steroidal inhibitors: A Trojan Horse in Ergosterol Biosynthesis that Prevents Growth of Tyrpanosoma brucei. Biochim. Biophys. Acta- Mole. Cell. Biol. Lipids1862, 305-313 (2017). doi: 10.1016/j.bbalip.2016.12.003.
  • Haubrich, B. A., Collins, E. K., Howard, A. L., Wang, Q., Snell, W. J., Miller, M. B., Thomas, C. D., Pleasant, S. K. and Nes, W. D. Characterization, Mutagenesis and Mechanistic Analysis of an Ancient Algal Sterol C24-Methyltransferase: Implications for Understanding Sterol Evolution in the Green Lineage. Phytochemistry 113, 64-72 (2015).
  • Haubrich, B. A., Singha, U.K., Miller, M.B., Nes, W. R., Anyatonwu, H., Lecordier, L., Patkar, P., Leaver, D. J., Villalta, F., Vanhollebeke, B., Chaudhuri, M. and Nes, W. D. Discovery of an ergosterol-signaling factor that regulates Trypanosoma brucei growth. J. Lipid Res, 56, 331-341 (2015).
  • Santori, F. R., Huang, P., van dr Pavert, S. A., Douglass, E. F., Leaver, D. J., Haubrich, B. A., Keber, R., Lorbek, G., Konjin, T., Rosales, B. N., Rozman, D., Horvat, S., Rahier, A., Mebius, R. E., Ratinejad, F., Nes, W. D. and . Littman, D. R. Natural RORλ Ligands that Regulate the Development of Lymphoid Cells. (2015) Cell Metabolism 21, 286- 297 (2015).
  • Price, C. L., Warrilow, A. G., Parker, J. E., Mullins, J. G., Nes, W. D., Kelly, D. E., & Kelly, S. L. Novel Substrate Specificity and Temperature-Sensitive Activity of Mycosphaerella graminicola CYP51 Supported by the Native NADPH Cytochrome P450 Reductase. Applied and environmental microbiology, 81, 3379-3386 (2015).
  • Moreau, R. A., Bach, T. J., Nes, W. D., Parish, E. J., Moser, J. K., & Nyström, L. 2014 GJ Schroepfer Jr. Memorial AOCS Sterol Symposium: Recent Advances in Sterol Research. Lipids, 50, 719-720 (2015).
  • Lepesheva, G. I., Hargrove, T. Y., Rachakonda, G., Wawrzak, Z., Pomel, S., Cojean, S., Nde, P. N., Nes, W. D., Locuson, C. W., Calcutt, M. W., Waterman, M. R., Daniels, J. S., Loiseau, P. M., & Villalta, F. VFV as a new effective CYP51 structure-derived drug candidate for Chagas disease and visceral leishmaniasis. J. Inf. Dis. In press (2015). doi: 10/1093/infdis/jiv228.
  • Lamb, D. C., Warrilow, A. G., Rolley, N. J., Parker, J. E., Nes, W. D., Smith, S. N., Kelly, D. E., & Kelly, S. L. Azole antifungal agents to treat the human pathogens Acanthamoeba castellanii and Acanthamoeba polyphaga through inhibition of sterol 14α-demethylase (CYP51). Antimicrob. Agents Chem. In press (2015) doi: 10.1128/AAC.00476-15.
  • Leaver, D. J., Patkar, P., Singha, U. K., Miller, M.B., Haubrich, B. A., Chaudhuri, M. & Nes, W. D. Fluroinated sterols are Suicide Inhibitors of Ergosterol Biosynthesis in Trypanosoma brucei. Chem. & Biol. in press (2015).
  • Opitz, S., Nes, W. D. and Gershenzon, G. Both Methylerthritol Phosphate and Mevalonate Pathways Contribute to Biosynthesis of Each of the Major Isoprenoid Classes in Young Cotton Seedlings. Phytochemistry 98, 110-119 (2014).
  • Warrilow, A. G. S., Hull, C. M., Rolley, N. J., Parker, J. E. Nes, W. D., Smith, S. N., Kelly, D. K. and Kelly, S. L. Clotrimazole as a Potential Agent for Treating the Oomycete Fish Pathogen Saprolegnia parasitica through Inhibition of sterol 14alpha-Demethylase (CYP51). Appl. Environ, Microbiol. 80, 6154-6166 (2014).
  • Shameer, S., Logan-Klumpler, F. J., Vinson, F., Cottret, L., Merlet, B., Achcar, F., Boshart, M., Berriman, M., Breitling, R., Bringaud, F., Butifofer, P., Cattanach, A. M., Bannerman-Chukualim, B., Creek, D. J., Crouch, K., de Koning, H. P., Denise, H., Ebikeme, C., Fairlamb, A. H., Ferguson, M. A. J., Ginger, M. L., Hertz-Fowler, C., Kerkhoven, E. J., Maser, P., Michels, P. A. M., Nayak, A., Nes, W. D., Nolan, D. P., Olsen, C., Silva-Franco, F., Smith, T. K., Taylor, M. C., Tielens, A. G. M., Urbaniak, M. D., van Hellemond, J. J., Vincent, I. M., Wilkinson, S. R., Wyllie, S., Opperdoes, F. R., Barrett, M. P., & Jourdan, F. TrypanoCyc: a community-led biochemical pathways database for Trypanosoma brucei. Nuc. Acids Res. (2014) doi: 10.1093/narlgku944.


  • 105th American Oil Chemists' Society annual meeting & expo, San Antonio, TX (invited speaker and co-organizer of the sterol symposium), May 2014. At this meeting WDN received an award—Inducted into Society as a Fellow. Talk entitled "Novel sterol biosynthesis inhibitors as anti-trypanosomal agents".
  • Department of Pharmacy, Texas Tech University, Amarillo, TX, January 2015. Talk entitled "Ergosterol biosynthesis inhibitors for treating opportunistic pathogens and protozoan diseases".

Department of Chemistry & Biochemistry

  • Address

    1204 Boston Avenue, Lubbock, TX 79409-1061
  • Phone